7a78ae4e6b
support. Incorporate most of tm-rs6000.h. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. (read_memory_addr): Define. (pop_frame): Rename to rs6000_pop_frame. (rs6000_pop_frame, rs6000_fix_call_dummy, rs6000_push_arguments, rs6000_frame_saved_pc, rs6000_frame_chain): Remove non-generic dummy frame handling. (branch_dest, rs6000_pop_frame, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain, rs6000_convert_from_func_ptr_addr): Call read_memory_addr instead of read_memory_integer. (branch_dest, rs6000_pop_frame, rs6000_push_arguments, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain): Replace 4 with TDEP->wordsize. (skip_prologue): Recognize some 64-bit stack adjustments. (push_dummy_frame, pop_dummy_frame, set_processor, show_processor): Delete. (frame_get_saved_regs): Manipulate saved register addresses using CORE_ADDR instead of int. (rs6000_create_inferior): New function. (register_names_*[]): Change to struct reg registers_*[]. (variants[]): Assimilate into multi-arch approach. (register_names_*[], variants[]): Refer to pre-PowerPC architectures as POWER instead of RS6000. * rs6000-nat.c: Ubiquitous changes for 64-bit support. (vmap_secs, xcoff_relocate_symtab): Cast addresses to unsigned long to avoid sign-extension errors. (set_host_arch): New function. (xcoff_relocate_symtab): Try disabling usleep(36000) workaround. (rs6000_core_fns): Use new bfd_target_xcoff_flavour. (_initialize_core_rs6000): Initialize rs6000_set_host_arch_hook. * symfile.c (find_sym_fns): Remove special xcoff kludge. * xcoffread.c (secnum_to_bfd_section): Initialize args.objfile. (process_linenos): Query line struct size from coff backend instead of using compile-time constant. (enter_line_range): Likewise. (read_xcoff_symtab): Pass "XCOFF64" instead of "XCOFF" to record_debugformat() if appropriate. (process_xcoff_symbol): Access symbol addresses using SYMBOL_VALUE_ADDRESS instead of SYMBOL_VALUE. (read_symbol_lineno): Retrieve XCOFF64 symbol names from strtbl. (scan_xcoff_symtab): Likewise. Query syment struct size from coff backend instead of using compile-time constant. (xcoff_sym_fns): Set flavour to bfd_target_xcoff_flavour. * Makefile.in (INTERNAL_LDFLAGS): Add $(MH_LDFLAGS) to list of flags that this Makefile variable get set to. (From Kevin Buettner.) * config/powerpc/aix.mh (MH_LDFLAGS): Add linker flags so that the TOC doesn't overflow. (From Kevin Buettner.) * config/powerpc/tm-ppc-aix.h: Move config decisions to multi-arched rs6000-tdep.c. * config/rs6000/tm-rs6000.h: Likewise. (GDB_MULTI_ARCH): Define. (skip_trampoline_code): Rename to rs6000_skip_trampoline_code. (is_magic_function_pointer): Replace with rs6000_convert_from_func_ptr_addr. (TARGET_CREATE_INFERIOR_HOOK): Define. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. * config/rs6000/nm-rs6000.h (CHILD_XFER_MEMORY): Define.
2109 lines
63 KiB
C
2109 lines
63 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 2000
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "xcoffsolib.h"
|
||
#include "arch-utils.h"
|
||
|
||
#include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */
|
||
#include "coff/internal.h" /* for libcoff.h */
|
||
#include "bfd/libcoff.h" /* for xcoff_data */
|
||
|
||
/* Some important register numbers. Keep these in the same order as in
|
||
/usr/mstsave.h `mstsave' structure, for easier processing. */
|
||
|
||
#define GP0_REGNUM 0 /* GPR register 0 */
|
||
#define TOC_REGNUM 2 /* TOC register */
|
||
#define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
|
||
#define CR_REGNUM 66 /* Condition register */
|
||
#define LR_REGNUM 67 /* Link register */
|
||
#define CTR_REGNUM 68 /* Count register */
|
||
|
||
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
||
structure on the stack and then calls the signal handler, passing
|
||
the address of the sigcontext in an argument register. Usually
|
||
the signal handler doesn't save this register, so we have to
|
||
access the sigcontext structure via an offset from the signal handler
|
||
frame.
|
||
The following constants were determined by experimentation on AIX 3.2. */
|
||
#define SIG_FRAME_PC_OFFSET 96
|
||
#define SIG_FRAME_LR_OFFSET 108
|
||
#define SIG_FRAME_FP_OFFSET 284
|
||
|
||
/* Default offset from SP where the LR is stored */
|
||
#define DEFAULT_LR_SAVE 8
|
||
|
||
/* To be used by skip_prologue. */
|
||
|
||
struct rs6000_framedata
|
||
{
|
||
int offset; /* total size of frame --- the distance
|
||
by which we decrement sp to allocate
|
||
the frame */
|
||
int saved_gpr; /* smallest # of saved gpr */
|
||
int saved_fpr; /* smallest # of saved fpr */
|
||
int alloca_reg; /* alloca register number (frame ptr) */
|
||
char frameless; /* true if frameless functions. */
|
||
char nosavedpc; /* true if pc not saved. */
|
||
int gpr_offset; /* offset of saved gprs from prev sp */
|
||
int fpr_offset; /* offset of saved fprs from prev sp */
|
||
int lr_offset; /* offset of saved lr */
|
||
int cr_offset; /* offset of saved cr */
|
||
};
|
||
|
||
/* Description of a single register. */
|
||
|
||
struct reg
|
||
{
|
||
char *name; /* name of register */
|
||
unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
|
||
unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
|
||
unsigned char fpr; /* whether register is floating-point */
|
||
};
|
||
|
||
/* Private data that this module attaches to struct gdbarch. */
|
||
|
||
struct gdbarch_tdep
|
||
{
|
||
int wordsize; /* size in bytes of fixed-point word */
|
||
int *regoff; /* byte offsets in register arrays */
|
||
const struct reg *regs; /* from current variant */
|
||
};
|
||
|
||
/* Return the current architecture's gdbarch_tdep structure. */
|
||
|
||
#define TDEP gdbarch_tdep (current_gdbarch)
|
||
|
||
/* Breakpoint shadows for the single step instructions will be kept here. */
|
||
|
||
static struct sstep_breaks
|
||
{
|
||
/* Address, or 0 if this is not in use. */
|
||
CORE_ADDR address;
|
||
/* Shadow contents. */
|
||
char data[4];
|
||
}
|
||
stepBreaks[2];
|
||
|
||
/* Hook for determining the TOC address when calling functions in the
|
||
inferior under AIX. The initialization code in rs6000-nat.c sets
|
||
this hook to point to find_toc_address. */
|
||
|
||
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
|
||
|
||
/* Hook to set the current architecture when starting a child process.
|
||
rs6000-nat.c sets this. */
|
||
|
||
void (*rs6000_set_host_arch_hook) (int) = NULL;
|
||
|
||
/* Static function prototypes */
|
||
|
||
static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
|
||
CORE_ADDR safety);
|
||
static CORE_ADDR skip_prologue (CORE_ADDR, struct rs6000_framedata *);
|
||
static void frame_get_saved_regs (struct frame_info * fi,
|
||
struct rs6000_framedata * fdatap);
|
||
static CORE_ADDR frame_initial_stack_address (struct frame_info *);
|
||
|
||
/* Read a LEN-byte address from debugged memory address MEMADDR. */
|
||
|
||
static CORE_ADDR
|
||
read_memory_addr (CORE_ADDR memaddr, int len)
|
||
{
|
||
return read_memory_unsigned_integer (memaddr, len);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
struct rs6000_framedata frame;
|
||
pc = skip_prologue (pc, &frame);
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Fill in fi->saved_regs */
|
||
|
||
struct frame_extra_info
|
||
{
|
||
/* Functions calling alloca() change the value of the stack
|
||
pointer. We need to use initial stack pointer (which is saved in
|
||
r31 by gcc) in such cases. If a compiler emits traceback table,
|
||
then we should use the alloca register specified in traceback
|
||
table. FIXME. */
|
||
CORE_ADDR initial_sp; /* initial stack pointer. */
|
||
};
|
||
|
||
static void
|
||
rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
||
{
|
||
fi->extra_info = (struct frame_extra_info *)
|
||
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
||
fi->extra_info->initial_sp = 0;
|
||
if (fi->next != (CORE_ADDR) 0
|
||
&& fi->pc < TEXT_SEGMENT_BASE)
|
||
/* We're in get_prev_frame */
|
||
/* and this is a special signal frame. */
|
||
/* (fi->pc will be some low address in the kernel, */
|
||
/* to which the signal handler returns). */
|
||
fi->signal_handler_caller = 1;
|
||
}
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
/* In this implementation for RS/6000, we do *not* save sp. I am
|
||
not sure if it will be needed. The following function takes care of gpr's
|
||
and fpr's only. */
|
||
|
||
static void
|
||
rs6000_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
frame_get_saved_regs (fi, NULL);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_frame_args_address (struct frame_info *fi)
|
||
{
|
||
if (fi->extra_info->initial_sp != 0)
|
||
return fi->extra_info->initial_sp;
|
||
else
|
||
return frame_initial_stack_address (fi);
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_saved_pc_after_call (struct frame_info *fi)
|
||
{
|
||
return read_register (LR_REGNUM);
|
||
}
|
||
|
||
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
||
|
||
static CORE_ADDR
|
||
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
|
||
{
|
||
CORE_ADDR dest;
|
||
int immediate;
|
||
int absolute;
|
||
int ext_op;
|
||
|
||
absolute = (int) ((instr >> 1) & 1);
|
||
|
||
switch (opcode)
|
||
{
|
||
case 18:
|
||
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 16:
|
||
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 19:
|
||
ext_op = (instr >> 1) & 0x3ff;
|
||
|
||
if (ext_op == 16) /* br conditional register */
|
||
{
|
||
dest = read_register (LR_REGNUM) & ~3;
|
||
|
||
/* If we are about to return from a signal handler, dest is
|
||
something like 0x3c90. The current frame is a signal handler
|
||
caller frame, upon completion of the sigreturn system call
|
||
execution will return to the saved PC in the frame. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
{
|
||
struct frame_info *fi;
|
||
|
||
fi = get_current_frame ();
|
||
if (fi != NULL)
|
||
dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
|
||
TDEP->wordsize);
|
||
}
|
||
}
|
||
|
||
else if (ext_op == 528) /* br cond to count reg */
|
||
{
|
||
dest = read_register (CTR_REGNUM) & ~3;
|
||
|
||
/* If we are about to execute a system call, dest is something
|
||
like 0x22fc or 0x3b00. Upon completion the system call
|
||
will return to the address in the link register. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
dest = read_register (LR_REGNUM) & ~3;
|
||
}
|
||
else
|
||
return -1;
|
||
break;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
|
||
}
|
||
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
|
||
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
|
||
|
||
static unsigned char *
|
||
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
|
||
{
|
||
static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
|
||
static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
|
||
*bp_size = 4;
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
return big_breakpoint;
|
||
else
|
||
return little_breakpoint;
|
||
}
|
||
|
||
|
||
/* AIX does not support PT_STEP. Simulate it. */
|
||
|
||
void
|
||
rs6000_software_single_step (unsigned int signal, int insert_breakpoints_p)
|
||
{
|
||
#define INSNLEN(OPCODE) 4
|
||
|
||
static char le_breakp[] = LITTLE_BREAKPOINT;
|
||
static char be_breakp[] = BIG_BREAKPOINT;
|
||
char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
|
||
int ii, insn;
|
||
CORE_ADDR loc;
|
||
CORE_ADDR breaks[2];
|
||
int opcode;
|
||
|
||
if (insert_breakpoints_p)
|
||
{
|
||
|
||
loc = read_pc ();
|
||
|
||
insn = read_memory_integer (loc, 4);
|
||
|
||
breaks[0] = loc + INSNLEN (insn);
|
||
opcode = insn >> 26;
|
||
breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
|
||
|
||
/* Don't put two breakpoints on the same address. */
|
||
if (breaks[1] == breaks[0])
|
||
breaks[1] = -1;
|
||
|
||
stepBreaks[1].address = 0;
|
||
|
||
for (ii = 0; ii < 2; ++ii)
|
||
{
|
||
|
||
/* ignore invalid breakpoint. */
|
||
if (breaks[ii] == -1)
|
||
continue;
|
||
|
||
read_memory (breaks[ii], stepBreaks[ii].data, 4);
|
||
|
||
write_memory (breaks[ii], breakp, 4);
|
||
stepBreaks[ii].address = breaks[ii];
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
|
||
/* remove step breakpoints. */
|
||
for (ii = 0; ii < 2; ++ii)
|
||
if (stepBreaks[ii].address != 0)
|
||
write_memory
|
||
(stepBreaks[ii].address, stepBreaks[ii].data, 4);
|
||
|
||
}
|
||
errno = 0; /* FIXME, don't ignore errors! */
|
||
/* What errors? {read,write}_memory call error(). */
|
||
}
|
||
|
||
|
||
/* return pc value after skipping a function prologue and also return
|
||
information about a function frame.
|
||
|
||
in struct rs6000_framedata fdata:
|
||
- frameless is TRUE, if function does not have a frame.
|
||
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
||
- offset is the initial size of this stack frame --- the amount by
|
||
which we decrement the sp to allocate the frame.
|
||
- saved_gpr is the number of the first saved gpr.
|
||
- saved_fpr is the number of the first saved fpr.
|
||
- alloca_reg is the number of the register used for alloca() handling.
|
||
Otherwise -1.
|
||
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
||
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
||
- lr_offset is the offset of the saved lr
|
||
- cr_offset is the offset of the saved cr
|
||
*/
|
||
|
||
#define SIGNED_SHORT(x) \
|
||
((sizeof (short) == 2) \
|
||
? ((int)(short)(x)) \
|
||
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
||
|
||
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
||
|
||
static CORE_ADDR
|
||
skip_prologue (CORE_ADDR pc, struct rs6000_framedata *fdata)
|
||
{
|
||
CORE_ADDR orig_pc = pc;
|
||
CORE_ADDR last_prologue_pc;
|
||
char buf[4];
|
||
unsigned long op;
|
||
long offset = 0;
|
||
int lr_reg = -1;
|
||
int cr_reg = -1;
|
||
int reg;
|
||
int framep = 0;
|
||
int minimal_toc_loaded = 0;
|
||
int prev_insn_was_prologue_insn = 1;
|
||
|
||
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
||
fdata->saved_gpr = -1;
|
||
fdata->saved_fpr = -1;
|
||
fdata->alloca_reg = -1;
|
||
fdata->frameless = 1;
|
||
fdata->nosavedpc = 1;
|
||
|
||
pc -= 4;
|
||
for (;;)
|
||
{
|
||
pc += 4;
|
||
|
||
/* Sometimes it isn't clear if an instruction is a prologue
|
||
instruction or not. When we encounter one of these ambiguous
|
||
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
||
Otherwise, we'll assume that it really is a prologue instruction. */
|
||
if (prev_insn_was_prologue_insn)
|
||
last_prologue_pc = pc;
|
||
prev_insn_was_prologue_insn = 1;
|
||
|
||
if (target_read_memory (pc, buf, 4))
|
||
break;
|
||
op = extract_signed_integer (buf, 4);
|
||
|
||
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
||
{ /* mflr Rx */
|
||
lr_reg = (op & 0x03e00000) | 0x90010000;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c000026)
|
||
{ /* mfcr Rx */
|
||
cr_reg = (op & 0x03e00000) | 0x90010000;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0xd8010000)
|
||
{ /* stfd Rx,NUM(r1) */
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
||
{
|
||
fdata->saved_fpr = reg;
|
||
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
||
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
|
||
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
|
||
{
|
||
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
||
{
|
||
fdata->saved_gpr = reg;
|
||
if ((op & 0xfc1f0003) == 0xf8010000)
|
||
op = (op >> 1) << 1;
|
||
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
/* nop */
|
||
/* Allow nops in the prologue, but do not consider them to
|
||
be part of the prologue unless followed by other prologue
|
||
instructions. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3c000000)
|
||
{ /* addis 0,0,NUM, used
|
||
for >= 32k frames */
|
||
fdata->offset = (op & 0x0000ffff) << 16;
|
||
fdata->frameless = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{ /* ori 0,0,NUM, 2nd ha
|
||
lf of >= 32k frames */
|
||
fdata->offset |= (op & 0x0000ffff);
|
||
fdata->frameless = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
|
||
{ /* st Rx,NUM(r1)
|
||
where Rx == lr */
|
||
fdata->lr_offset = SIGNED_SHORT (op) + offset;
|
||
fdata->nosavedpc = 0;
|
||
lr_reg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
|
||
{ /* st Rx,NUM(r1)
|
||
where Rx == cr */
|
||
fdata->cr_offset = SIGNED_SHORT (op) + offset;
|
||
cr_reg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000005)
|
||
{ /* bl .+4 used in
|
||
-mrelocatable */
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000004)
|
||
{ /* b .+4 (xlc) */
|
||
break;
|
||
|
||
}
|
||
else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
|
||
in V.4 -mrelocatable */
|
||
op == 0x7fc0f214) && /* add r30,r0,r30, used
|
||
in V.4 -mrelocatable */
|
||
lr_reg == 0x901e0000)
|
||
{
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
||
in V.4 -mminimal-toc */
|
||
(op & 0xffff0000) == 0x3bde0000)
|
||
{ /* addi 30,30,foo@l */
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo,
|
||
to save fprs??? */
|
||
|
||
fdata->frameless = 0;
|
||
/* Don't skip over the subroutine call if it is not within the first
|
||
three instructions of the prologue. */
|
||
if ((pc - orig_pc) > 8)
|
||
break;
|
||
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
/* At this point, make sure this is not a trampoline function
|
||
(a function that simply calls another functions, and nothing else).
|
||
If the next is not a nop, this branch was part of the function
|
||
prologue. */
|
||
|
||
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
||
break; /* don't skip over
|
||
this branch */
|
||
continue;
|
||
|
||
/* update stack pointer */
|
||
}
|
||
else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
|
||
(op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
|
||
{
|
||
fdata->frameless = 0;
|
||
if ((op & 0xffff0003) == 0xf8210001)
|
||
op = (op >> 1) << 1;
|
||
fdata->offset = SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x7c21016e)
|
||
{ /* stwux 1,1,0 */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
|
||
/* Load up minimal toc pointer */
|
||
}
|
||
else if ((op >> 22) == 0x20f
|
||
&& !minimal_toc_loaded)
|
||
{ /* l r31,... or l r30,... */
|
||
minimal_toc_loaded = 1;
|
||
continue;
|
||
|
||
/* move parameters from argument registers to local variable
|
||
registers */
|
||
}
|
||
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
||
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
||
(((op >> 21) & 31) <= 10) &&
|
||
(((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack */
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack via frame pointer */
|
||
}
|
||
else if (framep &&
|
||
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xfc1f0000))
|
||
{ /* frsp, fp?,NUM(r1) */
|
||
continue;
|
||
|
||
/* Set up frame pointer */
|
||
}
|
||
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
||
|| op == 0x7c3f0b78)
|
||
{ /* mr r31, r1 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = 31;
|
||
continue;
|
||
|
||
/* Another way to set up the frame pointer. */
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x38010000)
|
||
{ /* addi rX, r1, 0x0 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (op & ~0x38010000) >> 21;
|
||
continue;
|
||
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
/* I have problems with skipping over __main() that I need to address
|
||
* sometime. Previously, I used to use misc_function_vector which
|
||
* didn't work as well as I wanted to be. -MGO */
|
||
|
||
/* If the first thing after skipping a prolog is a branch to a function,
|
||
this might be a call to an initializer in main(), introduced by gcc2.
|
||
We'd like to skip over it as well. Fortunately, xlc does some extra
|
||
work before calling a function right after a prologue, thus we can
|
||
single out such gcc2 behaviour. */
|
||
|
||
|
||
if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo, an initializer function? */
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
if (op == 0x4def7b82)
|
||
{ /* cror 0xf, 0xf, 0xf (nop) */
|
||
|
||
/* check and see if we are in main. If so, skip over this initializer
|
||
function as well. */
|
||
|
||
tmp = find_pc_misc_function (pc);
|
||
if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
|
||
return pc + 8;
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
fdata->offset = -fdata->offset;
|
||
return last_prologue_pc;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Support for creating pushing a dummy frame into the stack, and popping
|
||
frames, etc.
|
||
*************************************************************************/
|
||
|
||
extern int stop_stack_dummy;
|
||
|
||
|
||
/* Pop the innermost frame, go back to the caller. */
|
||
|
||
static void
|
||
rs6000_pop_frame (void)
|
||
{
|
||
CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
|
||
struct rs6000_framedata fdata;
|
||
struct frame_info *frame = get_current_frame ();
|
||
int addr, ii, wordsize;
|
||
|
||
pc = read_pc ();
|
||
sp = FRAME_FP (frame);
|
||
|
||
if (stop_stack_dummy)
|
||
{
|
||
generic_pop_dummy_frame ();
|
||
flush_cached_frames ();
|
||
return;
|
||
}
|
||
|
||
/* Make sure that all registers are valid. */
|
||
read_register_bytes (0, NULL, REGISTER_BYTES);
|
||
|
||
/* figure out previous %pc value. If the function is frameless, it is
|
||
still in the link register, otherwise walk the frames and retrieve the
|
||
saved %pc value in the previous frame. */
|
||
|
||
addr = get_pc_function_start (frame->pc);
|
||
(void) skip_prologue (addr, &fdata);
|
||
|
||
wordsize = TDEP->wordsize;
|
||
if (fdata.frameless)
|
||
prev_sp = sp;
|
||
else
|
||
prev_sp = read_memory_addr (sp, wordsize);
|
||
if (fdata.lr_offset == 0)
|
||
lr = read_register (LR_REGNUM);
|
||
else
|
||
lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
|
||
|
||
/* reset %pc value. */
|
||
write_register (PC_REGNUM, lr);
|
||
|
||
/* reset register values if any was saved earlier. */
|
||
|
||
if (fdata.saved_gpr != -1)
|
||
{
|
||
addr = prev_sp + fdata.gpr_offset;
|
||
for (ii = fdata.saved_gpr; ii <= 31; ++ii)
|
||
{
|
||
read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize);
|
||
addr += wordsize;
|
||
}
|
||
}
|
||
|
||
if (fdata.saved_fpr != -1)
|
||
{
|
||
addr = prev_sp + fdata.fpr_offset;
|
||
for (ii = fdata.saved_fpr; ii <= 31; ++ii)
|
||
{
|
||
read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
|
||
addr += 8;
|
||
}
|
||
}
|
||
|
||
write_register (SP_REGNUM, prev_sp);
|
||
target_store_registers (-1);
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* Fixup the call sequence of a dummy function, with the real function
|
||
address. Its arguments will be passed by gdb. */
|
||
|
||
static void
|
||
rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
|
||
int nargs, value_ptr *args, struct type *type,
|
||
int gcc_p)
|
||
{
|
||
#define TOC_ADDR_OFFSET 20
|
||
#define TARGET_ADDR_OFFSET 28
|
||
|
||
int ii;
|
||
CORE_ADDR target_addr;
|
||
|
||
if (rs6000_find_toc_address_hook != NULL)
|
||
{
|
||
CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
|
||
write_register (TOC_REGNUM, tocvalue);
|
||
}
|
||
}
|
||
|
||
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
||
the first eight words of the argument list (that might be less than
|
||
eight parameters if some parameters occupy more than one word) are
|
||
passed in r3..r10 registers. float and double parameters are
|
||
passed in fpr's, in addition to that. Rest of the parameters if any
|
||
are passed in user stack. There might be cases in which half of the
|
||
parameter is copied into registers, the other half is pushed into
|
||
stack.
|
||
|
||
Stack must be aligned on 64-bit boundaries when synthesizing
|
||
function calls.
|
||
|
||
If the function is returning a structure, then the return address is passed
|
||
in r3, then the first 7 words of the parameters can be passed in registers,
|
||
starting from r4. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int ii;
|
||
int len = 0;
|
||
int argno; /* current argument number */
|
||
int argbytes; /* current argument byte */
|
||
char tmp_buffer[50];
|
||
int f_argno = 0; /* current floating point argno */
|
||
int wordsize = TDEP->wordsize;
|
||
|
||
value_ptr arg = 0;
|
||
struct type *type;
|
||
|
||
CORE_ADDR saved_sp;
|
||
|
||
/* The first eight words of ther arguments are passed in registers. Copy
|
||
them appropriately.
|
||
|
||
If the function is returning a `struct', then the first word (which
|
||
will be passed in r3) is used for struct return address. In that
|
||
case we should advance one word and start from r4 register to copy
|
||
parameters. */
|
||
|
||
ii = struct_return ? 1 : 0;
|
||
|
||
/*
|
||
effectively indirect call... gcc does...
|
||
|
||
return_val example( float, int);
|
||
|
||
eabi:
|
||
float in fp0, int in r3
|
||
offset of stack on overflow 8/16
|
||
for varargs, must go by type.
|
||
power open:
|
||
float in r3&r4, int in r5
|
||
offset of stack on overflow different
|
||
both:
|
||
return in r3 or f0. If no float, must study how gcc emulates floats;
|
||
pay attention to arg promotion.
|
||
User may have to cast\args to handle promotion correctly
|
||
since gdb won't know if prototype supplied or not.
|
||
*/
|
||
|
||
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
||
{
|
||
int reg_size = REGISTER_RAW_SIZE (ii + 3);
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (VALUE_TYPE (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
/* floating point arguments are passed in fpr's, as well as gpr's.
|
||
There are 13 fpr's reserved for passing parameters. At this point
|
||
there is no way we would run out of them. */
|
||
|
||
if (len > 8)
|
||
printf_unfiltered (
|
||
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
||
VALUE_CONTENTS (arg),
|
||
len);
|
||
++f_argno;
|
||
}
|
||
|
||
if (len > reg_size)
|
||
{
|
||
|
||
/* Argument takes more than one register. */
|
||
while (argbytes < len)
|
||
{
|
||
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
||
memcpy (®isters[REGISTER_BYTE (ii + 3)],
|
||
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
||
(len - argbytes) > reg_size
|
||
? reg_size : len - argbytes);
|
||
++ii, argbytes += reg_size;
|
||
|
||
if (ii >= 8)
|
||
goto ran_out_of_registers_for_arguments;
|
||
}
|
||
argbytes = 0;
|
||
--ii;
|
||
}
|
||
else
|
||
{ /* Argument can fit in one register. No problem. */
|
||
int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
|
||
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
||
memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj,
|
||
VALUE_CONTENTS (arg), len);
|
||
}
|
||
++argno;
|
||
}
|
||
|
||
ran_out_of_registers_for_arguments:
|
||
|
||
saved_sp = read_sp ();
|
||
#ifndef ELF_OBJECT_FORMAT
|
||
/* location for 8 parameters are always reserved. */
|
||
sp -= wordsize * 8;
|
||
|
||
/* another six words for back chain, TOC register, link register, etc. */
|
||
sp -= wordsize * 6;
|
||
|
||
/* stack pointer must be quadword aligned */
|
||
sp &= -16;
|
||
#endif
|
||
|
||
/* if there are more arguments, allocate space for them in
|
||
the stack, then push them starting from the ninth one. */
|
||
|
||
if ((argno < nargs) || argbytes)
|
||
{
|
||
int space = 0, jj;
|
||
|
||
if (argbytes)
|
||
{
|
||
space += ((len - argbytes + 3) & -4);
|
||
jj = argno + 1;
|
||
}
|
||
else
|
||
jj = argno;
|
||
|
||
for (; jj < nargs; ++jj)
|
||
{
|
||
value_ptr val = args[jj];
|
||
space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
|
||
}
|
||
|
||
/* add location required for the rest of the parameters */
|
||
space = (space + 15) & -16;
|
||
sp -= space;
|
||
|
||
/* This is another instance we need to be concerned about securing our
|
||
stack space. If we write anything underneath %sp (r1), we might conflict
|
||
with the kernel who thinks he is free to use this area. So, update %sp
|
||
first before doing anything else. */
|
||
|
||
write_register (SP_REGNUM, sp);
|
||
|
||
/* if the last argument copied into the registers didn't fit there
|
||
completely, push the rest of it into stack. */
|
||
|
||
if (argbytes)
|
||
{
|
||
write_memory (sp + 24 + (ii * 4),
|
||
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
||
len - argbytes);
|
||
++argno;
|
||
ii += ((len - argbytes + 3) & -4) / 4;
|
||
}
|
||
|
||
/* push the rest of the arguments into stack. */
|
||
for (; argno < nargs; ++argno)
|
||
{
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (VALUE_TYPE (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
|
||
/* float types should be passed in fpr's, as well as in the stack. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
||
{
|
||
|
||
if (len > 8)
|
||
printf_unfiltered (
|
||
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
||
VALUE_CONTENTS (arg),
|
||
len);
|
||
++f_argno;
|
||
}
|
||
|
||
write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
|
||
ii += ((len + 3) & -4) / 4;
|
||
}
|
||
}
|
||
else
|
||
/* Secure stack areas first, before doing anything else. */
|
||
write_register (SP_REGNUM, sp);
|
||
|
||
/* set back chain properly */
|
||
store_address (tmp_buffer, 4, saved_sp);
|
||
write_memory (sp, tmp_buffer, 4);
|
||
|
||
target_store_registers (-1);
|
||
return sp;
|
||
}
|
||
|
||
/* Function: ppc_push_return_address (pc, sp)
|
||
Set up the return address for the inferior function call. */
|
||
|
||
static CORE_ADDR
|
||
ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
|
||
return sp;
|
||
}
|
||
|
||
/* Extract a function return value of type TYPE from raw register array
|
||
REGBUF, and copy that return value into VALBUF in virtual format. */
|
||
|
||
static void
|
||
rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
|
||
{
|
||
int offset = 0;
|
||
|
||
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
double dd;
|
||
float ff;
|
||
/* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
|
||
We need to truncate the return value into float size (4 byte) if
|
||
necessary. */
|
||
|
||
if (TYPE_LENGTH (valtype) > 4) /* this is a double */
|
||
memcpy (valbuf,
|
||
®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
|
||
TYPE_LENGTH (valtype));
|
||
else
|
||
{ /* float */
|
||
memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
|
||
ff = (float) dd;
|
||
memcpy (valbuf, &ff, sizeof (float));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* return value is copied starting from r3. */
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
&& TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
|
||
offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
|
||
|
||
memcpy (valbuf,
|
||
regbuf + REGISTER_BYTE (3) + offset,
|
||
TYPE_LENGTH (valtype));
|
||
}
|
||
}
|
||
|
||
/* Keep structure return address in this variable.
|
||
FIXME: This is a horrid kludge which should not be allowed to continue
|
||
living. This only allows a single nested call to a structure-returning
|
||
function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
|
||
|
||
static CORE_ADDR rs6000_struct_return_address;
|
||
|
||
/* Indirect function calls use a piece of trampoline code to do context
|
||
switching, i.e. to set the new TOC table. Skip such code if we are on
|
||
its first instruction (as when we have single-stepped to here).
|
||
Also skip shared library trampoline code (which is different from
|
||
indirect function call trampolines).
|
||
Result is desired PC to step until, or NULL if we are not in
|
||
trampoline code. */
|
||
|
||
CORE_ADDR
|
||
rs6000_skip_trampoline_code (CORE_ADDR pc)
|
||
{
|
||
register unsigned int ii, op;
|
||
CORE_ADDR solib_target_pc;
|
||
|
||
static unsigned trampoline_code[] =
|
||
{
|
||
0x800b0000, /* l r0,0x0(r11) */
|
||
0x90410014, /* st r2,0x14(r1) */
|
||
0x7c0903a6, /* mtctr r0 */
|
||
0x804b0004, /* l r2,0x4(r11) */
|
||
0x816b0008, /* l r11,0x8(r11) */
|
||
0x4e800420, /* bctr */
|
||
0x4e800020, /* br */
|
||
0
|
||
};
|
||
|
||
/* If pc is in a shared library trampoline, return its target. */
|
||
solib_target_pc = find_solib_trampoline_target (pc);
|
||
if (solib_target_pc)
|
||
return solib_target_pc;
|
||
|
||
for (ii = 0; trampoline_code[ii]; ++ii)
|
||
{
|
||
op = read_memory_integer (pc + (ii * 4), 4);
|
||
if (op != trampoline_code[ii])
|
||
return 0;
|
||
}
|
||
ii = read_register (11); /* r11 holds destination addr */
|
||
pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
|
||
return pc;
|
||
}
|
||
|
||
/* Determines whether the function FI has a frame on the stack or not. */
|
||
|
||
static int
|
||
rs6000_frameless_function_invocation (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR func_start;
|
||
struct rs6000_framedata fdata;
|
||
|
||
/* Don't even think about framelessness except on the innermost frame
|
||
or if the function was interrupted by a signal. */
|
||
if (fi->next != NULL && !fi->next->signal_handler_caller)
|
||
return 0;
|
||
|
||
func_start = get_pc_function_start (fi->pc);
|
||
|
||
/* If we failed to find the start of the function, it is a mistake
|
||
to inspect the instructions. */
|
||
|
||
if (!func_start)
|
||
{
|
||
/* A frame with a zero PC is usually created by dereferencing a NULL
|
||
function pointer, normally causing an immediate core dump of the
|
||
inferior. Mark function as frameless, as the inferior has no chance
|
||
of setting up a stack frame. */
|
||
if (fi->pc == 0)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
(void) skip_prologue (func_start, &fdata);
|
||
return fdata.frameless;
|
||
}
|
||
|
||
/* Return the PC saved in a frame */
|
||
|
||
static CORE_ADDR
|
||
rs6000_frame_saved_pc (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR func_start;
|
||
struct rs6000_framedata fdata;
|
||
int wordsize = TDEP->wordsize;
|
||
|
||
if (fi->signal_handler_caller)
|
||
return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
|
||
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
|
||
|
||
func_start = get_pc_function_start (fi->pc);
|
||
|
||
/* If we failed to find the start of the function, it is a mistake
|
||
to inspect the instructions. */
|
||
if (!func_start)
|
||
return 0;
|
||
|
||
(void) skip_prologue (func_start, &fdata);
|
||
|
||
if (fdata.lr_offset == 0 && fi->next != NULL)
|
||
{
|
||
if (fi->next->signal_handler_caller)
|
||
return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
|
||
wordsize);
|
||
else
|
||
return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
|
||
wordsize);
|
||
}
|
||
|
||
if (fdata.lr_offset == 0)
|
||
return read_register (LR_REGNUM);
|
||
|
||
return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
|
||
}
|
||
|
||
/* If saved registers of frame FI are not known yet, read and cache them.
|
||
&FDATAP contains rs6000_framedata; TDATAP can be NULL,
|
||
in which case the framedata are read. */
|
||
|
||
static void
|
||
frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
|
||
{
|
||
CORE_ADDR frame_addr;
|
||
struct rs6000_framedata work_fdata;
|
||
int wordsize = TDEP->wordsize;
|
||
|
||
if (fi->saved_regs)
|
||
return;
|
||
|
||
if (fdatap == NULL)
|
||
{
|
||
fdatap = &work_fdata;
|
||
(void) skip_prologue (get_pc_function_start (fi->pc), fdatap);
|
||
}
|
||
|
||
frame_saved_regs_zalloc (fi);
|
||
|
||
/* If there were any saved registers, figure out parent's stack
|
||
pointer. */
|
||
/* The following is true only if the frame doesn't have a call to
|
||
alloca(), FIXME. */
|
||
|
||
if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
|
||
&& fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
|
||
frame_addr = 0;
|
||
else if (fi->prev && fi->prev->frame)
|
||
frame_addr = fi->prev->frame;
|
||
else
|
||
frame_addr = read_memory_addr (fi->frame, wordsize);
|
||
|
||
/* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
|
||
All fpr's from saved_fpr to fp31 are saved. */
|
||
|
||
if (fdatap->saved_fpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
|
||
for (i = fdatap->saved_fpr; i < 32; i++)
|
||
{
|
||
fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
|
||
fpr_addr += 8;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
|
||
All gpr's from saved_gpr to gpr31 are saved. */
|
||
|
||
if (fdatap->saved_gpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
|
||
for (i = fdatap->saved_gpr; i < 32; i++)
|
||
{
|
||
fi->saved_regs[i] = gpr_addr;
|
||
gpr_addr += wordsize;
|
||
}
|
||
}
|
||
|
||
/* If != 0, fdatap->cr_offset is the offset from the frame that holds
|
||
the CR. */
|
||
if (fdatap->cr_offset != 0)
|
||
fi->saved_regs[CR_REGNUM] = frame_addr + fdatap->cr_offset;
|
||
|
||
/* If != 0, fdatap->lr_offset is the offset from the frame that holds
|
||
the LR. */
|
||
if (fdatap->lr_offset != 0)
|
||
fi->saved_regs[LR_REGNUM] = frame_addr + fdatap->lr_offset;
|
||
}
|
||
|
||
/* Return the address of a frame. This is the inital %sp value when the frame
|
||
was first allocated. For functions calling alloca(), it might be saved in
|
||
an alloca register. */
|
||
|
||
static CORE_ADDR
|
||
frame_initial_stack_address (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR tmpaddr;
|
||
struct rs6000_framedata fdata;
|
||
struct frame_info *callee_fi;
|
||
|
||
/* if the initial stack pointer (frame address) of this frame is known,
|
||
just return it. */
|
||
|
||
if (fi->extra_info->initial_sp)
|
||
return fi->extra_info->initial_sp;
|
||
|
||
/* find out if this function is using an alloca register.. */
|
||
|
||
(void) skip_prologue (get_pc_function_start (fi->pc), &fdata);
|
||
|
||
/* if saved registers of this frame are not known yet, read and cache them. */
|
||
|
||
if (!fi->saved_regs)
|
||
frame_get_saved_regs (fi, &fdata);
|
||
|
||
/* If no alloca register used, then fi->frame is the value of the %sp for
|
||
this frame, and it is good enough. */
|
||
|
||
if (fdata.alloca_reg < 0)
|
||
{
|
||
fi->extra_info->initial_sp = fi->frame;
|
||
return fi->extra_info->initial_sp;
|
||
}
|
||
|
||
/* This function has an alloca register. If this is the top-most frame
|
||
(with the lowest address), the value in alloca register is good. */
|
||
|
||
if (!fi->next)
|
||
return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
||
|
||
/* Otherwise, this is a caller frame. Callee has usually already saved
|
||
registers, but there are exceptions (such as when the callee
|
||
has no parameters). Find the address in which caller's alloca
|
||
register is saved. */
|
||
|
||
for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
|
||
{
|
||
|
||
if (!callee_fi->saved_regs)
|
||
frame_get_saved_regs (callee_fi, NULL);
|
||
|
||
/* this is the address in which alloca register is saved. */
|
||
|
||
tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
|
||
if (tmpaddr)
|
||
{
|
||
fi->extra_info->initial_sp =
|
||
read_memory_addr (tmpaddr, TDEP->wordsize);
|
||
return fi->extra_info->initial_sp;
|
||
}
|
||
|
||
/* Go look into deeper levels of the frame chain to see if any one of
|
||
the callees has saved alloca register. */
|
||
}
|
||
|
||
/* If alloca register was not saved, by the callee (or any of its callees)
|
||
then the value in the register is still good. */
|
||
|
||
fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
||
return fi->extra_info->initial_sp;
|
||
}
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address
|
||
and produces the frame's chain-pointer. */
|
||
|
||
/* In the case of the RS/6000, the frame's nominal address
|
||
is the address of a 4-byte word containing the calling frame's address. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_frame_chain (struct frame_info *thisframe)
|
||
{
|
||
CORE_ADDR fp, fpp, lr;
|
||
int wordsize = TDEP->wordsize;
|
||
|
||
if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
|
||
return thisframe->frame; /* dummy frame same as caller's frame */
|
||
|
||
if (inside_entry_file (thisframe->pc) ||
|
||
thisframe->pc == entry_point_address ())
|
||
return 0;
|
||
|
||
if (thisframe->signal_handler_caller)
|
||
fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
|
||
wordsize);
|
||
else if (thisframe->next != NULL
|
||
&& thisframe->next->signal_handler_caller
|
||
&& FRAMELESS_FUNCTION_INVOCATION (thisframe))
|
||
/* A frameless function interrupted by a signal did not change the
|
||
frame pointer. */
|
||
fp = FRAME_FP (thisframe);
|
||
else
|
||
fp = read_memory_addr ((thisframe)->frame, wordsize);
|
||
|
||
lr = read_register (LR_REGNUM);
|
||
if (lr == entry_point_address ())
|
||
if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
|
||
if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
|
||
return fpp;
|
||
|
||
return fp;
|
||
}
|
||
|
||
/* Return the size of register REG when words are WORDSIZE bytes long. If REG
|
||
isn't available with that word size, return 0. */
|
||
|
||
static int
|
||
regsize (const struct reg *reg, int wordsize)
|
||
{
|
||
return wordsize == 8 ? reg->sz64 : reg->sz32;
|
||
}
|
||
|
||
/* Return the name of register number N, or null if no such register exists
|
||
in the current architecture. */
|
||
|
||
static char *
|
||
rs6000_register_name (int n)
|
||
{
|
||
struct gdbarch_tdep *tdep = TDEP;
|
||
const struct reg *reg = tdep->regs + n;
|
||
|
||
if (!regsize (reg, tdep->wordsize))
|
||
return NULL;
|
||
return reg->name;
|
||
}
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
static int
|
||
rs6000_register_byte (int n)
|
||
{
|
||
return TDEP->regoff[n];
|
||
}
|
||
|
||
/* Return the number of bytes of storage in the actual machine representation
|
||
for register N if that register is available, else return 0. */
|
||
|
||
static int
|
||
rs6000_register_raw_size (int n)
|
||
{
|
||
struct gdbarch_tdep *tdep = TDEP;
|
||
const struct reg *reg = tdep->regs + n;
|
||
return regsize (reg, tdep->wordsize);
|
||
}
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. */
|
||
|
||
static int
|
||
rs6000_register_virtual_size (int n)
|
||
{
|
||
return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (n));
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
static struct type *
|
||
rs6000_register_virtual_type (n)
|
||
{
|
||
struct gdbarch_tdep *tdep = TDEP;
|
||
const struct reg *reg = tdep->regs + n;
|
||
|
||
return reg->fpr ? builtin_type_double :
|
||
regsize (reg, tdep->wordsize) == 8 ? builtin_type_int64 :
|
||
builtin_type_int32;
|
||
}
|
||
|
||
/* For the PowerPC, it appears that the debug info marks float parameters as
|
||
floats regardless of whether the function is prototyped, but the actual
|
||
values are always passed in as doubles. Tell gdb to always assume that
|
||
floats are passed as doubles and then converted in the callee. */
|
||
|
||
static int
|
||
rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Return whether register N requires conversion when moving from raw format
|
||
to virtual format.
|
||
|
||
The register format for RS/6000 floating point registers is always
|
||
double, we need a conversion if the memory format is float. */
|
||
|
||
static int
|
||
rs6000_register_convertible (int n)
|
||
{
|
||
const struct reg *reg = TDEP->regs + n;
|
||
return reg->fpr;
|
||
}
|
||
|
||
/* Convert data from raw format for register N in buffer FROM
|
||
to virtual format with type TYPE in buffer TO. */
|
||
|
||
static void
|
||
rs6000_register_convert_to_virtual (int n, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
|
||
{
|
||
double val = extract_floating (from, REGISTER_RAW_SIZE (n));
|
||
store_floating (to, TYPE_LENGTH (type), val);
|
||
}
|
||
else
|
||
memcpy (to, from, REGISTER_RAW_SIZE (n));
|
||
}
|
||
|
||
/* Convert data from virtual format with type TYPE in buffer FROM
|
||
to raw format for register N in buffer TO. */
|
||
|
||
static void
|
||
rs6000_register_convert_to_raw (struct type *type, int n,
|
||
char *from, char *to)
|
||
{
|
||
if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
|
||
{
|
||
double val = extract_floating (from, TYPE_LENGTH (type));
|
||
store_floating (to, REGISTER_RAW_SIZE (n), val);
|
||
}
|
||
else
|
||
memcpy (to, from, REGISTER_RAW_SIZE (n));
|
||
}
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function.
|
||
|
||
In RS/6000, struct return addresses are passed as an extra parameter in r3.
|
||
In function return, callee is not responsible of returning this address
|
||
back. Since gdb needs to find it, we will store in a designated variable
|
||
`rs6000_struct_return_address'. */
|
||
|
||
static void
|
||
rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
write_register (3, addr);
|
||
rs6000_struct_return_address = addr;
|
||
}
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
static void
|
||
rs6000_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
|
||
/* Floating point values are returned starting from FPR1 and up.
|
||
Say a double_double_double type could be returned in
|
||
FPR1/FPR2/FPR3 triple. */
|
||
|
||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
|
||
TYPE_LENGTH (type));
|
||
else
|
||
/* Everything else is returned in GPR3 and up. */
|
||
write_register_bytes (REGISTER_BYTE (GP0_REGNUM + 3), valbuf,
|
||
TYPE_LENGTH (type));
|
||
}
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
static CORE_ADDR
|
||
rs6000_extract_struct_value_address (char *regbuf)
|
||
{
|
||
return rs6000_struct_return_address;
|
||
}
|
||
|
||
/* Return whether PC is in a dummy function call.
|
||
|
||
FIXME: This just checks for the end of the stack, which is broken
|
||
for things like stepping through gcc nested function stubs. */
|
||
|
||
static int
|
||
rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
|
||
{
|
||
return sp < pc && pc < fp;
|
||
}
|
||
|
||
/* Hook called when a new child process is started. */
|
||
|
||
void
|
||
rs6000_create_inferior (int pid)
|
||
{
|
||
if (rs6000_set_host_arch_hook)
|
||
rs6000_set_host_arch_hook (pid);
|
||
}
|
||
|
||
/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
|
||
|
||
Usually a function pointer's representation is simply the address
|
||
of the function. On the RS/6000 however, a function pointer is
|
||
represented by a pointer to a TOC entry. This TOC entry contains
|
||
three words, the first word is the address of the function, the
|
||
second word is the TOC pointer (r2), and the third word is the
|
||
static chain value. Throughout GDB it is currently assumed that a
|
||
function pointer contains the address of the function, which is not
|
||
easy to fix. In addition, the conversion of a function address to
|
||
a function pointer would require allocation of a TOC entry in the
|
||
inferior's memory space, with all its drawbacks. To be able to
|
||
call C++ virtual methods in the inferior (which are called via
|
||
function pointers), find_function_addr uses this macro to get the
|
||
function address from a function pointer. */
|
||
|
||
/* Return nonzero if ADDR (a function pointer) is in the data space and
|
||
is therefore a special function pointer. */
|
||
|
||
CORE_ADDR
|
||
rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
|
||
{
|
||
struct obj_section *s;
|
||
|
||
s = find_pc_section (addr);
|
||
if (s && s->the_bfd_section->flags & SEC_CODE)
|
||
return addr;
|
||
|
||
/* ADDR is in the data space, so it's a special function pointer. */
|
||
return read_memory_addr (addr, TDEP->wordsize);
|
||
}
|
||
|
||
|
||
/* Handling the various POWER/PowerPC variants. */
|
||
|
||
|
||
/* The arrays here called registers_MUMBLE hold information about available
|
||
registers.
|
||
|
||
For each family of PPC variants, I've tried to isolate out the
|
||
common registers and put them up front, so that as long as you get
|
||
the general family right, GDB will correctly identify the registers
|
||
common to that family. The common register sets are:
|
||
|
||
For the 60x family: hid0 hid1 iabr dabr pir
|
||
|
||
For the 505 and 860 family: eie eid nri
|
||
|
||
For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
|
||
tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
|
||
pbu1 pbl2 pbu2
|
||
|
||
Most of these register groups aren't anything formal. I arrived at
|
||
them by looking at the registers that occurred in more than one
|
||
processor. */
|
||
|
||
/* Convenience macros for populating register arrays. */
|
||
|
||
/* Within another macro, convert S to a string. */
|
||
|
||
#define STR(s) #s
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
|
||
and 64 bits on 64-bit systems. */
|
||
#define R(name) { STR(name), 4, 8, 0 }
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on all
|
||
systems. */
|
||
#define R4(name) { STR(name), 4, 4, 0 }
|
||
|
||
/* Return a struct reg defining register NAME that's 64 bits on all
|
||
systems. */
|
||
#define R8(name) { STR(name), 8, 8, 0 }
|
||
|
||
/* Return a struct reg defining floating-point register NAME. */
|
||
#define F(name) { STR(name), 8, 8, 1 }
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
|
||
systems and that doesn't exist on 64-bit systems. */
|
||
#define R32(name) { STR(name), 4, 0, 0 }
|
||
|
||
/* Return a struct reg defining register NAME that's 64 bits on 64-bit
|
||
systems and that doesn't exist on 32-bit systems. */
|
||
#define R64(name) { STR(name), 0, 8, 0 }
|
||
|
||
/* Return a struct reg placeholder for a register that doesn't exist. */
|
||
#define R0 { 0, 0, 0, 0 }
|
||
|
||
/* UISA registers common across all architectures, including POWER. */
|
||
|
||
#define COMMON_UISA_REGS \
|
||
/* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
|
||
/* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
|
||
/* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
|
||
/* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
|
||
/* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
|
||
/* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
|
||
/* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
|
||
/* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
|
||
/* 64 */ R(pc), R(ps)
|
||
|
||
/* UISA-level SPRs for PowerPC. */
|
||
#define PPC_UISA_SPRS \
|
||
/* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
|
||
|
||
/* Segment registers, for PowerPC. */
|
||
#define PPC_SEGMENT_REGS \
|
||
/* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
|
||
/* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
|
||
/* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
|
||
/* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
|
||
|
||
/* OEA SPRs for PowerPC. */
|
||
#define PPC_OEA_SPRS \
|
||
/* 87 */ R4(pvr), \
|
||
/* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
|
||
/* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
|
||
/* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
|
||
/* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
|
||
/* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
|
||
/* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
|
||
/* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
|
||
/* 116 */ R4(dec), R(dabr), R4(ear)
|
||
|
||
/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
|
||
user-level SPR's. */
|
||
static const struct reg registers_power[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
/* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
|
||
};
|
||
|
||
/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
|
||
view of the PowerPC. */
|
||
static const struct reg registers_powerpc[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS
|
||
};
|
||
|
||
/* IBM PowerPC 403. */
|
||
static const struct reg registers_403[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
|
||
/* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
|
||
/* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
|
||
/* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
|
||
/* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
|
||
/* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
|
||
};
|
||
|
||
/* IBM PowerPC 403GC. */
|
||
static const struct reg registers_403GC[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
|
||
/* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
|
||
/* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
|
||
/* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
|
||
/* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
|
||
/* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
|
||
/* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
|
||
/* 147 */ R(tbhu), R(tblu)
|
||
};
|
||
|
||
/* Motorola PowerPC 505. */
|
||
static const struct reg registers_505[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(eie), R(eid), R(nri)
|
||
};
|
||
|
||
/* Motorola PowerPC 860 or 850. */
|
||
static const struct reg registers_860[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(eie), R(eid), R(nri), R(cmpa),
|
||
/* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
|
||
/* 127 */ R(der), R(counta), R(countb), R(cmpe),
|
||
/* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
|
||
/* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
|
||
/* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
|
||
/* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
|
||
/* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
|
||
/* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
|
||
/* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
|
||
/* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
|
||
/* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
|
||
};
|
||
|
||
/* Motorola PowerPC 601. Note that the 601 has different register numbers
|
||
for reading and writing RTCU and RTCL. However, how one reads and writes a
|
||
register is the stub's problem. */
|
||
static const struct reg registers_601[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
||
/* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
|
||
};
|
||
|
||
/* Motorola PowerPC 602. */
|
||
static const struct reg registers_602[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R0,
|
||
/* 123 */ R0, R(tcr), R(ibr), R(esassr),
|
||
/* 127 */ R(sebr), R(ser), R(sp), R(lt)
|
||
};
|
||
|
||
/* Motorola/IBM PowerPC 603 or 603e. */
|
||
static const struct reg registers_603[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R0,
|
||
/* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
|
||
/* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
|
||
};
|
||
|
||
/* Motorola PowerPC 604 or 604e. */
|
||
static const struct reg registers_604[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
||
/* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
|
||
/* 127 */ R(sia), R(sda)
|
||
};
|
||
|
||
/* Motorola/IBM PowerPC 750 or 740. */
|
||
static const struct reg registers_750[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
||
/* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
|
||
/* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
|
||
/* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
|
||
/* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
|
||
/* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
|
||
};
|
||
|
||
|
||
/* Information about a particular processor variant. */
|
||
|
||
struct variant
|
||
{
|
||
/* Name of this variant. */
|
||
char *name;
|
||
|
||
/* English description of the variant. */
|
||
char *description;
|
||
|
||
/* bfd_arch_info.arch corresponding to variant. */
|
||
enum bfd_architecture arch;
|
||
|
||
/* bfd_arch_info.mach corresponding to variant. */
|
||
unsigned long mach;
|
||
|
||
/* Table of register names; registers[R] is the name of the register
|
||
number R. */
|
||
int nregs;
|
||
const struct reg *regs;
|
||
};
|
||
|
||
#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
|
||
|
||
|
||
/* Information in this table comes from the following web sites:
|
||
IBM: http://www.chips.ibm.com:80/products/embedded/
|
||
Motorola: http://www.mot.com/SPS/PowerPC/
|
||
|
||
I'm sure I've got some of the variant descriptions not quite right.
|
||
Please report any inaccuracies you find to GDB's maintainer.
|
||
|
||
If you add entries to this table, please be sure to allow the new
|
||
value as an argument to the --with-cpu flag, in configure.in. */
|
||
|
||
static const struct variant variants[] =
|
||
{
|
||
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
|
||
{"power", "POWER user-level", bfd_arch_rs6000,
|
||
bfd_mach_rs6k, num_registers (registers_power), registers_power},
|
||
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403, num_registers (registers_403), registers_403},
|
||
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
|
||
bfd_mach_ppc_601, num_registers (registers_601), registers_601},
|
||
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
|
||
bfd_mach_ppc_602, num_registers (registers_602), registers_602},
|
||
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
|
||
bfd_mach_ppc_603, num_registers (registers_603), registers_603},
|
||
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
|
||
604, num_registers (registers_604), registers_604},
|
||
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
|
||
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
|
||
bfd_mach_ppc_505, num_registers (registers_505), registers_505},
|
||
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
|
||
bfd_mach_ppc_860, num_registers (registers_860), registers_860},
|
||
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
|
||
bfd_mach_ppc_750, num_registers (registers_750), registers_750},
|
||
|
||
/* FIXME: I haven't checked the register sets of the following. */
|
||
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
|
||
bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
|
||
{"a35", "PowerPC A35", bfd_arch_powerpc,
|
||
bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
|
||
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
|
||
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
|
||
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
|
||
|
||
{0, 0, 0, 0}
|
||
};
|
||
|
||
#undef num_registers
|
||
|
||
/* Look up the variant named NAME in the `variants' table. Return a
|
||
pointer to the struct variant, or null if we couldn't find it. */
|
||
|
||
static const struct variant *
|
||
find_variant_by_name (char *name)
|
||
{
|
||
const struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
if (!strcmp (name, v->name))
|
||
return v;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the variant corresponding to architecture ARCH and machine number
|
||
MACH. If no such variant exists, return null. */
|
||
|
||
static const struct variant *
|
||
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
|
||
{
|
||
const struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
if (arch == v->arch && mach == v->mach)
|
||
return v;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
|
||
/* Initialize the current architecture based on INFO. If possible, re-use an
|
||
architecture from ARCHES, which is a list of architectures already created
|
||
during this debugging session.
|
||
|
||
Called e.g. at program startup, when reading a core file, and when reading
|
||
a binary file. */
|
||
|
||
static struct gdbarch *
|
||
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
int wordsize, fromexec, power, i, off;
|
||
struct reg *regs;
|
||
const struct variant *v;
|
||
enum bfd_architecture arch;
|
||
unsigned long mach;
|
||
bfd abfd;
|
||
|
||
fromexec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
|
||
|
||
/* Check word size. If INFO is from a binary file, infer it from that,
|
||
else use the previously-inferred size. */
|
||
if (fromexec)
|
||
{
|
||
if (xcoff_data (info.abfd)->xcoff64)
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else
|
||
{
|
||
tdep = TDEP;
|
||
if (tdep)
|
||
wordsize = tdep->wordsize;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
|
||
/* Find a candidate among extant architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Word size in the various PowerPC bfd_arch_info structs isn't
|
||
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
|
||
separate word size check. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->wordsize == wordsize)
|
||
return arches->gdbarch;
|
||
}
|
||
|
||
/* None found, create a new architecture from INFO, whose bfd_arch_info
|
||
validity depends on the source:
|
||
- executable useless
|
||
- rs6000_host_arch() good
|
||
- core file good
|
||
- "set arch" trust blindly
|
||
- GDB startup useless but harmless */
|
||
|
||
if (!fromexec)
|
||
{
|
||
arch = info.bfd_architecture;
|
||
mach = info.bfd_arch_info->mach;
|
||
}
|
||
else
|
||
{
|
||
arch = bfd_arch_powerpc;
|
||
mach = 0;
|
||
bfd_default_set_arch_mach (&abfd, arch, mach);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
}
|
||
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
||
tdep->wordsize = wordsize;
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
power = arch == bfd_arch_rs6000;
|
||
|
||
/* Select instruction printer. */
|
||
tm_print_insn = arch == power ? print_insn_rs6000 :
|
||
info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc :
|
||
print_insn_little_powerpc;
|
||
|
||
/* Choose variant. */
|
||
v = find_variant_by_arch (arch, mach);
|
||
if (!v)
|
||
v = find_variant_by_name (power ? "power" : "powerpc");
|
||
tdep->regs = v->regs;
|
||
|
||
/* Calculate byte offsets in raw register array. */
|
||
tdep->regoff = xmalloc (v->nregs * sizeof (int));
|
||
for (i = off = 0; i < v->nregs; i++)
|
||
{
|
||
tdep->regoff[i] = off;
|
||
off += regsize (v->regs + i, wordsize);
|
||
}
|
||
|
||
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
||
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
||
set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
|
||
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
||
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
||
|
||
set_gdbarch_num_regs (gdbarch, v->nregs);
|
||
set_gdbarch_sp_regnum (gdbarch, 1);
|
||
set_gdbarch_fp_regnum (gdbarch, 1);
|
||
set_gdbarch_pc_regnum (gdbarch, 64);
|
||
set_gdbarch_register_name (gdbarch, rs6000_register_name);
|
||
set_gdbarch_register_size (gdbarch, wordsize);
|
||
set_gdbarch_register_bytes (gdbarch, off);
|
||
set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
|
||
set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 8);
|
||
set_gdbarch_register_virtual_size (gdbarch, rs6000_register_virtual_size);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 8);
|
||
set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
|
||
|
||
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
|
||
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_pc_in_call_dummy (gdbarch, rs6000_pc_in_call_dummy);
|
||
set_gdbarch_call_dummy_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
||
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
||
set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
|
||
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
||
set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
|
||
|
||
set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
|
||
set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
|
||
set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
|
||
|
||
set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
|
||
set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
|
||
|
||
set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
|
||
set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
|
||
set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
|
||
set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
|
||
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
|
||
set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
|
||
|
||
set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
|
||
|
||
/* Not sure on this. FIXMEmgo */
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
|
||
set_gdbarch_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
|
||
set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
|
||
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
||
set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
|
||
set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
|
||
set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
|
||
set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
|
||
|
||
/* We can't tell how many args there are
|
||
now that the C compiler delays popping them. */
|
||
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
/* Initialization code. */
|
||
|
||
void
|
||
_initialize_rs6000_tdep ()
|
||
{
|
||
register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
|
||
register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
|
||
}
|