caeec76790
tm_print_insn_info.flavour. * gdbtk.c (gdb_disassemble): Initialize di.flavour.
1385 lines
35 KiB
C
1385 lines
35 KiB
C
/* Tcl/Tk interface routines.
|
||
Copyright 1994, 1995, 1996 Free Software Foundation, Inc.
|
||
|
||
Written by Stu Grossman <grossman@cygnus.com> of Cygnus Support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "inferior.h"
|
||
#include "command.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "target.h"
|
||
#include <tcl.h>
|
||
#include <tk.h>
|
||
#ifdef ANSI_PROTOTYPES
|
||
#include <stdarg.h>
|
||
#else
|
||
#include <varargs.h>
|
||
#endif
|
||
#include <signal.h>
|
||
#include <fcntl.h>
|
||
#include <unistd.h>
|
||
#include <setjmp.h>
|
||
#include "top.h"
|
||
#include <sys/ioctl.h>
|
||
#include "gdb_string.h"
|
||
#include "dis-asm.h"
|
||
#include <stdio.h>
|
||
#include "gdbcmd.h"
|
||
|
||
#ifndef FIOASYNC
|
||
#include <sys/stropts.h>
|
||
#endif
|
||
|
||
/* Some versions (1.3.79, 1.3.81) of Linux don't support SIOCSPGRP the way
|
||
gdbtk wants to use it... */
|
||
#ifdef __linux__
|
||
#undef SIOCSPGRP
|
||
#endif
|
||
|
||
static void null_routine PARAMS ((int));
|
||
static void gdbtk_flush PARAMS ((FILE *));
|
||
static void gdbtk_fputs PARAMS ((const char *, FILE *));
|
||
static int gdbtk_query PARAMS ((const char *, va_list));
|
||
static char *gdbtk_readline PARAMS ((char *));
|
||
static void gdbtk_init PARAMS ((void));
|
||
static void tk_command_loop PARAMS ((void));
|
||
static void gdbtk_call_command PARAMS ((struct cmd_list_element *, char *, int));
|
||
static int gdbtk_wait PARAMS ((int, struct target_waitstatus *));
|
||
static void x_event PARAMS ((int));
|
||
static void gdbtk_interactive PARAMS ((void));
|
||
static void cleanup_init PARAMS ((int));
|
||
static void tk_command PARAMS ((char *, int));
|
||
static int gdb_disassemble PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int compare_lines PARAMS ((const PTR, const PTR));
|
||
static int gdbtk_dis_asm_read_memory PARAMS ((bfd_vma, bfd_byte *, int, disassemble_info *));
|
||
static int gdb_stop PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int gdb_listfiles PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int call_wrapper PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int gdb_cmd PARAMS ((ClientData, Tcl_Interp *, int, char *argv[]));
|
||
static int gdb_fetch_registers PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static void gdbtk_readline_end PARAMS ((void));
|
||
static int gdb_changed_register_list PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static void register_changed_p PARAMS ((int, void *));
|
||
static int gdb_get_breakpoint_list PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int gdb_get_breakpoint_info PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static void breakpoint_notify PARAMS ((struct breakpoint *, const char *));
|
||
static void gdbtk_create_breakpoint PARAMS ((struct breakpoint *));
|
||
static void gdbtk_delete_breakpoint PARAMS ((struct breakpoint *));
|
||
static void gdbtk_modify_breakpoint PARAMS ((struct breakpoint *));
|
||
static int gdb_loc PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int gdb_eval PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int gdb_sourcelines PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static int map_arg_registers PARAMS ((int, char *[], void (*) (int, void *), void *));
|
||
static void get_register_name PARAMS ((int, void *));
|
||
static int gdb_regnames PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
|
||
static void get_register PARAMS ((int, void *));
|
||
|
||
/* Handle for TCL interpreter */
|
||
|
||
static Tcl_Interp *interp = NULL;
|
||
|
||
/* Handle for TK main window */
|
||
|
||
static Tk_Window mainWindow = NULL;
|
||
|
||
static int x_fd; /* X network socket */
|
||
|
||
/* This variable is true when the inferior is running. Although it's
|
||
possible to disable most input from widgets and thus prevent
|
||
attempts to do anything while the inferior is running, any commands
|
||
that get through - even a simple memory read - are Very Bad, and
|
||
may cause GDB to crash or behave strangely. So, this variable
|
||
provides an extra layer of defense. */
|
||
|
||
static int running_now;
|
||
|
||
/* This variable determines where memory used for disassembly is read from.
|
||
If > 0, then disassembly comes from the exec file rather than the
|
||
target (which might be at the other end of a slow serial link). If
|
||
== 0 then disassembly comes from target. If < 0 disassembly is
|
||
automatically switched to the target if it's an inferior process,
|
||
otherwise the exec file is used. */
|
||
|
||
static int disassemble_from_exec = -1;
|
||
|
||
/* Supply malloc calls for tcl/tk. */
|
||
|
||
char *
|
||
Tcl_Malloc (size)
|
||
unsigned int size;
|
||
{
|
||
return xmalloc (size);
|
||
}
|
||
|
||
char *
|
||
Tcl_Realloc (ptr, size)
|
||
char *ptr;
|
||
unsigned int size;
|
||
{
|
||
return xrealloc (ptr, size);
|
||
}
|
||
|
||
void
|
||
Tcl_Free(ptr)
|
||
char *ptr;
|
||
{
|
||
free (ptr);
|
||
}
|
||
|
||
static void
|
||
null_routine(arg)
|
||
int arg;
|
||
{
|
||
}
|
||
|
||
/* The following routines deal with stdout/stderr data, which is created by
|
||
{f}printf_{un}filtered and friends. gdbtk_fputs and gdbtk_flush are the
|
||
lowest level of these routines and capture all output from the rest of GDB.
|
||
Normally they present their data to tcl via callbacks to the following tcl
|
||
routines: gdbtk_tcl_fputs, gdbtk_tcl_fputs_error, and gdbtk_flush. These
|
||
in turn call tk routines to update the display.
|
||
|
||
Under some circumstances, you may want to collect the output so that it can
|
||
be returned as the value of a tcl procedure. This can be done by
|
||
surrounding the output routines with calls to start_saving_output and
|
||
finish_saving_output. The saved data can then be retrieved with
|
||
get_saved_output (but this must be done before the call to
|
||
finish_saving_output). */
|
||
|
||
/* Dynamic string header for stdout. */
|
||
|
||
static Tcl_DString *result_ptr;
|
||
|
||
static void
|
||
gdbtk_flush (stream)
|
||
FILE *stream;
|
||
{
|
||
#if 0
|
||
/* Force immediate screen update */
|
||
|
||
Tcl_VarEval (interp, "gdbtk_tcl_flush", NULL);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
gdbtk_fputs (ptr, stream)
|
||
const char *ptr;
|
||
FILE *stream;
|
||
{
|
||
|
||
if (result_ptr)
|
||
Tcl_DStringAppend (result_ptr, (char *)ptr, -1);
|
||
else
|
||
{
|
||
Tcl_DString str;
|
||
|
||
Tcl_DStringInit (&str);
|
||
|
||
Tcl_DStringAppend (&str, "gdbtk_tcl_fputs", -1);
|
||
Tcl_DStringAppendElement (&str, (char *)ptr);
|
||
|
||
Tcl_Eval (interp, Tcl_DStringValue (&str));
|
||
Tcl_DStringFree (&str);
|
||
}
|
||
}
|
||
|
||
static int
|
||
gdbtk_query (query, args)
|
||
const char *query;
|
||
va_list args;
|
||
{
|
||
char buf[200], *merge[2];
|
||
char *command;
|
||
long val;
|
||
|
||
vsprintf (buf, query, args);
|
||
merge[0] = "gdbtk_tcl_query";
|
||
merge[1] = buf;
|
||
command = Tcl_Merge (2, merge);
|
||
Tcl_Eval (interp, command);
|
||
free (command);
|
||
|
||
val = atol (interp->result);
|
||
return val;
|
||
}
|
||
|
||
/* VARARGS */
|
||
static void
|
||
#ifdef ANSI_PROTOTYPES
|
||
gdbtk_readline_begin (char *format, ...)
|
||
#else
|
||
gdbtk_readline_begin (va_alist)
|
||
va_dcl
|
||
#endif
|
||
{
|
||
va_list args;
|
||
char buf[200], *merge[2];
|
||
char *command;
|
||
|
||
#ifdef ANSI_PROTOTYPES
|
||
va_start (args, format);
|
||
#else
|
||
char *format;
|
||
va_start (args);
|
||
format = va_arg (args, char *);
|
||
#endif
|
||
|
||
vsprintf (buf, format, args);
|
||
merge[0] = "gdbtk_tcl_readline_begin";
|
||
merge[1] = buf;
|
||
command = Tcl_Merge (2, merge);
|
||
Tcl_Eval (interp, command);
|
||
free (command);
|
||
}
|
||
|
||
static char *
|
||
gdbtk_readline (prompt)
|
||
char *prompt;
|
||
{
|
||
char *merge[2];
|
||
char *command;
|
||
|
||
merge[0] = "gdbtk_tcl_readline";
|
||
merge[1] = prompt;
|
||
command = Tcl_Merge (2, merge);
|
||
if (Tcl_Eval (interp, command) == TCL_OK)
|
||
{
|
||
return (strdup (interp -> result));
|
||
}
|
||
else
|
||
{
|
||
gdbtk_fputs (interp -> result, gdb_stdout);
|
||
gdbtk_fputs ("\n", gdb_stdout);
|
||
return (NULL);
|
||
}
|
||
}
|
||
|
||
static void
|
||
gdbtk_readline_end ()
|
||
{
|
||
Tcl_Eval (interp, "gdbtk_tcl_readline_end");
|
||
}
|
||
|
||
|
||
static void
|
||
#ifdef ANSI_PROTOTYPES
|
||
dsprintf_append_element (Tcl_DString *dsp, char *format, ...)
|
||
#else
|
||
dsprintf_append_element (va_alist)
|
||
va_dcl
|
||
#endif
|
||
{
|
||
va_list args;
|
||
char buf[1024];
|
||
|
||
#ifdef ANSI_PROTOTYPES
|
||
va_start (args, format);
|
||
#else
|
||
Tcl_DString *dsp;
|
||
char *format;
|
||
|
||
va_start (args);
|
||
dsp = va_arg (args, Tcl_DString *);
|
||
format = va_arg (args, char *);
|
||
#endif
|
||
|
||
vsprintf (buf, format, args);
|
||
|
||
Tcl_DStringAppendElement (dsp, buf);
|
||
}
|
||
|
||
static int
|
||
gdb_get_breakpoint_list (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
struct breakpoint *b;
|
||
extern struct breakpoint *breakpoint_chain;
|
||
|
||
if (argc != 1)
|
||
error ("wrong # args");
|
||
|
||
for (b = breakpoint_chain; b; b = b->next)
|
||
if (b->type == bp_breakpoint)
|
||
dsprintf_append_element (result_ptr, "%d", b->number);
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
static int
|
||
gdb_get_breakpoint_info (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
struct symtab_and_line sal;
|
||
static char *bptypes[] = {"breakpoint", "hardware breakpoint", "until",
|
||
"finish", "watchpoint", "hardware watchpoint",
|
||
"read watchpoint", "access watchpoint",
|
||
"longjmp", "longjmp resume", "step resume",
|
||
"through sigtramp", "watchpoint scope",
|
||
"call dummy" };
|
||
static char *bpdisp[] = {"delete", "disable", "donttouch"};
|
||
struct command_line *cmd;
|
||
int bpnum;
|
||
struct breakpoint *b;
|
||
extern struct breakpoint *breakpoint_chain;
|
||
|
||
if (argc != 2)
|
||
error ("wrong # args");
|
||
|
||
bpnum = atoi (argv[1]);
|
||
|
||
for (b = breakpoint_chain; b; b = b->next)
|
||
if (b->number == bpnum)
|
||
break;
|
||
|
||
if (!b || b->type != bp_breakpoint)
|
||
error ("Breakpoint #%d does not exist", bpnum);
|
||
|
||
sal = find_pc_line (b->address, 0);
|
||
|
||
Tcl_DStringAppendElement (result_ptr, symtab_to_filename (sal.symtab));
|
||
dsprintf_append_element (result_ptr, "%d", sal.line);
|
||
dsprintf_append_element (result_ptr, "0x%lx", b->address);
|
||
Tcl_DStringAppendElement (result_ptr, bptypes[b->type]);
|
||
Tcl_DStringAppendElement (result_ptr, b->enable == enabled ? "1" : "0");
|
||
Tcl_DStringAppendElement (result_ptr, bpdisp[b->disposition]);
|
||
dsprintf_append_element (result_ptr, "%d", b->silent);
|
||
dsprintf_append_element (result_ptr, "%d", b->ignore_count);
|
||
|
||
Tcl_DStringStartSublist (result_ptr);
|
||
for (cmd = b->commands; cmd; cmd = cmd->next)
|
||
Tcl_DStringAppendElement (result_ptr, cmd->line);
|
||
Tcl_DStringEndSublist (result_ptr);
|
||
|
||
Tcl_DStringAppendElement (result_ptr, b->cond_string);
|
||
|
||
dsprintf_append_element (result_ptr, "%d", b->thread);
|
||
dsprintf_append_element (result_ptr, "%d", b->hit_count);
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
static void
|
||
breakpoint_notify(b, action)
|
||
struct breakpoint *b;
|
||
const char *action;
|
||
{
|
||
char buf[100];
|
||
int v;
|
||
|
||
if (b->type != bp_breakpoint)
|
||
return;
|
||
|
||
/* We ensure that ACTION contains no special Tcl characters, so we
|
||
can do this. */
|
||
sprintf (buf, "gdbtk_tcl_breakpoint %s %d", action, b->number);
|
||
|
||
v = Tcl_Eval (interp, buf);
|
||
|
||
if (v != TCL_OK)
|
||
{
|
||
gdbtk_fputs (interp->result, gdb_stdout);
|
||
gdbtk_fputs ("\n", gdb_stdout);
|
||
}
|
||
}
|
||
|
||
static void
|
||
gdbtk_create_breakpoint(b)
|
||
struct breakpoint *b;
|
||
{
|
||
breakpoint_notify (b, "create");
|
||
}
|
||
|
||
static void
|
||
gdbtk_delete_breakpoint(b)
|
||
struct breakpoint *b;
|
||
{
|
||
breakpoint_notify (b, "delete");
|
||
}
|
||
|
||
static void
|
||
gdbtk_modify_breakpoint(b)
|
||
struct breakpoint *b;
|
||
{
|
||
breakpoint_notify (b, "modify");
|
||
}
|
||
|
||
/* This implements the TCL command `gdb_loc', which returns a list consisting
|
||
of the source and line number associated with the current pc. */
|
||
|
||
static int
|
||
gdb_loc (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
char *filename;
|
||
struct symtab_and_line sal;
|
||
char *funcname;
|
||
CORE_ADDR pc;
|
||
|
||
if (argc == 1)
|
||
{
|
||
pc = selected_frame ? selected_frame->pc : stop_pc;
|
||
sal = find_pc_line (pc, 0);
|
||
}
|
||
else if (argc == 2)
|
||
{
|
||
struct symtabs_and_lines sals;
|
||
int nelts;
|
||
|
||
sals = decode_line_spec (argv[1], 1);
|
||
|
||
nelts = sals.nelts;
|
||
sal = sals.sals[0];
|
||
free (sals.sals);
|
||
|
||
if (sals.nelts != 1)
|
||
error ("Ambiguous line spec");
|
||
|
||
pc = sal.pc;
|
||
}
|
||
else
|
||
error ("wrong # args");
|
||
|
||
if (sal.symtab)
|
||
Tcl_DStringAppendElement (result_ptr, sal.symtab->filename);
|
||
else
|
||
Tcl_DStringAppendElement (result_ptr, "");
|
||
|
||
find_pc_partial_function (pc, &funcname, NULL, NULL);
|
||
Tcl_DStringAppendElement (result_ptr, funcname);
|
||
|
||
filename = symtab_to_filename (sal.symtab);
|
||
Tcl_DStringAppendElement (result_ptr, filename);
|
||
|
||
dsprintf_append_element (result_ptr, "%d", sal.line); /* line number */
|
||
|
||
dsprintf_append_element (result_ptr, "0x%lx", pc); /* PC */
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
/* This implements the TCL command `gdb_eval'. */
|
||
|
||
static int
|
||
gdb_eval (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
struct expression *expr;
|
||
struct cleanup *old_chain;
|
||
value_ptr val;
|
||
|
||
if (argc != 2)
|
||
error ("wrong # args");
|
||
|
||
expr = parse_expression (argv[1]);
|
||
|
||
old_chain = make_cleanup (free_current_contents, &expr);
|
||
|
||
val = evaluate_expression (expr);
|
||
|
||
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_ADDRESS (val),
|
||
gdb_stdout, 0, 0, 0, 0);
|
||
|
||
do_cleanups (old_chain);
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
/* This implements the TCL command `gdb_sourcelines', which returns a list of
|
||
all of the lines containing executable code for the specified source file
|
||
(ie: lines where you can put breakpoints). */
|
||
|
||
static int
|
||
gdb_sourcelines (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
struct symtab *symtab;
|
||
struct linetable_entry *le;
|
||
int nlines;
|
||
|
||
if (argc != 2)
|
||
error ("wrong # args");
|
||
|
||
symtab = lookup_symtab (argv[1]);
|
||
|
||
if (!symtab)
|
||
error ("No such file");
|
||
|
||
/* If there's no linetable, or no entries, then we are done. */
|
||
|
||
if (!symtab->linetable
|
||
|| symtab->linetable->nitems == 0)
|
||
{
|
||
Tcl_DStringAppendElement (result_ptr, "");
|
||
return TCL_OK;
|
||
}
|
||
|
||
le = symtab->linetable->item;
|
||
nlines = symtab->linetable->nitems;
|
||
|
||
for (;nlines > 0; nlines--, le++)
|
||
{
|
||
/* If the pc of this line is the same as the pc of the next line, then
|
||
just skip it. */
|
||
if (nlines > 1
|
||
&& le->pc == (le + 1)->pc)
|
||
continue;
|
||
|
||
dsprintf_append_element (result_ptr, "%d", le->line);
|
||
}
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
static int
|
||
map_arg_registers (argc, argv, func, argp)
|
||
int argc;
|
||
char *argv[];
|
||
void (*func) PARAMS ((int regnum, void *argp));
|
||
void *argp;
|
||
{
|
||
int regnum;
|
||
|
||
/* Note that the test for a valid register must include checking the
|
||
reg_names array because NUM_REGS may be allocated for the union of the
|
||
register sets within a family of related processors. In this case, the
|
||
trailing entries of reg_names will change depending upon the particular
|
||
processor being debugged. */
|
||
|
||
if (argc == 0) /* No args, just do all the regs */
|
||
{
|
||
for (regnum = 0;
|
||
regnum < NUM_REGS
|
||
&& reg_names[regnum] != NULL
|
||
&& *reg_names[regnum] != '\000';
|
||
regnum++)
|
||
func (regnum, argp);
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
/* Else, list of register #s, just do listed regs */
|
||
for (; argc > 0; argc--, argv++)
|
||
{
|
||
regnum = atoi (*argv);
|
||
|
||
if (regnum >= 0
|
||
&& regnum < NUM_REGS
|
||
&& reg_names[regnum] != NULL
|
||
&& *reg_names[regnum] != '\000')
|
||
func (regnum, argp);
|
||
else
|
||
error ("bad register number");
|
||
}
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
static void
|
||
get_register_name (regnum, argp)
|
||
int regnum;
|
||
void *argp; /* Ignored */
|
||
{
|
||
Tcl_DStringAppendElement (result_ptr, reg_names[regnum]);
|
||
}
|
||
|
||
/* This implements the TCL command `gdb_regnames', which returns a list of
|
||
all of the register names. */
|
||
|
||
static int
|
||
gdb_regnames (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
argc--;
|
||
argv++;
|
||
|
||
return map_arg_registers (argc, argv, get_register_name, NULL);
|
||
}
|
||
|
||
#ifndef REGISTER_CONVERTIBLE
|
||
#define REGISTER_CONVERTIBLE(x) (0 != 0)
|
||
#endif
|
||
|
||
#ifndef REGISTER_CONVERT_TO_VIRTUAL
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(x, y, z, a)
|
||
#endif
|
||
|
||
#ifndef INVALID_FLOAT
|
||
#define INVALID_FLOAT(x, y) (0 != 0)
|
||
#endif
|
||
|
||
static void
|
||
get_register (regnum, fp)
|
||
int regnum;
|
||
void *fp;
|
||
{
|
||
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
||
int format = (int)fp;
|
||
|
||
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
||
{
|
||
Tcl_DStringAppendElement (result_ptr, "Optimized out");
|
||
return;
|
||
}
|
||
|
||
/* Convert raw data to virtual format if necessary. */
|
||
|
||
if (REGISTER_CONVERTIBLE (regnum))
|
||
{
|
||
REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
|
||
raw_buffer, virtual_buffer);
|
||
}
|
||
else
|
||
memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
|
||
|
||
if (format == 'r')
|
||
{
|
||
int j;
|
||
printf_filtered ("0x");
|
||
for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
|
||
{
|
||
register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
|
||
: REGISTER_RAW_SIZE (regnum) - 1 - j;
|
||
printf_filtered ("%02x", (unsigned char)raw_buffer[idx]);
|
||
}
|
||
}
|
||
else
|
||
val_print (REGISTER_VIRTUAL_TYPE (regnum), virtual_buffer, 0,
|
||
gdb_stdout, format, 1, 0, Val_pretty_default);
|
||
|
||
Tcl_DStringAppend (result_ptr, " ", -1);
|
||
}
|
||
|
||
static int
|
||
gdb_fetch_registers (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
int format;
|
||
|
||
if (argc < 2)
|
||
error ("wrong # args");
|
||
|
||
argc--;
|
||
argv++;
|
||
|
||
argc--;
|
||
format = **argv++;
|
||
|
||
return map_arg_registers (argc, argv, get_register, (void *) format);
|
||
}
|
||
|
||
/* This contains the previous values of the registers, since the last call to
|
||
gdb_changed_register_list. */
|
||
|
||
static char old_regs[REGISTER_BYTES];
|
||
|
||
static void
|
||
register_changed_p (regnum, argp)
|
||
int regnum;
|
||
void *argp; /* Ignored */
|
||
{
|
||
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
|
||
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
||
return;
|
||
|
||
if (memcmp (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
|
||
REGISTER_RAW_SIZE (regnum)) == 0)
|
||
return;
|
||
|
||
/* Found a changed register. Save new value and return its number. */
|
||
|
||
memcpy (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
|
||
REGISTER_RAW_SIZE (regnum));
|
||
|
||
dsprintf_append_element (result_ptr, "%d", regnum);
|
||
}
|
||
|
||
static int
|
||
gdb_changed_register_list (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
argc--;
|
||
argv++;
|
||
|
||
return map_arg_registers (argc, argv, register_changed_p, NULL);
|
||
}
|
||
|
||
/* This implements the TCL command `gdb_cmd', which sends its argument into
|
||
the GDB command scanner. */
|
||
|
||
static int
|
||
gdb_cmd (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
if (argc != 2)
|
||
error ("wrong # args");
|
||
|
||
if (running_now)
|
||
return TCL_OK;
|
||
|
||
execute_command (argv[1], 1);
|
||
|
||
bpstat_do_actions (&stop_bpstat);
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
/* This routine acts as a top-level for all GDB code called by tcl/Tk. It
|
||
handles cleanups, and calls to return_to_top_level (usually via error).
|
||
This is necessary in order to prevent a longjmp out of the bowels of Tk,
|
||
possibly leaving things in a bad state. Since this routine can be called
|
||
recursively, it needs to save and restore the contents of the jmp_buf as
|
||
necessary. */
|
||
|
||
static int
|
||
call_wrapper (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
int val;
|
||
struct cleanup *saved_cleanup_chain;
|
||
Tcl_CmdProc *func;
|
||
jmp_buf saved_error_return;
|
||
Tcl_DString result, *old_result_ptr;
|
||
|
||
Tcl_DStringInit (&result);
|
||
old_result_ptr = result_ptr;
|
||
result_ptr = &result;
|
||
|
||
func = (Tcl_CmdProc *)clientData;
|
||
memcpy (saved_error_return, error_return, sizeof (jmp_buf));
|
||
|
||
saved_cleanup_chain = save_cleanups ();
|
||
|
||
if (!setjmp (error_return))
|
||
val = func (clientData, interp, argc, argv);
|
||
else
|
||
{
|
||
val = TCL_ERROR; /* Flag an error for TCL */
|
||
|
||
gdb_flush (gdb_stderr); /* Flush error output */
|
||
|
||
gdb_flush (gdb_stdout); /* Sometimes error output comes here as well */
|
||
|
||
/* In case of an error, we may need to force the GUI into idle
|
||
mode because gdbtk_call_command may have bombed out while in
|
||
the command routine. */
|
||
|
||
Tcl_Eval (interp, "gdbtk_tcl_idle");
|
||
}
|
||
|
||
do_cleanups (ALL_CLEANUPS);
|
||
|
||
restore_cleanups (saved_cleanup_chain);
|
||
|
||
memcpy (error_return, saved_error_return, sizeof (jmp_buf));
|
||
|
||
Tcl_DStringResult (interp, &result);
|
||
result_ptr = old_result_ptr;
|
||
|
||
return val;
|
||
}
|
||
|
||
static int
|
||
gdb_listfiles (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
struct objfile *objfile;
|
||
struct partial_symtab *psymtab;
|
||
struct symtab *symtab;
|
||
|
||
ALL_PSYMTABS (objfile, psymtab)
|
||
Tcl_DStringAppendElement (result_ptr, psymtab->filename);
|
||
|
||
ALL_SYMTABS (objfile, symtab)
|
||
Tcl_DStringAppendElement (result_ptr, symtab->filename);
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
static int
|
||
gdb_stop (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
target_stop ();
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
/* This implements the TCL command `gdb_disassemble'. */
|
||
|
||
static int
|
||
gdbtk_dis_asm_read_memory (memaddr, myaddr, len, info)
|
||
bfd_vma memaddr;
|
||
bfd_byte *myaddr;
|
||
int len;
|
||
disassemble_info *info;
|
||
{
|
||
extern struct target_ops exec_ops;
|
||
int res;
|
||
|
||
errno = 0;
|
||
res = xfer_memory (memaddr, myaddr, len, 0, &exec_ops);
|
||
|
||
if (res == len)
|
||
return 0;
|
||
else
|
||
if (errno == 0)
|
||
return EIO;
|
||
else
|
||
return errno;
|
||
}
|
||
|
||
/* We need a different sort of line table from the normal one cuz we can't
|
||
depend upon implicit line-end pc's for lines. This is because of the
|
||
reordering we are about to do. */
|
||
|
||
struct my_line_entry {
|
||
int line;
|
||
CORE_ADDR start_pc;
|
||
CORE_ADDR end_pc;
|
||
};
|
||
|
||
static int
|
||
compare_lines (mle1p, mle2p)
|
||
const PTR mle1p;
|
||
const PTR mle2p;
|
||
{
|
||
struct my_line_entry *mle1, *mle2;
|
||
int val;
|
||
|
||
mle1 = (struct my_line_entry *) mle1p;
|
||
mle2 = (struct my_line_entry *) mle2p;
|
||
|
||
val = mle1->line - mle2->line;
|
||
|
||
if (val != 0)
|
||
return val;
|
||
|
||
return mle1->start_pc - mle2->start_pc;
|
||
}
|
||
|
||
static int
|
||
gdb_disassemble (clientData, interp, argc, argv)
|
||
ClientData clientData;
|
||
Tcl_Interp *interp;
|
||
int argc;
|
||
char *argv[];
|
||
{
|
||
CORE_ADDR pc, low, high;
|
||
int mixed_source_and_assembly;
|
||
static disassemble_info di;
|
||
static int di_initialized;
|
||
|
||
if (! di_initialized)
|
||
{
|
||
INIT_DISASSEMBLE_INFO_NO_ARCH (di, gdb_stdout,
|
||
(fprintf_ftype) fprintf_unfiltered);
|
||
di.flavour = bfd_target_unknown_flavour;
|
||
di.memory_error_func = dis_asm_memory_error;
|
||
di.print_address_func = dis_asm_print_address;
|
||
di_initialized = 1;
|
||
}
|
||
|
||
di.mach = tm_print_insn_info.mach;
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
|
||
else
|
||
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
|
||
|
||
if (argc != 3 && argc != 4)
|
||
error ("wrong # args");
|
||
|
||
if (strcmp (argv[1], "source") == 0)
|
||
mixed_source_and_assembly = 1;
|
||
else if (strcmp (argv[1], "nosource") == 0)
|
||
mixed_source_and_assembly = 0;
|
||
else
|
||
error ("First arg must be 'source' or 'nosource'");
|
||
|
||
low = parse_and_eval_address (argv[2]);
|
||
|
||
if (argc == 3)
|
||
{
|
||
if (find_pc_partial_function (low, NULL, &low, &high) == 0)
|
||
error ("No function contains specified address");
|
||
}
|
||
else
|
||
high = parse_and_eval_address (argv[3]);
|
||
|
||
/* If disassemble_from_exec == -1, then we use the following heuristic to
|
||
determine whether or not to do disassembly from target memory or from the
|
||
exec file:
|
||
|
||
If we're debugging a local process, read target memory, instead of the
|
||
exec file. This makes disassembly of functions in shared libs work
|
||
correctly.
|
||
|
||
Else, we're debugging a remote process, and should disassemble from the
|
||
exec file for speed. However, this is no good if the target modifies its
|
||
code (for relocation, or whatever).
|
||
*/
|
||
|
||
if (disassemble_from_exec == -1)
|
||
if (strcmp (target_shortname, "child") == 0
|
||
|| strcmp (target_shortname, "procfs") == 0
|
||
|| strcmp (target_shortname, "vxprocess") == 0)
|
||
disassemble_from_exec = 0; /* It's a child process, read inferior mem */
|
||
else
|
||
disassemble_from_exec = 1; /* It's remote, read the exec file */
|
||
|
||
if (disassemble_from_exec)
|
||
di.read_memory_func = gdbtk_dis_asm_read_memory;
|
||
else
|
||
di.read_memory_func = dis_asm_read_memory;
|
||
|
||
/* If just doing straight assembly, all we need to do is disassemble
|
||
everything between low and high. If doing mixed source/assembly, we've
|
||
got a totally different path to follow. */
|
||
|
||
if (mixed_source_and_assembly)
|
||
{ /* Come here for mixed source/assembly */
|
||
/* The idea here is to present a source-O-centric view of a function to
|
||
the user. This means that things are presented in source order, with
|
||
(possibly) out of order assembly immediately following. */
|
||
struct symtab *symtab;
|
||
struct linetable_entry *le;
|
||
int nlines;
|
||
int newlines;
|
||
struct my_line_entry *mle;
|
||
struct symtab_and_line sal;
|
||
int i;
|
||
int out_of_order;
|
||
int next_line;
|
||
|
||
symtab = find_pc_symtab (low); /* Assume symtab is valid for whole PC range */
|
||
|
||
if (!symtab)
|
||
goto assembly_only;
|
||
|
||
/* First, convert the linetable to a bunch of my_line_entry's. */
|
||
|
||
le = symtab->linetable->item;
|
||
nlines = symtab->linetable->nitems;
|
||
|
||
if (nlines <= 0)
|
||
goto assembly_only;
|
||
|
||
mle = (struct my_line_entry *) alloca (nlines * sizeof (struct my_line_entry));
|
||
|
||
out_of_order = 0;
|
||
|
||
/* Copy linetable entries for this function into our data structure, creating
|
||
end_pc's and setting out_of_order as appropriate. */
|
||
|
||
/* First, skip all the preceding functions. */
|
||
|
||
for (i = 0; i < nlines - 1 && le[i].pc < low; i++) ;
|
||
|
||
/* Now, copy all entries before the end of this function. */
|
||
|
||
newlines = 0;
|
||
for (; i < nlines - 1 && le[i].pc < high; i++)
|
||
{
|
||
if (le[i].line == le[i + 1].line
|
||
&& le[i].pc == le[i + 1].pc)
|
||
continue; /* Ignore duplicates */
|
||
|
||
mle[newlines].line = le[i].line;
|
||
if (le[i].line > le[i + 1].line)
|
||
out_of_order = 1;
|
||
mle[newlines].start_pc = le[i].pc;
|
||
mle[newlines].end_pc = le[i + 1].pc;
|
||
newlines++;
|
||
}
|
||
|
||
/* If we're on the last line, and it's part of the function, then we need to
|
||
get the end pc in a special way. */
|
||
|
||
if (i == nlines - 1
|
||
&& le[i].pc < high)
|
||
{
|
||
mle[newlines].line = le[i].line;
|
||
mle[newlines].start_pc = le[i].pc;
|
||
sal = find_pc_line (le[i].pc, 0);
|
||
mle[newlines].end_pc = sal.end;
|
||
newlines++;
|
||
}
|
||
|
||
/* Now, sort mle by line #s (and, then by addresses within lines). */
|
||
|
||
if (out_of_order)
|
||
qsort (mle, newlines, sizeof (struct my_line_entry), compare_lines);
|
||
|
||
/* Now, for each line entry, emit the specified lines (unless they have been
|
||
emitted before), followed by the assembly code for that line. */
|
||
|
||
next_line = 0; /* Force out first line */
|
||
for (i = 0; i < newlines; i++)
|
||
{
|
||
/* Print out everything from next_line to the current line. */
|
||
|
||
if (mle[i].line >= next_line)
|
||
{
|
||
if (next_line != 0)
|
||
print_source_lines (symtab, next_line, mle[i].line + 1, 0);
|
||
else
|
||
print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
|
||
|
||
next_line = mle[i].line + 1;
|
||
}
|
||
|
||
for (pc = mle[i].start_pc; pc < mle[i].end_pc; )
|
||
{
|
||
QUIT;
|
||
fputs_unfiltered (" ", gdb_stdout);
|
||
print_address (pc, gdb_stdout);
|
||
fputs_unfiltered (":\t ", gdb_stdout);
|
||
pc += (*tm_print_insn) (pc, &di);
|
||
fputs_unfiltered ("\n", gdb_stdout);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
assembly_only:
|
||
for (pc = low; pc < high; )
|
||
{
|
||
QUIT;
|
||
fputs_unfiltered (" ", gdb_stdout);
|
||
print_address (pc, gdb_stdout);
|
||
fputs_unfiltered (":\t ", gdb_stdout);
|
||
pc += (*tm_print_insn) (pc, &di);
|
||
fputs_unfiltered ("\n", gdb_stdout);
|
||
}
|
||
}
|
||
|
||
gdb_flush (gdb_stdout);
|
||
|
||
return TCL_OK;
|
||
}
|
||
|
||
static void
|
||
tk_command (cmd, from_tty)
|
||
char *cmd;
|
||
int from_tty;
|
||
{
|
||
int retval;
|
||
char *result;
|
||
struct cleanup *old_chain;
|
||
|
||
/* Catch case of no argument, since this will make the tcl interpreter dump core. */
|
||
if (cmd == NULL)
|
||
error_no_arg ("tcl command to interpret");
|
||
|
||
retval = Tcl_Eval (interp, cmd);
|
||
|
||
result = strdup (interp->result);
|
||
|
||
old_chain = make_cleanup (free, result);
|
||
|
||
if (retval != TCL_OK)
|
||
error (result);
|
||
|
||
printf_unfiltered ("%s\n", result);
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
static void
|
||
cleanup_init (ignored)
|
||
int ignored;
|
||
{
|
||
if (mainWindow != NULL)
|
||
Tk_DestroyWindow (mainWindow);
|
||
mainWindow = NULL;
|
||
|
||
if (interp != NULL)
|
||
Tcl_DeleteInterp (interp);
|
||
interp = NULL;
|
||
}
|
||
|
||
/* Come here during long calculations to check for GUI events. Usually invoked
|
||
via the QUIT macro. */
|
||
|
||
static void
|
||
gdbtk_interactive ()
|
||
{
|
||
/* Tk_DoOneEvent (TK_DONT_WAIT|TK_IDLE_EVENTS); */
|
||
}
|
||
|
||
/* Come here when there is activity on the X file descriptor. */
|
||
|
||
static void
|
||
x_event (signo)
|
||
int signo;
|
||
{
|
||
/* Process pending events */
|
||
|
||
while (Tk_DoOneEvent (TK_DONT_WAIT|TK_ALL_EVENTS) != 0);
|
||
}
|
||
|
||
static int
|
||
gdbtk_wait (pid, ourstatus)
|
||
int pid;
|
||
struct target_waitstatus *ourstatus;
|
||
{
|
||
struct sigaction action;
|
||
static sigset_t nullsigmask = {0};
|
||
|
||
#ifndef SA_RESTART
|
||
/* Needed for SunOS 4.1.x */
|
||
#define SA_RESTART 0
|
||
#endif
|
||
|
||
action.sa_handler = x_event;
|
||
action.sa_mask = nullsigmask;
|
||
action.sa_flags = SA_RESTART;
|
||
sigaction(SIGIO, &action, NULL);
|
||
|
||
pid = target_wait (pid, ourstatus);
|
||
|
||
action.sa_handler = SIG_IGN;
|
||
sigaction(SIGIO, &action, NULL);
|
||
|
||
return pid;
|
||
}
|
||
|
||
/* This is called from execute_command, and provides a wrapper around
|
||
various command routines in a place where both protocol messages and
|
||
user input both flow through. Mostly this is used for indicating whether
|
||
the target process is running or not.
|
||
*/
|
||
|
||
static void
|
||
gdbtk_call_command (cmdblk, arg, from_tty)
|
||
struct cmd_list_element *cmdblk;
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
running_now = 0;
|
||
if (cmdblk->class == class_run)
|
||
{
|
||
running_now = 1;
|
||
Tcl_Eval (interp, "gdbtk_tcl_busy");
|
||
(*cmdblk->function.cfunc)(arg, from_tty);
|
||
Tcl_Eval (interp, "gdbtk_tcl_idle");
|
||
running_now = 0;
|
||
}
|
||
else
|
||
(*cmdblk->function.cfunc)(arg, from_tty);
|
||
}
|
||
|
||
/* This function is called instead of gdb's internal command loop. This is the
|
||
last chance to do anything before entering the main Tk event loop. */
|
||
|
||
static void
|
||
tk_command_loop ()
|
||
{
|
||
extern GDB_FILE *instream;
|
||
|
||
/* We no longer want to use stdin as the command input stream */
|
||
instream = NULL;
|
||
Tcl_Eval (interp, "gdbtk_tcl_preloop");
|
||
Tk_MainLoop ();
|
||
}
|
||
|
||
static void
|
||
gdbtk_init ()
|
||
{
|
||
struct cleanup *old_chain;
|
||
char *gdbtk_filename;
|
||
int i;
|
||
struct sigaction action;
|
||
static sigset_t nullsigmask = {0};
|
||
|
||
old_chain = make_cleanup (cleanup_init, 0);
|
||
|
||
/* First init tcl and tk. */
|
||
|
||
interp = Tcl_CreateInterp ();
|
||
|
||
if (!interp)
|
||
error ("Tcl_CreateInterp failed");
|
||
|
||
mainWindow = Tk_CreateMainWindow (interp, NULL, "gdb", "Gdb");
|
||
|
||
if (!mainWindow)
|
||
return; /* DISPLAY probably not set */
|
||
|
||
if (Tcl_Init(interp) != TCL_OK)
|
||
error ("Tcl_Init failed: %s", interp->result);
|
||
|
||
if (Tk_Init(interp) != TCL_OK)
|
||
error ("Tk_Init failed: %s", interp->result);
|
||
|
||
Tcl_CreateCommand (interp, "gdb_cmd", call_wrapper, gdb_cmd, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_loc", call_wrapper, gdb_loc, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_sourcelines", call_wrapper, gdb_sourcelines,
|
||
NULL);
|
||
Tcl_CreateCommand (interp, "gdb_listfiles", call_wrapper, gdb_listfiles,
|
||
NULL);
|
||
Tcl_CreateCommand (interp, "gdb_stop", call_wrapper, gdb_stop, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_regnames", call_wrapper, gdb_regnames, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_fetch_registers", call_wrapper,
|
||
gdb_fetch_registers, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_changed_register_list", call_wrapper,
|
||
gdb_changed_register_list, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_disassemble", call_wrapper,
|
||
gdb_disassemble, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_eval", call_wrapper, gdb_eval, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_get_breakpoint_list", call_wrapper,
|
||
gdb_get_breakpoint_list, NULL);
|
||
Tcl_CreateCommand (interp, "gdb_get_breakpoint_info", call_wrapper,
|
||
gdb_get_breakpoint_info, NULL);
|
||
|
||
command_loop_hook = tk_command_loop;
|
||
print_frame_info_listing_hook =
|
||
(void (*) PARAMS ((struct symtab *, int, int, int))) null_routine;
|
||
query_hook = gdbtk_query;
|
||
flush_hook = gdbtk_flush;
|
||
create_breakpoint_hook = gdbtk_create_breakpoint;
|
||
delete_breakpoint_hook = gdbtk_delete_breakpoint;
|
||
modify_breakpoint_hook = gdbtk_modify_breakpoint;
|
||
interactive_hook = gdbtk_interactive;
|
||
target_wait_hook = gdbtk_wait;
|
||
call_command_hook = gdbtk_call_command;
|
||
readline_begin_hook = gdbtk_readline_begin;
|
||
readline_hook = gdbtk_readline;
|
||
readline_end_hook = gdbtk_readline_end;
|
||
|
||
/* Get the file descriptor for the X server */
|
||
|
||
x_fd = ConnectionNumber (Tk_Display (mainWindow));
|
||
|
||
/* Setup for I/O interrupts */
|
||
|
||
action.sa_mask = nullsigmask;
|
||
action.sa_flags = 0;
|
||
action.sa_handler = SIG_IGN;
|
||
sigaction(SIGIO, &action, NULL);
|
||
|
||
#ifdef FIOASYNC
|
||
i = 1;
|
||
if (ioctl (x_fd, FIOASYNC, &i))
|
||
perror_with_name ("gdbtk_init: ioctl FIOASYNC failed");
|
||
|
||
#ifdef SIOCSPGRP
|
||
i = getpid();
|
||
if (ioctl (x_fd, SIOCSPGRP, &i))
|
||
perror_with_name ("gdbtk_init: ioctl SIOCSPGRP failed");
|
||
|
||
#else
|
||
#ifdef F_SETOWN
|
||
i = getpid();
|
||
if (fcntl (x_fd, F_SETOWN, i))
|
||
perror_with_name ("gdbtk_init: fcntl F_SETOWN failed");
|
||
#endif /* F_SETOWN */
|
||
#endif /* !SIOCSPGRP */
|
||
#else
|
||
if (ioctl (x_fd, I_SETSIG, S_INPUT|S_RDNORM) < 0)
|
||
perror_with_name ("gdbtk_init: ioctl I_SETSIG failed");
|
||
#endif /* ifndef FIOASYNC */
|
||
|
||
add_com ("tk", class_obscure, tk_command,
|
||
"Send a command directly into tk.");
|
||
|
||
Tcl_LinkVar (interp, "disassemble-from-exec", (char *)&disassemble_from_exec,
|
||
TCL_LINK_INT);
|
||
|
||
/* Load up gdbtk.tcl after all the environment stuff has been setup. */
|
||
|
||
gdbtk_filename = getenv ("GDBTK_FILENAME");
|
||
if (!gdbtk_filename)
|
||
if (access ("gdbtk.tcl", R_OK) == 0)
|
||
gdbtk_filename = "gdbtk.tcl";
|
||
else
|
||
gdbtk_filename = GDBTK_FILENAME;
|
||
|
||
/* Defer setup of fputs_unfiltered_hook to near the end so that error messages
|
||
prior to this point go to stdout/stderr. */
|
||
|
||
fputs_unfiltered_hook = gdbtk_fputs;
|
||
|
||
if (Tcl_EvalFile (interp, gdbtk_filename) != TCL_OK)
|
||
{
|
||
fputs_unfiltered_hook = NULL; /* Force errors to stdout/stderr */
|
||
|
||
fprintf_unfiltered (stderr, "%s:%d: %s\n", gdbtk_filename,
|
||
interp->errorLine, interp->result);
|
||
|
||
fputs_unfiltered ("Stack trace:\n", gdb_stderr);
|
||
fputs_unfiltered (Tcl_GetVar (interp, "errorInfo", 0), gdb_stderr);
|
||
error ("");
|
||
}
|
||
|
||
discard_cleanups (old_chain);
|
||
}
|
||
|
||
/* Come here during initialize_all_files () */
|
||
|
||
void
|
||
_initialize_gdbtk ()
|
||
{
|
||
if (use_windows)
|
||
{
|
||
/* Tell the rest of the world that Gdbtk is now set up. */
|
||
|
||
init_ui_hook = gdbtk_init;
|
||
}
|
||
}
|