cedb70c545
* elf32-arm.h: Likewise. * elf32-cris.c: Likewise. * elf32-dlx.c: Likewise. * elf32-hppa.c: Likewise. * elf32-i386.c: Likewise. * elf32-i386qnx.c: Likewise. * elf32-or32.c: Likewise. * elf32-s390.c: Likewise. * elf32-sh64.c: Likewise. * elf32-vax.c: Likewise. * elf32-xstormy16.c: Likewise. * elf64-alpha.c: Likewise. * elf64-mmix.c: Likewise. * elf64-ppc.c: Likewise. * elf64-s390.c: Likewise. * elf64-sh64.c: Likewise. * elf64-x86-64.c: Likewise.
3151 lines
93 KiB
C
3151 lines
93 KiB
C
/* Intel 80386/80486-specific support for 32-bit ELF
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
|
||
static reloc_howto_type *elf_i386_reloc_type_lookup
|
||
PARAMS ((bfd *, bfd_reloc_code_real_type));
|
||
static void elf_i386_info_to_howto
|
||
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
|
||
static void elf_i386_info_to_howto_rel
|
||
PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
|
||
static boolean elf_i386_is_local_label_name
|
||
PARAMS ((bfd *, const char *));
|
||
static boolean elf_i386_grok_prstatus
|
||
PARAMS ((bfd *abfd, Elf_Internal_Note *note));
|
||
static boolean elf_i386_grok_psinfo
|
||
PARAMS ((bfd *abfd, Elf_Internal_Note *note));
|
||
static struct bfd_hash_entry *link_hash_newfunc
|
||
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
||
static struct bfd_link_hash_table *elf_i386_link_hash_table_create
|
||
PARAMS ((bfd *));
|
||
static boolean create_got_section
|
||
PARAMS((bfd *, struct bfd_link_info *));
|
||
static boolean elf_i386_create_dynamic_sections
|
||
PARAMS((bfd *, struct bfd_link_info *));
|
||
static void elf_i386_copy_indirect_symbol
|
||
PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
|
||
static int elf_i386_tls_transition
|
||
PARAMS ((struct bfd_link_info *, int, int));
|
||
|
||
static boolean elf_i386_mkobject
|
||
PARAMS((bfd *));
|
||
static boolean elf_i386_object_p
|
||
PARAMS((bfd *));
|
||
static boolean elf_i386_check_relocs
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
const Elf_Internal_Rela *));
|
||
static asection *elf_i386_gc_mark_hook
|
||
PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
|
||
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
||
static boolean elf_i386_gc_sweep_hook
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
const Elf_Internal_Rela *));
|
||
static boolean elf_i386_adjust_dynamic_symbol
|
||
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
||
static boolean allocate_dynrelocs
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static boolean readonly_dynrelocs
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static boolean elf_i386_fake_sections
|
||
PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
|
||
static boolean elf_i386_size_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static bfd_vma dtpoff_base
|
||
PARAMS ((struct bfd_link_info *));
|
||
static bfd_vma tpoff
|
||
PARAMS ((struct bfd_link_info *, bfd_vma));
|
||
static boolean elf_i386_relocate_section
|
||
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
|
||
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
||
static boolean elf_i386_finish_dynamic_symbol
|
||
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
|
||
Elf_Internal_Sym *));
|
||
static enum elf_reloc_type_class elf_i386_reloc_type_class
|
||
PARAMS ((const Elf_Internal_Rela *));
|
||
static boolean elf_i386_finish_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
|
||
#define USE_REL 1 /* 386 uses REL relocations instead of RELA */
|
||
|
||
#include "elf/i386.h"
|
||
|
||
static reloc_howto_type elf_howto_table[]=
|
||
{
|
||
HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_NONE",
|
||
true, 0x00000000, 0x00000000, false),
|
||
HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_PC32",
|
||
true, 0xffffffff, 0xffffffff, true),
|
||
HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GOT32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_PLT32",
|
||
true, 0xffffffff, 0xffffffff, true),
|
||
HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_COPY",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GLOB_DAT",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_RELATIVE",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GOTOFF",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GOTPC",
|
||
true, 0xffffffff, 0xffffffff, true),
|
||
|
||
/* We have a gap in the reloc numbers here.
|
||
R_386_standard counts the number up to this point, and
|
||
R_386_ext_offset is the value to subtract from a reloc type of
|
||
R_386_16 thru R_386_PC8 to form an index into this table. */
|
||
#define R_386_standard ((unsigned int) R_386_GOTPC + 1)
|
||
#define R_386_ext_offset ((unsigned int) R_386_TLS_LE - R_386_standard)
|
||
|
||
/* The remaining relocs are a GNU extension. */
|
||
HOWTO(R_386_TLS_LE, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LE",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_TLS_GD, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_GD",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_TLS_LDM, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LDM",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_16",
|
||
true, 0xffff, 0xffff, false),
|
||
HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_PC16",
|
||
true, 0xffff, 0xffff, true),
|
||
HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_8",
|
||
true, 0xff, 0xff, false),
|
||
HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_386_PC8",
|
||
true, 0xff, 0xff, true),
|
||
|
||
#define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
|
||
#define R_386_tls_offset ((unsigned int) R_386_TLS_LDO_32 - R_386_ext)
|
||
/* These are common with Solaris TLS implementation. */
|
||
HOWTO(R_386_TLS_LDO_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LDO_32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_TLS_IE_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_IE_32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_TLS_LE_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LE_32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_TPOFF32",
|
||
true, 0xffffffff, 0xffffffff, false),
|
||
|
||
/* Another gap. */
|
||
#define R_386_tls ((unsigned int) R_386_TLS_TPOFF32 + 1 - R_386_tls_offset)
|
||
#define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_tls)
|
||
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_386_GNU_VTINHERIT, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_386_GNU_VTINHERIT", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* GNU extension to record C++ vtable member usage. */
|
||
HOWTO (R_386_GNU_VTENTRY, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
||
"R_386_GNU_VTENTRY", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false) /* pcrel_offset */
|
||
|
||
#define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
|
||
|
||
};
|
||
|
||
#ifdef DEBUG_GEN_RELOC
|
||
#define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
|
||
#else
|
||
#define TRACE(str)
|
||
#endif
|
||
|
||
static reloc_howto_type *
|
||
elf_i386_reloc_type_lookup (abfd, code)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
bfd_reloc_code_real_type code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_NONE:
|
||
TRACE ("BFD_RELOC_NONE");
|
||
return &elf_howto_table[(unsigned int) R_386_NONE ];
|
||
|
||
case BFD_RELOC_32:
|
||
TRACE ("BFD_RELOC_32");
|
||
return &elf_howto_table[(unsigned int) R_386_32 ];
|
||
|
||
case BFD_RELOC_CTOR:
|
||
TRACE ("BFD_RELOC_CTOR");
|
||
return &elf_howto_table[(unsigned int) R_386_32 ];
|
||
|
||
case BFD_RELOC_32_PCREL:
|
||
TRACE ("BFD_RELOC_PC32");
|
||
return &elf_howto_table[(unsigned int) R_386_PC32 ];
|
||
|
||
case BFD_RELOC_386_GOT32:
|
||
TRACE ("BFD_RELOC_386_GOT32");
|
||
return &elf_howto_table[(unsigned int) R_386_GOT32 ];
|
||
|
||
case BFD_RELOC_386_PLT32:
|
||
TRACE ("BFD_RELOC_386_PLT32");
|
||
return &elf_howto_table[(unsigned int) R_386_PLT32 ];
|
||
|
||
case BFD_RELOC_386_COPY:
|
||
TRACE ("BFD_RELOC_386_COPY");
|
||
return &elf_howto_table[(unsigned int) R_386_COPY ];
|
||
|
||
case BFD_RELOC_386_GLOB_DAT:
|
||
TRACE ("BFD_RELOC_386_GLOB_DAT");
|
||
return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
|
||
|
||
case BFD_RELOC_386_JUMP_SLOT:
|
||
TRACE ("BFD_RELOC_386_JUMP_SLOT");
|
||
return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
|
||
|
||
case BFD_RELOC_386_RELATIVE:
|
||
TRACE ("BFD_RELOC_386_RELATIVE");
|
||
return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
|
||
|
||
case BFD_RELOC_386_GOTOFF:
|
||
TRACE ("BFD_RELOC_386_GOTOFF");
|
||
return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
|
||
|
||
case BFD_RELOC_386_GOTPC:
|
||
TRACE ("BFD_RELOC_386_GOTPC");
|
||
return &elf_howto_table[(unsigned int) R_386_GOTPC ];
|
||
|
||
/* The remaining relocs are a GNU extension. */
|
||
case BFD_RELOC_386_TLS_LE:
|
||
TRACE ("BFD_RELOC_386_TLS_LE");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_LE - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_386_TLS_GD:
|
||
TRACE ("BFD_RELOC_386_TLS_GD");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_GD - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
TRACE ("BFD_RELOC_386_TLS_LDM");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_LDM - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_16:
|
||
TRACE ("BFD_RELOC_16");
|
||
return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_16_PCREL:
|
||
TRACE ("BFD_RELOC_16_PCREL");
|
||
return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_8:
|
||
TRACE ("BFD_RELOC_8");
|
||
return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_8_PCREL:
|
||
TRACE ("BFD_RELOC_8_PCREL");
|
||
return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
|
||
|
||
/* Common with Sun TLS implementation. */
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
TRACE ("BFD_RELOC_386_TLS_LDO_32");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_LDO_32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
TRACE ("BFD_RELOC_386_TLS_IE_32");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_IE_32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
TRACE ("BFD_RELOC_386_TLS_LE_32");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_LE_32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_DTPMOD32:
|
||
TRACE ("BFD_RELOC_386_TLS_DTPMOD32");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_DTPMOD32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_DTPOFF32:
|
||
TRACE ("BFD_RELOC_386_TLS_DTPOFF32");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_DTPOFF32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_TPOFF32:
|
||
TRACE ("BFD_RELOC_386_TLS_TPOFF32");
|
||
return &elf_howto_table[(unsigned int) R_386_TLS_TPOFF32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
TRACE ("BFD_RELOC_VTABLE_INHERIT");
|
||
return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
|
||
- R_386_vt_offset];
|
||
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
TRACE ("BFD_RELOC_VTABLE_ENTRY");
|
||
return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
|
||
- R_386_vt_offset];
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
TRACE ("Unknown");
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
elf_i386_info_to_howto (abfd, cache_ptr, dst)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
arelent *cache_ptr ATTRIBUTE_UNUSED;
|
||
Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
|
||
{
|
||
abort ();
|
||
}
|
||
|
||
static void
|
||
elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
arelent *cache_ptr;
|
||
Elf32_Internal_Rel *dst;
|
||
{
|
||
unsigned int r_type = ELF32_R_TYPE (dst->r_info);
|
||
unsigned int indx;
|
||
|
||
if ((indx = r_type) >= R_386_standard
|
||
&& ((indx = r_type - R_386_ext_offset) - R_386_standard
|
||
>= R_386_ext - R_386_standard)
|
||
&& ((indx = r_type - R_386_tls_offset) - R_386_ext
|
||
>= R_386_tls - R_386_ext)
|
||
&& ((indx = r_type - R_386_vt_offset) - R_386_tls
|
||
>= R_386_vt - R_386_tls))
|
||
{
|
||
(*_bfd_error_handler) (_("%s: invalid relocation type %d"),
|
||
bfd_archive_filename (abfd), (int) r_type);
|
||
indx = (unsigned int) R_386_NONE;
|
||
}
|
||
cache_ptr->howto = &elf_howto_table[indx];
|
||
}
|
||
|
||
/* Return whether a symbol name implies a local label. The UnixWare
|
||
2.1 cc generates temporary symbols that start with .X, so we
|
||
recognize them here. FIXME: do other SVR4 compilers also use .X?.
|
||
If so, we should move the .X recognition into
|
||
_bfd_elf_is_local_label_name. */
|
||
|
||
static boolean
|
||
elf_i386_is_local_label_name (abfd, name)
|
||
bfd *abfd;
|
||
const char *name;
|
||
{
|
||
if (name[0] == '.' && name[1] == 'X')
|
||
return true;
|
||
|
||
return _bfd_elf_is_local_label_name (abfd, name);
|
||
}
|
||
|
||
/* Support for core dump NOTE sections. */
|
||
static boolean
|
||
elf_i386_grok_prstatus (abfd, note)
|
||
bfd *abfd;
|
||
Elf_Internal_Note *note;
|
||
{
|
||
int offset;
|
||
size_t raw_size;
|
||
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return false;
|
||
|
||
case 144: /* Linux/i386 */
|
||
/* pr_cursig */
|
||
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
|
||
|
||
/* pr_pid */
|
||
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
|
||
|
||
/* pr_reg */
|
||
offset = 72;
|
||
raw_size = 68;
|
||
|
||
break;
|
||
}
|
||
|
||
/* Make a ".reg/999" section. */
|
||
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
||
raw_size, note->descpos + offset);
|
||
}
|
||
|
||
static boolean
|
||
elf_i386_grok_psinfo (abfd, note)
|
||
bfd *abfd;
|
||
Elf_Internal_Note *note;
|
||
{
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return false;
|
||
|
||
case 124: /* Linux/i386 elf_prpsinfo */
|
||
elf_tdata (abfd)->core_program
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
||
elf_tdata (abfd)->core_command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
||
}
|
||
|
||
/* Note that for some reason, a spurious space is tacked
|
||
onto the end of the args in some (at least one anyway)
|
||
implementations, so strip it off if it exists. */
|
||
|
||
{
|
||
char *command = elf_tdata (abfd)->core_command;
|
||
int n = strlen (command);
|
||
|
||
if (0 < n && command[n - 1] == ' ')
|
||
command[n - 1] = '\0';
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Functions for the i386 ELF linker.
|
||
|
||
In order to gain some understanding of code in this file without
|
||
knowing all the intricate details of the linker, note the
|
||
following:
|
||
|
||
Functions named elf_i386_* are called by external routines, other
|
||
functions are only called locally. elf_i386_* functions appear
|
||
in this file more or less in the order in which they are called
|
||
from external routines. eg. elf_i386_check_relocs is called
|
||
early in the link process, elf_i386_finish_dynamic_sections is
|
||
one of the last functions. */
|
||
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
|
||
|
||
/* The size in bytes of an entry in the procedure linkage table. */
|
||
|
||
#define PLT_ENTRY_SIZE 16
|
||
|
||
/* The first entry in an absolute procedure linkage table looks like
|
||
this. See the SVR4 ABI i386 supplement to see how this works. */
|
||
|
||
static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0x35, /* pushl contents of address */
|
||
0, 0, 0, 0, /* replaced with address of .got + 4. */
|
||
0xff, 0x25, /* jmp indirect */
|
||
0, 0, 0, 0, /* replaced with address of .got + 8. */
|
||
0, 0, 0, 0 /* pad out to 16 bytes. */
|
||
};
|
||
|
||
/* Subsequent entries in an absolute procedure linkage table look like
|
||
this. */
|
||
|
||
static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0x25, /* jmp indirect */
|
||
0, 0, 0, 0, /* replaced with address of this symbol in .got. */
|
||
0x68, /* pushl immediate */
|
||
0, 0, 0, 0, /* replaced with offset into relocation table. */
|
||
0xe9, /* jmp relative */
|
||
0, 0, 0, 0 /* replaced with offset to start of .plt. */
|
||
};
|
||
|
||
/* The first entry in a PIC procedure linkage table look like this. */
|
||
|
||
static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
|
||
0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
|
||
0, 0, 0, 0 /* pad out to 16 bytes. */
|
||
};
|
||
|
||
/* Subsequent entries in a PIC procedure linkage table look like this. */
|
||
|
||
static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0xa3, /* jmp *offset(%ebx) */
|
||
0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
|
||
0x68, /* pushl immediate */
|
||
0, 0, 0, 0, /* replaced with offset into relocation table. */
|
||
0xe9, /* jmp relative */
|
||
0, 0, 0, 0 /* replaced with offset to start of .plt. */
|
||
};
|
||
|
||
/* The i386 linker needs to keep track of the number of relocs that it
|
||
decides to copy as dynamic relocs in check_relocs for each symbol.
|
||
This is so that it can later discard them if they are found to be
|
||
unnecessary. We store the information in a field extending the
|
||
regular ELF linker hash table. */
|
||
|
||
struct elf_i386_dyn_relocs
|
||
{
|
||
struct elf_i386_dyn_relocs *next;
|
||
|
||
/* The input section of the reloc. */
|
||
asection *sec;
|
||
|
||
/* Total number of relocs copied for the input section. */
|
||
bfd_size_type count;
|
||
|
||
/* Number of pc-relative relocs copied for the input section. */
|
||
bfd_size_type pc_count;
|
||
};
|
||
|
||
/* i386 ELF linker hash entry. */
|
||
|
||
struct elf_i386_link_hash_entry
|
||
{
|
||
struct elf_link_hash_entry elf;
|
||
|
||
/* Track dynamic relocs copied for this symbol. */
|
||
struct elf_i386_dyn_relocs *dyn_relocs;
|
||
|
||
enum {
|
||
GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE
|
||
} tls_type;
|
||
};
|
||
|
||
#define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent))
|
||
|
||
struct elf_i386_obj_tdata
|
||
{
|
||
struct elf_obj_tdata root;
|
||
|
||
/* tls_type for each local got entry. */
|
||
char *local_got_tls_type;
|
||
};
|
||
|
||
#define elf_i386_tdata(abfd) \
|
||
((struct elf_i386_obj_tdata *) (abfd)->tdata.any)
|
||
|
||
#define elf_i386_local_got_tls_type(abfd) \
|
||
(elf_i386_tdata (abfd)->local_got_tls_type)
|
||
|
||
static boolean
|
||
elf_i386_mkobject (abfd)
|
||
bfd *abfd;
|
||
{
|
||
bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
|
||
abfd->tdata.any = bfd_zalloc (abfd, amt);
|
||
if (abfd->tdata.any == NULL)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
elf_i386_object_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
/* Allocate our special target data. */
|
||
struct elf_i386_obj_tdata *new_tdata;
|
||
bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
|
||
new_tdata = bfd_zalloc (abfd, amt);
|
||
if (new_tdata == NULL)
|
||
return false;
|
||
new_tdata->root = *abfd->tdata.elf_obj_data;
|
||
abfd->tdata.any = new_tdata;
|
||
return true;
|
||
}
|
||
|
||
/* i386 ELF linker hash table. */
|
||
|
||
struct elf_i386_link_hash_table
|
||
{
|
||
struct elf_link_hash_table elf;
|
||
|
||
/* Short-cuts to get to dynamic linker sections. */
|
||
asection *sgot;
|
||
asection *sgotplt;
|
||
asection *srelgot;
|
||
asection *splt;
|
||
asection *srelplt;
|
||
asection *sdynbss;
|
||
asection *srelbss;
|
||
|
||
union {
|
||
bfd_signed_vma refcount;
|
||
bfd_vma offset;
|
||
} tls_ldm_got;
|
||
|
||
/* Small local sym to section mapping cache. */
|
||
struct sym_sec_cache sym_sec;
|
||
};
|
||
|
||
/* Get the i386 ELF linker hash table from a link_info structure. */
|
||
|
||
#define elf_i386_hash_table(p) \
|
||
((struct elf_i386_link_hash_table *) ((p)->hash))
|
||
|
||
/* Create an entry in an i386 ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
link_hash_newfunc (entry, table, string)
|
||
struct bfd_hash_entry *entry;
|
||
struct bfd_hash_table *table;
|
||
const char *string;
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = bfd_hash_allocate (table,
|
||
sizeof (struct elf_i386_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
||
if (entry != NULL)
|
||
{
|
||
struct elf_i386_link_hash_entry *eh;
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) entry;
|
||
eh->dyn_relocs = NULL;
|
||
eh->tls_type = GOT_UNKNOWN;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Create an i386 ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf_i386_link_hash_table_create (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf_i386_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
|
||
|
||
ret = (struct elf_i386_link_hash_table *) bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
ret->sgot = NULL;
|
||
ret->sgotplt = NULL;
|
||
ret->srelgot = NULL;
|
||
ret->splt = NULL;
|
||
ret->srelplt = NULL;
|
||
ret->sdynbss = NULL;
|
||
ret->srelbss = NULL;
|
||
ret->sym_sec.abfd = NULL;
|
||
|
||
return &ret->elf.root;
|
||
}
|
||
|
||
/* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
|
||
shortcuts to them in our hash table. */
|
||
|
||
static boolean
|
||
create_got_section (dynobj, info)
|
||
bfd *dynobj;
|
||
struct bfd_link_info *info;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
|
||
if (! _bfd_elf_create_got_section (dynobj, info))
|
||
return false;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
htab->sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
if (!htab->sgot || !htab->sgotplt)
|
||
abort ();
|
||
|
||
htab->srelgot = bfd_make_section (dynobj, ".rel.got");
|
||
if (htab->srelgot == NULL
|
||
|| ! bfd_set_section_flags (dynobj, htab->srelgot,
|
||
(SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY | SEC_LINKER_CREATED
|
||
| SEC_READONLY))
|
||
|| ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
|
||
.rel.bss sections in DYNOBJ, and set up shortcuts to them in our
|
||
hash table. */
|
||
|
||
static boolean
|
||
elf_i386_create_dynamic_sections (dynobj, info)
|
||
bfd *dynobj;
|
||
struct bfd_link_info *info;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
if (!htab->sgot && !create_got_section (dynobj, info))
|
||
return false;
|
||
|
||
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
|
||
return false;
|
||
|
||
htab->splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
|
||
htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
|
||
if (!info->shared)
|
||
htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
|
||
|
||
if (!htab->splt || !htab->srelplt || !htab->sdynbss
|
||
|| (!info->shared && !htab->srelbss))
|
||
abort ();
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
||
|
||
static void
|
||
elf_i386_copy_indirect_symbol (dir, ind)
|
||
struct elf_link_hash_entry *dir, *ind;
|
||
{
|
||
struct elf_i386_link_hash_entry *edir, *eind;
|
||
|
||
edir = (struct elf_i386_link_hash_entry *) dir;
|
||
eind = (struct elf_i386_link_hash_entry *) ind;
|
||
|
||
if (eind->dyn_relocs != NULL)
|
||
{
|
||
if (edir->dyn_relocs != NULL)
|
||
{
|
||
struct elf_i386_dyn_relocs **pp;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
if (ind->root.type == bfd_link_hash_indirect)
|
||
abort ();
|
||
|
||
/* Add reloc counts against the weak sym to the strong sym
|
||
list. Merge any entries against the same section. */
|
||
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
struct elf_i386_dyn_relocs *q;
|
||
|
||
for (q = edir->dyn_relocs; q != NULL; q = q->next)
|
||
if (q->sec == p->sec)
|
||
{
|
||
q->pc_count += p->pc_count;
|
||
q->count += p->count;
|
||
*pp = p->next;
|
||
break;
|
||
}
|
||
if (q == NULL)
|
||
pp = &p->next;
|
||
}
|
||
*pp = edir->dyn_relocs;
|
||
}
|
||
|
||
edir->dyn_relocs = eind->dyn_relocs;
|
||
eind->dyn_relocs = NULL;
|
||
}
|
||
|
||
_bfd_elf_link_hash_copy_indirect (dir, ind);
|
||
}
|
||
|
||
static int
|
||
elf_i386_tls_transition (info, r_type, is_local)
|
||
struct bfd_link_info *info;
|
||
int r_type;
|
||
int is_local;
|
||
{
|
||
if (info->shared)
|
||
return r_type;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_IE_32:
|
||
if (is_local)
|
||
return R_386_TLS_LE_32;
|
||
return R_386_TLS_IE_32;
|
||
case R_386_TLS_LDM:
|
||
return R_386_TLS_LE_32;
|
||
}
|
||
|
||
return r_type;
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase, and
|
||
calculate needed space in the global offset table, procedure linkage
|
||
table, and dynamic reloc sections. */
|
||
|
||
static boolean
|
||
elf_i386_check_relocs (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
asection *sreloc;
|
||
|
||
if (info->relocateable)
|
||
return true;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
sreloc = NULL;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
|
||
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
||
{
|
||
(*_bfd_error_handler) (_("%s: bad symbol index: %d"),
|
||
bfd_archive_filename (abfd),
|
||
r_symndx);
|
||
return false;
|
||
}
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
|
||
r_type = elf_i386_tls_transition (info, r_type, h == NULL);
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_386_TLS_IE_32:
|
||
if (info->shared)
|
||
info->flags |= DF_STATIC_TLS;
|
||
/* FALLTHROUGH */
|
||
case R_386_GOT32:
|
||
case R_386_TLS_GD:
|
||
/* This symbol requires a global offset table entry. */
|
||
{
|
||
int tls_type, old_tls_type;
|
||
|
||
switch (r_type)
|
||
{
|
||
default:
|
||
case R_386_GOT32: tls_type = GOT_NORMAL; break;
|
||
case R_386_TLS_GD: tls_type = GOT_TLS_GD; break;
|
||
case R_386_TLS_IE_32: tls_type = GOT_TLS_IE; break;
|
||
}
|
||
|
||
if (h != NULL)
|
||
{
|
||
h->got.refcount += 1;
|
||
old_tls_type = elf_i386_hash_entry(h)->tls_type;
|
||
}
|
||
else
|
||
{
|
||
bfd_signed_vma *local_got_refcounts;
|
||
|
||
/* This is a global offset table entry for a local symbol. */
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
if (local_got_refcounts == NULL)
|
||
{
|
||
bfd_size_type size;
|
||
|
||
size = symtab_hdr->sh_info;
|
||
size *= (sizeof (bfd_signed_vma) + sizeof(char));
|
||
local_got_refcounts = ((bfd_signed_vma *)
|
||
bfd_zalloc (abfd, size));
|
||
if (local_got_refcounts == NULL)
|
||
return false;
|
||
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
||
elf_i386_local_got_tls_type (abfd)
|
||
= (char *) (local_got_refcounts + symtab_hdr->sh_info);
|
||
}
|
||
local_got_refcounts[r_symndx] += 1;
|
||
old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx];
|
||
}
|
||
|
||
/* If a TLS symbol is accessed using IE at least once,
|
||
there is no point to use dynamic model for it. */
|
||
if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
|
||
&& (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
|
||
{
|
||
if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
|
||
tls_type = GOT_TLS_IE;
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%s: `%s' accessed both as normal and thread local symbol"),
|
||
bfd_archive_filename (abfd), h->root.root.string);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (old_tls_type != tls_type)
|
||
{
|
||
if (h != NULL)
|
||
elf_i386_hash_entry (h)->tls_type = tls_type;
|
||
else
|
||
elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
||
}
|
||
}
|
||
/* Fall through */
|
||
|
||
case R_386_GOTOFF:
|
||
case R_386_GOTPC:
|
||
create_got:
|
||
if (htab->sgot == NULL)
|
||
{
|
||
if (htab->elf.dynobj == NULL)
|
||
htab->elf.dynobj = abfd;
|
||
if (!create_got_section (htab->elf.dynobj, info))
|
||
return false;
|
||
}
|
||
break;
|
||
|
||
case R_386_TLS_LDM:
|
||
htab->tls_ldm_got.refcount += 1;
|
||
goto create_got;
|
||
|
||
case R_386_PLT32:
|
||
/* This symbol requires a procedure linkage table entry. We
|
||
actually build the entry in adjust_dynamic_symbol,
|
||
because this might be a case of linking PIC code which is
|
||
never referenced by a dynamic object, in which case we
|
||
don't need to generate a procedure linkage table entry
|
||
after all. */
|
||
|
||
/* If this is a local symbol, we resolve it directly without
|
||
creating a procedure linkage table entry. */
|
||
if (h == NULL)
|
||
continue;
|
||
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
||
h->plt.refcount += 1;
|
||
break;
|
||
|
||
case R_386_32:
|
||
case R_386_PC32:
|
||
if (h != NULL && !info->shared)
|
||
{
|
||
/* If this reloc is in a read-only section, we might
|
||
need a copy reloc. We can't check reliably at this
|
||
stage whether the section is read-only, as input
|
||
sections have not yet been mapped to output sections.
|
||
Tentatively set the flag for now, and correct in
|
||
adjust_dynamic_symbol. */
|
||
h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
|
||
|
||
/* We may need a .plt entry if the function this reloc
|
||
refers to is in a shared lib. */
|
||
h->plt.refcount += 1;
|
||
}
|
||
|
||
/* If we are creating a shared library, and this is a reloc
|
||
against a global symbol, or a non PC relative reloc
|
||
against a local symbol, then we need to copy the reloc
|
||
into the shared library. However, if we are linking with
|
||
-Bsymbolic, we do not need to copy a reloc against a
|
||
global symbol which is defined in an object we are
|
||
including in the link (i.e., DEF_REGULAR is set). At
|
||
this point we have not seen all the input files, so it is
|
||
possible that DEF_REGULAR is not set now but will be set
|
||
later (it is never cleared). In case of a weak definition,
|
||
DEF_REGULAR may be cleared later by a strong definition in
|
||
a shared library. We account for that possibility below by
|
||
storing information in the relocs_copied field of the hash
|
||
table entry. A similar situation occurs when creating
|
||
shared libraries and symbol visibility changes render the
|
||
symbol local.
|
||
|
||
If on the other hand, we are creating an executable, we
|
||
may need to keep relocations for symbols satisfied by a
|
||
dynamic library if we manage to avoid copy relocs for the
|
||
symbol. */
|
||
if ((info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& (r_type != R_386_PC32
|
||
|| (h != NULL
|
||
&& (! info->symbolic
|
||
|| h->root.type == bfd_link_hash_defweak
|
||
|| (h->elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
||
|| (!info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& h != NULL
|
||
&& (h->root.type == bfd_link_hash_defweak
|
||
|| (h->elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_REGULAR) == 0)))
|
||
{
|
||
struct elf_i386_dyn_relocs *p;
|
||
struct elf_i386_dyn_relocs **head;
|
||
|
||
/* We must copy these reloc types into the output file.
|
||
Create a reloc section in dynobj and make room for
|
||
this reloc. */
|
||
if (sreloc == NULL)
|
||
{
|
||
const char *name;
|
||
bfd *dynobj;
|
||
unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
|
||
unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
|
||
|
||
name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
|
||
if (name == NULL)
|
||
return false;
|
||
|
||
if (strncmp (name, ".rel", 4) != 0
|
||
|| strcmp (bfd_get_section_name (abfd, sec),
|
||
name + 4) != 0)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%s: bad relocation section name `%s\'"),
|
||
bfd_archive_filename (abfd), name);
|
||
}
|
||
|
||
if (htab->elf.dynobj == NULL)
|
||
htab->elf.dynobj = abfd;
|
||
|
||
dynobj = htab->elf.dynobj;
|
||
sreloc = bfd_get_section_by_name (dynobj, name);
|
||
if (sreloc == NULL)
|
||
{
|
||
flagword flags;
|
||
|
||
sreloc = bfd_make_section (dynobj, name);
|
||
flags = (SEC_HAS_CONTENTS | SEC_READONLY
|
||
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
||
if ((sec->flags & SEC_ALLOC) != 0)
|
||
flags |= SEC_ALLOC | SEC_LOAD;
|
||
if (sreloc == NULL
|
||
|| ! bfd_set_section_flags (dynobj, sreloc, flags)
|
||
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
|
||
return false;
|
||
}
|
||
elf_section_data (sec)->sreloc = sreloc;
|
||
}
|
||
|
||
/* If this is a global symbol, we count the number of
|
||
relocations we need for this symbol. */
|
||
if (h != NULL)
|
||
{
|
||
head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
|
||
}
|
||
else
|
||
{
|
||
/* Track dynamic relocs needed for local syms too.
|
||
We really need local syms available to do this
|
||
easily. Oh well. */
|
||
|
||
asection *s;
|
||
s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
|
||
sec, r_symndx);
|
||
if (s == NULL)
|
||
return false;
|
||
|
||
head = ((struct elf_i386_dyn_relocs **)
|
||
&elf_section_data (s)->local_dynrel);
|
||
}
|
||
|
||
p = *head;
|
||
if (p == NULL || p->sec != sec)
|
||
{
|
||
bfd_size_type amt = sizeof *p;
|
||
p = ((struct elf_i386_dyn_relocs *)
|
||
bfd_alloc (htab->elf.dynobj, amt));
|
||
if (p == NULL)
|
||
return false;
|
||
p->next = *head;
|
||
*head = p;
|
||
p->sec = sec;
|
||
p->count = 0;
|
||
p->pc_count = 0;
|
||
}
|
||
|
||
p->count += 1;
|
||
if (r_type == R_386_PC32)
|
||
p->pc_count += 1;
|
||
}
|
||
break;
|
||
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_386_GNU_VTINHERIT:
|
||
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return false;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_386_GNU_VTENTRY:
|
||
if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
|
||
return false;
|
||
break;
|
||
|
||
case R_386_TLS_LE_32:
|
||
case R_386_TLS_LE:
|
||
if (info->shared)
|
||
{
|
||
(*_bfd_error_handler) (_("%s: TLS local exec code cannot be linked into shared objects"),
|
||
bfd_archive_filename (abfd));
|
||
return false;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
||
Elf_Internal_Rela *rel;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
if (h != NULL)
|
||
{
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_386_GNU_VTINHERIT:
|
||
case R_386_GNU_VTENTRY:
|
||
break;
|
||
|
||
default:
|
||
switch (h->root.type)
|
||
{
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
return h->root.u.def.section;
|
||
|
||
case bfd_link_hash_common:
|
||
return h->root.u.c.p->section;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
return bfd_section_from_elf_index (abfd, sym->st_shndx);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Update the got entry reference counts for the section being removed. */
|
||
|
||
static boolean
|
||
elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_signed_vma *local_got_refcounts;
|
||
const Elf_Internal_Rela *rel, *relend;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
elf_section_data (sec)->local_dynrel = NULL;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; rel++)
|
||
switch (elf_i386_tls_transition (info, ELF32_R_TYPE (rel->r_info),
|
||
ELF32_R_SYM (rel->r_info)
|
||
>= symtab_hdr->sh_info))
|
||
{
|
||
case R_386_TLS_LDM:
|
||
if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0)
|
||
elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1;
|
||
break;
|
||
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_IE_32:
|
||
case R_386_GOT32:
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
if (h->got.refcount > 0)
|
||
h->got.refcount -= 1;
|
||
}
|
||
else if (local_got_refcounts != NULL)
|
||
{
|
||
if (local_got_refcounts[r_symndx] > 0)
|
||
local_got_refcounts[r_symndx] -= 1;
|
||
}
|
||
break;
|
||
|
||
case R_386_32:
|
||
case R_386_PC32:
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
struct elf_i386_link_hash_entry *eh;
|
||
struct elf_i386_dyn_relocs **pp;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
|
||
if (!info->shared && h->plt.refcount > 0)
|
||
h->plt.refcount -= 1;
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
|
||
if (p->sec == sec)
|
||
{
|
||
if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
|
||
p->pc_count -= 1;
|
||
p->count -= 1;
|
||
if (p->count == 0)
|
||
*pp = p->next;
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case R_386_PLT32:
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
if (h->plt.refcount > 0)
|
||
h->plt.refcount -= 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static boolean
|
||
elf_i386_adjust_dynamic_symbol (info, h)
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
struct elf_i386_link_hash_entry * eh;
|
||
struct elf_i386_dyn_relocs *p;
|
||
asection *s;
|
||
unsigned int power_of_two;
|
||
|
||
/* If this is a function, put it in the procedure linkage table. We
|
||
will fill in the contents of the procedure linkage table later,
|
||
when we know the address of the .got section. */
|
||
if (h->type == STT_FUNC
|
||
|| (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
|
||
{
|
||
if (h->plt.refcount <= 0
|
||
|| (! info->shared
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
|
||
&& h->root.type != bfd_link_hash_undefweak
|
||
&& h->root.type != bfd_link_hash_undefined))
|
||
{
|
||
/* This case can occur if we saw a PLT32 reloc in an input
|
||
file, but the symbol was never referred to by a dynamic
|
||
object, or if all references were garbage collected. In
|
||
such a case, we don't actually need to build a procedure
|
||
linkage table, and we can just do a PC32 reloc instead. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
else
|
||
/* It's possible that we incorrectly decided a .plt reloc was
|
||
needed for an R_386_PC32 reloc to a non-function sym in
|
||
check_relocs. We can't decide accurately between function and
|
||
non-function syms in check-relocs; Objects loaded later in
|
||
the link may change h->type. So fix it now. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|
||
|| h->weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->weakdef->root.u.def.value;
|
||
return true;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object which
|
||
is not a function. */
|
||
|
||
/* If we are creating a shared library, we must presume that the
|
||
only references to the symbol are via the global offset table.
|
||
For such cases we need not do anything here; the relocations will
|
||
be handled correctly by relocate_section. */
|
||
if (info->shared)
|
||
return true;
|
||
|
||
/* If there are no references to this symbol that do not use the
|
||
GOT, we don't need to generate a copy reloc. */
|
||
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
|
||
return true;
|
||
|
||
/* If -z nocopyreloc was given, we won't generate them either. */
|
||
if (info->nocopyreloc)
|
||
{
|
||
h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
|
||
return true;
|
||
}
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
s = p->sec->output_section;
|
||
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
||
break;
|
||
}
|
||
|
||
/* If we didn't find any dynamic relocs in read-only sections, then
|
||
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
|
||
if (p == NULL)
|
||
{
|
||
h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
|
||
return true;
|
||
}
|
||
|
||
/* We must allocate the symbol in our .dynbss section, which will
|
||
become part of the .bss section of the executable. There will be
|
||
an entry for this symbol in the .dynsym section. The dynamic
|
||
object will contain position independent code, so all references
|
||
from the dynamic object to this symbol will go through the global
|
||
offset table. The dynamic linker will use the .dynsym entry to
|
||
determine the address it must put in the global offset table, so
|
||
both the dynamic object and the regular object will refer to the
|
||
same memory location for the variable. */
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
|
||
/* We must generate a R_386_COPY reloc to tell the dynamic linker to
|
||
copy the initial value out of the dynamic object and into the
|
||
runtime process image. */
|
||
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
|
||
}
|
||
|
||
/* We need to figure out the alignment required for this symbol. I
|
||
have no idea how ELF linkers handle this. */
|
||
power_of_two = bfd_log2 (h->size);
|
||
if (power_of_two > 3)
|
||
power_of_two = 3;
|
||
|
||
/* Apply the required alignment. */
|
||
s = htab->sdynbss;
|
||
s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
|
||
if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
|
||
{
|
||
if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
|
||
return false;
|
||
}
|
||
|
||
/* Define the symbol as being at this point in the section. */
|
||
h->root.u.def.section = s;
|
||
h->root.u.def.value = s->_raw_size;
|
||
|
||
/* Increment the section size to make room for the symbol. */
|
||
s->_raw_size += h->size;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This is the condition under which elf_i386_finish_dynamic_symbol
|
||
will be called from elflink.h. If elflink.h doesn't call our
|
||
finish_dynamic_symbol routine, we'll need to do something about
|
||
initializing any .plt and .got entries in elf_i386_relocate_section. */
|
||
#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
|
||
((DYN) \
|
||
&& ((INFO)->shared \
|
||
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
|
||
&& ((H)->dynindx != -1 \
|
||
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
|
||
|
||
/* Allocate space in .plt, .got and associated reloc sections for
|
||
dynamic relocs. */
|
||
|
||
static boolean
|
||
allocate_dynrelocs (h, inf)
|
||
struct elf_link_hash_entry *h;
|
||
PTR inf;
|
||
{
|
||
struct bfd_link_info *info;
|
||
struct elf_i386_link_hash_table *htab;
|
||
struct elf_i386_link_hash_entry *eh;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
if (h->root.type == bfd_link_hash_indirect)
|
||
return true;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
/* When warning symbols are created, they **replace** the "real"
|
||
entry in the hash table, thus we never get to see the real
|
||
symbol in a hash traversal. So look at it now. */
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
info = (struct bfd_link_info *) inf;
|
||
htab = elf_i386_hash_table (info);
|
||
|
||
if (htab->elf.dynamic_sections_created
|
||
&& h->plt.refcount > 0)
|
||
{
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
||
{
|
||
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
}
|
||
|
||
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
|
||
{
|
||
asection *s = htab->splt;
|
||
|
||
/* If this is the first .plt entry, make room for the special
|
||
first entry. */
|
||
if (s->_raw_size == 0)
|
||
s->_raw_size += PLT_ENTRY_SIZE;
|
||
|
||
h->plt.offset = s->_raw_size;
|
||
|
||
/* If this symbol is not defined in a regular file, and we are
|
||
not generating a shared library, then set the symbol to this
|
||
location in the .plt. This is required to make function
|
||
pointers compare as equal between the normal executable and
|
||
the shared library. */
|
||
if (! info->shared
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
||
{
|
||
h->root.u.def.section = s;
|
||
h->root.u.def.value = h->plt.offset;
|
||
}
|
||
|
||
/* Make room for this entry. */
|
||
s->_raw_size += PLT_ENTRY_SIZE;
|
||
|
||
/* We also need to make an entry in the .got.plt section, which
|
||
will be placed in the .got section by the linker script. */
|
||
htab->sgotplt->_raw_size += 4;
|
||
|
||
/* We also need to make an entry in the .rel.plt section. */
|
||
htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
|
||
}
|
||
else
|
||
{
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
||
}
|
||
|
||
/* If R_386_TLS_IE_32 symbol is now local to the binary,
|
||
make it a R_386_TLS_LE_32 requiring no TLS entry. */
|
||
if (h->got.refcount > 0
|
||
&& !info->shared
|
||
&& h->dynindx == -1
|
||
&& elf_i386_hash_entry(h)->tls_type == GOT_TLS_IE)
|
||
h->got.offset = (bfd_vma) -1;
|
||
else if (h->got.refcount > 0)
|
||
{
|
||
asection *s;
|
||
boolean dyn;
|
||
int tls_type = elf_i386_hash_entry(h)->tls_type;
|
||
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
||
{
|
||
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
}
|
||
|
||
s = htab->sgot;
|
||
h->got.offset = s->_raw_size;
|
||
s->_raw_size += 4;
|
||
/* R_386_TLS_GD needs 2 consecutive GOT slots. */
|
||
if (tls_type == GOT_TLS_GD)
|
||
s->_raw_size += 4;
|
||
dyn = htab->elf.dynamic_sections_created;
|
||
/* R_386_TLS_IE_32 needs one dynamic relocation,
|
||
R_386_TLS_GD needs one if local symbol and two if global. */
|
||
if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
|
||
|| tls_type == GOT_TLS_IE)
|
||
htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
|
||
else if (tls_type == GOT_TLS_GD)
|
||
htab->srelgot->_raw_size += 2 * sizeof (Elf32_External_Rel);
|
||
else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
|
||
htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
|
||
}
|
||
else
|
||
h->got.offset = (bfd_vma) -1;
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
if (eh->dyn_relocs == NULL)
|
||
return true;
|
||
|
||
/* In the shared -Bsymbolic case, discard space allocated for
|
||
dynamic pc-relative relocs against symbols which turn out to be
|
||
defined in regular objects. For the normal shared case, discard
|
||
space for pc-relative relocs that have become local due to symbol
|
||
visibility changes. */
|
||
|
||
if (info->shared)
|
||
{
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
||
&& ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
|
||
|| info->symbolic))
|
||
{
|
||
struct elf_i386_dyn_relocs **pp;
|
||
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
p->count -= p->pc_count;
|
||
p->pc_count = 0;
|
||
if (p->count == 0)
|
||
*pp = p->next;
|
||
else
|
||
pp = &p->next;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* For the non-shared case, discard space for relocs against
|
||
symbols which turn out to need copy relocs or are not
|
||
dynamic. */
|
||
|
||
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
|
||
&& (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
||
|| (htab->elf.dynamic_sections_created
|
||
&& (h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_undefined))))
|
||
{
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
||
{
|
||
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
}
|
||
|
||
/* If that succeeded, we know we'll be keeping all the
|
||
relocs. */
|
||
if (h->dynindx != -1)
|
||
goto keep;
|
||
}
|
||
|
||
eh->dyn_relocs = NULL;
|
||
|
||
keep: ;
|
||
}
|
||
|
||
/* Finally, allocate space. */
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
asection *sreloc = elf_section_data (p->sec)->sreloc;
|
||
sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Find any dynamic relocs that apply to read-only sections. */
|
||
|
||
static boolean
|
||
readonly_dynrelocs (h, inf)
|
||
struct elf_link_hash_entry *h;
|
||
PTR inf;
|
||
{
|
||
struct elf_i386_link_hash_entry *eh;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
asection *s = p->sec->output_section;
|
||
|
||
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
||
|
||
info->flags |= DF_TEXTREL;
|
||
|
||
/* Not an error, just cut short the traversal. */
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static boolean
|
||
elf_i386_size_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd ATTRIBUTE_UNUSED;
|
||
struct bfd_link_info *info;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *s;
|
||
boolean relocs;
|
||
bfd *ibfd;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
dynobj = htab->elf.dynobj;
|
||
if (dynobj == NULL)
|
||
abort ();
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (! info->shared)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
if (s == NULL)
|
||
abort ();
|
||
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
}
|
||
|
||
/* Set up .got offsets for local syms, and space for local dynamic
|
||
relocs. */
|
||
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
||
{
|
||
bfd_signed_vma *local_got;
|
||
bfd_signed_vma *end_local_got;
|
||
char *local_tls_type;
|
||
bfd_size_type locsymcount;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
asection *srel;
|
||
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
||
continue;
|
||
|
||
for (s = ibfd->sections; s != NULL; s = s->next)
|
||
{
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
for (p = *((struct elf_i386_dyn_relocs **)
|
||
&elf_section_data (s)->local_dynrel);
|
||
p != NULL;
|
||
p = p->next)
|
||
{
|
||
if (!bfd_is_abs_section (p->sec)
|
||
&& bfd_is_abs_section (p->sec->output_section))
|
||
{
|
||
/* Input section has been discarded, either because
|
||
it is a copy of a linkonce section or due to
|
||
linker script /DISCARD/, so we'll be discarding
|
||
the relocs too. */
|
||
}
|
||
else if (p->count != 0)
|
||
{
|
||
srel = elf_section_data (p->sec)->sreloc;
|
||
srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
|
||
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
||
info->flags |= DF_TEXTREL;
|
||
}
|
||
}
|
||
}
|
||
|
||
local_got = elf_local_got_refcounts (ibfd);
|
||
if (!local_got)
|
||
continue;
|
||
|
||
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
||
locsymcount = symtab_hdr->sh_info;
|
||
end_local_got = local_got + locsymcount;
|
||
local_tls_type = elf_i386_local_got_tls_type (ibfd);
|
||
s = htab->sgot;
|
||
srel = htab->srelgot;
|
||
for (; local_got < end_local_got; ++local_got, ++local_tls_type)
|
||
{
|
||
if (*local_got > 0)
|
||
{
|
||
*local_got = s->_raw_size;
|
||
s->_raw_size += 4;
|
||
if (*local_tls_type == GOT_TLS_GD)
|
||
s->_raw_size += 4;
|
||
if (info->shared
|
||
|| *local_tls_type == GOT_TLS_GD
|
||
|| *local_tls_type == GOT_TLS_IE)
|
||
srel->_raw_size += sizeof (Elf32_External_Rel);
|
||
}
|
||
else
|
||
*local_got = (bfd_vma) -1;
|
||
}
|
||
}
|
||
|
||
if (htab->tls_ldm_got.refcount > 0)
|
||
{
|
||
/* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
|
||
relocs. */
|
||
htab->tls_ldm_got.offset = htab->sgot->_raw_size;
|
||
htab->sgot->_raw_size += 8;
|
||
htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
|
||
}
|
||
else
|
||
htab->tls_ldm_got.offset = -1;
|
||
|
||
/* Allocate global sym .plt and .got entries, and space for global
|
||
sym dynamic relocs. */
|
||
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
|
||
|
||
/* We now have determined the sizes of the various dynamic sections.
|
||
Allocate memory for them. */
|
||
relocs = false;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
if (s == htab->splt
|
||
|| s == htab->sgot
|
||
|| s == htab->sgotplt)
|
||
{
|
||
/* Strip this section if we don't need it; see the
|
||
comment below. */
|
||
}
|
||
else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
|
||
{
|
||
if (s->_raw_size != 0 && s != htab->srelplt)
|
||
relocs = true;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
else
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (s->_raw_size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the
|
||
output file. This is mostly to handle .rel.bss and
|
||
.rel.plt. We must create both sections in
|
||
create_dynamic_sections, because they must be created
|
||
before the linker maps input sections to output
|
||
sections. The linker does that before
|
||
adjust_dynamic_symbol is called, and it is that
|
||
function which decides whether anything needs to go
|
||
into these sections. */
|
||
|
||
_bfd_strip_section_from_output (info, s);
|
||
continue;
|
||
}
|
||
|
||
/* Allocate memory for the section contents. We use bfd_zalloc
|
||
here in case unused entries are not reclaimed before the
|
||
section's contents are written out. This should not happen,
|
||
but this way if it does, we get a R_386_NONE reloc instead
|
||
of garbage. */
|
||
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
|
||
if (s->contents == NULL)
|
||
return false;
|
||
}
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf_i386_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
#define add_dynamic_entry(TAG, VAL) \
|
||
bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
|
||
|
||
if (! info->shared)
|
||
{
|
||
if (!add_dynamic_entry (DT_DEBUG, 0))
|
||
return false;
|
||
}
|
||
|
||
if (htab->splt->_raw_size != 0)
|
||
{
|
||
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
||
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
||
|| !add_dynamic_entry (DT_PLTREL, DT_REL)
|
||
|| !add_dynamic_entry (DT_JMPREL, 0))
|
||
return false;
|
||
}
|
||
|
||
if (relocs)
|
||
{
|
||
if (!add_dynamic_entry (DT_REL, 0)
|
||
|| !add_dynamic_entry (DT_RELSZ, 0)
|
||
|| !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
|
||
return false;
|
||
|
||
/* If any dynamic relocs apply to a read-only section,
|
||
then we need a DT_TEXTREL entry. */
|
||
if ((info->flags & DF_TEXTREL) == 0)
|
||
elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
|
||
(PTR) info);
|
||
|
||
if ((info->flags & DF_TEXTREL) != 0)
|
||
{
|
||
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
#undef add_dynamic_entry
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Set the correct type for an x86 ELF section. We do this by the
|
||
section name, which is a hack, but ought to work. */
|
||
|
||
static boolean
|
||
elf_i386_fake_sections (abfd, hdr, sec)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
Elf32_Internal_Shdr *hdr;
|
||
asection *sec;
|
||
{
|
||
register const char *name;
|
||
|
||
name = bfd_get_section_name (abfd, sec);
|
||
|
||
/* This is an ugly, but unfortunately necessary hack that is
|
||
needed when producing EFI binaries on x86. It tells
|
||
elf.c:elf_fake_sections() not to consider ".reloc" as a section
|
||
containing ELF relocation info. We need this hack in order to
|
||
be able to generate ELF binaries that can be translated into
|
||
EFI applications (which are essentially COFF objects). Those
|
||
files contain a COFF ".reloc" section inside an ELFNN object,
|
||
which would normally cause BFD to segfault because it would
|
||
attempt to interpret this section as containing relocation
|
||
entries for section "oc". With this hack enabled, ".reloc"
|
||
will be treated as a normal data section, which will avoid the
|
||
segfault. However, you won't be able to create an ELFNN binary
|
||
with a section named "oc" that needs relocations, but that's
|
||
the kind of ugly side-effects you get when detecting section
|
||
types based on their names... In practice, this limitation is
|
||
unlikely to bite. */
|
||
if (strcmp (name, ".reloc") == 0)
|
||
hdr->sh_type = SHT_PROGBITS;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the base VMA address which should be subtracted from real addresses
|
||
when resolving @dtpoff relocation.
|
||
This is PT_TLS segment p_vaddr. */
|
||
|
||
static bfd_vma
|
||
dtpoff_base (info)
|
||
struct bfd_link_info *info;
|
||
{
|
||
BFD_ASSERT (elf_hash_table (info)->tls_segment != NULL);
|
||
return elf_hash_table (info)->tls_segment->start;
|
||
}
|
||
|
||
/* Return the relocation value for @tpoff relocation
|
||
if STT_TLS virtual address is ADDRESS. */
|
||
|
||
static bfd_vma
|
||
tpoff (info, address)
|
||
struct bfd_link_info *info;
|
||
bfd_vma address;
|
||
{
|
||
struct elf_link_tls_segment *tls_segment
|
||
= elf_hash_table (info)->tls_segment;
|
||
|
||
BFD_ASSERT (tls_segment != NULL);
|
||
return (align_power (tls_segment->size, tls_segment->align)
|
||
+ tls_segment->start - address);
|
||
}
|
||
|
||
/* Relocate an i386 ELF section. */
|
||
|
||
static boolean
|
||
elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
|
||
contents, relocs, local_syms, local_sections)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *relocs;
|
||
Elf_Internal_Sym *local_syms;
|
||
asection **local_sections;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_vma *local_got_offsets;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
local_got_offsets = elf_local_got_offsets (input_bfd);
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
bfd_vma off;
|
||
bfd_vma relocation;
|
||
boolean unresolved_reloc;
|
||
bfd_reloc_status_type r;
|
||
unsigned int indx;
|
||
int tls_type;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (r_type == (int) R_386_GNU_VTINHERIT
|
||
|| r_type == (int) R_386_GNU_VTENTRY)
|
||
continue;
|
||
|
||
if ((indx = (unsigned) r_type) >= R_386_standard
|
||
&& ((indx = r_type - R_386_ext_offset) - R_386_standard
|
||
>= R_386_ext - R_386_standard)
|
||
&& ((indx = r_type - R_386_tls_offset) - R_386_ext
|
||
>= R_386_tls - R_386_ext))
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
howto = elf_howto_table + indx;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
if (info->relocateable)
|
||
{
|
||
bfd_vma val;
|
||
bfd_byte *where;
|
||
|
||
/* This is a relocatable link. We don't have to change
|
||
anything, unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
continue;
|
||
|
||
sym = local_syms + r_symndx;
|
||
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
||
continue;
|
||
|
||
sec = local_sections[r_symndx];
|
||
val = sec->output_offset;
|
||
if (val == 0)
|
||
continue;
|
||
|
||
where = contents + rel->r_offset;
|
||
switch (howto->size)
|
||
{
|
||
/* FIXME: overflow checks. */
|
||
case 0:
|
||
val += bfd_get_8 (input_bfd, where);
|
||
bfd_put_8 (input_bfd, val, where);
|
||
break;
|
||
case 1:
|
||
val += bfd_get_16 (input_bfd, where);
|
||
bfd_put_16 (input_bfd, val, where);
|
||
break;
|
||
case 2:
|
||
val += bfd_get_32 (input_bfd, where);
|
||
bfd_put_32 (input_bfd, val, where);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
continue;
|
||
}
|
||
|
||
/* This is a final link. */
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
unresolved_reloc = false;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value);
|
||
if ((sec->flags & SEC_MERGE)
|
||
&& ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
{
|
||
asection *msec;
|
||
bfd_vma addend;
|
||
bfd_byte *where = contents + rel->r_offset;
|
||
|
||
switch (howto->size)
|
||
{
|
||
case 0:
|
||
addend = bfd_get_8 (input_bfd, where);
|
||
if (howto->pc_relative)
|
||
{
|
||
addend = (addend ^ 0x80) - 0x80;
|
||
addend += 1;
|
||
}
|
||
break;
|
||
case 1:
|
||
addend = bfd_get_16 (input_bfd, where);
|
||
if (howto->pc_relative)
|
||
{
|
||
addend = (addend ^ 0x8000) - 0x8000;
|
||
addend += 2;
|
||
}
|
||
break;
|
||
case 2:
|
||
addend = bfd_get_32 (input_bfd, where);
|
||
if (howto->pc_relative)
|
||
{
|
||
addend = (addend ^ 0x80000000) - 0x80000000;
|
||
addend += 4;
|
||
}
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
msec = sec;
|
||
addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend);
|
||
addend -= relocation;
|
||
addend += msec->output_section->vma + msec->output_offset;
|
||
|
||
switch (howto->size)
|
||
{
|
||
case 0:
|
||
/* FIXME: overflow checks. */
|
||
if (howto->pc_relative)
|
||
addend -= 1;
|
||
bfd_put_8 (input_bfd, addend, where);
|
||
break;
|
||
case 1:
|
||
if (howto->pc_relative)
|
||
addend -= 2;
|
||
bfd_put_16 (input_bfd, addend, where);
|
||
break;
|
||
case 2:
|
||
if (howto->pc_relative)
|
||
addend -= 4;
|
||
bfd_put_32 (input_bfd, addend, where);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
relocation = 0;
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
{
|
||
sec = h->root.u.def.section;
|
||
if (sec->output_section == NULL)
|
||
/* Set a flag that will be cleared later if we find a
|
||
relocation value for this symbol. output_section
|
||
is typically NULL for symbols satisfied by a shared
|
||
library. */
|
||
unresolved_reloc = true;
|
||
else
|
||
relocation = (h->root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
}
|
||
else if (h->root.type == bfd_link_hash_undefweak)
|
||
;
|
||
else if (info->shared
|
||
&& (!info->symbolic || info->allow_shlib_undefined)
|
||
&& !info->no_undefined
|
||
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
|
||
;
|
||
else
|
||
{
|
||
if (! ((*info->callbacks->undefined_symbol)
|
||
(info, h->root.root.string, input_bfd,
|
||
input_section, rel->r_offset,
|
||
(!info->shared || info->no_undefined
|
||
|| ELF_ST_VISIBILITY (h->other)))))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_386_GOT32:
|
||
/* Relocation is to the entry for this symbol in the global
|
||
offset table. */
|
||
if (htab->sgot == NULL)
|
||
abort ();
|
||
|
||
if (h != NULL)
|
||
{
|
||
boolean dyn;
|
||
|
||
off = h->got.offset;
|
||
dyn = htab->elf.dynamic_sections_created;
|
||
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
|
||
|| (info->shared
|
||
&& (info->symbolic
|
||
|| h->dynindx == -1
|
||
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
|
||
{
|
||
/* This is actually a static link, or it is a
|
||
-Bsymbolic link and the symbol is defined
|
||
locally, or the symbol was forced to be local
|
||
because of a version file. We must initialize
|
||
this entry in the global offset table. Since the
|
||
offset must always be a multiple of 4, we use the
|
||
least significant bit to record whether we have
|
||
initialized it already.
|
||
|
||
When doing a dynamic link, we create a .rel.got
|
||
relocation entry to initialize the value. This
|
||
is done in the finish_dynamic_symbol routine. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, relocation,
|
||
htab->sgot->contents + off);
|
||
h->got.offset |= 1;
|
||
}
|
||
}
|
||
else
|
||
unresolved_reloc = false;
|
||
}
|
||
else
|
||
{
|
||
if (local_got_offsets == NULL)
|
||
abort ();
|
||
|
||
off = local_got_offsets[r_symndx];
|
||
|
||
/* The offset must always be a multiple of 4. We use
|
||
the least significant bit to record whether we have
|
||
already generated the necessary reloc. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, relocation,
|
||
htab->sgot->contents + off);
|
||
|
||
if (info->shared)
|
||
{
|
||
asection *srelgot;
|
||
Elf_Internal_Rel outrel;
|
||
Elf32_External_Rel *loc;
|
||
|
||
srelgot = htab->srelgot;
|
||
if (srelgot == NULL)
|
||
abort ();
|
||
|
||
outrel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset
|
||
+ off);
|
||
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
||
loc = (Elf32_External_Rel *) srelgot->contents;
|
||
loc += srelgot->reloc_count++;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
}
|
||
|
||
local_got_offsets[r_symndx] |= 1;
|
||
}
|
||
}
|
||
|
||
if (off >= (bfd_vma) -2)
|
||
abort ();
|
||
|
||
relocation = htab->sgot->output_offset + off;
|
||
break;
|
||
|
||
case R_386_GOTOFF:
|
||
/* Relocation is relative to the start of the global offset
|
||
table. */
|
||
|
||
/* Note that sgot->output_offset is not involved in this
|
||
calculation. We always want the start of .got. If we
|
||
defined _GLOBAL_OFFSET_TABLE in a different way, as is
|
||
permitted by the ABI, we might have to change this
|
||
calculation. */
|
||
relocation -= htab->sgot->output_section->vma;
|
||
break;
|
||
|
||
case R_386_GOTPC:
|
||
/* Use global offset table as symbol value. */
|
||
relocation = htab->sgot->output_section->vma;
|
||
unresolved_reloc = false;
|
||
break;
|
||
|
||
case R_386_PLT32:
|
||
/* Relocation is to the entry for this symbol in the
|
||
procedure linkage table. */
|
||
|
||
/* Resolve a PLT32 reloc against a local symbol directly,
|
||
without using the procedure linkage table. */
|
||
if (h == NULL)
|
||
break;
|
||
|
||
if (h->plt.offset == (bfd_vma) -1
|
||
|| htab->splt == NULL)
|
||
{
|
||
/* We didn't make a PLT entry for this symbol. This
|
||
happens when statically linking PIC code, or when
|
||
using -Bsymbolic. */
|
||
break;
|
||
}
|
||
|
||
relocation = (htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ h->plt.offset);
|
||
unresolved_reloc = false;
|
||
break;
|
||
|
||
case R_386_32:
|
||
case R_386_PC32:
|
||
/* r_symndx will be zero only for relocs against symbols
|
||
from removed linkonce sections, or sections discarded by
|
||
a linker script. */
|
||
if (r_symndx == 0
|
||
|| (input_section->flags & SEC_ALLOC) == 0)
|
||
break;
|
||
|
||
if ((info->shared
|
||
&& (r_type != R_386_PC32
|
||
|| (h != NULL
|
||
&& h->dynindx != -1
|
||
&& (! info->symbolic
|
||
|| (h->elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
||
|| (!info->shared
|
||
&& h != NULL
|
||
&& h->dynindx != -1
|
||
&& (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
|
||
&& (((h->elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
&& (h->elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_REGULAR) == 0)
|
||
|| h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_undefined)))
|
||
{
|
||
Elf_Internal_Rel outrel;
|
||
boolean skip, relocate;
|
||
asection *sreloc;
|
||
Elf32_External_Rel *loc;
|
||
|
||
/* When generating a shared object, these relocations
|
||
are copied into the output file to be resolved at run
|
||
time. */
|
||
|
||
skip = false;
|
||
relocate = false;
|
||
|
||
outrel.r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info, input_section,
|
||
rel->r_offset);
|
||
if (outrel.r_offset == (bfd_vma) -1)
|
||
skip = true;
|
||
else if (outrel.r_offset == (bfd_vma) -2)
|
||
skip = true, relocate = true;
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
if (skip)
|
||
memset (&outrel, 0, sizeof outrel);
|
||
else if (h != NULL
|
||
&& h->dynindx != -1
|
||
&& (r_type == R_386_PC32
|
||
|| !info->shared
|
||
|| !info->symbolic
|
||
|| (h->elf_link_hash_flags
|
||
& ELF_LINK_HASH_DEF_REGULAR) == 0))
|
||
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
||
else
|
||
{
|
||
/* This symbol is local, or marked to become local. */
|
||
relocate = true;
|
||
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
||
}
|
||
|
||
sreloc = elf_section_data (input_section)->sreloc;
|
||
if (sreloc == NULL)
|
||
abort ();
|
||
|
||
loc = (Elf32_External_Rel *) sreloc->contents;
|
||
loc += sreloc->reloc_count++;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
|
||
/* If this reloc is against an external symbol, we do
|
||
not want to fiddle with the addend. Otherwise, we
|
||
need to include the symbol value so that it becomes
|
||
an addend for the dynamic reloc. */
|
||
if (! relocate)
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_IE_32:
|
||
r_type = elf_i386_tls_transition (info, r_type, h == NULL);
|
||
tls_type = GOT_UNKNOWN;
|
||
if (h == NULL && local_got_offsets)
|
||
tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx];
|
||
else if (h != NULL)
|
||
{
|
||
tls_type = elf_i386_hash_entry(h)->tls_type;
|
||
if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
|
||
r_type = R_386_TLS_LE_32;
|
||
}
|
||
if (r_type == R_386_TLS_GD && tls_type == GOT_TLS_IE)
|
||
r_type = R_386_TLS_IE_32;
|
||
|
||
if (r_type == R_386_TLS_LE_32)
|
||
{
|
||
BFD_ASSERT (unresolved_reloc == false);
|
||
if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
|
||
{
|
||
unsigned int val, type;
|
||
bfd_vma roff;
|
||
|
||
/* GD->LE transition. */
|
||
BFD_ASSERT (rel->r_offset >= 2);
|
||
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
|
||
BFD_ASSERT (type == 0x8d || type == 0x04);
|
||
BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
|
||
BFD_ASSERT (bfd_get_8 (input_bfd,
|
||
contents + rel->r_offset + 4)
|
||
== 0xe8);
|
||
BFD_ASSERT (rel + 1 < relend);
|
||
BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
|
||
roff = rel->r_offset + 5;
|
||
val = bfd_get_8 (input_bfd,
|
||
contents + rel->r_offset - 1);
|
||
if (type == 0x04)
|
||
{
|
||
/* leal foo(,%reg,1), %eax; call ___tls_get_addr
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@tpoff, %eax
|
||
(6 byte form of subl). */
|
||
BFD_ASSERT (rel->r_offset >= 3);
|
||
BFD_ASSERT (bfd_get_8 (input_bfd,
|
||
contents + rel->r_offset - 3)
|
||
== 0x8d);
|
||
BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
|
||
memcpy (contents + rel->r_offset - 3,
|
||
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
|
||
if (rel->r_offset + 10 <= input_section->_raw_size
|
||
&& bfd_get_8 (input_bfd,
|
||
contents + rel->r_offset + 9) == 0x90)
|
||
{
|
||
/* leal foo(%reg), %eax; call ___tls_get_addr; nop
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@tpoff, %eax
|
||
(6 byte form of subl). */
|
||
memcpy (contents + rel->r_offset - 2,
|
||
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
|
||
roff = rel->r_offset + 6;
|
||
}
|
||
else
|
||
{
|
||
/* leal foo(%reg), %eax; call ___tls_get_addr
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@tpoff, %eax
|
||
(5 byte form of subl). */
|
||
memcpy (contents + rel->r_offset - 2,
|
||
"\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
|
||
}
|
||
}
|
||
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
||
contents + roff);
|
||
/* Skip R_386_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
unsigned int val, type;
|
||
|
||
/* IE->LE transition:
|
||
Originally it can be either:
|
||
subl foo(%reg1), %reg2
|
||
or
|
||
movl foo(%reg1), %reg2
|
||
We change it into:
|
||
subl $foo, %reg2
|
||
or
|
||
movl $foo, %reg2 (6 byte form) */
|
||
BFD_ASSERT (rel->r_offset >= 2);
|
||
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
|
||
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
|
||
BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
|
||
if (type == 0x8b)
|
||
{
|
||
/* movl */
|
||
BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
|
||
bfd_put_8 (output_bfd, 0xc7,
|
||
contents + rel->r_offset - 2);
|
||
bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
|
||
contents + rel->r_offset - 1);
|
||
}
|
||
else if (type == 0x2b)
|
||
{
|
||
/* subl */
|
||
BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
|
||
bfd_put_8 (output_bfd, 0x81,
|
||
contents + rel->r_offset - 2);
|
||
bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7),
|
||
contents + rel->r_offset - 1);
|
||
}
|
||
else
|
||
BFD_FAIL ();
|
||
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
||
contents + rel->r_offset);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (htab->sgot == NULL)
|
||
abort ();
|
||
|
||
if (h != NULL)
|
||
off = h->got.offset;
|
||
else
|
||
{
|
||
if (local_got_offsets == NULL)
|
||
abort ();
|
||
|
||
off = local_got_offsets[r_symndx];
|
||
}
|
||
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
Elf_Internal_Rel outrel;
|
||
Elf32_External_Rel *loc;
|
||
int dr_type, indx;
|
||
|
||
if (htab->srelgot == NULL)
|
||
abort ();
|
||
|
||
outrel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off);
|
||
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off);
|
||
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
||
if (r_type == R_386_TLS_GD)
|
||
dr_type = R_386_TLS_DTPMOD32;
|
||
else
|
||
dr_type = R_386_TLS_TPOFF32;
|
||
outrel.r_info = ELF32_R_INFO (indx, dr_type);
|
||
loc = (Elf32_External_Rel *) htab->srelgot->contents;
|
||
loc += htab->srelgot->reloc_count++;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
|
||
if (r_type == R_386_TLS_GD)
|
||
{
|
||
if (indx == 0)
|
||
{
|
||
BFD_ASSERT (unresolved_reloc == false);
|
||
bfd_put_32 (output_bfd,
|
||
relocation - dtpoff_base (info),
|
||
htab->sgot->contents + off + 4);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off + 4);
|
||
outrel.r_info = ELF32_R_INFO (indx,
|
||
R_386_TLS_DTPOFF32);
|
||
outrel.r_offset += 4;
|
||
htab->srelgot->reloc_count++;
|
||
loc++;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
|
||
loc);
|
||
}
|
||
}
|
||
|
||
if (h != NULL)
|
||
h->got.offset |= 1;
|
||
else
|
||
local_got_offsets[r_symndx] |= 1;
|
||
}
|
||
|
||
if (off >= (bfd_vma) -2)
|
||
abort ();
|
||
if (r_type == ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
relocation = htab->sgot->output_offset + off;
|
||
unresolved_reloc = false;
|
||
}
|
||
else
|
||
{
|
||
unsigned int val, type;
|
||
bfd_vma roff;
|
||
|
||
/* GD->IE transition. */
|
||
BFD_ASSERT (rel->r_offset >= 2);
|
||
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
|
||
BFD_ASSERT (type == 0x8d || type == 0x04);
|
||
BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
|
||
BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
|
||
== 0xe8);
|
||
BFD_ASSERT (rel + 1 < relend);
|
||
BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
|
||
roff = rel->r_offset - 3;
|
||
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
|
||
if (type == 0x04)
|
||
{
|
||
/* leal foo(,%reg,1), %eax; call ___tls_get_addr
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
|
||
BFD_ASSERT (rel->r_offset >= 3);
|
||
BFD_ASSERT (bfd_get_8 (input_bfd,
|
||
contents + rel->r_offset - 3)
|
||
== 0x8d);
|
||
BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
|
||
val >>= 3;
|
||
}
|
||
else
|
||
{
|
||
/* leal foo(%reg), %eax; call ___tls_get_addr; nop
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
|
||
BFD_ASSERT (rel->r_offset + 10 <= input_section->_raw_size);
|
||
BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
|
||
BFD_ASSERT (bfd_get_8 (input_bfd,
|
||
contents + rel->r_offset + 9)
|
||
== 0x90);
|
||
roff = rel->r_offset - 2;
|
||
}
|
||
memcpy (contents + roff,
|
||
"\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12);
|
||
contents[roff + 7] = 0x80 | (val & 7);
|
||
bfd_put_32 (output_bfd, htab->sgot->output_offset + off,
|
||
contents + roff + 8);
|
||
/* Skip R_386_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case R_386_TLS_LDM:
|
||
if (! info->shared)
|
||
{
|
||
unsigned int val;
|
||
|
||
/* LD->LE transition:
|
||
Ensure it is:
|
||
leal foo(%reg), %eax; call ___tls_get_addr.
|
||
We change it into:
|
||
movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */
|
||
BFD_ASSERT (rel->r_offset >= 2);
|
||
BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
|
||
== 0x8d);
|
||
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
|
||
BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
|
||
BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
|
||
BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
|
||
== 0xe8);
|
||
BFD_ASSERT (rel + 1 < relend);
|
||
BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
|
||
memcpy (contents + rel->r_offset - 2,
|
||
"\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11);
|
||
/* Skip R_386_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
|
||
if (htab->sgot == NULL)
|
||
abort ();
|
||
|
||
off = htab->tls_ldm_got.offset;
|
||
if (off & 1)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
Elf_Internal_Rel outrel;
|
||
Elf32_External_Rel *loc;
|
||
|
||
if (htab->srelgot == NULL)
|
||
abort ();
|
||
|
||
outrel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off);
|
||
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off);
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off + 4);
|
||
outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32);
|
||
loc = (Elf32_External_Rel *) htab->srelgot->contents;
|
||
loc += htab->srelgot->reloc_count++;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
htab->tls_ldm_got.offset |= 1;
|
||
}
|
||
relocation = htab->sgot->output_offset + off;
|
||
unresolved_reloc = false;
|
||
break;
|
||
|
||
case R_386_TLS_LDO_32:
|
||
if (info->shared)
|
||
relocation -= dtpoff_base (info);
|
||
else
|
||
/* When converting LDO to LE, we must negate. */
|
||
relocation = -tpoff (info, relocation);
|
||
break;
|
||
|
||
case R_386_TLS_LE_32:
|
||
relocation = tpoff (info, relocation);
|
||
break;
|
||
|
||
case R_386_TLS_LE:
|
||
relocation = -tpoff (info, relocation);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* FIXME: Why do we allow debugging sections to escape this error?
|
||
More importantly, why do we not emit dynamic relocs for
|
||
R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
|
||
If we had emitted the dynamic reloc, we could remove the
|
||
fudge here. */
|
||
if (unresolved_reloc
|
||
&& !(info->shared
|
||
&& (input_section->flags & SEC_DEBUGGING) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
|
||
(*_bfd_error_handler)
|
||
(_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
|
||
bfd_archive_filename (input_bfd),
|
||
bfd_get_section_name (input_bfd, input_section),
|
||
(long) rel->r_offset,
|
||
h->root.root.string);
|
||
|
||
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel->r_offset,
|
||
relocation, (bfd_vma) 0);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
sym->st_name);
|
||
if (name == NULL)
|
||
return false;
|
||
if (*name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
if (r == bfd_reloc_overflow)
|
||
{
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, name, howto->name, (bfd_vma) 0,
|
||
input_bfd, input_section, rel->r_offset)))
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%s(%s+0x%lx): reloc against `%s': error %d"),
|
||
bfd_archive_filename (input_bfd),
|
||
bfd_get_section_name (input_bfd, input_section),
|
||
(long) rel->r_offset, name, (int) r);
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
static boolean
|
||
elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
bfd_vma plt_index;
|
||
bfd_vma got_offset;
|
||
Elf_Internal_Rel rel;
|
||
Elf32_External_Rel *loc;
|
||
|
||
/* This symbol has an entry in the procedure linkage table. Set
|
||
it up. */
|
||
|
||
if (h->dynindx == -1
|
||
|| htab->splt == NULL
|
||
|| htab->sgotplt == NULL
|
||
|| htab->srelplt == NULL)
|
||
abort ();
|
||
|
||
/* Get the index in the procedure linkage table which
|
||
corresponds to this symbol. This is the index of this symbol
|
||
in all the symbols for which we are making plt entries. The
|
||
first entry in the procedure linkage table is reserved. */
|
||
plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
|
||
|
||
/* Get the offset into the .got table of the entry that
|
||
corresponds to this function. Each .got entry is 4 bytes.
|
||
The first three are reserved. */
|
||
got_offset = (plt_index + 3) * 4;
|
||
|
||
/* Fill in the entry in the procedure linkage table. */
|
||
if (! info->shared)
|
||
{
|
||
memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
|
||
PLT_ENTRY_SIZE);
|
||
bfd_put_32 (output_bfd,
|
||
(htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ got_offset),
|
||
htab->splt->contents + h->plt.offset + 2);
|
||
}
|
||
else
|
||
{
|
||
memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
|
||
PLT_ENTRY_SIZE);
|
||
bfd_put_32 (output_bfd, got_offset,
|
||
htab->splt->contents + h->plt.offset + 2);
|
||
}
|
||
|
||
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
|
||
htab->splt->contents + h->plt.offset + 7);
|
||
bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
|
||
htab->splt->contents + h->plt.offset + 12);
|
||
|
||
/* Fill in the entry in the global offset table. */
|
||
bfd_put_32 (output_bfd,
|
||
(htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ h->plt.offset
|
||
+ 6),
|
||
htab->sgotplt->contents + got_offset);
|
||
|
||
/* Fill in the entry in the .rel.plt section. */
|
||
rel.r_offset = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ got_offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
|
||
loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
|
||
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
||
{
|
||
/* Mark the symbol as undefined, rather than as defined in
|
||
the .plt section. Leave the value alone. This is a clue
|
||
for the dynamic linker, to make function pointer
|
||
comparisons work between an application and shared
|
||
library. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
}
|
||
}
|
||
|
||
if (h->got.offset != (bfd_vma) -1
|
||
&& elf_i386_hash_entry(h)->tls_type != GOT_TLS_GD
|
||
&& elf_i386_hash_entry(h)->tls_type != GOT_TLS_IE)
|
||
{
|
||
Elf_Internal_Rel rel;
|
||
Elf32_External_Rel *loc;
|
||
|
||
/* This symbol has an entry in the global offset table. Set it
|
||
up. */
|
||
|
||
if (htab->sgot == NULL || htab->srelgot == NULL)
|
||
abort ();
|
||
|
||
rel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset
|
||
+ (h->got.offset & ~(bfd_vma) 1));
|
||
|
||
/* If this is a static link, or it is a -Bsymbolic link and the
|
||
symbol is defined locally or was forced to be local because
|
||
of a version file, we just want to emit a RELATIVE reloc.
|
||
The entry in the global offset table will already have been
|
||
initialized in the relocate_section function. */
|
||
if (info->shared
|
||
&& (info->symbolic
|
||
|| h->dynindx == -1
|
||
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
|
||
{
|
||
BFD_ASSERT((h->got.offset & 1) != 0);
|
||
rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT((h->got.offset & 1) == 0);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0,
|
||
htab->sgot->contents + h->got.offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
|
||
}
|
||
|
||
loc = (Elf32_External_Rel *) htab->srelgot->contents;
|
||
loc += htab->srelgot->reloc_count++;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
|
||
}
|
||
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
|
||
{
|
||
Elf_Internal_Rel rel;
|
||
Elf32_External_Rel *loc;
|
||
|
||
/* This symbol needs a copy reloc. Set it up. */
|
||
|
||
if (h->dynindx == -1
|
||
|| (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
|| htab->srelbss == NULL)
|
||
abort ();
|
||
|
||
rel.r_offset = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
|
||
loc = (Elf32_External_Rel *) htab->srelbss->contents;
|
||
loc += htab->srelbss->reloc_count++;
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
|
||
}
|
||
|
||
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
||
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
||
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
||
sym->st_shndx = SHN_ABS;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Used to decide how to sort relocs in an optimal manner for the
|
||
dynamic linker, before writing them out. */
|
||
|
||
static enum elf_reloc_type_class
|
||
elf_i386_reloc_type_class (rela)
|
||
const Elf_Internal_Rela *rela;
|
||
{
|
||
switch ((int) ELF32_R_TYPE (rela->r_info))
|
||
{
|
||
case R_386_RELATIVE:
|
||
return reloc_class_relative;
|
||
case R_386_JUMP_SLOT:
|
||
return reloc_class_plt;
|
||
case R_386_COPY:
|
||
return reloc_class_copy;
|
||
default:
|
||
return reloc_class_normal;
|
||
}
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static boolean
|
||
elf_i386_finish_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *sdyn;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
dynobj = htab->elf.dynobj;
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
Elf32_External_Dyn *dyncon, *dynconend;
|
||
|
||
if (sdyn == NULL || htab->sgot == NULL)
|
||
abort ();
|
||
|
||
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
asection *s;
|
||
|
||
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
continue;
|
||
|
||
case DT_PLTGOT:
|
||
dyn.d_un.d_ptr = htab->sgot->output_section->vma;
|
||
break;
|
||
|
||
case DT_JMPREL:
|
||
dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
s = htab->srelplt->output_section;
|
||
if (s->_cooked_size != 0)
|
||
dyn.d_un.d_val = s->_cooked_size;
|
||
else
|
||
dyn.d_un.d_val = s->_raw_size;
|
||
break;
|
||
|
||
case DT_RELSZ:
|
||
/* My reading of the SVR4 ABI indicates that the
|
||
procedure linkage table relocs (DT_JMPREL) should be
|
||
included in the overall relocs (DT_REL). This is
|
||
what Solaris does. However, UnixWare can not handle
|
||
that case. Therefore, we override the DT_RELSZ entry
|
||
here to make it not include the JMPREL relocs. Since
|
||
the linker script arranges for .rel.plt to follow all
|
||
other relocation sections, we don't have to worry
|
||
about changing the DT_REL entry. */
|
||
if (htab->srelplt != NULL)
|
||
{
|
||
s = htab->srelplt->output_section;
|
||
if (s->_cooked_size != 0)
|
||
dyn.d_un.d_val -= s->_cooked_size;
|
||
else
|
||
dyn.d_un.d_val -= s->_raw_size;
|
||
}
|
||
break;
|
||
}
|
||
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
}
|
||
|
||
/* Fill in the first entry in the procedure linkage table. */
|
||
if (htab->splt && htab->splt->_raw_size > 0)
|
||
{
|
||
if (info->shared)
|
||
memcpy (htab->splt->contents,
|
||
elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
|
||
else
|
||
{
|
||
memcpy (htab->splt->contents,
|
||
elf_i386_plt0_entry, PLT_ENTRY_SIZE);
|
||
bfd_put_32 (output_bfd,
|
||
(htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ 4),
|
||
htab->splt->contents + 2);
|
||
bfd_put_32 (output_bfd,
|
||
(htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ 8),
|
||
htab->splt->contents + 8);
|
||
}
|
||
|
||
/* UnixWare sets the entsize of .plt to 4, although that doesn't
|
||
really seem like the right value. */
|
||
elf_section_data (htab->splt->output_section)
|
||
->this_hdr.sh_entsize = 4;
|
||
}
|
||
}
|
||
|
||
if (htab->sgotplt)
|
||
{
|
||
/* Fill in the first three entries in the global offset table. */
|
||
if (htab->sgotplt->_raw_size > 0)
|
||
{
|
||
bfd_put_32 (output_bfd,
|
||
(sdyn == NULL ? (bfd_vma) 0
|
||
: sdyn->output_section->vma + sdyn->output_offset),
|
||
htab->sgotplt->contents);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
|
||
}
|
||
|
||
elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
#define TARGET_LITTLE_SYM bfd_elf32_i386_vec
|
||
#define TARGET_LITTLE_NAME "elf32-i386"
|
||
#define ELF_ARCH bfd_arch_i386
|
||
#define ELF_MACHINE_CODE EM_386
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_can_refcount 1
|
||
#define elf_backend_want_got_plt 1
|
||
#define elf_backend_plt_readonly 1
|
||
#define elf_backend_want_plt_sym 0
|
||
#define elf_backend_got_header_size 12
|
||
#define elf_backend_plt_header_size PLT_ENTRY_SIZE
|
||
|
||
#define elf_info_to_howto elf_i386_info_to_howto
|
||
#define elf_info_to_howto_rel elf_i386_info_to_howto_rel
|
||
|
||
#define bfd_elf32_mkobject elf_i386_mkobject
|
||
#define elf_backend_object_p elf_i386_object_p
|
||
|
||
#define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
|
||
#define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
|
||
#define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
|
||
|
||
#define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
|
||
#define elf_backend_check_relocs elf_i386_check_relocs
|
||
#define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
|
||
#define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
|
||
#define elf_backend_fake_sections elf_i386_fake_sections
|
||
#define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
|
||
#define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
|
||
#define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
|
||
#define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
|
||
#define elf_backend_grok_prstatus elf_i386_grok_prstatus
|
||
#define elf_backend_grok_psinfo elf_i386_grok_psinfo
|
||
#define elf_backend_reloc_type_class elf_i386_reloc_type_class
|
||
#define elf_backend_relocate_section elf_i386_relocate_section
|
||
#define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
|
||
|
||
#ifndef ELF32_I386_C_INCLUDED
|
||
#include "elf32-target.h"
|
||
#endif
|