c334512419
This is the second part of enhancing the debugger to print the value of arrays of records whose size is variable when only standard DWARF info is available (no GNAT encoding). For instance: subtype Small_Type is Integer range 0 .. 10; type Record_Type (I : Small_Type := 0) is record S : String (1 .. I); end record; type Array_Type is array (Integer range <>) of Record_Type; A1 : Array_Type := (1 => (I => 0, S => <>), 2 => (I => 1, S => "A"), 3 => (I => 2, S => "AB")); Currently, GDB prints the following output: (gdb) p a1 $1 = ( The error happens while the ada-valprint module is trying to print the value of an element of our array. Because of the fact that the array's element (type Record_Type) has a variant size, the DWARF info for our array provide the array's stride: <1><749>: Abbrev Number: 10 (DW_TAG_array_type) <74a> DW_AT_name : (indirect string, offset: 0xb6d): pck__T18s <74e> DW_AT_byte_stride : 16 <74f> DW_AT_type : <0x6ea> And because our array has a stride, ada-valprint treats it the same way as packed arrays (see ada-valprint.c::ada_val_print_array): if (TYPE_FIELD_BITSIZE (type, 0) > 0) val_print_packed_array_elements (type, valaddr, offset_aligned, 0, stream, recurse, original_value, options); The first thing that we should notice in the call above is that the "valaddr" buffer and the associated offset (OFFSET_ALIGNED) is passed, but that the corresponding array's address is not. This can be explained by looking inside val_print_packed_array_elements, where we see that the function unpacks each element of our array from the buffer alone (ada_value_primitive_packed_val), and then prints the resulting artificial value instead: v0 = ada_value_primitive_packed_val (NULL, valaddr + offset, (i0 * bitsize) / HOST_CHAR_BIT, (i0 * bitsize) % HOST_CHAR_BIT, bitsize, elttype); [...] val_print (elttype, value_contents_for_printing (v0), value_embedded_offset (v0), 0, stream, recurse + 1, v0, &opts, current_language); Of particular interest, here, is the fact that we call val_print with a null address, which is OK, since we're providing a buffer instead (value_contents_for_printing). Also, providing an address might not always possible, since packing could place elements at boundaries that are not byte-aligned. Things go south when val_print tries to see if there is a pretty-printer that could be applied. In particular, one of the first things that the Python pretty-printer does is to create a value using our buffer, and the given address, which in this case is null (see call to value_from_contents_and_address in gdbpy_apply_val_pretty_printer). value_from_contents_and_address, in turn immediately tries to resolve the type, using the given address, which is null. But, because our array element is a record containing an array whose bound is the value of one of its elements (the "s" component), the debugging info for the array's upper bound is a reference... <3><71a>: Abbrev Number: 7 (DW_TAG_subrange_type) <71b> DW_AT_type : <0x724> <71f> DW_AT_upper_bound : <0x703> ... to component "i" of our record... <2><703>: Abbrev Number: 5 (DW_TAG_member) <704> DW_AT_name : i <706> DW_AT_decl_file : 2 <707> DW_AT_decl_line : 6 <708> DW_AT_type : <0x6d1> <70c> DW_AT_data_member_location: 0 ... where that component is located at offset 0 of the start of the record. dwarf2_evaluate_property correctly determines the offset where to load the value of the bound from, but then tries to read that value from inferior memory using the address that was given, which is null. See case PROP_ADDR_OFFSET in dwarf2_evaluate_property: val = value_at (baton->offset_info.type, pinfo->addr + baton->offset_info.offset); This triggers a memory error, which then causes the printing to terminate. Since there are going to be situations where providing an address alone is not going to be sufficient (packed arrays where array elements are not stored at byte boundaries), this patch fixes the issue by enhancing the type resolution to take both address and data. This follows the same principle as the val_print module, where both address and buffer ("valaddr") can be passed as arguments. If the data has already been fetched from inferior memory (or provided by the debugging info in some form -- Eg a constant), then use that data instead of reading it from inferior memory. Note that this should also be a good step towards being able to handle dynamic types whose value is stored outside of inferior memory (Eg: in a register). With this patch, GDB isn't able to print all of A1, but does perform a little better: (gdb) p a1 $1 = ((i => 0, s => , (i => 1, s => , (i => 2, s => ) There is another issue which is independent of this one, and will therefore be patched separately. gdb/ChangeLog: * dwarf2loc.h (struct property_addr_info): Add "valaddr" field. * dwarf2loc.c (dwarf2_evaluate_property): Add handling of pinfo->valaddr. * gdbtypes.h (resolve_dynamic_type): Add "valaddr" parameter. * gdbtypes.c (resolve_dynamic_struct): Set pinfo.valaddr. (resolve_dynamic_type_internal): Set pinfo.valaddr. Add handling of addr_stack->valaddr. (resolve_dynamic_type): Add "valaddr" parameter. Set pinfo.valaddr field. * ada-lang.c (ada_discrete_type_high_bound): Update call to resolve_dynamic_type. (ada_discrete_type_low_bound): Likewise. * findvar.c (default_read_var_value): Likewise. * value.c (value_from_contents_and_address): Likewise.
802 lines
23 KiB
C
802 lines
23 KiB
C
/* Find a variable's value in memory, for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "floatformat.h"
|
||
#include "symfile.h" /* for overlay functions */
|
||
#include "regcache.h"
|
||
#include "user-regs.h"
|
||
#include "block.h"
|
||
#include "objfiles.h"
|
||
#include "language.h"
|
||
|
||
/* Basic byte-swapping routines. All 'extract' functions return a
|
||
host-format integer from a target-format integer at ADDR which is
|
||
LEN bytes long. */
|
||
|
||
#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
|
||
/* 8 bit characters are a pretty safe assumption these days, so we
|
||
assume it throughout all these swapping routines. If we had to deal with
|
||
9 bit characters, we would need to make len be in bits and would have
|
||
to re-write these routines... */
|
||
you lose
|
||
#endif
|
||
|
||
LONGEST
|
||
extract_signed_integer (const gdb_byte *addr, int len,
|
||
enum bfd_endian byte_order)
|
||
{
|
||
LONGEST retval;
|
||
const unsigned char *p;
|
||
const unsigned char *startaddr = addr;
|
||
const unsigned char *endaddr = startaddr + len;
|
||
|
||
if (len > (int) sizeof (LONGEST))
|
||
error (_("\
|
||
That operation is not available on integers of more than %d bytes."),
|
||
(int) sizeof (LONGEST));
|
||
|
||
/* Start at the most significant end of the integer, and work towards
|
||
the least significant. */
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
p = startaddr;
|
||
/* Do the sign extension once at the start. */
|
||
retval = ((LONGEST) * p ^ 0x80) - 0x80;
|
||
for (++p; p < endaddr; ++p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
else
|
||
{
|
||
p = endaddr - 1;
|
||
/* Do the sign extension once at the start. */
|
||
retval = ((LONGEST) * p ^ 0x80) - 0x80;
|
||
for (--p; p >= startaddr; --p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
ULONGEST
|
||
extract_unsigned_integer (const gdb_byte *addr, int len,
|
||
enum bfd_endian byte_order)
|
||
{
|
||
ULONGEST retval;
|
||
const unsigned char *p;
|
||
const unsigned char *startaddr = addr;
|
||
const unsigned char *endaddr = startaddr + len;
|
||
|
||
if (len > (int) sizeof (ULONGEST))
|
||
error (_("\
|
||
That operation is not available on integers of more than %d bytes."),
|
||
(int) sizeof (ULONGEST));
|
||
|
||
/* Start at the most significant end of the integer, and work towards
|
||
the least significant. */
|
||
retval = 0;
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = startaddr; p < endaddr; ++p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
else
|
||
{
|
||
for (p = endaddr - 1; p >= startaddr; --p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
/* Sometimes a long long unsigned integer can be extracted as a
|
||
LONGEST value. This is done so that we can print these values
|
||
better. If this integer can be converted to a LONGEST, this
|
||
function returns 1 and sets *PVAL. Otherwise it returns 0. */
|
||
|
||
int
|
||
extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
|
||
enum bfd_endian byte_order, LONGEST *pval)
|
||
{
|
||
const gdb_byte *p;
|
||
const gdb_byte *first_addr;
|
||
int len;
|
||
|
||
len = orig_len;
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = addr;
|
||
len > (int) sizeof (LONGEST) && p < addr + orig_len;
|
||
p++)
|
||
{
|
||
if (*p == 0)
|
||
len--;
|
||
else
|
||
break;
|
||
}
|
||
first_addr = p;
|
||
}
|
||
else
|
||
{
|
||
first_addr = addr;
|
||
for (p = addr + orig_len - 1;
|
||
len > (int) sizeof (LONGEST) && p >= addr;
|
||
p--)
|
||
{
|
||
if (*p == 0)
|
||
len--;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (len <= (int) sizeof (LONGEST))
|
||
{
|
||
*pval = (LONGEST) extract_unsigned_integer (first_addr,
|
||
sizeof (LONGEST),
|
||
byte_order);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Treat the bytes at BUF as a pointer of type TYPE, and return the
|
||
address it represents. */
|
||
CORE_ADDR
|
||
extract_typed_address (const gdb_byte *buf, struct type *type)
|
||
{
|
||
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
||
&& TYPE_CODE (type) != TYPE_CODE_REF)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("extract_typed_address: "
|
||
"type is not a pointer or reference"));
|
||
|
||
return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
|
||
}
|
||
|
||
/* All 'store' functions accept a host-format integer and store a
|
||
target-format integer at ADDR which is LEN bytes long. */
|
||
|
||
void
|
||
store_signed_integer (gdb_byte *addr, int len,
|
||
enum bfd_endian byte_order, LONGEST val)
|
||
{
|
||
gdb_byte *p;
|
||
gdb_byte *startaddr = addr;
|
||
gdb_byte *endaddr = startaddr + len;
|
||
|
||
/* Start at the least significant end of the integer, and work towards
|
||
the most significant. */
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = endaddr - 1; p >= startaddr; --p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = startaddr; p < endaddr; ++p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
store_unsigned_integer (gdb_byte *addr, int len,
|
||
enum bfd_endian byte_order, ULONGEST val)
|
||
{
|
||
unsigned char *p;
|
||
unsigned char *startaddr = (unsigned char *) addr;
|
||
unsigned char *endaddr = startaddr + len;
|
||
|
||
/* Start at the least significant end of the integer, and work towards
|
||
the most significant. */
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = endaddr - 1; p >= startaddr; --p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = startaddr; p < endaddr; ++p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Store the address ADDR as a pointer of type TYPE at BUF, in target
|
||
form. */
|
||
void
|
||
store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
|
||
{
|
||
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
||
&& TYPE_CODE (type) != TYPE_CODE_REF)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("store_typed_address: "
|
||
"type is not a pointer or reference"));
|
||
|
||
gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
|
||
}
|
||
|
||
|
||
|
||
/* Return a `value' with the contents of (virtual or cooked) register
|
||
REGNUM as found in the specified FRAME. The register's type is
|
||
determined by register_type(). */
|
||
|
||
struct value *
|
||
value_of_register (int regnum, struct frame_info *frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct value *reg_val;
|
||
|
||
/* User registers lie completely outside of the range of normal
|
||
registers. Catch them early so that the target never sees them. */
|
||
if (regnum >= gdbarch_num_regs (gdbarch)
|
||
+ gdbarch_num_pseudo_regs (gdbarch))
|
||
return value_of_user_reg (regnum, frame);
|
||
|
||
reg_val = value_of_register_lazy (frame, regnum);
|
||
value_fetch_lazy (reg_val);
|
||
return reg_val;
|
||
}
|
||
|
||
/* Return a `value' with the contents of (virtual or cooked) register
|
||
REGNUM as found in the specified FRAME. The register's type is
|
||
determined by register_type(). The value is not fetched. */
|
||
|
||
struct value *
|
||
value_of_register_lazy (struct frame_info *frame, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct value *reg_val;
|
||
|
||
gdb_assert (regnum < (gdbarch_num_regs (gdbarch)
|
||
+ gdbarch_num_pseudo_regs (gdbarch)));
|
||
|
||
/* We should have a valid (i.e. non-sentinel) frame. */
|
||
gdb_assert (frame_id_p (get_frame_id (frame)));
|
||
|
||
reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
|
||
VALUE_LVAL (reg_val) = lval_register;
|
||
VALUE_REGNUM (reg_val) = regnum;
|
||
VALUE_FRAME_ID (reg_val) = get_frame_id (frame);
|
||
return reg_val;
|
||
}
|
||
|
||
/* Given a pointer of type TYPE in target form in BUF, return the
|
||
address it represents. */
|
||
CORE_ADDR
|
||
unsigned_pointer_to_address (struct gdbarch *gdbarch,
|
||
struct type *type, const gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
|
||
}
|
||
|
||
CORE_ADDR
|
||
signed_pointer_to_address (struct gdbarch *gdbarch,
|
||
struct type *type, const gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
|
||
}
|
||
|
||
/* Given an address, store it as a pointer of type TYPE in target
|
||
format in BUF. */
|
||
void
|
||
unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
|
||
gdb_byte *buf, CORE_ADDR addr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
|
||
}
|
||
|
||
void
|
||
address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
|
||
gdb_byte *buf, CORE_ADDR addr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
|
||
}
|
||
|
||
/* Will calling read_var_value or locate_var_value on SYM end
|
||
up caring what frame it is being evaluated relative to? SYM must
|
||
be non-NULL. */
|
||
int
|
||
symbol_read_needs_frame (struct symbol *sym)
|
||
{
|
||
if (SYMBOL_COMPUTED_OPS (sym) != NULL)
|
||
return SYMBOL_COMPUTED_OPS (sym)->read_needs_frame (sym);
|
||
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
/* All cases listed explicitly so that gcc -Wall will detect it if
|
||
we failed to consider one. */
|
||
case LOC_COMPUTED:
|
||
gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
|
||
|
||
case LOC_REGISTER:
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL:
|
||
return 1;
|
||
|
||
case LOC_UNDEF:
|
||
case LOC_CONST:
|
||
case LOC_STATIC:
|
||
case LOC_TYPEDEF:
|
||
|
||
case LOC_LABEL:
|
||
/* Getting the address of a label can be done independently of the block,
|
||
even if some *uses* of that address wouldn't work so well without
|
||
the right frame. */
|
||
|
||
case LOC_BLOCK:
|
||
case LOC_CONST_BYTES:
|
||
case LOC_UNRESOLVED:
|
||
case LOC_OPTIMIZED_OUT:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Private data to be used with minsym_lookup_iterator_cb. */
|
||
|
||
struct minsym_lookup_data
|
||
{
|
||
/* The name of the minimal symbol we are searching for. */
|
||
const char *name;
|
||
|
||
/* The field where the callback should store the minimal symbol
|
||
if found. It should be initialized to NULL before the search
|
||
is started. */
|
||
struct bound_minimal_symbol result;
|
||
};
|
||
|
||
/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
|
||
It searches by name for a minimal symbol within the given OBJFILE.
|
||
The arguments are passed via CB_DATA, which in reality is a pointer
|
||
to struct minsym_lookup_data. */
|
||
|
||
static int
|
||
minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
|
||
{
|
||
struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
|
||
|
||
gdb_assert (data->result.minsym == NULL);
|
||
|
||
data->result = lookup_minimal_symbol (data->name, NULL, objfile);
|
||
|
||
/* The iterator should stop iff a match was found. */
|
||
return (data->result.minsym != NULL);
|
||
}
|
||
|
||
/* A default implementation for the "la_read_var_value" hook in
|
||
the language vector which should work in most situations. */
|
||
|
||
struct value *
|
||
default_read_var_value (struct symbol *var, struct frame_info *frame)
|
||
{
|
||
struct value *v;
|
||
struct type *type = SYMBOL_TYPE (var);
|
||
CORE_ADDR addr;
|
||
|
||
/* Call check_typedef on our type to make sure that, if TYPE is
|
||
a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
|
||
instead of zero. However, we do not replace the typedef type by the
|
||
target type, because we want to keep the typedef in order to be able to
|
||
set the returned value type description correctly. */
|
||
check_typedef (type);
|
||
|
||
if (symbol_read_needs_frame (var))
|
||
gdb_assert (frame);
|
||
|
||
if (SYMBOL_COMPUTED_OPS (var) != NULL)
|
||
return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
|
||
|
||
switch (SYMBOL_CLASS (var))
|
||
{
|
||
case LOC_CONST:
|
||
if (is_dynamic_type (type))
|
||
{
|
||
/* Value is a constant byte-sequence and needs no memory access. */
|
||
type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
|
||
}
|
||
/* Put the constant back in target format. */
|
||
v = allocate_value (type);
|
||
store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
|
||
gdbarch_byte_order (get_type_arch (type)),
|
||
(LONGEST) SYMBOL_VALUE (var));
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
|
||
case LOC_LABEL:
|
||
/* Put the constant back in target format. */
|
||
v = allocate_value (type);
|
||
if (overlay_debugging)
|
||
{
|
||
CORE_ADDR addr
|
||
= symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
|
||
SYMBOL_OBJ_SECTION (symbol_objfile (var),
|
||
var));
|
||
|
||
store_typed_address (value_contents_raw (v), type, addr);
|
||
}
|
||
else
|
||
store_typed_address (value_contents_raw (v), type,
|
||
SYMBOL_VALUE_ADDRESS (var));
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
|
||
case LOC_CONST_BYTES:
|
||
if (is_dynamic_type (type))
|
||
{
|
||
/* Value is a constant byte-sequence and needs no memory access. */
|
||
type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
|
||
}
|
||
v = allocate_value (type);
|
||
memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
|
||
TYPE_LENGTH (type));
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
|
||
case LOC_STATIC:
|
||
if (overlay_debugging)
|
||
addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
|
||
SYMBOL_OBJ_SECTION (symbol_objfile (var),
|
||
var));
|
||
else
|
||
addr = SYMBOL_VALUE_ADDRESS (var);
|
||
break;
|
||
|
||
case LOC_ARG:
|
||
addr = get_frame_args_address (frame);
|
||
if (!addr)
|
||
error (_("Unknown argument list address for `%s'."),
|
||
SYMBOL_PRINT_NAME (var));
|
||
addr += SYMBOL_VALUE (var);
|
||
break;
|
||
|
||
case LOC_REF_ARG:
|
||
{
|
||
struct value *ref;
|
||
CORE_ADDR argref;
|
||
|
||
argref = get_frame_args_address (frame);
|
||
if (!argref)
|
||
error (_("Unknown argument list address for `%s'."),
|
||
SYMBOL_PRINT_NAME (var));
|
||
argref += SYMBOL_VALUE (var);
|
||
ref = value_at (lookup_pointer_type (type), argref);
|
||
addr = value_as_address (ref);
|
||
break;
|
||
}
|
||
|
||
case LOC_LOCAL:
|
||
addr = get_frame_locals_address (frame);
|
||
addr += SYMBOL_VALUE (var);
|
||
break;
|
||
|
||
case LOC_TYPEDEF:
|
||
error (_("Cannot look up value of a typedef `%s'."),
|
||
SYMBOL_PRINT_NAME (var));
|
||
break;
|
||
|
||
case LOC_BLOCK:
|
||
if (overlay_debugging)
|
||
addr = symbol_overlayed_address
|
||
(BLOCK_START (SYMBOL_BLOCK_VALUE (var)),
|
||
SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
|
||
else
|
||
addr = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
|
||
break;
|
||
|
||
case LOC_REGISTER:
|
||
case LOC_REGPARM_ADDR:
|
||
{
|
||
int regno = SYMBOL_REGISTER_OPS (var)
|
||
->register_number (var, get_frame_arch (frame));
|
||
struct value *regval;
|
||
|
||
if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
|
||
{
|
||
regval = value_from_register (lookup_pointer_type (type),
|
||
regno,
|
||
frame);
|
||
|
||
if (regval == NULL)
|
||
error (_("Value of register variable not available for `%s'."),
|
||
SYMBOL_PRINT_NAME (var));
|
||
|
||
addr = value_as_address (regval);
|
||
}
|
||
else
|
||
{
|
||
regval = value_from_register (type, regno, frame);
|
||
|
||
if (regval == NULL)
|
||
error (_("Value of register variable not available for `%s'."),
|
||
SYMBOL_PRINT_NAME (var));
|
||
return regval;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case LOC_COMPUTED:
|
||
gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
|
||
|
||
case LOC_UNRESOLVED:
|
||
{
|
||
struct minsym_lookup_data lookup_data;
|
||
struct minimal_symbol *msym;
|
||
struct obj_section *obj_section;
|
||
|
||
memset (&lookup_data, 0, sizeof (lookup_data));
|
||
lookup_data.name = SYMBOL_LINKAGE_NAME (var);
|
||
|
||
gdbarch_iterate_over_objfiles_in_search_order
|
||
(symbol_arch (var),
|
||
minsym_lookup_iterator_cb, &lookup_data,
|
||
symbol_objfile (var));
|
||
msym = lookup_data.result.minsym;
|
||
|
||
if (msym == NULL)
|
||
error (_("No global symbol \"%s\"."), SYMBOL_LINKAGE_NAME (var));
|
||
if (overlay_debugging)
|
||
addr = symbol_overlayed_address (BMSYMBOL_VALUE_ADDRESS (lookup_data.result),
|
||
MSYMBOL_OBJ_SECTION (lookup_data.result.objfile,
|
||
msym));
|
||
else
|
||
addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
|
||
|
||
obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
|
||
if (obj_section
|
||
&& (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
|
||
addr = target_translate_tls_address (obj_section->objfile, addr);
|
||
}
|
||
break;
|
||
|
||
case LOC_OPTIMIZED_OUT:
|
||
return allocate_optimized_out_value (type);
|
||
|
||
default:
|
||
error (_("Cannot look up value of a botched symbol `%s'."),
|
||
SYMBOL_PRINT_NAME (var));
|
||
break;
|
||
}
|
||
|
||
v = value_at_lazy (type, addr);
|
||
return v;
|
||
}
|
||
|
||
/* Calls VAR's language la_read_var_value hook with the given arguments. */
|
||
|
||
struct value *
|
||
read_var_value (struct symbol *var, struct frame_info *frame)
|
||
{
|
||
const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var));
|
||
|
||
gdb_assert (lang != NULL);
|
||
gdb_assert (lang->la_read_var_value != NULL);
|
||
|
||
return lang->la_read_var_value (var, frame);
|
||
}
|
||
|
||
/* Install default attributes for register values. */
|
||
|
||
struct value *
|
||
default_value_from_register (struct gdbarch *gdbarch, struct type *type,
|
||
int regnum, struct frame_id frame_id)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
struct value *value = allocate_value (type);
|
||
|
||
VALUE_LVAL (value) = lval_register;
|
||
VALUE_FRAME_ID (value) = frame_id;
|
||
VALUE_REGNUM (value) = regnum;
|
||
|
||
/* Any structure stored in more than one register will always be
|
||
an integral number of registers. Otherwise, you need to do
|
||
some fiddling with the last register copied here for little
|
||
endian machines. */
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
||
&& len < register_size (gdbarch, regnum))
|
||
/* Big-endian, and we want less than full size. */
|
||
set_value_offset (value, register_size (gdbarch, regnum) - len);
|
||
else
|
||
set_value_offset (value, 0);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* VALUE must be an lval_register value. If regnum is the value's
|
||
associated register number, and len the length of the values type,
|
||
read one or more registers in FRAME, starting with register REGNUM,
|
||
until we've read LEN bytes.
|
||
|
||
If any of the registers we try to read are optimized out, then mark the
|
||
complete resulting value as optimized out. */
|
||
|
||
void
|
||
read_frame_register_value (struct value *value, struct frame_info *frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
int offset = 0;
|
||
int reg_offset = value_offset (value);
|
||
int regnum = VALUE_REGNUM (value);
|
||
int len = TYPE_LENGTH (check_typedef (value_type (value)));
|
||
|
||
gdb_assert (VALUE_LVAL (value) == lval_register);
|
||
|
||
/* Skip registers wholly inside of REG_OFFSET. */
|
||
while (reg_offset >= register_size (gdbarch, regnum))
|
||
{
|
||
reg_offset -= register_size (gdbarch, regnum);
|
||
regnum++;
|
||
}
|
||
|
||
/* Copy the data. */
|
||
while (len > 0)
|
||
{
|
||
struct value *regval = get_frame_register_value (frame, regnum);
|
||
int reg_len = TYPE_LENGTH (value_type (regval)) - reg_offset;
|
||
|
||
/* If the register length is larger than the number of bytes
|
||
remaining to copy, then only copy the appropriate bytes. */
|
||
if (reg_len > len)
|
||
reg_len = len;
|
||
|
||
value_contents_copy (value, offset, regval, reg_offset, reg_len);
|
||
|
||
offset += reg_len;
|
||
len -= reg_len;
|
||
reg_offset = 0;
|
||
regnum++;
|
||
}
|
||
}
|
||
|
||
/* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
|
||
|
||
struct value *
|
||
value_from_register (struct type *type, int regnum, struct frame_info *frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct type *type1 = check_typedef (type);
|
||
struct value *v;
|
||
|
||
if (gdbarch_convert_register_p (gdbarch, regnum, type1))
|
||
{
|
||
int optim, unavail, ok;
|
||
|
||
/* The ISA/ABI need to something weird when obtaining the
|
||
specified value from this register. It might need to
|
||
re-order non-adjacent, starting with REGNUM (see MIPS and
|
||
i386). It might need to convert the [float] register into
|
||
the corresponding [integer] type (see Alpha). The assumption
|
||
is that gdbarch_register_to_value populates the entire value
|
||
including the location. */
|
||
v = allocate_value (type);
|
||
VALUE_LVAL (v) = lval_register;
|
||
VALUE_FRAME_ID (v) = get_frame_id (frame);
|
||
VALUE_REGNUM (v) = regnum;
|
||
ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
|
||
value_contents_raw (v), &optim,
|
||
&unavail);
|
||
|
||
if (!ok)
|
||
{
|
||
if (optim)
|
||
mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
|
||
if (unavail)
|
||
mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Construct the value. */
|
||
v = gdbarch_value_from_register (gdbarch, type,
|
||
regnum, get_frame_id (frame));
|
||
|
||
/* Get the data. */
|
||
read_frame_register_value (v, frame);
|
||
}
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Return contents of register REGNUM in frame FRAME as address.
|
||
Will abort if register value is not available. */
|
||
|
||
CORE_ADDR
|
||
address_from_register (int regnum, struct frame_info *frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
|
||
struct value *value;
|
||
CORE_ADDR result;
|
||
|
||
/* This routine may be called during early unwinding, at a time
|
||
where the ID of FRAME is not yet known. Calling value_from_register
|
||
would therefore abort in get_frame_id. However, since we only need
|
||
a temporary value that is never used as lvalue, we actually do not
|
||
really need to set its VALUE_FRAME_ID. Therefore, we re-implement
|
||
the core of value_from_register, but use the null_frame_id. */
|
||
|
||
/* Some targets require a special conversion routine even for plain
|
||
pointer types. Avoid constructing a value object in those cases. */
|
||
if (gdbarch_convert_register_p (gdbarch, regnum, type))
|
||
{
|
||
gdb_byte *buf = alloca (TYPE_LENGTH (type));
|
||
int optim, unavail, ok;
|
||
|
||
ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
|
||
buf, &optim, &unavail);
|
||
if (!ok)
|
||
{
|
||
/* This function is used while computing a location expression.
|
||
Complain about the value being optimized out, rather than
|
||
letting value_as_address complain about some random register
|
||
the expression depends on not being saved. */
|
||
error_value_optimized_out ();
|
||
}
|
||
|
||
return unpack_long (type, buf);
|
||
}
|
||
|
||
value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
|
||
read_frame_register_value (value, frame);
|
||
|
||
if (value_optimized_out (value))
|
||
{
|
||
/* This function is used while computing a location expression.
|
||
Complain about the value being optimized out, rather than
|
||
letting value_as_address complain about some random register
|
||
the expression depends on not being saved. */
|
||
error_value_optimized_out ();
|
||
}
|
||
|
||
result = value_as_address (value);
|
||
release_value (value);
|
||
value_free (value);
|
||
|
||
return result;
|
||
}
|
||
|