old-cross-binutils/sim/mips/interp.c
Frank Ch. Eigler fda83b6795 * MONSTER sky -> devo merge
* ChangeLog / ChangeLog.sky entries were merged with original time stamps;
  a few were moved between the files
1998-10-27 12:48:08 +00:00

4357 lines
114 KiB
C

/*> interp.c <*/
/* Simulator for the MIPS architecture.
This file is part of the MIPS sim
THIS SOFTWARE IS NOT COPYRIGHTED
Cygnus offers the following for use in the public domain. Cygnus
makes no warranty with regard to the software or it's performance
and the user accepts the software "AS IS" with all faults.
CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
$Revision$
$Date$
NOTEs:
The IDT monitor (found on the VR4300 board), seems to lie about
register contents. It seems to treat the registers as sign-extended
32-bit values. This cause *REAL* problems when single-stepping 64-bit
code on the hardware.
*/
/* The TRACE manifests enable the provision of extra features. If they
are not defined then a simpler (quicker) simulator is constructed
without the required run-time checks, etc. */
#if 1 /* 0 to allow user build selection, 1 to force inclusion */
#define TRACE (1)
#endif
#include "bfd.h"
#include "sim-main.h"
#include "sim-utils.h"
#include "sim-options.h"
#include "sim-assert.h"
#include "sim-hw.h"
#if WITH_IGEN
#include "itable.h"
#endif
/* start-sanitize-sky */
#ifdef TARGET_SKY
#include "sky-vu.h"
#include "sky-vpe.h"
#include "sky-libvpe.h"
#include "sky-vif.h"
#include "idecode.h"
#include "sky-gdb.h"
#endif
/* end-sanitize-sky */
#include "config.h"
#include <stdio.h>
#include <stdarg.h>
#include <ansidecl.h>
#include <ctype.h>
#include <limits.h>
#include <math.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
#include "getopt.h"
#include "libiberty.h"
#include "bfd.h"
#include "callback.h" /* GDB simulator callback interface */
#include "remote-sim.h" /* GDB simulator interface */
#include "sysdep.h"
#ifndef PARAMS
#define PARAMS(x)
#endif
char* pr_addr PARAMS ((SIM_ADDR addr));
char* pr_uword64 PARAMS ((uword64 addr));
/* Get the simulator engine description, without including the code: */
#if !(WITH_IGEN)
#define SIM_MANIFESTS
#include "oengine.c"
#undef SIM_MANIFESTS
#endif
/* Within interp.c we refer to the sim_state and sim_cpu directly. */
#define CPU cpu
#define SD sd
/* The following reserved instruction value is used when a simulator
trap is required. NOTE: Care must be taken, since this value may be
used in later revisions of the MIPS ISA. */
#define RSVD_INSTRUCTION (0x00000005)
#define RSVD_INSTRUCTION_MASK (0xFC00003F)
#define RSVD_INSTRUCTION_ARG_SHIFT 6
#define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
/* Bits in the Debug register */
#define Debug_DBD 0x80000000 /* Debug Branch Delay */
#define Debug_DM 0x40000000 /* Debug Mode */
#define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */
/*---------------------------------------------------------------------------*/
/*-- GDB simulator interface ------------------------------------------------*/
/*---------------------------------------------------------------------------*/
static void ColdReset PARAMS((SIM_DESC sd));
/*---------------------------------------------------------------------------*/
#define DELAYSLOT() {\
if (STATE & simDELAYSLOT)\
sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\
STATE |= simDELAYSLOT;\
}
#define JALDELAYSLOT() {\
DELAYSLOT ();\
STATE |= simJALDELAYSLOT;\
}
#define NULLIFY() {\
STATE &= ~simDELAYSLOT;\
STATE |= simSKIPNEXT;\
}
#define CANCELDELAYSLOT() {\
DSSTATE = 0;\
STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\
}
#define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0)
#define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0)
#define K0BASE (0x80000000)
#define K0SIZE (0x20000000)
#define K1BASE (0xA0000000)
#define K1SIZE (0x20000000)
#define MONITOR_BASE (0xBFC00000)
#define MONITOR_SIZE (1 << 11)
#define MEM_SIZE (2 << 20)
/* start-sanitize-sky */
#ifdef TARGET_SKY
#undef MEM_SIZE
#define MEM_SIZE (16 << 20) /* 16 MB */
#undef MONITOR_SIZE
#define MONITOR_SIZE 0x100000 /* 1MB */
#endif
/* end-sanitize-sky */
#if defined(TRACE)
static char *tracefile = "trace.din"; /* default filename for trace log */
FILE *tracefh = NULL;
static void open_trace PARAMS((SIM_DESC sd));
#endif /* TRACE */
#if WITH_IGEN
static const char * get_insn_name (sim_cpu *, int);
#endif
/* simulation target board. NULL=canonical */
static char* board = NULL;
static DECLARE_OPTION_HANDLER (mips_option_handler);
enum {
OPTION_DINERO_TRACE = OPTION_START,
OPTION_DINERO_FILE,
/* start-stanitize-branchbug4011 */
OPTION_BRANCH_BUG_4011,
/* end-stanitize-branchbug4011 */
OPTION_BOARD
};
static SIM_RC
mips_option_handler (sd, cpu, opt, arg, is_command)
SIM_DESC sd;
sim_cpu *cpu;
int opt;
char *arg;
int is_command;
{
int cpu_nr;
switch (opt)
{
/* start-sanitize-branchbug4011 */
case OPTION_BRANCH_BUG_4011:
{
for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++)
{
sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
if (arg == NULL)
BRANCHBUG4011_OPTION = 1;
else if (strcmp (arg, "yes") == 0)
BRANCHBUG4011_OPTION = 1;
else if (strcmp (arg, "no") == 0)
BRANCHBUG4011_OPTION = 0;
else if (strcmp (arg, "on") == 0)
BRANCHBUG4011_OPTION = 1;
else if (strcmp (arg, "off") == 0)
BRANCHBUG4011_OPTION = 0;
else
{
fprintf (stderr, "Unrecognized check-4011-branch-bug option `%s'\n", arg);
return SIM_RC_FAIL;
}
}
return SIM_RC_OK;
}
/* end-sanitize-branchbug4011 */
case OPTION_DINERO_TRACE: /* ??? */
#if defined(TRACE)
/* Eventually the simTRACE flag could be treated as a toggle, to
allow external control of the program points being traced
(i.e. only from main onwards, excluding the run-time setup,
etc.). */
for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++)
{
sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
if (arg == NULL)
STATE |= simTRACE;
else if (strcmp (arg, "yes") == 0)
STATE |= simTRACE;
else if (strcmp (arg, "no") == 0)
STATE &= ~simTRACE;
else if (strcmp (arg, "on") == 0)
STATE |= simTRACE;
else if (strcmp (arg, "off") == 0)
STATE &= ~simTRACE;
else
{
fprintf (stderr, "Unrecognized dinero-trace option `%s'\n", arg);
return SIM_RC_FAIL;
}
}
return SIM_RC_OK;
#else /* !TRACE */
fprintf(stderr,"\
Simulator constructed without dinero tracing support (for performance).\n\
Re-compile simulator with \"-DTRACE\" to enable this option.\n");
return SIM_RC_FAIL;
#endif /* !TRACE */
case OPTION_DINERO_FILE:
#if defined(TRACE)
if (optarg != NULL) {
char *tmp;
tmp = (char *)malloc(strlen(optarg) + 1);
if (tmp == NULL)
{
sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
return SIM_RC_FAIL;
}
else {
strcpy(tmp,optarg);
tracefile = tmp;
sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile);
}
}
#endif /* TRACE */
return SIM_RC_OK;
case OPTION_BOARD:
{
if (arg)
{
board = zalloc(strlen(arg) + 1);
strcpy(board, arg);
}
return SIM_RC_OK;
}
}
return SIM_RC_OK;
}
static const OPTION mips_options[] =
{
{ {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE},
'\0', "on|off", "Enable dinero tracing",
mips_option_handler },
/* start-sanitize-branchbug4011 */
{ {"check-4011-branch-bug", optional_argument, NULL, OPTION_BRANCH_BUG_4011},
'\0', "on|off", "Enable checking for 4011 branch bug",
mips_option_handler },
/* end-sanitize-branchbug4011 */
{ {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE},
'\0', "FILE", "Write dinero trace to FILE",
mips_option_handler },
{ {"board", required_argument, NULL, OPTION_BOARD},
'\0', "none" /* rely on compile-time string concatenation for other options */
/* start-sanitize-tx3904 */
#define BOARD_JMR3904 "jmr3904"
"|" BOARD_JMR3904
#define BOARD_JMR3904_PAL "jmr3904pal"
"|" BOARD_JMR3904_PAL
#define BOARD_JMR3904_DEBUG "jmr3904debug"
"|" BOARD_JMR3904_DEBUG
/* end-sanitize-tx3904 */
, "Customize simulation for a particular board.", mips_option_handler },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
};
int interrupt_pending;
void
interrupt_event (SIM_DESC sd, void *data)
{
sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
address_word cia = CIA_GET (cpu);
if (SR & status_IE)
{
interrupt_pending = 0;
SignalExceptionInterrupt (1); /* interrupt "1" */
}
else if (!interrupt_pending)
sim_events_schedule (sd, 1, interrupt_event, data);
}
/*---------------------------------------------------------------------------*/
/*-- Device registration hook -----------------------------------------------*/
/*---------------------------------------------------------------------------*/
static void device_init(SIM_DESC sd) {
#ifdef DEVICE_INIT
extern void register_devices(SIM_DESC);
register_devices(sd);
#endif
}
/*---------------------------------------------------------------------------*/
/*-- GDB simulator interface ------------------------------------------------*/
/*---------------------------------------------------------------------------*/
SIM_DESC
sim_open (kind, cb, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *cb;
struct _bfd *abfd;
char **argv;
{
SIM_DESC sd = sim_state_alloc (kind, cb);
sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* FIXME: watchpoints code shouldn't need this */
STATE_WATCHPOINTS (sd)->pc = &(PC);
STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event;
#if WITH_IGEN
/* Initialize the mechanism for doing insn profiling. */
CPU_INSN_NAME (cpu) = get_insn_name;
CPU_MAX_INSNS (cpu) = nr_itable_entries;
#endif
STATE = 0;
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
return 0;
sim_add_option_table (sd, NULL, mips_options);
/* start-sanitize-sky */
#ifdef TARGET_SKY
sky_command_options_open (sd);
#endif
/* end-sanitize-sky */
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* handle board-specific memory maps */
if (board == NULL)
{
/* Allocate core managed memory */
/* start-sanitize-sky */
#ifndef TARGET_SKY
/* end-sanitize-sky */
/* the monitor */
sim_do_commandf (sd, "memory region 0x%lx,0x%lx", MONITOR_BASE, MONITOR_SIZE);
/* For compatibility with the old code - under this (at level one)
are the kernel spaces K0 & K1. Both of these map to a single
smaller sub region */
sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx%%0x%lx,0x%0x",
K1BASE, K0SIZE,
MEM_SIZE, /* actual size */
K0BASE);
/* start-sanitize-sky */
#else
/* the monitor */
sim_do_commandf (sd, "memory region 0x%lx,0x%lx", MONITOR_BASE - K1BASE, MONITOR_SIZE);
sim_do_command (sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
/* 16M @ 0x0. Aliases at 0x80000000 and 0xA0000000 are handled by
address_translation() */
sim_do_commandf (sd, "memory size 0x%lx", MEM_SIZE);
#endif
/* end-sanitize-sky */
device_init(sd);
}
/* start-sanitize-tx3904 */
#if (WITH_HW)
if (board != NULL
&& (strcmp(board, BOARD_JMR3904) == 0 ||
strcmp(board, BOARD_JMR3904_PAL) == 0 ||
strcmp(board, BOARD_JMR3904_DEBUG) == 0))
{
/* match VIRTUAL memory layout of JMR-TX3904 board */
/* --- environment --- */
STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
/* --- memory --- */
/* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
0x9FC00000,
4 * 1024 * 1024, /* 4 MB */
0xBFC00000);
/* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
0x80000000,
4 * 1024 * 1024, /* 4 MB */
0xA0000000);
/* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
0x88000000,
32 * 1024 * 1024, /* 32 MB */
0xA8000000);
/* Dummy memory regions for unsimulated devices */
sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFE010, 0x00c); /* EBIF */
sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF9000, 0x200); /* EBIF */
sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFF500, 0x300); /* PIO */
/* --- simulated devices --- */
sim_hw_parse (sd, "/tx3904irc@0xffffc000/reg 0xffffc000 0x20");
sim_hw_parse (sd, "/tx3904cpu");
sim_hw_parse (sd, "/tx3904tmr@0xfffff000/reg 0xfffff000 0x100");
sim_hw_parse (sd, "/tx3904tmr@0xfffff100/reg 0xfffff100 0x100");
sim_hw_parse (sd, "/tx3904tmr@0xfffff200/reg 0xfffff200 0x100");
sim_hw_parse (sd, "/tx3904sio@0xfffff300/reg 0xfffff300 0x100");
{
/* FIXME: poking at dv-sockser internals, use tcp backend if
--sockser_addr option was given.*/
extern char* sockser_addr;
if(sockser_addr == NULL)
sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend stdio");
else
sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend tcp");
}
sim_hw_parse (sd, "/tx3904sio@0xfffff400/reg 0xfffff400 0x100");
sim_hw_parse (sd, "/tx3904sio@0xfffff400/backend stdio");
/* -- device connections --- */
sim_hw_parse (sd, "/tx3904irc > ip level /tx3904cpu");
sim_hw_parse (sd, "/tx3904tmr@0xfffff000 > int tmr0 /tx3904irc");
sim_hw_parse (sd, "/tx3904tmr@0xfffff100 > int tmr1 /tx3904irc");
sim_hw_parse (sd, "/tx3904tmr@0xfffff200 > int tmr2 /tx3904irc");
sim_hw_parse (sd, "/tx3904sio@0xfffff300 > int sio0 /tx3904irc");
sim_hw_parse (sd, "/tx3904sio@0xfffff400 > int sio1 /tx3904irc");
/* add PAL timer & I/O module */
if(! strcmp(board, BOARD_JMR3904_PAL))
{
/* the device */
sim_hw_parse (sd, "/pal@0xffff0000");
sim_hw_parse (sd, "/pal@0xffff0000/reg 0xffff0000 64");
/* wire up interrupt ports to irc */
sim_hw_parse (sd, "/pal@0x31000000 > countdown tmr0 /tx3904irc");
sim_hw_parse (sd, "/pal@0x31000000 > timer tmr1 /tx3904irc");
sim_hw_parse (sd, "/pal@0x31000000 > int int0 /tx3904irc");
}
if(! strcmp(board, BOARD_JMR3904_DEBUG))
{
/* -- DEBUG: glue interrupt generators --- */
sim_hw_parse (sd, "/glue@0xffff0000/reg 0xffff0000 0x50");
sim_hw_parse (sd, "/glue@0xffff0000 > int0 int0 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int1 int1 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int2 int2 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int3 int3 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int4 int4 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int5 int5 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int6 int6 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int7 int7 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int8 dmac0 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int9 dmac1 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int10 dmac2 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int11 dmac3 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int12 sio0 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int13 sio1 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int14 tmr0 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int15 tmr1 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int16 tmr2 /tx3904irc");
sim_hw_parse (sd, "/glue@0xffff0000 > int17 nmi /tx3904cpu");
}
device_init(sd);
}
#endif
/* end-sanitize-tx3904 */
/* check for/establish the a reference program image */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL),
abfd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
/* Configure/verify the target byte order and other runtime
configuration options */
if (sim_config (sd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* verify assumptions the simulator made about the host type system.
This macro does not return if there is a problem */
SIM_ASSERT (sizeof(int) == (4 * sizeof(char)));
SIM_ASSERT (sizeof(word64) == (8 * sizeof(char)));
/* This is NASTY, in that we are assuming the size of specific
registers: */
{
int rn;
for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++)
{
if (rn < 32)
cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
else if ((rn >= FGRIDX) && (rn < (FGRIDX + NR_FGR)))
cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE;
else if ((rn >= 33) && (rn <= 37))
cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
else if ((rn == SRIDX)
|| (rn == FCR0IDX)
|| (rn == FCR31IDX)
|| ((rn >= 72) && (rn <= 89)))
cpu->register_widths[rn] = 32;
else
cpu->register_widths[rn] = 0;
}
/* start-sanitize-r5900 */
/* set the 5900 "upper" registers to 64 bits */
for( rn = LAST_EMBED_REGNUM+1; rn < FIRST_COP0_REG; rn++)
cpu->register_widths[rn] = 64;
for( rn = FIRST_COP0_REG; rn < NUM_REGS; rn++)
cpu->register_widths[rn] = 32;
/* end-sanitize-r5900 */
/* start-sanitize-sky */
#ifdef TARGET_SKY
/* Now the VU registers */
for( rn = 0; rn < NUM_VU_INTEGER_REGS; rn++ ) {
cpu->register_widths[rn + NUM_CORE_REGS] = 16;
cpu->register_widths[rn + NUM_CORE_REGS + NUM_VU_REGS] = 16;
}
for( rn = NUM_VU_INTEGER_REGS; rn < NUM_VU_REGS; rn++ ) {
cpu->register_widths[rn + NUM_CORE_REGS] = 32;
cpu->register_widths[rn + NUM_CORE_REGS + NUM_VU_REGS] = 32;
}
/* Finally the VIF registers */
for( rn = 2*NUM_VU_REGS; rn < 2*NUM_VU_REGS + 2*NUM_VIF_REGS; rn++ )
cpu->register_widths[rn + NUM_CORE_REGS] = 32;
cpu->cur_device = 0;
#endif
/* end-sanitize-sky */
}
#if defined(TRACE)
if (STATE & simTRACE)
open_trace(sd);
#endif /* TRACE */
/* Write an abort sequence into the TRAP (common) exception vector
addresses. This is to catch code executing a TRAP (et.al.)
instruction without installing a trap handler. */
{
unsigned32 halt[2] = { 0x2404002f /* addiu r4, r0, 47 */,
HALT_INSTRUCTION /* BREAK */ };
H2T (halt[0]);
H2T (halt[1]);
sim_write (sd, 0x80000000, (char *) halt, sizeof (halt));
sim_write (sd, 0x80000180, (char *) halt, sizeof (halt));
sim_write (sd, 0x80000200, (char *) halt, sizeof (halt));
sim_write (sd, 0xBFC00200, (char *) halt, sizeof (halt));
sim_write (sd, 0xBFC00380, (char *) halt, sizeof (halt));
sim_write (sd, 0xBFC00400, (char *) halt, sizeof (halt));
}
/* Write the monitor trap address handlers into the monitor (eeprom)
address space. This can only be done once the target endianness
has been determined. */
{
unsigned loop;
/* Entry into the IDT monitor is via fixed address vectors, and
not using machine instructions. To avoid clashing with use of
the MIPS TRAP system, we place our own (simulator specific)
"undefined" instructions into the relevant vector slots. */
for (loop = 0; (loop < MONITOR_SIZE); loop += 4)
{
address_word vaddr = (MONITOR_BASE + loop);
unsigned32 insn = (RSVD_INSTRUCTION | (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK) << RSVD_INSTRUCTION_ARG_SHIFT));
H2T (insn);
sim_write (sd, vaddr, (char *)&insn, sizeof (insn));
}
/* The PMON monitor uses the same address space, but rather than
branching into it the address of a routine is loaded. We can
cheat for the moment, and direct the PMON routine to IDT style
instructions within the monitor space. This relies on the IDT
monitor not using the locations from 0xBFC00500 onwards as its
entry points.*/
for (loop = 0; (loop < 24); loop++)
{
address_word vaddr = (MONITOR_BASE + 0x500 + (loop * 4));
unsigned32 value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
switch (loop)
{
case 0: /* read */
value = 7;
break;
case 1: /* write */
value = 8;
break;
case 2: /* open */
value = 6;
break;
case 3: /* close */
value = 10;
break;
case 5: /* printf */
value = ((0x500 - 16) / 8); /* not an IDT reason code */
break;
case 8: /* cliexit */
value = 17;
break;
case 11: /* flush_cache */
value = 28;
break;
}
/* FIXME - should monitor_base be SIM_ADDR?? */
value = ((unsigned int)MONITOR_BASE + (value * 8));
H2T (value);
sim_write (sd, vaddr, (char *)&value, sizeof (value));
/* The LSI MiniRISC PMON has its vectors at 0x200, not 0x500. */
vaddr -= 0x300;
sim_write (sd, vaddr, (char *)&value, sizeof (value));
}
}
/* start-sanitize-sky */
#ifdef TARGET_SKY
/* Default TLB initialization... */
#define KPAGEMASK 0x001fe000
#define PAGE_MASK_4K 0x00000000
#define PAGE_MASK_16K 0x00006000
#define PAGE_MASK_64K 0x0001e000
#define PAGE_MASK_256K 0x0007e000
#define PAGE_MASK_1M 0x001fe000
#define PAGE_MASK_4M 0x007fe000
#define PAGE_MASK_16M 0x01ffe000
#define SET_TLB(index, page_mask, entry_hi, entry_lo0, entry_lo1) \
TLB[index].mask = page_mask; \
TLB[index].hi = entry_hi; \
TLB[index].lo0 = entry_lo0; \
TLB[index].lo1 = entry_lo1
SET_TLB(0, PAGE_MASK_16M, 0x00000000, 0x0000001e, 0x0004001e);/*0-32M*/
#endif /* TARGET_SKY */
/* end-sanitize-sky */
return sd;
}
#if defined(TRACE)
static void
open_trace(sd)
SIM_DESC sd;
{
tracefh = fopen(tracefile,"wb+");
if (tracefh == NULL)
{
sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile);
tracefh = stderr;
}
}
#endif /* TRACE */
#if WITH_IGEN
/* Return name of an insn, used by insn profiling. */
static const char *
get_insn_name (sim_cpu *cpu, int i)
{
return itable[i].name;
}
#endif
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
#ifdef DEBUG
printf("DBG: sim_close: entered (quitting = %d)\n",quitting);
#endif
/* start-sanitize-sky */
#ifdef TARGET_SKY
sky_command_options_close (sd);
#endif
/* end-sanitize-sky */
/* "quitting" is non-zero if we cannot hang on errors */
/* Ensure that any resources allocated through the callback
mechanism are released: */
sim_io_shutdown (sd);
#if defined(TRACE)
if (tracefh != NULL && tracefh != stderr)
fclose(tracefh);
tracefh = NULL;
#endif /* TRACE */
/* FIXME - free SD */
return;
}
int
sim_write (sd,addr,buffer,size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int index;
sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
/* Return the number of bytes written, or zero if error. */
#ifdef DEBUG
sim_io_printf(sd,"sim_write(0x%s,buffer,%d);\n",pr_addr(addr),size);
#endif
/* We use raw read and write routines, since we do not want to count
the GDB memory accesses in our statistics gathering. */
for (index = 0; index < size; index++)
{
address_word vaddr = (address_word)addr + index;
address_word paddr;
int cca;
if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isSTORE, &paddr, &cca, isRAW))
break;
if (sim_core_write_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
break;
}
return(index);
}
int
sim_read (sd,addr,buffer,size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int index;
sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
/* Return the number of bytes read, or zero if error. */
#ifdef DEBUG
sim_io_printf(sd,"sim_read(0x%s,buffer,%d);\n",pr_addr(addr),size);
#endif /* DEBUG */
for (index = 0; (index < size); index++)
{
address_word vaddr = (address_word)addr + index;
address_word paddr;
int cca;
if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isLOAD, &paddr, &cca, isRAW))
break;
if (sim_core_read_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
break;
}
return(index);
}
int
sim_store_register (sd,rn,memory,length)
SIM_DESC sd;
int rn;
unsigned char *memory;
int length;
{
sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
/* NOTE: gdb (the client) stores registers in target byte order
while the simulator uses host byte order */
#ifdef DEBUG
sim_io_printf(sd,"sim_store_register(%d,*memory=0x%s);\n",rn,pr_addr(*((SIM_ADDR *)memory)));
#endif /* DEBUG */
/* Unfortunately this suffers from the same problem as the register
numbering one. We need to know what the width of each logical
register number is for the architecture being simulated. */
if (cpu->register_widths[rn] == 0)
{
sim_io_eprintf(sd,"Invalid register width for %d (register store ignored)\n",rn);
return 0;
}
/* start-sanitize-r5900 */
if (rn >= 90 && rn < 90 + 32)
{
GPR1[rn - 90] = T2H_8 (*(unsigned64*)memory);
return 8;
}
switch (rn)
{
case REGISTER_SA:
SA = T2H_8(*(unsigned64*)memory);
return 8;
case 122: /* FIXME */
LO1 = T2H_8(*(unsigned64*)memory);
return 8;
case 123: /* FIXME */
HI1 = T2H_8(*(unsigned64*)memory);
return 8;
}
if (rn >= FIRST_COP0_REG && rn < (FIRST_COP0_REG+NUM_COP0_REGS))
{
switch (rn - FIRST_COP0_REG)
{
case 12: /* Status */
case 13: /* Cause */
return -1; /* Already done in regular register set */
case 14:
EPC = T2H_4(*((unsigned32*) memory));
break;
case 16:
C0_CONFIG = T2H_4(*((unsigned32*) memory));
break;
case 17: /* Debug */
Debug = T2H_4(*((unsigned32*) memory));
break;
case 18: /* Perf */
COP0_GPR[rn - FIRST_COP0_REG + 7] = T2H_4(*((unsigned32*) memory));
break;
case 19: /* TagLo */
case 20: /* TagHi */
case 21: /* ErrorEPC */
COP0_GPR[rn - FIRST_COP0_REG + 9] = T2H_4(*((unsigned32*) memory));
break;
default:
COP0_GPR[rn - FIRST_COP0_REG] = T2H_4(*((unsigned32*) memory));
break;
}
return 4;
}
/* end-sanitize-r5900 */
/* start-sanitize-sky */
#ifdef TARGET_SKY
if (rn >= NUM_CORE_REGS)
{
rn = rn - NUM_CORE_REGS;
if( rn < NUM_VU_REGS )
{
#ifdef TARGET_SKY_B
sim_io_eprintf( sd, "Invalid VU register (register store ignored)\n" );
return 0;
#else
if (rn < NUM_VU_INTEGER_REGS)
return write_vu_int_reg (&(vu0_device.regs), rn, memory);
else if (rn >= FIRST_VEC_REG)
{
rn -= FIRST_VEC_REG;
return write_vu_vec_reg (&(vu0_device.regs), rn>>2, rn&3,
memory);
}
else switch (rn - NUM_VU_INTEGER_REGS)
{
case 0:
return write_vu_special_reg (&vu0_device, VU_REG_CIA, memory);
case 1: /* Can't write TPC register */
case 2: /* or VPU_STAT */
case 4: /* or MAC */
case 9: /* VU0 has no P register */
return 4;
case 3:
return write_vu_misc_reg(&(vu0_device.regs), VU_REG_MST, memory);
case 5:
return write_vu_misc_reg(&(vu0_device.regs), VU_REG_MCP, memory);
case 6:
return write_vu_special_reg (&vu0_device, VU_REG_CMSAR0, memory);
case 7:
return write_vu_special_reg (&vu0_device, VU_REG_FBRST, memory);
case 8:
return write_vu_misc_reg (&(vu0_device.regs), VU_REG_MR, memory);
case 10:
return write_vu_misc_reg (&(vu0_device.regs), VU_REG_MI, memory);
case 11:
return write_vu_misc_reg (&(vu0_device.regs), VU_REG_MQ, memory);
default:
return write_vu_acc_reg (&(vu0_device.regs),
rn - (NUM_VU_INTEGER_REGS + 12),
memory);
}
#endif /* ! TARGET_SKY_B */
}
rn = rn - NUM_VU_REGS;
if (rn < NUM_VU_REGS)
{
if (rn < NUM_VU_INTEGER_REGS)
return write_vu_int_reg (&(vu1_device.regs), rn, memory);
else if (rn >= FIRST_VEC_REG)
{
rn -= FIRST_VEC_REG;
return write_vu_vec_reg (&(vu1_device.regs),
rn >> 2, rn & 3, memory);
}
else switch (rn - NUM_VU_INTEGER_REGS)
{
case 0:
return write_vu_special_reg (&vu1_device, VU_REG_CIA, memory);
case 1: /* Can't write TPC register */
case 2: /* or VPU_STAT */
case 4: /* or MAC */
case 7: /* VU1 has no FBRST register */
return 4;
case 3:
return write_vu_misc_reg(&(vu1_device.regs), VU_REG_MST, memory);
case 5:
return write_vu_misc_reg(&(vu1_device.regs), VU_REG_MCP, memory);
case 6: /* CMSAR1 is actually part of VU0 */
#ifdef TARGET_SKY_B
return 0;
#else
return write_vu_special_reg (&vu0_device, VU_REG_CMSAR1, memory);
#endif /* ! TARGET_SKY_B */
case 8:
return write_vu_misc_reg (&(vu1_device.regs), VU_REG_MR, memory);
case 9:
return write_vu_misc_reg (&(vu1_device.regs), VU_REG_MP, memory);
case 10:
return write_vu_misc_reg (&(vu1_device.regs), VU_REG_MI, memory);
case 11:
return write_vu_misc_reg (&(vu1_device.regs), VU_REG_MQ, memory);
default:
return write_vu_acc_reg (&(vu1_device.regs),
rn - (NUM_VU_INTEGER_REGS + 12),
memory);
}
}
rn -= NUM_VU_REGS; /* VIF0 registers are next */
if (rn < NUM_VIF_REGS)
{
#ifdef TARGET_SKY_B
sim_io_eprintf( sd, "Invalid VIF register (register store ignored)\n" );
return 0;
#else
if (rn < NUM_VIF_REGS-1)
return write_vif_reg (&vif0_device, rn, memory);
else
{
sim_io_eprintf( sd, "Can't write vif0_pc (store ignored)\n" );
return 0;
}
#endif /* ! TARGET_SKY_B */
}
rn -= NUM_VIF_REGS; /* VIF1 registers are last */
if (rn < NUM_VIF_REGS)
{
if (rn < NUM_VIF_REGS-1)
return write_vif_reg (&vif1_device, rn, memory);
else
{
sim_io_eprintf( sd, "Can't write vif1_pc (store ignored)\n" );
return 0;
}
}
sim_io_eprintf( sd, "Invalid VU register (register store ignored)\n" );
return 0;
}
#endif
/* end-sanitize-sky */
if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
{
if (cpu->register_widths[rn] == 32)
{
cpu->fgr[rn - FGRIDX] = T2H_4 (*(unsigned32*)memory);
return 4;
}
else
{
cpu->fgr[rn - FGRIDX] = T2H_8 (*(unsigned64*)memory);
return 8;
}
}
if (cpu->register_widths[rn] == 32)
{
cpu->registers[rn] = T2H_4 (*(unsigned32*)memory);
return 4;
}
else
{
cpu->registers[rn] = T2H_8 (*(unsigned64*)memory);
return 8;
}
return 0;
}
int
sim_fetch_register (sd,rn,memory,length)
SIM_DESC sd;
int rn;
unsigned char *memory;
int length;
{
sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
/* NOTE: gdb (the client) stores registers in target byte order
while the simulator uses host byte order */
#ifdef DEBUG
sim_io_printf(sd,"sim_fetch_register(%d=0x%s,mem) : place simulator registers into memory\n",rn,pr_addr(registers[rn]));
#endif /* DEBUG */
if (cpu->register_widths[rn] == 0)
{
sim_io_eprintf (sd, "Invalid register width for %d (register fetch ignored)\n",rn);
return 0;
}
/* start-sanitize-r5900 */
if (rn >= 90 && rn < 90 + 32)
{
*((unsigned64*)memory) = H2T_8 (GPR1[rn - 90]);
return 8;
}
switch (rn)
{
case REGISTER_SA:
*((unsigned64*)memory) = H2T_8(SA);
return 8;
case 122: /* FIXME */
*((unsigned64*)memory) = H2T_8(LO1);
return 8;
case 123: /* FIXME */
*((unsigned64*)memory) = H2T_8(HI1);
return 8;
}
if (rn >= FIRST_COP0_REG && rn < (FIRST_COP0_REG+NUM_COP0_REGS))
{
switch (rn - FIRST_COP0_REG)
{
case 12: /* Status */
case 13: /* Cause */
return -1; /* Already done in regular register set */
case 14:
*((unsigned32*) memory) = H2T_4(EPC);
break;
case 16:
*((unsigned32*) memory) = H2T_4(C0_CONFIG);
break;
case 17: /* Debug */
*((unsigned32*) memory) = H2T_4(Debug);
break;
case 18: /* Perf */
*((unsigned32*) memory) = H2T_4(COP0_GPR[rn - FIRST_COP0_REG + 7]);
break;
case 19: /* TagLo */
case 20: /* TagHi */
case 21: /* ErrorEPC */
*((unsigned32*) memory) = H2T_4(COP0_GPR[rn - FIRST_COP0_REG + 9]);
break;
default:
*((unsigned32*) memory) = H2T_4(COP0_GPR[rn - FIRST_COP0_REG]);
break;
}
return 4;
}
/* end-sanitize-r5900 */
/* start-sanitize-sky */
#ifdef TARGET_SKY
if (rn >= NUM_CORE_REGS)
{
rn = rn - NUM_CORE_REGS;
if (rn < NUM_VU_REGS)
{
#ifdef TARGET_SKY_B
sim_io_eprintf( sd, "Invalid VU register (register fetch ignored)\n" );
return 0;
#else
if (rn < NUM_VU_INTEGER_REGS)
return read_vu_int_reg (&(vu0_device.regs), rn, memory);
else if (rn >= FIRST_VEC_REG)
{
rn -= FIRST_VEC_REG;
return read_vu_vec_reg (&(vu0_device.regs), rn>>2, rn & 3,
memory);
}
else switch (rn - NUM_VU_INTEGER_REGS)
{
case 0:
return read_vu_special_reg (&vu0_device, VU_REG_CIA, memory);
case 1:
return read_vu_misc_reg(&(vu0_device.regs), VU_REG_MTPC, memory);
case 2:
return read_vu_special_reg (&vu0_device, VU_REG_STAT, memory);
case 3:
return read_vu_misc_reg (&(vu0_device.regs), VU_REG_MST, memory);
case 4:
return read_vu_misc_reg (&(vu0_device.regs), VU_REG_MMC, memory);
case 5:
return read_vu_misc_reg (&(vu0_device.regs), VU_REG_MCP, memory);
case 6:
return read_vu_special_reg (&vu0_device, VU_REG_CMSAR0, memory);
case 7:
return read_vu_special_reg (&vu0_device, VU_REG_FBRST, memory);
case 8:
return read_vu_misc_reg (&(vu0_device.regs), VU_REG_MR, memory);
case 9: /* VU0 has no P register */
*((int *) memory) = 0;
return 4;
case 10:
return read_vu_misc_reg (&(vu0_device.regs), VU_REG_MI, memory);
case 11:
return read_vu_misc_reg (&(vu0_device.regs), VU_REG_MQ, memory);
default:
return read_vu_acc_reg (&(vu0_device.regs),
rn - (NUM_VU_INTEGER_REGS + 12),
memory);
}
#endif /* ! TARGET_SKY_B */
}
rn -= NUM_VU_REGS; /* VU1 registers are next */
if (rn < NUM_VU_REGS)
{
if (rn < NUM_VU_INTEGER_REGS)
return read_vu_int_reg (&(vu1_device.regs), rn, memory);
else if (rn >= FIRST_VEC_REG)
{
rn -= FIRST_VEC_REG;
return read_vu_vec_reg (&(vu1_device.regs),
rn >> 2, rn & 3, memory);
}
else switch (rn - NUM_VU_INTEGER_REGS)
{
case 0:
return read_vu_special_reg (&vu1_device, VU_REG_CIA, memory);
case 1:
return read_vu_misc_reg(&(vu1_device.regs), VU_REG_MTPC, memory);
case 2:
return read_vu_special_reg (&vu1_device, VU_REG_STAT, memory);
case 3:
return read_vu_misc_reg (&(vu1_device.regs), VU_REG_MST, memory);
case 4:
return read_vu_misc_reg (&(vu1_device.regs), VU_REG_MMC, memory);
case 5:
return read_vu_misc_reg (&(vu1_device.regs), VU_REG_MCP, memory);
case 6: /* CMSAR1 is actually from VU0 */
#ifdef TARGET_SKY_B
return 0;
#else
return read_vu_special_reg (&vu0_device, VU_REG_CMSAR1, memory);
#endif /* ! TARGET_SKY_B */
case 7: /* VU1 has no FBRST register */
*((int *) memory) = 0;
return 4;
case 8:
return read_vu_misc_reg (&(vu1_device.regs), VU_REG_MR, memory);
case 9:
return read_vu_misc_reg (&(vu1_device.regs), VU_REG_MP, memory);
case 10:
return read_vu_misc_reg (&(vu1_device.regs), VU_REG_MI, memory);
case 11:
return read_vu_misc_reg (&(vu1_device.regs), VU_REG_MQ, memory);
default:
return read_vu_acc_reg (&(vu1_device.regs),
rn - (NUM_VU_INTEGER_REGS + 12),
memory);
}
}
rn -= NUM_VU_REGS; /* VIF0 registers are next */
if (rn < NUM_VIF_REGS)
{
#ifdef TARGET_SKY_B
sim_io_eprintf( sd, "Invalid VIF register (register fetch ignored)\n" );
return 0;
#else
if (rn < NUM_VIF_REGS-2)
return read_vif_reg (&vif0_device, rn, memory);
else if (rn == NUM_VIF_REGS-2)
return read_vif_pc (&vif0_device, memory);
else
return read_vif_pcx (&vif0_device, memory);
#endif /* ! TARGET_SKY_B */
}
rn -= NUM_VIF_REGS; /* VIF1 registers are last */
if (rn < NUM_VIF_REGS)
{
if (rn < NUM_VIF_REGS-2)
return read_vif_reg (&vif1_device, rn, memory);
else if (rn == NUM_VIF_REGS-2)
return read_vif_pc (&vif1_device, memory);
else
return read_vif_pcx (&vif1_device, memory);
}
sim_io_eprintf( sd, "Invalid VU register (register fetch ignored)\n" );
}
#endif
/* end-sanitize-sky */
/* Any floating point register */
if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
{
if (cpu->register_widths[rn] == 32)
{
*(unsigned32*)memory = H2T_4 (cpu->fgr[rn - FGRIDX]);
return 4;
}
else
{
*(unsigned64*)memory = H2T_8 (cpu->fgr[rn - FGRIDX]);
return 8;
}
}
if (cpu->register_widths[rn] == 32)
{
*(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn]));
return 4;
}
else
{
*(unsigned64*)memory = H2T_8 ((unsigned64)(cpu->registers[rn]));
return 8;
}
return 0;
}
SIM_RC
sim_create_inferior (sd, abfd, argv,env)
SIM_DESC sd;
struct _bfd *abfd;
char **argv;
char **env;
{
#ifdef DEBUG
printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",
pr_addr(PC));
#endif /* DEBUG */
ColdReset(sd);
if (abfd != NULL)
{
/* override PC value set by ColdReset () */
int cpu_nr;
for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
{
sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
CIA_SET (cpu, (unsigned64) bfd_get_start_address (abfd));
}
}
#if 0 /* def DEBUG */
if (argv || env)
{
/* We should really place the argv slot values into the argument
registers, and onto the stack as required. However, this
assumes that we have a stack defined, which is not
necessarily true at the moment. */
char **cptr;
sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n");
for (cptr = argv; (cptr && *cptr); cptr++)
printf("DBG: arg \"%s\"\n",*cptr);
}
#endif /* DEBUG */
return SIM_RC_OK;
}
void
sim_do_command (sd,cmd)
SIM_DESC sd;
char *cmd;
{
if (sim_args_command (sd, cmd) != SIM_RC_OK)
sim_io_printf (sd, "Error: \"%s\" is not a valid MIPS simulator command.\n",
cmd);
}
/*---------------------------------------------------------------------------*/
/*-- Private simulator support interface ------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Read a null terminated string from memory, return in a buffer */
static char *
fetch_str (sd, addr)
SIM_DESC sd;
address_word addr;
{
char *buf;
int nr = 0;
char null;
while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0)
nr++;
buf = NZALLOC (char, nr + 1);
sim_read (sd, addr, buf, nr);
return buf;
}
/* Simple monitor interface (currently setup for the IDT and PMON monitors) */
void
sim_monitor (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
unsigned int reason)
{
#ifdef DEBUG
printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
#endif /* DEBUG */
/* The IDT monitor actually allows two instructions per vector
slot. However, the simulator currently causes a trap on each
individual instruction. We cheat, and lose the bottom bit. */
reason >>= 1;
/* The following callback functions are available, however the
monitor we are simulating does not make use of them: get_errno,
isatty, lseek, rename, system, time and unlink */
switch (reason)
{
case 6: /* int open(char *path,int flags) */
{
char *path = fetch_str (sd, A0);
V0 = sim_io_open (sd, path, (int)A1);
zfree (path);
break;
}
case 7: /* int read(int file,char *ptr,int len) */
{
int fd = A0;
int nr = A2;
char *buf = zalloc (nr);
V0 = sim_io_read (sd, fd, buf, nr);
sim_write (sd, A1, buf, nr);
zfree (buf);
}
break;
case 8: /* int write(int file,char *ptr,int len) */
{
int fd = A0;
int nr = A2;
char *buf = zalloc (nr);
sim_read (sd, A1, buf, nr);
V0 = sim_io_write (sd, fd, buf, nr);
zfree (buf);
break;
}
case 10: /* int close(int file) */
{
V0 = sim_io_close (sd, (int)A0);
break;
}
case 2: /* Densan monitor: char inbyte(int waitflag) */
{
if (A0 == 0) /* waitflag == NOWAIT */
V0 = (unsigned_word)-1;
}
/* Drop through to case 11 */
case 11: /* char inbyte(void) */
{
char tmp;
if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char))
{
sim_io_error(sd,"Invalid return from character read");
V0 = (unsigned_word)-1;
}
else
V0 = (unsigned_word)tmp;
break;
}
case 3: /* Densan monitor: void co(char chr) */
case 12: /* void outbyte(char chr) : write a byte to "stdout" */
{
char tmp = (char)(A0 & 0xFF);
sim_io_write_stdout (sd, &tmp, sizeof(char));
break;
}
case 17: /* void _exit() */
{
sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n");
sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited,
(unsigned int)(A0 & 0xFFFFFFFF));
break;
}
case 28 : /* PMON flush_cache */
break;
case 55: /* void get_mem_info(unsigned int *ptr) */
/* in: A0 = pointer to three word memory location */
/* out: [A0 + 0] = size */
/* [A0 + 4] = instruction cache size */
/* [A0 + 8] = data cache size */
{
unsigned_4 value = MEM_SIZE /* FIXME STATE_MEM_SIZE (sd) */;
unsigned_4 zero = 0;
H2T (value);
sim_write (sd, A0 + 0, (char *)&value, 4);
sim_write (sd, A0 + 4, (char *)&zero, 4);
sim_write (sd, A0 + 8, (char *)&zero, 4);
/* sim_io_eprintf (sd, "sim: get_mem_info() depreciated\n"); */
break;
}
case 158 : /* PMON printf */
/* in: A0 = pointer to format string */
/* A1 = optional argument 1 */
/* A2 = optional argument 2 */
/* A3 = optional argument 3 */
/* out: void */
/* The following is based on the PMON printf source */
{
address_word s = A0;
char c;
signed_word *ap = &A1; /* 1st argument */
/* This isn't the quickest way, since we call the host print
routine for every character almost. But it does avoid
having to allocate and manage a temporary string buffer. */
/* TODO: Include check that we only use three arguments (A1,
A2 and A3) */
while (sim_read (sd, s++, &c, 1) && c != '\0')
{
if (c == '%')
{
char tmp[40];
enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
int width = 0, trunc = 0, haddot = 0, longlong = 0;
while (sim_read (sd, s++, &c, 1) && c != '\0')
{
if (strchr ("dobxXulscefg%", c))
break;
else if (c == '-')
fmt = FMT_LJUST;
else if (c == '0')
fmt = FMT_RJUST0;
else if (c == '~')
fmt = FMT_CENTER;
else if (c == '*')
{
if (haddot)
trunc = (int)*ap++;
else
width = (int)*ap++;
}
else if (c >= '1' && c <= '9')
{
address_word t = s;
unsigned int n;
while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c))
tmp[s - t] = c;
tmp[s - t] = '\0';
n = (unsigned int)strtol(tmp,NULL,10);
if (haddot)
trunc = n;
else
width = n;
s--;
}
else if (c == '.')
haddot = 1;
}
switch (c)
{
case '%':
sim_io_printf (sd, "%%");
break;
case 's':
if ((int)*ap != 0)
{
address_word p = *ap++;
char ch;
while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0')
sim_io_printf(sd, "%c", ch);
}
else
sim_io_printf(sd,"(null)");
break;
case 'c':
sim_io_printf (sd, "%c", (int)*ap++);
break;
default:
if (c == 'l')
{
sim_read (sd, s++, &c, 1);
if (c == 'l')
{
longlong = 1;
sim_read (sd, s++, &c, 1);
}
}
if (strchr ("dobxXu", c))
{
word64 lv = (word64) *ap++;
if (c == 'b')
sim_io_printf(sd,"<binary not supported>");
else
{
sprintf (tmp, "%%%s%c", longlong ? "ll" : "", c);
if (longlong)
sim_io_printf(sd, tmp, lv);
else
sim_io_printf(sd, tmp, (int)lv);
}
}
else if (strchr ("eEfgG", c))
{
double dbl = *(double*)(ap++);
sprintf (tmp, "%%%d.%d%c", width, trunc, c);
sim_io_printf (sd, tmp, dbl);
trunc = 0;
}
}
}
else
sim_io_printf(sd, "%c", c);
}
break;
}
default:
sim_io_error (sd, "TODO: sim_monitor(%d) : PC = 0x%s\n",
reason, pr_addr(cia));
break;
}
return;
}
/* Store a word into memory. */
static void
store_word (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
uword64 vaddr,
signed_word val)
{
address_word paddr;
int uncached;
if ((vaddr & 3) != 0)
SignalExceptionAddressStore ();
else
{
if (AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached,
isTARGET, isREAL))
{
const uword64 mask = 7;
uword64 memval;
unsigned int byte;
paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
byte = (vaddr & mask) ^ (BigEndianCPU << 2);
memval = ((uword64) val) << (8 * byte);
StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr,
isREAL);
}
}
}
/* Load a word from memory. */
static signed_word
load_word (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
uword64 vaddr)
{
if ((vaddr & 3) != 0)
SignalExceptionAddressLoad ();
else
{
address_word paddr;
int uncached;
if (AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached,
isTARGET, isREAL))
{
const uword64 mask = 0x7;
const unsigned int reverse = ReverseEndian ? 1 : 0;
const unsigned int bigend = BigEndianCPU ? 1 : 0;
uword64 memval;
unsigned int byte;
paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
LoadMemory (&memval,NULL,uncached, AccessLength_WORD, paddr, vaddr,
isDATA, isREAL);
byte = (vaddr & mask) ^ (bigend << 2);
return SIGNEXTEND (((memval >> (8 * byte)) & 0xffffffff), 32);
}
}
return 0;
}
/* Simulate the mips16 entry and exit pseudo-instructions. These
would normally be handled by the reserved instruction exception
code, but for ease of simulation we just handle them directly. */
static void
mips16_entry (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
unsigned int insn)
{
int aregs, sregs, rreg;
#ifdef DEBUG
printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
#endif /* DEBUG */
aregs = (insn & 0x700) >> 8;
sregs = (insn & 0x0c0) >> 6;
rreg = (insn & 0x020) >> 5;
/* This should be checked by the caller. */
if (sregs == 3)
abort ();
if (aregs < 5)
{
int i;
signed_word tsp;
/* This is the entry pseudo-instruction. */
for (i = 0; i < aregs; i++)
store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]);
tsp = SP;
SP -= 32;
if (rreg)
{
tsp -= 4;
store_word (SD, CPU, cia, (uword64) tsp, RA);
}
for (i = 0; i < sregs; i++)
{
tsp -= 4;
store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]);
}
}
else
{
int i;
signed_word tsp;
/* This is the exit pseudo-instruction. */
tsp = SP + 32;
if (rreg)
{
tsp -= 4;
RA = load_word (SD, CPU, cia, (uword64) tsp);
}
for (i = 0; i < sregs; i++)
{
tsp -= 4;
GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp);
}
SP += 32;
if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
{
if (aregs == 5)
{
FGR[0] = WORD64LO (GPR[4]);
FPR_STATE[0] = fmt_uninterpreted;
}
else if (aregs == 6)
{
FGR[0] = WORD64LO (GPR[5]);
FGR[1] = WORD64LO (GPR[4]);
FPR_STATE[0] = fmt_uninterpreted;
FPR_STATE[1] = fmt_uninterpreted;
}
}
PC = RA;
}
}
/*-- trace support ----------------------------------------------------------*/
/* The TRACE support is provided (if required) in the memory accessing
routines. Since we are also providing the architecture specific
features, the architecture simulation code can also deal with
notifying the TRACE world of cache flushes, etc. Similarly we do
not need to provide profiling support in the simulator engine,
since we can sample in the instruction fetch control loop. By
defining the TRACE manifest, we add tracing as a run-time
option. */
#if defined(TRACE)
/* Tracing by default produces "din" format (as required by
dineroIII). Each line of such a trace file *MUST* have a din label
and address field. The rest of the line is ignored, so comments can
be included if desired. The first field is the label which must be
one of the following values:
0 read data
1 write data
2 instruction fetch
3 escape record (treated as unknown access type)
4 escape record (causes cache flush)
The address field is a 32bit (lower-case) hexadecimal address
value. The address should *NOT* be preceded by "0x".
The size of the memory transfer is not important when dealing with
cache lines (as long as no more than a cache line can be
transferred in a single operation :-), however more information
could be given following the dineroIII requirement to allow more
complete memory and cache simulators to provide better
results. i.e. the University of Pisa has a cache simulator that can
also take bus size and speed as (variable) inputs to calculate
complete system performance (a much more useful ability when trying
to construct an end product, rather than a processor). They
currently have an ARM version of their tool called ChARM. */
void
dotrace (SIM_DESC sd,
sim_cpu *cpu,
FILE *tracefh,
int type,
SIM_ADDR address,
int width,
char *comment,...)
{
if (STATE & simTRACE) {
va_list ap;
fprintf(tracefh,"%d %s ; width %d ; ",
type,
pr_addr(address),
width);
va_start(ap,comment);
vfprintf(tracefh,comment,ap);
va_end(ap);
fprintf(tracefh,"\n");
}
/* NOTE: Since the "din" format will only accept 32bit addresses, and
we may be generating 64bit ones, we should put the hi-32bits of the
address into the comment field. */
/* TODO: Provide a buffer for the trace lines. We can then avoid
performing writes until the buffer is filled, or the file is
being closed. */
/* NOTE: We could consider adding a comment field to the "din" file
produced using type 3 markers (unknown access). This would then
allow information about the program that the "din" is for, and
the MIPs world that was being simulated, to be placed into the
trace file. */
return;
}
#endif /* TRACE */
/*---------------------------------------------------------------------------*/
/*-- simulator engine -------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
static void
ColdReset (SIM_DESC sd)
{
int cpu_nr;
for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
{
sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
/* RESET: Fixed PC address: */
PC = (unsigned_word) UNSIGNED64 (0xFFFFFFFFBFC00000);
/* The reset vector address is in the unmapped, uncached memory space. */
SR &= ~(status_SR | status_TS | status_RP);
SR |= (status_ERL | status_BEV);
/* Cheat and allow access to the complete register set immediately */
if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT
&& WITH_TARGET_WORD_BITSIZE == 64)
SR |= status_FR; /* 64bit registers */
/* Ensure that any instructions with pending register updates are
cleared: */
PENDING_INVALIDATE();
/* Initialise the FPU registers to the unknown state */
if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
{
int rn;
for (rn = 0; (rn < 32); rn++)
FPR_STATE[rn] = fmt_uninterpreted;
}
}
}
/* start-sanitize-sky */
#ifdef TARGET_SKY
/* See ch. 5 of the 5900 Users' Guide. */
void
signal_exception (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int cause, ...)
{
/* int vector; */
#ifdef DEBUG
sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",cause,pr_addr(cia));
#endif /* DEBUG */
/* Ensure that any active atomic read/modify/write operation will fail: */
LLBIT = 0;
/* First, handle any simulator specific magic exceptions. These are not "real" exceptions, but
are exceptions which the simulator uses to implement different features. */
switch (cause) {
case SimulatorFault:
{
va_list ap;
char *msg;
va_start(ap,cause);
msg = va_arg(ap,char *);
va_end(ap);
sim_engine_abort (SD, CPU, NULL_CIA,
"FATAL: Simulator error \"%s\"\n",msg);
}
case DebugBreakPoint :
if (! (Debug & Debug_DM))
{
if (INDELAYSLOT())
{
CANCELDELAYSLOT();
Debug |= Debug_DBD; /* signaled from within in delay slot */
DEPC = cia - 4; /* reference the branch instruction */
}
else
{
Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
DEPC = cia;
}
Debug |= Debug_DM; /* in debugging mode */
Debug |= Debug_DBp; /* raising a DBp exception */
PC = 0xBFC00200;
sim_engine_restart (SD, CPU, NULL, NULL_CIA);
}
break;
case ReservedInstruction :
{
va_list ap;
unsigned int instruction;
va_start(ap,cause);
instruction = va_arg(ap,unsigned int);
va_end(ap);
/* Provide simple monitor support using ReservedInstruction
exceptions. The following code simulates the fixed vector
entry points into the IDT monitor by causing a simulator
trap, performing the monitor operation, and returning to
the address held in the $ra register (standard PCS return
address). This means we only need to pre-load the vector
space with suitable instruction values. For systems were
actual trap instructions are used, we would not need to
perform this magic. */
if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
{
sim_monitor (SD, CPU, cia, ((instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK) );
/* NOTE: This assumes that a branch-and-link style
instruction was used to enter the vector (which is the
case with the current IDT monitor). */
sim_engine_restart (SD, CPU, NULL, RA);
}
/* Look for the mips16 entry and exit instructions, and
simulate a handler for them. */
else if ((cia & 1) != 0
&& (instruction & 0xf81f) == 0xe809
&& (instruction & 0x0c0) != 0x0c0)
{
mips16_entry (SD, CPU, cia, instruction);
sim_engine_restart (sd, NULL, NULL, NULL_CIA);
}
/* else fall through to normal exception processing */
sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia));
}
}
/* Now we have the code for processing "real" exceptions. */
if (is5900Level2Exception(cause)) {
switch(cause) {
case NMIReset:
cause_set_EXC2(1);
break;
default:
sim_engine_abort (SD, CPU, NULL_CIA,
"FATAL: Unexpected level 2 exception %d\n", cause);
}
if (STATE & simDELAYSLOT)
{
STATE &= ~simDELAYSLOT;
COP0_ERROREPC = (cia - 4); /* reference the branch instruction */
CAUSE |= cause_BD2;
}
else
{
COP0_ERROREPC = cia;
CAUSE &= ~cause_BD2;
}
SR |= status_ERL;
if (cause == NMIReset)
PC = 0xBFC0000;
else
{
ASSERT(0); /* At the moment, COUNTER, DEBUG never generated. */
}
sim_engine_restart (SD, CPU, NULL, PC);
} else {
/* A level 1 exception. */
int refill, vector_offset;
cause_set_EXC(cause);
if (SR & status_EXL)
vector_offset = 0x180;
else
{
if (cause == TLBLoad || cause == TLBStore) {
va_list ap;
va_start(ap, cause);
refill = va_arg(ap,int);
va_end(ap);
}
if (STATE & simDELAYSLOT)
{
STATE &= ~simDELAYSLOT;
CAUSE |= cause_BD;
COP0_EPC = (cia - 4); /* reference the branch instruction */
}
else
{
COP0_EPC = cia;
CAUSE &= ~cause_BD;
}
SR |= status_EXL;
if ((cause == TLBLoad || cause == TLBStore) && refill == TLB_REFILL)
vector_offset = 0x000;
else if (cause == Interrupt)
vector_offset = 0x200;
else
vector_offset = 0x180;
if (SR & status_BEV)
PC = (signed)0xBFC00200 + vector_offset;
else
PC = (signed)0x80000000 + vector_offset;
}
/* Now, handle the exception. */
switch (cause)
{
case Interrupt:
{
va_list ap;
unsigned int level;
va_start(ap, cause);
level = va_arg(ap,unsigned int);
va_end(ap);
/* Interrupts arrive during event processing, no need to restart.
Hardware interrupts on sky target are INT1 and INT2. */
if ( level == 1 )
CAUSE |= cause_IP3; /* bit 11 */
else if ( level == 2 )
CAUSE |= cause_IP7; /* bit 15 */
else
sim_engine_abort (SD, CPU, NULL_CIA,
"FATAL: Unexpected interrupt level %d\n", level);
return;
}
case NMIReset:
ASSERT(0); /* NMIReset is a level 0 exception. */
return;
case AddressLoad:
case AddressStore:
case InstructionFetch:
case DataReference:
/* The following is so that the simulator will continue from the
exception address on breakpoint operations. */
PC = COP0_EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGBUS);
break;
case ReservedInstruction:
case CoProcessorUnusable:
PC = COP0_EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGILL);
break;
case IntegerOverflow:
case FPE:
PC = COP0_EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGFPE);
break;
case TLBModification:
case TLBLoad:
case TLBStore:
case BreakPoint:
case SystemCall:
case Trap:
sim_engine_restart (SD, CPU, NULL, PC);
break;
case Watch:
PC = COP0_EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGTRAP);
break;
default : /* Unknown internal exception */
PC = COP0_EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGABRT);
break;
}
}
return;
}
#else /* TARGET_SKY */
/* end-sanitize-sky */
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Signal an exception condition. This will result in an exception
that aborts the instruction. The instruction operation pseudocode
will never see a return from this function call. */
void
signal_exception (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int exception,...)
{
/* int vector; */
#ifdef DEBUG
sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
#endif /* DEBUG */
/* Ensure that any active atomic read/modify/write operation will fail: */
LLBIT = 0;
switch (exception) {
case DebugBreakPoint :
if (! (Debug & Debug_DM))
{
if (INDELAYSLOT())
{
CANCELDELAYSLOT();
Debug |= Debug_DBD; /* signaled from within in delay slot */
DEPC = cia - 4; /* reference the branch instruction */
}
else
{
Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
DEPC = cia;
}
Debug |= Debug_DM; /* in debugging mode */
Debug |= Debug_DBp; /* raising a DBp exception */
PC = 0xBFC00200;
sim_engine_restart (SD, CPU, NULL, NULL_CIA);
}
break;
case ReservedInstruction :
{
va_list ap;
unsigned int instruction;
va_start(ap,exception);
instruction = va_arg(ap,unsigned int);
va_end(ap);
/* Provide simple monitor support using ReservedInstruction
exceptions. The following code simulates the fixed vector
entry points into the IDT monitor by causing a simulator
trap, performing the monitor operation, and returning to
the address held in the $ra register (standard PCS return
address). This means we only need to pre-load the vector
space with suitable instruction values. For systems were
actual trap instructions are used, we would not need to
perform this magic. */
if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
{
sim_monitor (SD, CPU, cia, ((instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK) );
/* NOTE: This assumes that a branch-and-link style
instruction was used to enter the vector (which is the
case with the current IDT monitor). */
sim_engine_restart (SD, CPU, NULL, RA);
}
/* Look for the mips16 entry and exit instructions, and
simulate a handler for them. */
else if ((cia & 1) != 0
&& (instruction & 0xf81f) == 0xe809
&& (instruction & 0x0c0) != 0x0c0)
{
mips16_entry (SD, CPU, cia, instruction);
sim_engine_restart (sd, NULL, NULL, NULL_CIA);
}
/* else fall through to normal exception processing */
sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia));
}
default:
/* Store exception code into current exception id variable (used
by exit code): */
/* TODO: If not simulating exceptions then stop the simulator
execution. At the moment we always stop the simulation. */
#ifdef SUBTARGET_R3900
/* update interrupt-related registers */
/* insert exception code in bits 6:2 */
CAUSE = LSMASKED32(CAUSE, 31, 7) | LSINSERTED32(exception, 6, 2);
/* shift IE/KU history bits left */
SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 3, 0), 5, 2);
if (STATE & simDELAYSLOT)
{
STATE &= ~simDELAYSLOT;
CAUSE |= cause_BD;
EPC = (cia - 4); /* reference the branch instruction */
}
else
EPC = cia;
if (SR & status_BEV)
PC = (signed)0xBFC00000 + 0x180;
else
PC = (signed)0x80000000 + 0x080;
#else
/* See figure 5-17 for an outline of the code below */
if (! (SR & status_EXL))
{
CAUSE = (exception << 2);
if (STATE & simDELAYSLOT)
{
STATE &= ~simDELAYSLOT;
CAUSE |= cause_BD;
EPC = (cia - 4); /* reference the branch instruction */
}
else
EPC = cia;
/* FIXME: TLB et.al. */
/* vector = 0x180; */
}
else
{
CAUSE = (exception << 2);
/* vector = 0x180; */
}
SR |= status_EXL;
/* Store exception code into current exception id variable (used
by exit code): */
if (SR & status_BEV)
PC = (signed)0xBFC00200 + 0x180;
else
PC = (signed)0x80000000 + 0x180;
#endif
switch ((CAUSE >> 2) & 0x1F)
{
case Interrupt:
/* Interrupts arrive during event processing, no need to
restart */
return;
case NMIReset:
/* Ditto */
#ifdef SUBTARGET_3900
/* Exception vector: BEV=0 BFC00000 / BEF=1 BFC00000 */
PC = (signed)0xBFC00000;
#endif SUBTARGET_3900
return;
case TLBModification:
case TLBLoad:
case TLBStore:
case AddressLoad:
case AddressStore:
case InstructionFetch:
case DataReference:
/* The following is so that the simulator will continue from the
exception address on breakpoint operations. */
PC = EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGBUS);
case ReservedInstruction:
case CoProcessorUnusable:
PC = EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGILL);
case IntegerOverflow:
case FPE:
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGFPE);
case BreakPoint:
case SystemCall:
case Trap:
sim_engine_restart (SD, CPU, NULL, PC);
break;
case Watch:
PC = EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGTRAP);
default : /* Unknown internal exception */
PC = EPC;
sim_engine_halt (SD, CPU, NULL, NULL_CIA,
sim_stopped, SIM_SIGABRT);
}
case SimulatorFault:
{
va_list ap;
char *msg;
va_start(ap,exception);
msg = va_arg(ap,char *);
va_end(ap);
sim_engine_abort (SD, CPU, NULL_CIA,
"FATAL: Simulator error \"%s\"\n",msg);
}
}
return;
}
/* start-sanitize-sky */
#endif /* ! TARGET_SKY */
/* end-sanitize-sky */
#if defined(WARN_RESULT)
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* This function indicates that the result of the operation is
undefined. However, this should not affect the instruction
stream. All that is meant to happen is that the destination
register is set to an undefined result. To keep the simulator
simple, we just don't bother updating the destination register, so
the overall result will be undefined. If desired we can stop the
simulator by raising a pseudo-exception. */
#define UndefinedResult() undefined_result (sd,cia)
static void
undefined_result(sd,cia)
SIM_DESC sd;
address_word cia;
{
sim_io_eprintf(sd,"UndefinedResult: PC = 0x%s\n",pr_addr(cia));
#if 0 /* Disabled for the moment, since it actually happens a lot at the moment. */
state |= simSTOP;
#endif
return;
}
#endif /* WARN_RESULT */
/*-- FPU support routines ---------------------------------------------------*/
/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
formats conform to ANSI/IEEE Std 754-1985. */
/* SINGLE precision floating:
* seeeeeeeefffffffffffffffffffffff
* s = 1bit = sign
* e = 8bits = exponent
* f = 23bits = fraction
*/
/* SINGLE precision fixed:
* siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
* s = 1bit = sign
* i = 31bits = integer
*/
/* DOUBLE precision floating:
* seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
* s = 1bit = sign
* e = 11bits = exponent
* f = 52bits = fraction
*/
/* DOUBLE precision fixed:
* siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
* s = 1bit = sign
* i = 63bits = integer
*/
/* Extract sign-bit: */
#define FP_S_s(v) (((v) & ((unsigned)1 << 31)) ? 1 : 0)
#define FP_D_s(v) (((v) & ((uword64)1 << 63)) ? 1 : 0)
/* Extract biased exponent: */
#define FP_S_be(v) (((v) >> 23) & 0xFF)
#define FP_D_be(v) (((v) >> 52) & 0x7FF)
/* Extract unbiased Exponent: */
#define FP_S_e(v) (FP_S_be(v) - 0x7F)
#define FP_D_e(v) (FP_D_be(v) - 0x3FF)
/* Extract complete fraction field: */
#define FP_S_f(v) ((v) & ~((unsigned)0x1FF << 23))
#define FP_D_f(v) ((v) & ~((uword64)0xFFF << 52))
/* Extract numbered fraction bit: */
#define FP_S_fb(b,v) (((v) & (1 << (23 - (b)))) ? 1 : 0)
#define FP_D_fb(b,v) (((v) & (1 << (52 - (b)))) ? 1 : 0)
/* Explicit QNaN values used when value required: */
#define FPQNaN_SINGLE (0x7FBFFFFF)
#define FPQNaN_WORD (0x7FFFFFFF)
#define FPQNaN_DOUBLE (((uword64)0x7FF7FFFF << 32) | 0xFFFFFFFF)
#define FPQNaN_LONG (((uword64)0x7FFFFFFF << 32) | 0xFFFFFFFF)
/* Explicit Infinity values used when required: */
#define FPINF_SINGLE (0x7F800000)
#define FPINF_DOUBLE (((uword64)0x7FF00000 << 32) | 0x00000000)
#if 1 /* def DEBUG */
#define RMMODE(v) (((v) == FP_RM_NEAREST) ? "Round" : (((v) == FP_RM_TOZERO) ? "Trunc" : (((v) == FP_RM_TOPINF) ? "Ceil" : "Floor")))
#define DOFMT(v) (((v) == fmt_single) ? "single" : (((v) == fmt_double) ? "double" : (((v) == fmt_word) ? "word" : (((v) == fmt_long) ? "long" : (((v) == fmt_unknown) ? "<unknown>" : (((v) == fmt_uninterpreted) ? "<uninterpreted>" : "<format error>"))))))
#endif /* DEBUG */
uword64
value_fpr (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int fpr,
FP_formats fmt)
{
uword64 value = 0;
int err = 0;
/* Treat unused register values, as fixed-point 64bit values: */
if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
#if 1
/* If request to read data as "uninterpreted", then use the current
encoding: */
fmt = FPR_STATE[fpr];
#else
fmt = fmt_long;
#endif
/* For values not yet accessed, set to the desired format: */
if (FPR_STATE[fpr] == fmt_uninterpreted) {
FPR_STATE[fpr] = fmt;
#ifdef DEBUG
printf("DBG: Register %d was fmt_uninterpreted. Now %s\n",fpr,DOFMT(fmt));
#endif /* DEBUG */
}
if (fmt != FPR_STATE[fpr]) {
sim_io_eprintf(sd,"FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",fpr,DOFMT(FPR_STATE[fpr]),DOFMT(fmt),pr_addr(cia));
FPR_STATE[fpr] = fmt_unknown;
}
if (FPR_STATE[fpr] == fmt_unknown) {
/* Set QNaN value: */
switch (fmt) {
case fmt_single:
value = FPQNaN_SINGLE;
break;
case fmt_double:
value = FPQNaN_DOUBLE;
break;
case fmt_word:
value = FPQNaN_WORD;
break;
case fmt_long:
value = FPQNaN_LONG;
break;
default:
err = -1;
break;
}
} else if (SizeFGR() == 64) {
switch (fmt) {
case fmt_single:
case fmt_word:
value = (FGR[fpr] & 0xFFFFFFFF);
break;
case fmt_uninterpreted:
case fmt_double:
case fmt_long:
value = FGR[fpr];
break;
default :
err = -1;
break;
}
} else {
switch (fmt) {
case fmt_single:
case fmt_word:
value = (FGR[fpr] & 0xFFFFFFFF);
break;
case fmt_uninterpreted:
case fmt_double:
case fmt_long:
if ((fpr & 1) == 0) { /* even registers only */
value = ((((uword64)FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF));
} else {
SignalException(ReservedInstruction,0);
}
break;
default :
err = -1;
break;
}
}
if (err)
SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR()");
#ifdef DEBUG
printf("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_addr(value),pr_addr(cia),SizeFGR());
#endif /* DEBUG */
return(value);
}
void
store_fpr (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int fpr,
FP_formats fmt,
uword64 value)
{
int err = 0;
#ifdef DEBUG
printf("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_addr(value),pr_addr(cia),SizeFGR());
#endif /* DEBUG */
if (SizeFGR() == 64) {
switch (fmt) {
case fmt_uninterpreted_32:
fmt = fmt_uninterpreted;
case fmt_single :
case fmt_word :
FGR[fpr] = (((uword64)0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
FPR_STATE[fpr] = fmt;
break;
case fmt_uninterpreted_64:
fmt = fmt_uninterpreted;
case fmt_uninterpreted:
case fmt_double :
case fmt_long :
FGR[fpr] = value;
FPR_STATE[fpr] = fmt;
break;
default :
FPR_STATE[fpr] = fmt_unknown;
err = -1;
break;
}
} else {
switch (fmt) {
case fmt_uninterpreted_32:
fmt = fmt_uninterpreted;
case fmt_single :
case fmt_word :
FGR[fpr] = (value & 0xFFFFFFFF);
FPR_STATE[fpr] = fmt;
break;
case fmt_uninterpreted_64:
fmt = fmt_uninterpreted;
case fmt_uninterpreted:
case fmt_double :
case fmt_long :
if ((fpr & 1) == 0) { /* even register number only */
FGR[fpr+1] = (value >> 32);
FGR[fpr] = (value & 0xFFFFFFFF);
FPR_STATE[fpr + 1] = fmt;
FPR_STATE[fpr] = fmt;
} else {
FPR_STATE[fpr] = fmt_unknown;
FPR_STATE[fpr + 1] = fmt_unknown;
SignalException(ReservedInstruction,0);
}
break;
default :
FPR_STATE[fpr] = fmt_unknown;
err = -1;
break;
}
}
#if defined(WARN_RESULT)
else
UndefinedResult();
#endif /* WARN_RESULT */
if (err)
SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR()");
#ifdef DEBUG
printf("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",fpr,pr_addr(FGR[fpr]),DOFMT(fmt));
#endif /* DEBUG */
return;
}
int
NaN(op,fmt)
uword64 op;
FP_formats fmt;
{
int boolean = 0;
switch (fmt) {
case fmt_single:
case fmt_word:
{
sim_fpu wop;
sim_fpu_32to (&wop, op);
boolean = sim_fpu_is_nan (&wop);
break;
}
case fmt_double:
case fmt_long:
{
sim_fpu wop;
sim_fpu_64to (&wop, op);
boolean = sim_fpu_is_nan (&wop);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: NaN: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
#endif /* DEBUG */
return(boolean);
}
int
Infinity(op,fmt)
uword64 op;
FP_formats fmt;
{
int boolean = 0;
#ifdef DEBUG
printf("DBG: Infinity: format %s 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */
switch (fmt) {
case fmt_single:
{
sim_fpu wop;
sim_fpu_32to (&wop, op);
boolean = sim_fpu_is_infinity (&wop);
break;
}
case fmt_double:
{
sim_fpu wop;
sim_fpu_64to (&wop, op);
boolean = sim_fpu_is_infinity (&wop);
break;
}
default:
printf("DBG: TODO: unrecognised format (%s) for Infinity check\n",DOFMT(fmt));
break;
}
#ifdef DEBUG
printf("DBG: Infinity: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
#endif /* DEBUG */
return(boolean);
}
int
Less(op1,op2,fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
int boolean = 0;
/* Argument checking already performed by the FPCOMPARE code */
#ifdef DEBUG
printf("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
boolean = sim_fpu_is_lt (&wop1, &wop2);
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
boolean = sim_fpu_is_lt (&wop1, &wop2);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Less: returning %d (format = %s)\n",boolean,DOFMT(fmt));
#endif /* DEBUG */
return(boolean);
}
int
Equal(op1,op2,fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
int boolean = 0;
/* Argument checking already performed by the FPCOMPARE code */
#ifdef DEBUG
printf("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
boolean = sim_fpu_is_eq (&wop1, &wop2);
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
boolean = sim_fpu_is_eq (&wop1, &wop2);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Equal: returning %d (format = %s)\n",boolean,DOFMT(fmt));
#endif /* DEBUG */
return(boolean);
}
uword64
AbsoluteValue(op,fmt)
uword64 op;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: AbsoluteValue: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop;
unsigned32 ans;
sim_fpu_32to (&wop, op);
sim_fpu_abs (&wop, &wop);
sim_fpu_to32 (&ans, &wop);
result = ans;
break;
}
case fmt_double:
{
sim_fpu wop;
unsigned64 ans;
sim_fpu_64to (&wop, op);
sim_fpu_abs (&wop, &wop);
sim_fpu_to64 (&ans, &wop);
result = ans;
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
return(result);
}
uword64
Negate(op,fmt)
uword64 op;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: Negate: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop;
unsigned32 ans;
sim_fpu_32to (&wop, op);
sim_fpu_neg (&wop, &wop);
sim_fpu_to32 (&ans, &wop);
result = ans;
break;
}
case fmt_double:
{
sim_fpu wop;
unsigned64 ans;
sim_fpu_64to (&wop, op);
sim_fpu_neg (&wop, &wop);
sim_fpu_to64 (&ans, &wop);
result = ans;
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
return(result);
}
uword64
Add(op1,op2,fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned32 res;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
sim_fpu_add (&ans, &wop1, &wop2);
sim_fpu_to32 (&res, &ans);
result = res;
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned64 res;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
sim_fpu_add (&ans, &wop1, &wop2);
sim_fpu_to64 (&res, &ans);
result = res;
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Add: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
uword64
Sub(op1,op2,fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned32 res;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
sim_fpu_sub (&ans, &wop1, &wop2);
sim_fpu_to32 (&res, &ans);
result = res;
}
break;
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned64 res;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
sim_fpu_sub (&ans, &wop1, &wop2);
sim_fpu_to64 (&res, &ans);
result = res;
}
break;
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Sub: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
uword64
Multiply(op1,op2,fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned32 res;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
sim_fpu_mul (&ans, &wop1, &wop2);
sim_fpu_to32 (&res, &ans);
result = res;
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned64 res;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
sim_fpu_mul (&ans, &wop1, &wop2);
sim_fpu_to64 (&res, &ans);
result = res;
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Multiply: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
uword64
Divide(op1,op2,fmt)
uword64 op1;
uword64 op2;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned32 res;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
sim_fpu_div (&ans, &wop1, &wop2);
sim_fpu_to32 (&res, &ans);
result = res;
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu ans;
unsigned64 res;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
sim_fpu_div (&ans, &wop1, &wop2);
sim_fpu_to64 (&res, &ans);
result = res;
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Divide: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
uword64 UNUSED
Recip(op,fmt)
uword64 op;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: Recip: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop;
sim_fpu ans;
unsigned32 res;
sim_fpu_32to (&wop, op);
sim_fpu_inv (&ans, &wop);
sim_fpu_to32 (&res, &ans);
result = res;
break;
}
case fmt_double:
{
sim_fpu wop;
sim_fpu ans;
unsigned64 res;
sim_fpu_64to (&wop, op);
sim_fpu_inv (&ans, &wop);
sim_fpu_to64 (&res, &ans);
result = res;
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Recip: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
uword64
SquareRoot(op,fmt)
uword64 op;
FP_formats fmt;
{
uword64 result = 0;
#ifdef DEBUG
printf("DBG: SquareRoot: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt) {
case fmt_single:
{
sim_fpu wop;
sim_fpu ans;
unsigned32 res;
sim_fpu_32to (&wop, op);
sim_fpu_sqrt (&ans, &wop);
sim_fpu_to32 (&res, &ans);
result = res;
break;
}
case fmt_double:
{
sim_fpu wop;
sim_fpu ans;
unsigned64 res;
sim_fpu_64to (&wop, op);
sim_fpu_sqrt (&ans, &wop);
sim_fpu_to64 (&res, &ans);
result = res;
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: SquareRoot: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
#if 0
uword64
Max (uword64 op1,
uword64 op2,
FP_formats fmt)
{
int cmp;
unsigned64 result;
#ifdef DEBUG
printf("DBG: Max: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt)
{
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
cmp = sim_fpu_cmp (&wop1, &wop2);
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
cmp = sim_fpu_cmp (&wop1, &wop2);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
switch (cmp)
{
case SIM_FPU_IS_SNAN:
case SIM_FPU_IS_QNAN:
result = op1;
case SIM_FPU_IS_NINF:
case SIM_FPU_IS_NNUMBER:
case SIM_FPU_IS_NDENORM:
case SIM_FPU_IS_NZERO:
result = op2; /* op1 - op2 < 0 */
case SIM_FPU_IS_PINF:
case SIM_FPU_IS_PNUMBER:
case SIM_FPU_IS_PDENORM:
case SIM_FPU_IS_PZERO:
result = op1; /* op1 - op2 > 0 */
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Max: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
#endif
#if 0
uword64
Min (uword64 op1,
uword64 op2,
FP_formats fmt)
{
int cmp;
unsigned64 result;
#ifdef DEBUG
printf("DBG: Min: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */
/* The registers must specify FPRs valid for operands of type
"fmt". If they are not valid, the result is undefined. */
/* The format type should already have been checked: */
switch (fmt)
{
case fmt_single:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_32to (&wop1, op1);
sim_fpu_32to (&wop2, op2);
cmp = sim_fpu_cmp (&wop1, &wop2);
break;
}
case fmt_double:
{
sim_fpu wop1;
sim_fpu wop2;
sim_fpu_64to (&wop1, op1);
sim_fpu_64to (&wop2, op2);
cmp = sim_fpu_cmp (&wop1, &wop2);
break;
}
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
switch (cmp)
{
case SIM_FPU_IS_SNAN:
case SIM_FPU_IS_QNAN:
result = op1;
case SIM_FPU_IS_NINF:
case SIM_FPU_IS_NNUMBER:
case SIM_FPU_IS_NDENORM:
case SIM_FPU_IS_NZERO:
result = op1; /* op1 - op2 < 0 */
case SIM_FPU_IS_PINF:
case SIM_FPU_IS_PNUMBER:
case SIM_FPU_IS_PDENORM:
case SIM_FPU_IS_PZERO:
result = op2; /* op1 - op2 > 0 */
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Min: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */
return(result);
}
#endif
uword64
convert (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int rm,
uword64 op,
FP_formats from,
FP_formats to)
{
sim_fpu wop;
sim_fpu_round round;
unsigned32 result32;
unsigned64 result64;
#ifdef DEBUG
printf("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",RMMODE(rm),pr_addr(op),DOFMT(from),DOFMT(to),pr_addr(IPC));
#endif /* DEBUG */
switch (rm)
{
case FP_RM_NEAREST:
/* Round result to nearest representable value. When two
representable values are equally near, round to the value
that has a least significant bit of zero (i.e. is even). */
round = sim_fpu_round_near;
break;
case FP_RM_TOZERO:
/* Round result to the value closest to, and not greater in
magnitude than, the result. */
round = sim_fpu_round_zero;
break;
case FP_RM_TOPINF:
/* Round result to the value closest to, and not less than,
the result. */
round = sim_fpu_round_up;
break;
case FP_RM_TOMINF:
/* Round result to the value closest to, and not greater than,
the result. */
round = sim_fpu_round_down;
break;
default:
round = 0;
fprintf (stderr, "Bad switch\n");
abort ();
}
/* Convert the input to sim_fpu internal format */
switch (from)
{
case fmt_double:
sim_fpu_64to (&wop, op);
break;
case fmt_single:
sim_fpu_32to (&wop, op);
break;
case fmt_word:
sim_fpu_i32to (&wop, op, round);
break;
case fmt_long:
sim_fpu_i64to (&wop, op, round);
break;
default:
fprintf (stderr, "Bad switch\n");
abort ();
}
/* Convert sim_fpu format into the output */
/* The value WOP is converted to the destination format, rounding
using mode RM. When the destination is a fixed-point format, then
a source value of Infinity, NaN or one which would round to an
integer outside the fixed point range then an IEEE Invalid
Operation condition is raised. */
switch (to)
{
case fmt_single:
sim_fpu_round_32 (&wop, round, 0);
sim_fpu_to32 (&result32, &wop);
result64 = result32;
break;
case fmt_double:
sim_fpu_round_64 (&wop, round, 0);
sim_fpu_to64 (&result64, &wop);
break;
case fmt_word:
sim_fpu_to32i (&result32, &wop, round);
result64 = result32;
break;
case fmt_long:
sim_fpu_to64i (&result64, &wop, round);
break;
default:
result64 = 0;
fprintf (stderr, "Bad switch\n");
abort ();
}
#ifdef DEBUG
printf("DBG: Convert: returning 0x%s (to format = %s)\n",pr_addr(result64),DOFMT(to));
#endif /* DEBUG */
return(result64);
}
/*-- co-processor support routines ------------------------------------------*/
static int UNUSED
CoProcPresent(coproc_number)
unsigned int coproc_number;
{
/* Return TRUE if simulator provides a model for the given co-processor number */
return(0);
}
void
cop_lw (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int coproc_num,
int coproc_reg,
unsigned int memword)
{
switch (coproc_num)
{
case 1:
if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
{
#ifdef DEBUG
printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
#endif
StoreFPR(coproc_reg,fmt_word,(uword64)memword);
FPR_STATE[coproc_reg] = fmt_uninterpreted;
break;
}
default:
#if 0 /* this should be controlled by a configuration option */
sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia));
#endif
break;
}
return;
}
void
cop_ld (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int coproc_num,
int coproc_reg,
uword64 memword)
{
switch (coproc_num) {
case 1:
if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
{
StoreFPR(coproc_reg,fmt_uninterpreted,memword);
break;
}
default:
#if 0 /* this message should be controlled by a configuration option */
sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia));
#endif
break;
}
return;
}
/* start-sanitize-sky */
#if defined(TARGET_SKY) && !defined(TARGET_SKY_B)
void
cop_lq (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int coproc_num,
int coproc_reg,
unsigned128 memword)
{
switch (coproc_num)
{
case 2:
{
int i;
while(vu0_busy())
vu0_issue(sd);
/* one word at a time, argh! */
for(i=0; i<4; i++)
{
unsigned_4 value;
value = H2T_4(*A4_16(& memword, 3-i));
write_vu_vec_reg(&(vu0_device.regs), coproc_reg, i, & value);
}
}
break;
default:
sim_io_printf(sd,"COP_LQ(%d,%d,??) at PC = 0x%s : TODO (architecture specific)\n",
coproc_num,coproc_reg,pr_addr(cia));
break;
}
return;
}
#endif /* TARGET_SKY */
/* end-sanitize-sky */
unsigned int
cop_sw (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int coproc_num,
int coproc_reg)
{
unsigned int value = 0;
switch (coproc_num)
{
case 1:
if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
{
FP_formats hold;
hold = FPR_STATE[coproc_reg];
FPR_STATE[coproc_reg] = fmt_word;
value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted);
FPR_STATE[coproc_reg] = hold;
break;
}
default:
#if 0 /* should be controlled by configuration option */
sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
#endif
break;
}
return(value);
}
uword64
cop_sd (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int coproc_num,
int coproc_reg)
{
uword64 value = 0;
switch (coproc_num)
{
case 1:
if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
{
value = ValueFPR(coproc_reg,fmt_uninterpreted);
break;
}
default:
#if 0 /* should be controlled by configuration option */
sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
#endif
break;
}
return(value);
}
/* start-sanitize-sky */
#if defined(TARGET_SKY) && !defined(TARGET_SKY_B)
unsigned128
cop_sq (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int coproc_num,
int coproc_reg)
{
unsigned128 value = U16_8(0, 0);
switch (coproc_num)
{
case 2:
{
unsigned_16 xyzw;
int i;
while(vu0_busy())
vu0_issue(sd);
/* one word at a time, argh! */
for(i=0; i<4; i++)
{
unsigned_4 value;
read_vu_vec_reg(&(vu0_device.regs), coproc_reg, i, & value);
*A4_16(& xyzw, 3-i) = T2H_4(value);
}
return xyzw;
}
break;
default:
sim_io_printf(sd,"COP_SQ(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",
coproc_num,coproc_reg,pr_addr(cia));
break;
}
return(value);
}
#endif /* TARGET_SKY */
/* end-sanitize-sky */
void
decode_coproc (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
unsigned int instruction)
{
int coprocnum = ((instruction >> 26) & 3);
switch (coprocnum)
{
case 0: /* standard CPU control and cache registers */
{
int code = ((instruction >> 21) & 0x1F);
int rt = ((instruction >> 16) & 0x1F);
int rd = ((instruction >> 11) & 0x1F);
int tail = instruction & 0x3ff;
/* R4000 Users Manual (second edition) lists the following CP0
instructions:
CODE><-RT><RD-><--TAIL--->
DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000)
DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000)
MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000)
MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000)
TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001)
TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010)
TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110)
TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000)
CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
ERET Exception return (VR4100 = 01000010000000000000000000011000)
*/
if (((code == 0x00) || (code == 0x04)) && tail == 0)
{
/* M[TF]C0 - 32 bit word */
switch (rd) /* NOTEs: Standard CP0 registers */
{
/* 0 = Index R4000 VR4100 VR4300 */
/* 1 = Random R4000 VR4100 VR4300 */
/* 2 = EntryLo0 R4000 VR4100 VR4300 */
/* 3 = EntryLo1 R4000 VR4100 VR4300 */
/* 4 = Context R4000 VR4100 VR4300 */
/* 5 = PageMask R4000 VR4100 VR4300 */
/* 6 = Wired R4000 VR4100 VR4300 */
/* 8 = BadVAddr R4000 VR4100 VR4300 */
/* 9 = Count R4000 VR4100 VR4300 */
/* 10 = EntryHi R4000 VR4100 VR4300 */
/* 11 = Compare R4000 VR4100 VR4300 */
/* 12 = SR R4000 VR4100 VR4300 */
#ifdef SUBTARGET_R3900
case 3:
/* ignore */
break;
/* 3 = Config R3900 */
case 7:
/* ignore */
break;
/* 3 = Cache R3900 */
#endif /* SUBTARGET_R3900 */
case 12:
if (code == 0x00)
GPR[rt] = SR;
else
SR = GPR[rt];
break;
/* 13 = Cause R4000 VR4100 VR4300 */
case 13:
if (code == 0x00)
GPR[rt] = CAUSE;
else
CAUSE = GPR[rt];
break;
/* 14 = EPC R4000 VR4100 VR4300 */
case 14:
if (code == 0x00)
GPR[rt] = (signed_word) (signed_address) EPC;
else
EPC = GPR[rt];
break;
/* 15 = PRId R4000 VR4100 VR4300 */
#ifdef SUBTARGET_R3900
/* 16 = Debug */
case 16:
if (code == 0x00)
GPR[rt] = Debug;
else
Debug = GPR[rt];
break;
#else
/* 16 = Config R4000 VR4100 VR4300 */
case 16:
if (code == 0x00)
GPR[rt] = C0_CONFIG;
else
C0_CONFIG = GPR[rt];
break;
#endif
#ifdef SUBTARGET_R3900
/* 17 = Debug */
case 17:
if (code == 0x00)
GPR[rt] = DEPC;
else
DEPC = GPR[rt];
break;
#else
/* 17 = LLAddr R4000 VR4100 VR4300 */
#endif
/* 18 = WatchLo R4000 VR4100 VR4300 */
/* 19 = WatchHi R4000 VR4100 VR4300 */
/* 20 = XContext R4000 VR4100 VR4300 */
/* 26 = PErr or ECC R4000 VR4100 VR4300 */
/* 27 = CacheErr R4000 VR4100 */
/* 28 = TagLo R4000 VR4100 VR4300 */
/* 29 = TagHi R4000 VR4100 VR4300 */
/* 30 = ErrorEPC R4000 VR4100 VR4300 */
GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
/* CPR[0,rd] = GPR[rt]; */
default:
if (code == 0x00)
GPR[rt] = (signed_word) (signed32) COP0_GPR[rd];
else
COP0_GPR[rd] = GPR[rt];
#if 0
if (code == 0x00)
sim_io_printf(sd,"Warning: MFC0 %d,%d ignored (architecture specific)\n",rt,rd);
else
sim_io_printf(sd,"Warning: MTC0 %d,%d ignored (architecture specific)\n",rt,rd);
#endif
}
}
/* start-sanitize-r5900 */
else if (((code == 0x00) || (code == 0x04)) && rd == 0x18 && tail > 0 && tail < NR_COP0_BP)
/* Break-point registers */
{
if (code == 0x00)
GPR[rt] = (signed_word) (signed32) COP0_BP[tail];
else
COP0_BP[tail] = GPR[rt];
}
else if (((code == 0x00) || (code == 0x04)) && rd == 0x19 && tail > 0 && tail < NR_COP0_P)
/* Performance registers */
{
if (code == 0x00)
GPR[rt] = (signed_word) (signed32) COP0_P[tail];
else
COP0_P[tail] = GPR[rt];
}
/* end-sanitize-r5900 */
else if (code == 0x10 && (tail & 0x3f) == 0x18)
{
/* ERET */
if (SR & status_ERL)
{
/* Oops, not yet available */
sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet");
PC = EPC;
SR &= ~status_ERL;
}
else
{
PC = EPC;
SR &= ~status_EXL;
}
}
else if (code == 0x10 && (tail & 0x3f) == 0x10)
{
/* RFE */
#ifdef SUBTARGET_R3900
/* TX39: Copy IEp/KUp -> IEc/KUc, and IEo/KUo -> IEp/KUp */
/* shift IE/KU history bits right */
SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 5, 2), 3, 0);
/* TODO: CACHE register */
#endif /* SUBTARGET_R3900 */
}
else if (code == 0x10 && (tail & 0x3f) == 0x1F)
{
/* DERET */
Debug &= ~Debug_DM;
DELAYSLOT();
DSPC = DEPC;
}
else
sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
/* TODO: When executing an ERET or RFE instruction we should
clear LLBIT, to ensure that any out-standing atomic
read/modify/write sequence fails. */
}
break;
case 2: /* co-processor 2 */
{
int handle = 0;
/* start-sanitize-sky */
#if defined(TARGET_SKY) && !defined(TARGET_SKY_B)
/* On the R5900, this refers to a "VU" vector co-processor. */
int i_25_21 = (instruction >> 21) & 0x1f;
int i_20_16 = (instruction >> 16) & 0x1f;
int i_20_6 = (instruction >> 6) & 0x7fff;
int i_15_11 = (instruction >> 11) & 0x1f;
int i_15_0 = instruction & 0xffff;
int i_10_1 = (instruction >> 1) & 0x3ff;
int i_10_0 = instruction & 0x7ff;
int i_10_6 = (instruction >> 6) & 0x1f;
int i_5_0 = instruction & 0x03f;
int interlock = instruction & 0x01;
handle = 1;
/* test COP2 usability */
if(! (SR & status_CU2))
{
SignalException(CoProcessorUnusable,instruction);
/* NOTREACHED */
}
/* BC2T/BC2F/BC2TL/BC2FL handled in r5900.igen */
else if((i_25_21 == 0x02 && i_10_1 == 0x000) || /* CFC2 */
(i_25_21 == 0x01)) /* QMFC2 */
{
int rt = i_20_16;
int id = i_15_11;
/* interlock checking */
/* POLICY: never busy in macro mode */
while(vu0_busy() && interlock)
vu0_issue(sd);
/* perform VU register access */
if(i_25_21 == 0x01) /* QMFC2 */
{
unsigned_4 x,y,z,w;
/* one word at a time, argh! */
read_vu_vec_reg(&(vu0_device.regs), id, 3, &w);
read_vu_vec_reg(&(vu0_device.regs), id, 2, &z);
read_vu_vec_reg(&(vu0_device.regs), id, 1, &y);
read_vu_vec_reg(&(vu0_device.regs), id, 0, &x);
GPR[rt] = U8_4(T2H_4(y), T2H_4(x));
GPR1[rt] = U8_4(T2H_4(w), T2H_4(z));
}
else /* CFC2 */
{
GPR[rt] = vu0_read_cop2_register(id);
}
}
else if((i_25_21 == 0x06 && i_10_1 == 0x000) || /* CTC2 */
(i_25_21 == 0x05)) /* QMTC2 */
{
int rt = i_20_16;
int id = i_15_11;
/* interlock checking: wait until M or E bits set */
/* POLICY: never busy in macro mode */
while(vu0_busy() && interlock)
{
if(vu0_micro_interlock_released())
{
vu0_micro_interlock_clear();
break;
}
vu0_issue(sd);
}
/* perform VU register access */
if(i_25_21 == 0x05) /* QMTC2 */
{
unsigned_4 x,y,z,w;
x = H2T_4(V4_8(GPR[rt], 1));
y = H2T_4(V4_8(GPR[rt], 0));
z = H2T_4(V4_8(GPR1[rt], 1));
w = H2T_4(V4_8(GPR1[rt], 0));
/* one word at a time, argh! */
write_vu_vec_reg(&(vu0_device.regs), id, 3, & w);
write_vu_vec_reg(&(vu0_device.regs), id, 2, & z);
write_vu_vec_reg(&(vu0_device.regs), id, 1, & y);
write_vu_vec_reg(&(vu0_device.regs), id, 0, & x);
}
else /* CTC2 */
{
vu0_write_cop2_register(id, GPR[rt]);
}
}
else if(i_10_0 == 0x3bf) /* VWAITQ */
{
while(vu0_q_busy())
vu0_issue(sd);
}
else if(i_5_0 == 0x38) /* VCALLMS */
{
unsigned_4 data = H2T_2(i_20_6);
while(vu0_busy())
vu0_issue(sd);
/* write to reserved CIA register to get VU0 moving */
write_vu_special_reg(& vu0_device, VU_REG_CIA, & data);
ASSERT(vu0_busy());
}
else if(i_5_0 == 0x39) /* VCALLMSR */
{
unsigned_4 data;
while(vu0_busy())
vu0_issue(sd);
read_vu_special_reg(& vu0_device, VU_REG_CMSAR0, & data);
/* write to reserved CIA register to get VU0 moving */
write_vu_special_reg(& vu0_device, VU_REG_CIA, & data);
ASSERT(vu0_busy());
}
/* handle all remaining UPPER VU instructions in one block */
else if((i_5_0 < 0x30) || /* VADDx .. VMINI */
(i_5_0 >= 0x3c && i_10_6 < 0x0c)) /* VADDAx .. VNOP */
{
unsigned_4 vu_upper, vu_lower;
vu_upper =
0x00000000 | /* bits 31 .. 25 */
(instruction & 0x01ffffff); /* bits 24 .. 0 */
vu_lower = 0x8000033c; /* NOP */
/* POLICY: never busy in macro mode */
while(vu0_busy())
vu0_issue(sd);
vu0_macro_issue(vu_upper, vu_lower);
/* POLICY: wait for completion of macro-instruction */
while(vu0_busy())
vu0_issue(sd);
}
/* handle all remaining LOWER VU instructions in one block */
else if((i_5_0 >= 0x30 && i_5_0 <= 0x35) || /* VIADD .. VIOR */
(i_5_0 >= 0x3c && i_10_6 >= 0x0c)) /* VMOVE .. VRXOR */
{ /* N.B.: VWAITQ already covered by prior case */
unsigned_4 vu_upper, vu_lower;
vu_upper = 0x000002ff; /* NOP/NOP */
vu_lower =
0x80000000 | /* bits 31 .. 25 */
(instruction & 0x01ffffff); /* bits 24 .. 0 */
/* POLICY: never busy in macro mode */
while(vu0_busy())
vu0_issue(sd);
vu0_macro_issue(vu_upper, vu_lower);
/* POLICY: wait for completion of macro-instruction */
while(vu0_busy())
vu0_issue(sd);
}
/* ... no other COP2 instructions ... */
else
{
SignalException(ReservedInstruction, instruction);
/* NOTREACHED */
}
#endif /* TARGET_SKY */
/* end-sanitize-sky */
if(! handle)
{
sim_io_eprintf(sd, "COP2 instruction 0x%08X at PC = 0x%s : No handler present\n",
instruction,pr_addr(cia));
}
}
break;
case 1: /* should not occur (FPU co-processor) */
case 3: /* should not occur (FPU co-processor) */
SignalException(ReservedInstruction,instruction);
break;
}
return;
}
/*-- instruction simulation -------------------------------------------------*/
/* When the IGEN simulator is being built, the function below is be
replaced by a generated version. However, WITH_IGEN == 2 indicates
that the fubction below should be compiled but under a different
name (to allow backward compatibility) */
#if (WITH_IGEN != 1)
#if (WITH_IGEN > 1)
void old_engine_run PARAMS ((SIM_DESC sd, int next_cpu_nr, int siggnal));
void
old_engine_run (sd, next_cpu_nr, nr_cpus, siggnal)
#else
void
sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal)
#endif
SIM_DESC sd;
int next_cpu_nr; /* ignore */
int nr_cpus; /* ignore */
int siggnal; /* ignore */
{
sim_cpu *cpu = STATE_CPU (sd, 0); /* hardwire to cpu 0 */
#if !defined(FASTSIM)
unsigned int pipeline_count = 1;
#endif
#ifdef DEBUG
if (STATE_MEMORY (sd) == NULL) {
printf("DBG: simulate() entered with no memory\n");
exit(1);
}
#endif /* DEBUG */
#if 0 /* Disabled to check that everything works OK */
/* The VR4300 seems to sign-extend the PC on its first
access. However, this may just be because it is currently
configured in 32bit mode. However... */
PC = SIGNEXTEND(PC,32);
#endif
/* main controlling loop */
while (1) {
/* vaddr is slowly being replaced with cia - current instruction
address */
address_word cia = (uword64)PC;
address_word vaddr = cia;
address_word paddr;
int cca;
unsigned int instruction; /* uword64? what's this used for? FIXME! */
#ifdef DEBUG
{
printf("DBG: state = 0x%08X :",state);
if (state & simHALTEX) printf(" simHALTEX");
if (state & simHALTIN) printf(" simHALTIN");
printf("\n");
}
#endif /* DEBUG */
DSSTATE = (STATE & simDELAYSLOT);
#ifdef DEBUG
if (dsstate)
sim_io_printf(sd,"DBG: DSPC = 0x%s\n",pr_addr(DSPC));
#endif /* DEBUG */
/* Fetch the next instruction from the simulator memory: */
if (AddressTranslation(cia,isINSTRUCTION,isLOAD,&paddr,&cca,isTARGET,isREAL)) {
if ((vaddr & 1) == 0) {
/* Copy the action of the LW instruction */
unsigned int reverse = (ReverseEndian ? (LOADDRMASK >> 2) : 0);
unsigned int bigend = (BigEndianCPU ? (LOADDRMASK >> 2) : 0);
uword64 value;
unsigned int byte;
paddr = ((paddr & ~LOADDRMASK) | ((paddr & LOADDRMASK) ^ (reverse << 2)));
LoadMemory(&value,NULL,cca,AccessLength_WORD,paddr,vaddr,isINSTRUCTION,isREAL);
byte = ((vaddr & LOADDRMASK) ^ (bigend << 2));
instruction = ((value >> (8 * byte)) & 0xFFFFFFFF);
} else {
/* Copy the action of the LH instruction */
unsigned int reverse = (ReverseEndian ? (LOADDRMASK >> 1) : 0);
unsigned int bigend = (BigEndianCPU ? (LOADDRMASK >> 1) : 0);
uword64 value;
unsigned int byte;
paddr = (((paddr & ~ (uword64) 1) & ~LOADDRMASK)
| (((paddr & ~ (uword64) 1) & LOADDRMASK) ^ (reverse << 1)));
LoadMemory(&value,NULL,cca, AccessLength_HALFWORD,
paddr & ~ (uword64) 1,
vaddr, isINSTRUCTION, isREAL);
byte = (((vaddr &~ (uword64) 1) & LOADDRMASK) ^ (bigend << 1));
instruction = ((value >> (8 * byte)) & 0xFFFF);
}
} else {
fprintf(stderr,"Cannot translate address for PC = 0x%s failed\n",pr_addr(PC));
exit(1);
}
#ifdef DEBUG
sim_io_printf(sd,"DBG: fetched 0x%08X from PC = 0x%s\n",instruction,pr_addr(PC));
#endif /* DEBUG */
/* This is required by exception processing, to ensure that we can
cope with exceptions in the delay slots of branches that may
already have changed the PC. */
if ((vaddr & 1) == 0)
PC += 4; /* increment ready for the next fetch */
else
PC += 2;
/* NOTE: If we perform a delay slot change to the PC, this
increment is not requuired. However, it would make the
simulator more complicated to try and avoid this small hit. */
/* Currently this code provides a simple model. For more
complicated models we could perform exception status checks at
this point, and set the simSTOP state as required. This could
also include processing any hardware interrupts raised by any
I/O model attached to the simulator context.
Support for "asynchronous" I/O events within the simulated world
could be providing by managing a counter, and calling a I/O
specific handler when a particular threshold is reached. On most
architectures a decrement and check for zero operation is
usually quicker than an increment and compare. However, the
process of managing a known value decrement to zero, is higher
than the cost of using an explicit value UINT_MAX into the
future. Which system is used will depend on how complicated the
I/O model is, and how much it is likely to affect the simulator
bandwidth.
If events need to be scheduled further in the future than
UINT_MAX event ticks, then the I/O model should just provide its
own counter, triggered from the event system. */
/* MIPS pipeline ticks. To allow for future support where the
pipeline hit of individual instructions is known, this control
loop manages a "pipeline_count" variable. It is initialised to
1 (one), and will only be changed by the simulator engine when
executing an instruction. If the engine does not have access to
pipeline cycle count information then all instructions will be
treated as using a single cycle. NOTE: A standard system is not
provided by the default simulator because different MIPS
architectures have different cycle counts for the same
instructions.
[NOTE: pipeline_count has been replaced the event queue] */
/* shuffle the floating point status pipeline state */
ENGINE_ISSUE_PREFIX_HOOK();
/* NOTE: For multi-context simulation environments the "instruction"
variable should be local to this routine. */
/* Shorthand accesses for engine. Note: If we wanted to use global
variables (and a single-threaded simulator engine), then we can
create the actual variables with these names. */
if (!(STATE & simSKIPNEXT)) {
/* Include the simulator engine */
#include "oengine.c"
#if ((GPRLEN == 64) && !PROCESSOR_64BIT) || ((GPRLEN == 32) && PROCESSOR_64BIT)
#error "Mismatch between run-time simulator code and simulation engine"
#endif
#if (WITH_TARGET_WORD_BITSIZE != GPRLEN)
#error "Mismatch between configure WITH_TARGET_WORD_BITSIZE and gencode GPRLEN"
#endif
#if ((WITH_FLOATING_POINT == HARD_FLOATING_POINT) != defined (HASFPU))
#error "Mismatch between configure WITH_FLOATING_POINT and gencode HASFPU"
#endif
/* For certain MIPS architectures, GPR[0] is hardwired to zero. We
should check for it being changed. It is better doing it here,
than within the simulator, since it will help keep the simulator
small. */
if (ZERO != 0) {
#if defined(WARN_ZERO)
sim_io_eprintf(sd,"The ZERO register has been updated with 0x%s (PC = 0x%s) (reset back to zero)\n",pr_addr(ZERO),pr_addr(cia));
#endif /* WARN_ZERO */
ZERO = 0; /* reset back to zero before next instruction */
}
} else /* simSKIPNEXT check */
STATE &= ~simSKIPNEXT;
/* If the delay slot was active before the instruction is
executed, then update the PC to its new value: */
if (DSSTATE) {
#ifdef DEBUG
printf("DBG: dsstate set before instruction execution - updating PC to 0x%s\n",pr_addr(DSPC));
#endif /* DEBUG */
PC = DSPC;
CANCELDELAYSLOT();
}
if (MIPSISA < 4)
PENDING_TICK();
#if !defined(FASTSIM)
if (sim_events_tickn (sd, pipeline_count))
{
/* cpu->cia = cia; */
sim_events_process (sd);
}
#else
if (sim_events_tick (sd))
{
/* cpu->cia = cia; */
sim_events_process (sd);
}
#endif /* FASTSIM */
}
}
#endif
/* This code copied from gdb's utils.c. Would like to share this code,
but don't know of a common place where both could get to it. */
/* Temporary storage using circular buffer */
#define NUMCELLS 16
#define CELLSIZE 32
static char*
get_cell()
{
static char buf[NUMCELLS][CELLSIZE];
static int cell=0;
if (++cell>=NUMCELLS) cell=0;
return buf[cell];
}
/* Print routines to handle variable size regs, etc */
/* Eliminate warning from compiler on 32-bit systems */
static int thirty_two = 32;
char*
pr_addr(addr)
SIM_ADDR addr;
{
char *paddr_str=get_cell();
switch (sizeof(addr))
{
case 8:
sprintf(paddr_str,"%08lx%08lx",
(unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
break;
case 4:
sprintf(paddr_str,"%08lx",(unsigned long)addr);
break;
case 2:
sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
break;
default:
sprintf(paddr_str,"%x",addr);
}
return paddr_str;
}
char*
pr_uword64(addr)
uword64 addr;
{
char *paddr_str=get_cell();
sprintf(paddr_str,"%08lx%08lx",
(unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
return paddr_str;
}
/*---------------------------------------------------------------------------*/
/*> EOF interp.c <*/