old-cross-binutils/gas/config/tc-mips.c
Ian Lance Taylor 41a0ed225b * config/tc-mips.c (mips16_extended_frag): Give an error for an
attempt to use a non absolute symbol in an extending frag.
1996-12-10 16:38:22 +00:00

10017 lines
268 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-mips.c -- assemble code for a MIPS chip.
Copyright (C) 1993, 1995, 1996 Free Software Foundation, Inc.
Contributed by the OSF and Ralph Campbell.
Written by Keith Knowles and Ralph Campbell, working independently.
Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
Support.
This file is part of GAS.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "as.h"
#include "config.h"
#include "subsegs.h"
#include <ctype.h>
#ifdef USE_STDARG
#include <stdarg.h>
#endif
#ifdef USE_VARARGS
#include <varargs.h>
#endif
#include "opcode/mips.h"
#ifdef OBJ_MAYBE_ELF
/* Clean up namespace so we can include obj-elf.h too. */
static int mips_output_flavor () { return OUTPUT_FLAVOR; }
#undef OBJ_PROCESS_STAB
#undef OUTPUT_FLAVOR
#undef S_GET_ALIGN
#undef S_GET_SIZE
#undef S_SET_ALIGN
#undef S_SET_SIZE
#undef TARGET_SYMBOL_FIELDS
#undef obj_frob_file
#undef obj_frob_file_after_relocs
#undef obj_frob_symbol
#undef obj_pop_insert
#undef obj_sec_sym_ok_for_reloc
#include "obj-elf.h"
/* Fix any of them that we actually care about. */
#undef OUTPUT_FLAVOR
#define OUTPUT_FLAVOR mips_output_flavor()
#endif
#if defined (OBJ_ELF)
#include "elf/mips.h"
#endif
#ifndef ECOFF_DEBUGGING
#define NO_ECOFF_DEBUGGING
#define ECOFF_DEBUGGING 0
#endif
#include "ecoff.h"
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
static char *mips_regmask_frag;
#endif
#define AT 1
#define TREG 24
#define PIC_CALL_REG 25
#define KT0 26
#define KT1 27
#define GP 28
#define SP 29
#define FP 30
#define RA 31
#define ILLEGAL_REG (32)
extern int target_big_endian;
/* 1 is we should use the 64 bit MIPS ELF ABI, 0 if we should use the
32 bit ABI. This has no meaning for ECOFF. */
static int mips_64;
/* The default target format to use. */
const char *
mips_target_format ()
{
switch (OUTPUT_FLAVOR)
{
case bfd_target_aout_flavour:
return target_big_endian ? "a.out-mips-big" : "a.out-mips-little";
case bfd_target_ecoff_flavour:
return target_big_endian ? "ecoff-bigmips" : "ecoff-littlemips";
case bfd_target_elf_flavour:
return (target_big_endian
? (mips_64 ? "elf64-bigmips" : "elf32-bigmips")
: (mips_64 ? "elf64-littlemips" : "elf32-littlemips"));
default:
abort ();
}
}
/* The name of the readonly data section. */
#define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_aout_flavour \
? ".data" \
: OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
? ".rdata" \
: OUTPUT_FLAVOR == bfd_target_elf_flavour \
? ".rodata" \
: (abort (), ""))
/* These variables are filled in with the masks of registers used.
The object format code reads them and puts them in the appropriate
place. */
unsigned long mips_gprmask;
unsigned long mips_cprmask[4];
/* MIPS ISA (Instruction Set Architecture) level (may be changed
temporarily using .set mipsN). */
static int mips_isa = -1;
/* MIPS ISA we are using for this output file. */
static int file_mips_isa;
/* Whether we are assembling for the mips16 processor. */
static int mips16 = -1;
/* The CPU type as a number: 2000, 3000, 4000, 4400, etc. */
static int mips_cpu = -1;
/* Whether the 4650 instructions (mad/madu) are permitted. */
static int mips_4650 = -1;
/* Whether the 4010 instructions are permitted. */
static int mips_4010 = -1;
/* Whether the 4100 MADD16 and DMADD16 are permitted. */
static int mips_4100 = -1;
/* Whether the processor uses hardware interlocks, and thus does not
require nops to be inserted. */
static int interlocks = -1;
/* As with "interlocks" this is used by hardware that has FP
(co-processor) interlocks. */
static int cop_interlocks = -1;
/* MIPS PIC level. */
enum mips_pic_level
{
/* Do not generate PIC code. */
NO_PIC,
/* Generate PIC code as in Irix 4. This is not implemented, and I'm
not sure what it is supposed to do. */
IRIX4_PIC,
/* Generate PIC code as in the SVR4 MIPS ABI. */
SVR4_PIC,
/* Generate PIC code without using a global offset table: the data
segment has a maximum size of 64K, all data references are off
the $gp register, and all text references are PC relative. This
is used on some embedded systems. */
EMBEDDED_PIC
};
static enum mips_pic_level mips_pic;
/* 1 if we should generate 32 bit offsets from the GP register in
SVR4_PIC mode. Currently has no meaning in other modes. */
static int mips_big_got;
/* 1 if trap instructions should used for overflow rather than break
instructions. */
static int mips_trap;
/* 1 if we should autoextend mips16 instructions. */
static int mips16_autoextend = 1;
static int mips_warn_about_macros;
static int mips_noreorder;
static int mips_any_noreorder;
static int mips_nomove;
static int mips_noat;
static int mips_nobopt;
/* The size of the small data section. */
static int g_switch_value = 8;
/* Whether the -G option was used. */
static int g_switch_seen = 0;
#define N_RMASK 0xc4
#define N_VFP 0xd4
/* If we can determine in advance that GP optimization won't be
possible, we can skip the relaxation stuff that tries to produce
GP-relative references. This makes delay slot optimization work
better.
This function can only provide a guess, but it seems to work for
gcc output. If it guesses wrong, the only loss should be in
efficiency; it shouldn't introduce any bugs.
I don't know if a fix is needed for the SVR4_PIC mode. I've only
fixed it for the non-PIC mode. KR 95/04/07 */
static int nopic_need_relax PARAMS ((symbolS *));
/* handle of the OPCODE hash table */
static struct hash_control *op_hash = NULL;
/* The opcode hash table we use for the mips16. */
static struct hash_control *mips16_op_hash = NULL;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful */
const char comment_chars[] = "#";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that C style comments are always supported. */
const char line_comment_chars[] = "#";
/* This array holds machine specific line separator characters. */
const char line_separator_chars[] = "";
/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
changed in read.c . Ideally it shouldn't have to know about it at all,
but nothing is ideal around here.
*/
static char *insn_error;
static int byte_order;
static int auto_align = 1;
/* Symbol labelling the current insn. */
static symbolS *insn_label;
/* When outputting SVR4 PIC code, the assembler needs to know the
offset in the stack frame from which to restore the $gp register.
This is set by the .cprestore pseudo-op, and saved in this
variable. */
static offsetT mips_cprestore_offset = -1;
/* This is the register which holds the stack frame, as set by the
.frame pseudo-op. This is needed to implement .cprestore. */
static int mips_frame_reg = SP;
/* To output NOP instructions correctly, we need to keep information
about the previous two instructions. */
/* Whether we are optimizing. The default value of 2 means to remove
unneeded NOPs and swap branch instructions when possible. A value
of 1 means to not swap branches. A value of 0 means to always
insert NOPs. */
static int mips_optimize = 2;
/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
equivalent to seeing no -g option at all. */
static int mips_debug = 0;
/* The previous instruction. */
static struct mips_cl_insn prev_insn;
/* The instruction before prev_insn. */
static struct mips_cl_insn prev_prev_insn;
/* If we don't want information for prev_insn or prev_prev_insn, we
point the insn_mo field at this dummy integer. */
static const struct mips_opcode dummy_opcode = { 0 };
/* Non-zero if prev_insn is valid. */
static int prev_insn_valid;
/* The frag for the previous instruction. */
static struct frag *prev_insn_frag;
/* The offset into prev_insn_frag for the previous instruction. */
static long prev_insn_where;
/* The reloc for the previous instruction, if any. */
static fixS *prev_insn_fixp;
/* Non-zero if the previous instruction was in a delay slot. */
static int prev_insn_is_delay_slot;
/* Non-zero if the previous instruction was in a .set noreorder. */
static int prev_insn_unreordered;
/* Non-zero if the previous instruction uses an extend opcode (if
mips16). */
static int prev_insn_extended;
/* Non-zero if the previous previous instruction was in a .set
noreorder. */
static int prev_prev_insn_unreordered;
/* For ECOFF and ELF, relocations against symbols are done in two
parts, with a HI relocation and a LO relocation. Each relocation
has only 16 bits of space to store an addend. This means that in
order for the linker to handle carries correctly, it must be able
to locate both the HI and the LO relocation. This means that the
relocations must appear in order in the relocation table.
In order to implement this, we keep track of each unmatched HI
relocation. We then sort them so that they immediately precede the
corresponding LO relocation. */
struct mips_hi_fixup
{
/* Next HI fixup. */
struct mips_hi_fixup *next;
/* This fixup. */
fixS *fixp;
/* The section this fixup is in. */
segT seg;
};
/* The list of unmatched HI relocs. */
static struct mips_hi_fixup *mips_hi_fixup_list;
/* Map normal MIPS register numbers to mips16 register numbers. */
#define X ILLEGAL_REG
static const int mips32_to_16_reg_map[] =
{
X, X, 2, 3, 4, 5, 6, 7,
X, X, X, X, X, X, X, X,
0, 1, X, X, X, X, X, X,
X, X, X, X, X, X, X, X
};
#undef X
/* Map mips16 register numbers to normal MIPS register numbers. */
static const int mips16_to_32_reg_map[] =
{
16, 17, 2, 3, 4, 5, 6, 7
};
/* Since the MIPS does not have multiple forms of PC relative
instructions, we do not have to do relaxing as is done on other
platforms. However, we do have to handle GP relative addressing
correctly, which turns out to be a similar problem.
Every macro that refers to a symbol can occur in (at least) two
forms, one with GP relative addressing and one without. For
example, loading a global variable into a register generally uses
a macro instruction like this:
lw $4,i
If i can be addressed off the GP register (this is true if it is in
the .sbss or .sdata section, or if it is known to be smaller than
the -G argument) this will generate the following instruction:
lw $4,i($gp)
This instruction will use a GPREL reloc. If i can not be addressed
off the GP register, the following instruction sequence will be used:
lui $at,i
lw $4,i($at)
In this case the first instruction will have a HI16 reloc, and the
second reloc will have a LO16 reloc. Both relocs will be against
the symbol i.
The issue here is that we may not know whether i is GP addressable
until after we see the instruction that uses it. Therefore, we
want to be able to choose the final instruction sequence only at
the end of the assembly. This is similar to the way other
platforms choose the size of a PC relative instruction only at the
end of assembly.
When generating position independent code we do not use GP
addressing in quite the same way, but the issue still arises as
external symbols and local symbols must be handled differently.
We handle these issues by actually generating both possible
instruction sequences. The longer one is put in a frag_var with
type rs_machine_dependent. We encode what to do with the frag in
the subtype field. We encode (1) the number of existing bytes to
replace, (2) the number of new bytes to use, (3) the offset from
the start of the existing bytes to the first reloc we must generate
(that is, the offset is applied from the start of the existing
bytes after they are replaced by the new bytes, if any), (4) the
offset from the start of the existing bytes to the second reloc,
(5) whether a third reloc is needed (the third reloc is always four
bytes after the second reloc), and (6) whether to warn if this
variant is used (this is sometimes needed if .set nomacro or .set
noat is in effect). All these numbers are reasonably small.
Generating two instruction sequences must be handled carefully to
ensure that delay slots are handled correctly. Fortunately, there
are a limited number of cases. When the second instruction
sequence is generated, append_insn is directed to maintain the
existing delay slot information, so it continues to apply to any
code after the second instruction sequence. This means that the
second instruction sequence must not impose any requirements not
required by the first instruction sequence.
These variant frags are then handled in functions called by the
machine independent code. md_estimate_size_before_relax returns
the final size of the frag. md_convert_frag sets up the final form
of the frag. tc_gen_reloc adjust the first reloc and adds a second
one if needed. */
#define RELAX_ENCODE(old, new, reloc1, reloc2, reloc3, warn) \
((relax_substateT) \
(((old) << 23) \
| ((new) << 16) \
| (((reloc1) + 64) << 9) \
| (((reloc2) + 64) << 2) \
| ((reloc3) ? (1 << 1) : 0) \
| ((warn) ? 1 : 0)))
#define RELAX_OLD(i) (((i) >> 23) & 0x7f)
#define RELAX_NEW(i) (((i) >> 16) & 0x7f)
#define RELAX_RELOC1(i) ((bfd_vma)(((i) >> 9) & 0x7f) - 64)
#define RELAX_RELOC2(i) ((bfd_vma)(((i) >> 2) & 0x7f) - 64)
#define RELAX_RELOC3(i) (((i) >> 1) & 1)
#define RELAX_WARN(i) ((i) & 1)
/* For mips16 code, we use an entirely different form of relaxation.
mips16 supports two versions of most instructions which take
immediate values: a small one which takes some small value, and a
larger one which takes a 16 bit value. Since branches also follow
this pattern, relaxing these values is required.
We can assemble both mips16 and normal MIPS code in a single
object. Therefore, we need to support this type of relaxation at
the same time that we support the relaxation described above. We
use the high bit of the subtype field to distinguish these cases.
The information we store for this type of relaxation is simply the
argument code found in the opcode file for this relocation, and
whether the user explicitly requested a small or extended form.
That tells us the size of the value, and how it should be stored.
We also store whether the fragment is considered to be extended or
not. We also store whether this is known to be a branch to a
different section, whether we have tried to relax this frag yet,
and whether we have ever extended a PC relative fragment because of
a shift count. */
#define RELAX_MIPS16_ENCODE(type, small, ext) \
(0x80000000 \
| ((type) & 0xff) \
| ((small) ? 0x100 : 0) \
| ((ext) ? 0x200 : 0))
#define RELAX_MIPS16_P(i) (((i) & 0x80000000) != 0)
#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x400) != 0)
#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x400)
#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x400)
#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x800) != 0)
#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x800)
#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x800)
/* Prototypes for static functions. */
#ifdef __STDC__
#define internalError() \
as_fatal ("internal Error, line %d, %s", __LINE__, __FILE__)
#else
#define internalError() as_fatal ("MIPS internal Error");
#endif
enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
static int insn_uses_reg PARAMS ((struct mips_cl_insn *ip,
unsigned int reg, enum mips_regclass class));
static int reg_needs_delay PARAMS ((int));
static void append_insn PARAMS ((char *place,
struct mips_cl_insn * ip,
expressionS * p,
bfd_reloc_code_real_type r,
boolean));
static void mips_no_prev_insn PARAMS ((void));
static void mips_emit_delays PARAMS ((void));
#ifdef USE_STDARG
static void macro_build PARAMS ((char *place, int *counter, expressionS * ep,
const char *name, const char *fmt,
...));
#else
static void macro_build ();
#endif
static void mips16_macro_build PARAMS ((char *, int *, expressionS *,
const char *, const char *,
va_list));
static void macro_build_lui PARAMS ((char *place, int *counter,
expressionS * ep, int regnum));
static void set_at PARAMS ((int *counter, int reg, int unsignedp));
static void check_absolute_expr PARAMS ((struct mips_cl_insn * ip,
expressionS *));
static void load_register PARAMS ((int *, int, expressionS *, int));
static void load_address PARAMS ((int *counter, int reg, expressionS *ep));
static void macro PARAMS ((struct mips_cl_insn * ip));
static void mips16_macro PARAMS ((struct mips_cl_insn * ip));
#ifdef LOSING_COMPILER
static void macro2 PARAMS ((struct mips_cl_insn * ip));
#endif
static void mips_ip PARAMS ((char *str, struct mips_cl_insn * ip));
static void mips16_ip PARAMS ((char *str, struct mips_cl_insn * ip));
static void mips16_immed PARAMS ((char *, unsigned int, int, offsetT, boolean,
boolean, boolean, unsigned long *,
boolean *, unsigned short *));
static int my_getSmallExpression PARAMS ((expressionS * ep, char *str));
static void my_getExpression PARAMS ((expressionS * ep, char *str));
static symbolS *get_symbol PARAMS ((void));
static void mips_align PARAMS ((int to, int fill, symbolS *label));
static void s_align PARAMS ((int));
static void s_change_sec PARAMS ((int));
static void s_cons PARAMS ((int));
static void s_float_cons PARAMS ((int));
static void s_mips_globl PARAMS ((int));
static void s_option PARAMS ((int));
static void s_mipsset PARAMS ((int));
static void s_abicalls PARAMS ((int));
static void s_cpload PARAMS ((int));
static void s_cprestore PARAMS ((int));
static void s_gpword PARAMS ((int));
static void s_cpadd PARAMS ((int));
static void md_obj_begin PARAMS ((void));
static void md_obj_end PARAMS ((void));
static long get_number PARAMS ((void));
static void s_ent PARAMS ((int));
static void s_mipsend PARAMS ((int));
static void s_file PARAMS ((int));
static int mips16_extended_frag PARAMS ((fragS *, asection *, long));
/* Pseudo-op table.
The following pseudo-ops from the Kane and Heinrich MIPS book
should be defined here, but are currently unsupported: .alias,
.galive, .gjaldef, .gjrlive, .livereg, .noalias.
The following pseudo-ops from the Kane and Heinrich MIPS book are
specific to the type of debugging information being generated, and
should be defined by the object format: .aent, .begin, .bend,
.bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
.vreg.
The following pseudo-ops from the Kane and Heinrich MIPS book are
not MIPS CPU specific, but are also not specific to the object file
format. This file is probably the best place to define them, but
they are not currently supported: .asm0, .endr, .lab, .repeat,
.struct, .weakext. */
static const pseudo_typeS mips_pseudo_table[] =
{
/* MIPS specific pseudo-ops. */
{"option", s_option, 0},
{"set", s_mipsset, 0},
{"rdata", s_change_sec, 'r'},
{"sdata", s_change_sec, 's'},
{"livereg", s_ignore, 0},
{"abicalls", s_abicalls, 0},
{"cpload", s_cpload, 0},
{"cprestore", s_cprestore, 0},
{"gpword", s_gpword, 0},
{"cpadd", s_cpadd, 0},
/* Relatively generic pseudo-ops that happen to be used on MIPS
chips. */
{"asciiz", stringer, 1},
{"bss", s_change_sec, 'b'},
{"err", s_err, 0},
{"half", s_cons, 1},
{"dword", s_cons, 3},
/* These pseudo-ops are defined in read.c, but must be overridden
here for one reason or another. */
{"align", s_align, 0},
{"byte", s_cons, 0},
{"data", s_change_sec, 'd'},
{"double", s_float_cons, 'd'},
{"float", s_float_cons, 'f'},
{"globl", s_mips_globl, 0},
{"global", s_mips_globl, 0},
{"hword", s_cons, 1},
{"int", s_cons, 2},
{"long", s_cons, 2},
{"octa", s_cons, 4},
{"quad", s_cons, 3},
{"short", s_cons, 1},
{"single", s_float_cons, 'f'},
{"text", s_change_sec, 't'},
{"word", s_cons, 2},
{ 0 },
};
static const pseudo_typeS mips_nonecoff_pseudo_table[] = {
/* These pseudo-ops should be defined by the object file format.
However, a.out doesn't support them, so we have versions here. */
{"aent", s_ent, 1},
{"bgnb", s_ignore, 0},
{"end", s_mipsend, 0},
{"endb", s_ignore, 0},
{"ent", s_ent, 0},
{"file", s_file, 0},
{"fmask", s_ignore, 'F'},
{"frame", s_ignore, 0},
{"loc", s_ignore, 0},
{"mask", s_ignore, 'R'},
{"verstamp", s_ignore, 0},
{ 0 },
};
extern void pop_insert PARAMS ((const pseudo_typeS *));
void
mips_pop_insert ()
{
pop_insert (mips_pseudo_table);
if (! ECOFF_DEBUGGING)
pop_insert (mips_nonecoff_pseudo_table);
}
static char *expr_end;
/* Expressions which appear in instructions. These are set by
mips_ip. */
static expressionS imm_expr;
static expressionS offset_expr;
/* Relocs associated with imm_expr and offset_expr. */
static bfd_reloc_code_real_type imm_reloc;
static bfd_reloc_code_real_type offset_reloc;
/* This is set by mips_ip if imm_reloc is an unmatched HI16_S reloc. */
static boolean imm_unmatched_hi;
/* These are set by mips16_ip if an explicit extension is used. */
static boolean mips16_small, mips16_ext;
/*
* This function is called once, at assembler startup time. It should
* set up all the tables, etc. that the MD part of the assembler will need.
*/
void
md_begin ()
{
boolean ok = false;
register const char *retval = NULL;
register unsigned int i = 0;
if (mips_isa == -1)
{
const char *cpu;
char *a = NULL;
cpu = TARGET_CPU;
if (strcmp (cpu + (sizeof TARGET_CPU) - 3, "el") == 0)
{
a = xmalloc (sizeof TARGET_CPU);
strcpy (a, TARGET_CPU);
a[(sizeof TARGET_CPU) - 3] = '\0';
cpu = a;
}
if (strcmp (cpu, "mips") == 0)
{
mips_isa = 1;
if (mips_cpu == -1)
mips_cpu = 3000;
}
else if (strcmp (cpu, "r6000") == 0
|| strcmp (cpu, "mips2") == 0)
{
mips_isa = 2;
if (mips_cpu == -1)
mips_cpu = 6000;
}
else if (strcmp (cpu, "mips64") == 0
|| strcmp (cpu, "r4000") == 0
|| strcmp (cpu, "mips3") == 0)
{
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 4000;
}
else if (strcmp (cpu, "r4400") == 0)
{
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 4400;
}
else if (strcmp (cpu, "mips64orion") == 0
|| strcmp (cpu, "r4600") == 0)
{
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 4600;
}
else if (strcmp (cpu, "r4650") == 0)
{
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 4650;
if (mips_4650 == -1)
mips_4650 = 1;
}
else if (strcmp (cpu, "mips64vr4300") == 0)
{
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 4300;
}
else if (strcmp (cpu, "mips64vr4100") == 0)
{
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 4100;
if (mips_4100 == -1)
mips_4100 = 1;
}
else if (strcmp (cpu, "r4010") == 0)
{
mips_isa = 2;
if (mips_cpu == -1)
mips_cpu = 4010;
if (mips_4010 == -1)
mips_4010 = 1;
}
else if (strcmp (cpu, "r5000") == 0
|| strcmp (cpu, "mips64vr5000") == 0)
{
mips_isa = 4;
if (mips_cpu == -1)
mips_cpu = 5000;
}
else if (strcmp (cpu, "r8000") == 0
|| strcmp (cpu, "mips4") == 0)
{
mips_isa = 4;
if (mips_cpu == -1)
mips_cpu = 8000;
}
else if (strcmp (cpu, "r10000") == 0)
{
mips_isa = 4;
if (mips_cpu == -1)
mips_cpu = 10000;
}
else if (strcmp (cpu, "mips16") == 0)
{
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 0; /* FIXME */
}
else
{
mips_isa = 1;
if (mips_cpu == -1)
mips_cpu = 3000;
}
if (a != NULL)
free (a);
}
if (mips16 < 0)
{
if (strncmp (TARGET_CPU, "mips16", sizeof "mips16" - 1) == 0)
mips16 = 1;
else
mips16 = 0;
}
if (mips_4650 < 0)
mips_4650 = 0;
if (mips_4010 < 0)
mips_4010 = 0;
if (mips_4100 < 0)
mips_4100 = 0;
if (mips_4650 || mips_4010 || mips_4100 || mips_cpu == 4300)
interlocks = 1;
else
interlocks = 0;
if (mips_cpu == 4300)
cop_interlocks = 1;
else
cop_interlocks = 0;
if (mips_isa < 2 && mips_trap)
as_bad ("trap exception not supported at ISA 1");
switch (mips_isa)
{
case 1:
ok = bfd_set_arch_mach (stdoutput, bfd_arch_mips, 3000);
break;
case 2:
ok = bfd_set_arch_mach (stdoutput, bfd_arch_mips, 6000);
break;
case 3:
ok = bfd_set_arch_mach (stdoutput, bfd_arch_mips, 4000);
break;
case 4:
ok = bfd_set_arch_mach (stdoutput, bfd_arch_mips, 8000);
break;
}
if (! ok)
as_warn ("Could not set architecture and machine");
file_mips_isa = mips_isa;
op_hash = hash_new ();
for (i = 0; i < NUMOPCODES;)
{
const char *name = mips_opcodes[i].name;
retval = hash_insert (op_hash, name, (PTR) &mips_opcodes[i]);
if (retval != NULL)
{
fprintf (stderr, "internal error: can't hash `%s': %s\n",
mips_opcodes[i].name, retval);
as_fatal ("Broken assembler. No assembly attempted.");
}
do
{
if (mips_opcodes[i].pinfo != INSN_MACRO
&& ((mips_opcodes[i].match & mips_opcodes[i].mask)
!= mips_opcodes[i].match))
{
fprintf (stderr, "internal error: bad opcode: `%s' \"%s\"\n",
mips_opcodes[i].name, mips_opcodes[i].args);
as_fatal ("Broken assembler. No assembly attempted.");
}
++i;
}
while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
}
mips16_op_hash = hash_new ();
i = 0;
while (i < bfd_mips16_num_opcodes)
{
const char *name = mips16_opcodes[i].name;
retval = hash_insert (mips16_op_hash, name, (PTR) &mips16_opcodes[i]);
if (retval != NULL)
as_fatal ("internal error: can't hash `%s': %s\n",
mips16_opcodes[i].name, retval);
do
{
if (mips16_opcodes[i].pinfo != INSN_MACRO
&& ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
!= mips16_opcodes[i].match))
as_fatal ("internal error: bad opcode: `%s' \"%s\"\n",
mips16_opcodes[i].name, mips16_opcodes[i].args);
++i;
}
while (i < bfd_mips16_num_opcodes
&& strcmp (mips16_opcodes[i].name, name) == 0);
}
mips_no_prev_insn ();
mips_gprmask = 0;
mips_cprmask[0] = 0;
mips_cprmask[1] = 0;
mips_cprmask[2] = 0;
mips_cprmask[3] = 0;
/* set the default alignment for the text section (2**2) */
record_alignment (text_section, 2);
if (USE_GLOBAL_POINTER_OPT)
bfd_set_gp_size (stdoutput, g_switch_value);
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
{
/* Sections must be aligned to 16 byte boundaries. */
(void) bfd_set_section_alignment (stdoutput, text_section, 4);
(void) bfd_set_section_alignment (stdoutput, data_section, 4);
(void) bfd_set_section_alignment (stdoutput, bss_section, 4);
/* Create a .reginfo section for register masks and a .mdebug
section for debugging information. */
{
segT seg;
subsegT subseg;
segT sec;
seg = now_seg;
subseg = now_subseg;
if (! mips_64)
{
sec = subseg_new (".reginfo", (subsegT) 0);
/* The ABI says this section should be loaded so that the
running program can access it. */
(void) bfd_set_section_flags (stdoutput, sec,
(SEC_ALLOC | SEC_LOAD
| SEC_READONLY | SEC_DATA));
(void) bfd_set_section_alignment (stdoutput, sec, 2);
#ifdef OBJ_ELF
mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
#endif
}
else
{
/* The 64-bit ABI uses a .MIPS.options section rather than
.reginfo section. */
sec = subseg_new (".MIPS.options", (subsegT) 0);
(void) bfd_set_section_flags (stdoutput, sec,
(SEC_ALLOC | SEC_LOAD
| SEC_READONLY | SEC_DATA));
(void) bfd_set_section_alignment (stdoutput, sec, 3);
#ifdef OBJ_ELF
/* Set up the option header. */
{
Elf_Internal_Options opthdr;
char *f;
opthdr.kind = ODK_REGINFO;
opthdr.size = (sizeof (Elf_External_Options)
+ sizeof (Elf64_External_RegInfo));
opthdr.section = 0;
opthdr.info = 0;
f = frag_more (sizeof (Elf_External_Options));
bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
(Elf_External_Options *) f);
mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
}
#endif
}
if (ECOFF_DEBUGGING)
{
sec = subseg_new (".mdebug", (subsegT) 0);
(void) bfd_set_section_flags (stdoutput, sec,
SEC_HAS_CONTENTS | SEC_READONLY);
(void) bfd_set_section_alignment (stdoutput, sec, 2);
}
subseg_set (seg, subseg);
}
}
if (! ECOFF_DEBUGGING)
md_obj_begin ();
}
void
md_mips_end ()
{
if (! ECOFF_DEBUGGING)
md_obj_end ();
}
void
md_assemble (str)
char *str;
{
struct mips_cl_insn insn;
imm_expr.X_op = O_absent;
imm_reloc = BFD_RELOC_UNUSED;
imm_unmatched_hi = false;
offset_expr.X_op = O_absent;
offset_reloc = BFD_RELOC_UNUSED;
if (mips16)
mips16_ip (str, &insn);
else
mips_ip (str, &insn);
if (insn_error)
{
as_bad ("%s `%s'", insn_error, str);
return;
}
if (insn.insn_mo->pinfo == INSN_MACRO)
{
if (mips16)
mips16_macro (&insn);
else
macro (&insn);
}
else
{
if (imm_expr.X_op != O_absent)
append_insn ((char *) NULL, &insn, &imm_expr, imm_reloc,
imm_unmatched_hi);
else if (offset_expr.X_op != O_absent)
append_insn ((char *) NULL, &insn, &offset_expr, offset_reloc, false);
else
append_insn ((char *) NULL, &insn, NULL, BFD_RELOC_UNUSED, false);
}
}
/* See whether instruction IP reads register REG. CLASS is the type
of register. */
static int
insn_uses_reg (ip, reg, class)
struct mips_cl_insn *ip;
unsigned int reg;
enum mips_regclass class;
{
if (class == MIPS16_REG)
{
assert (mips16);
reg = mips16_to_32_reg_map[reg];
class = MIPS_GR_REG;
}
/* Don't report on general register 0, since it never changes. */
if (class == MIPS_GR_REG && reg == 0)
return 0;
if (class == MIPS_FP_REG)
{
assert (! mips16);
/* If we are called with either $f0 or $f1, we must check $f0.
This is not optimal, because it will introduce an unnecessary
NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
need to distinguish reading both $f0 and $f1 or just one of
them. Note that we don't have to check the other way,
because there is no instruction that sets both $f0 and $f1
and requires a delay. */
if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
&& (((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS)
== (reg &~ (unsigned) 1)))
return 1;
if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
&& (((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT)
== (reg &~ (unsigned) 1)))
return 1;
}
else if (! mips16)
{
if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
&& ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == reg)
return 1;
if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
&& ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT) == reg)
return 1;
}
else
{
if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
&& ((ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX) == reg)
return 1;
if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
&& ((ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY) == reg)
return 1;
if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
&& ((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
& MIPS16OP_MASK_MOVE32Z) == reg)
return 1;
if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
return 1;
if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
return 1;
if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
return 1;
if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
&& ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
& MIPS16OP_MASK_REGR32) == reg)
return 1;
}
return 0;
}
/* This function returns true if modifying a register requires a
delay. */
static int
reg_needs_delay (reg)
int reg;
{
unsigned long prev_pinfo;
prev_pinfo = prev_insn.insn_mo->pinfo;
if (! mips_noreorder
&& mips_isa < 4
&& ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
|| (mips_isa < 2
&& (prev_pinfo & INSN_LOAD_MEMORY_DELAY))))
{
/* A load from a coprocessor or from memory. All load
delays delay the use of general register rt for one
instruction on the r3000. The r6000 and r4000 use
interlocks. */
know (prev_pinfo & INSN_WRITE_GPR_T);
if (reg == ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT))
return 1;
}
return 0;
}
/* Output an instruction. PLACE is where to put the instruction; if
it is NULL, this uses frag_more to get room. IP is the instruction
information. ADDRESS_EXPR is an operand of the instruction to be
used with RELOC_TYPE. */
static void
append_insn (place, ip, address_expr, reloc_type, unmatched_hi)
char *place;
struct mips_cl_insn *ip;
expressionS *address_expr;
bfd_reloc_code_real_type reloc_type;
boolean unmatched_hi;
{
register unsigned long prev_pinfo, pinfo;
char *f;
fixS *fixp;
int nops = 0;
prev_pinfo = prev_insn.insn_mo->pinfo;
pinfo = ip->insn_mo->pinfo;
if (place == NULL && ! mips_noreorder)
{
/* If the previous insn required any delay slots, see if we need
to insert a NOP or two. There are eight kinds of possible
hazards, of which an instruction can have at most one type.
(1) a load from memory delay
(2) a load from a coprocessor delay
(3) an unconditional branch delay
(4) a conditional branch delay
(5) a move to coprocessor register delay
(6) a load coprocessor register from memory delay
(7) a coprocessor condition code delay
(8) a HI/LO special register delay
There are a lot of optimizations we could do that we don't.
In particular, we do not, in general, reorder instructions.
If you use gcc with optimization, it will reorder
instructions and generally do much more optimization then we
do here; repeating all that work in the assembler would only
benefit hand written assembly code, and does not seem worth
it. */
/* This is how a NOP is emitted. */
#define emit_nop() \
(mips16 \
? md_number_to_chars (frag_more (2), 0x6500, 2) \
: md_number_to_chars (frag_more (4), 0, 4))
/* The previous insn might require a delay slot, depending upon
the contents of the current insn. */
if (! mips16
&& mips_isa < 4
&& (((prev_pinfo & INSN_LOAD_COPROC_DELAY)
&& ! cop_interlocks)
|| (mips_isa < 2
&& (prev_pinfo & INSN_LOAD_MEMORY_DELAY))))
{
/* A load from a coprocessor or from memory. All load
delays delay the use of general register rt for one
instruction on the r3000. The r6000 and r4000 use
interlocks. */
know (prev_pinfo & INSN_WRITE_GPR_T);
if (mips_optimize == 0
|| insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT),
MIPS_GR_REG))
++nops;
}
else if (! mips16
&& mips_isa < 4
&& (((prev_pinfo & INSN_COPROC_MOVE_DELAY)
&& ! cop_interlocks)
|| (mips_isa < 2
&& (prev_pinfo & INSN_COPROC_MEMORY_DELAY))))
{
/* A generic coprocessor delay. The previous instruction
modified a coprocessor general or control register. If
it modified a control register, we need to avoid any
coprocessor instruction (this is probably not always
required, but it sometimes is). If it modified a general
register, we avoid using that register.
On the r6000 and r4000 loading a coprocessor register
from memory is interlocked, and does not require a delay.
This case is not handled very well. There is no special
knowledge of CP0 handling, and the coprocessors other
than the floating point unit are not distinguished at
all. */
if (prev_pinfo & INSN_WRITE_FPR_T)
{
if (mips_optimize == 0
|| insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_FT)
& OP_MASK_FT),
MIPS_FP_REG))
++nops;
}
else if (prev_pinfo & INSN_WRITE_FPR_S)
{
if (mips_optimize == 0
|| insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_FS)
& OP_MASK_FS),
MIPS_FP_REG))
++nops;
}
else
{
/* We don't know exactly what the previous instruction
does. If the current instruction uses a coprocessor
register, we must insert a NOP. If previous
instruction may set the condition codes, and the
current instruction uses them, we must insert two
NOPS. */
if (mips_optimize == 0
|| ((prev_pinfo & INSN_WRITE_COND_CODE)
&& (pinfo & INSN_READ_COND_CODE)))
nops += 2;
else if (pinfo & INSN_COP)
++nops;
}
}
else if (! mips16
&& mips_isa < 4
&& (prev_pinfo & INSN_WRITE_COND_CODE)
&& ! cop_interlocks)
{
/* The previous instruction sets the coprocessor condition
codes, but does not require a general coprocessor delay
(this means it is a floating point comparison
instruction). If this instruction uses the condition
codes, we need to insert a single NOP. */
if (mips_optimize == 0
|| (pinfo & INSN_READ_COND_CODE))
++nops;
}
else if (prev_pinfo & INSN_READ_LO)
{
/* The previous instruction reads the LO register; if the
current instruction writes to the LO register, we must
insert two NOPS. Some newer processors have interlocks. */
if (! interlocks
&& (mips_optimize == 0
|| (pinfo & INSN_WRITE_LO)))
nops += 2;
}
else if (prev_insn.insn_mo->pinfo & INSN_READ_HI)
{
/* The previous instruction reads the HI register; if the
current instruction writes to the HI register, we must
insert a NOP. Some newer processors have interlocks. */
if (! interlocks
&& (mips_optimize == 0
|| (pinfo & INSN_WRITE_HI)))
nops += 2;
}
/* There are two cases which require two intervening
instructions: 1) setting the condition codes using a move to
coprocessor instruction which requires a general coprocessor
delay and then reading the condition codes 2) reading the HI
or LO register and then writing to it (except on processors
which have interlocks). If we are not already emitting a NOP
instruction, we must check for these cases compared to the
instruction previous to the previous instruction. */
if (nops == 0
&& ((! mips16
&& mips_isa < 4
&& (prev_prev_insn.insn_mo->pinfo & INSN_COPROC_MOVE_DELAY)
&& (prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
&& (pinfo & INSN_READ_COND_CODE)
&& ! cop_interlocks)
|| ((prev_prev_insn.insn_mo->pinfo & INSN_READ_LO)
&& (pinfo & INSN_WRITE_LO)
&& ! interlocks)
|| ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
&& (pinfo & INSN_WRITE_HI)
&& ! interlocks)))
++nops;
/* If we are being given a nop instruction, don't bother with
one of the nops we would otherwise output. This will only
happen when a nop instruction is used with mips_optimize set
to 0. */
if (nops > 0 && ip->insn_opcode == (mips16 ? 0x6500 : 0))
--nops;
/* Now emit the right number of NOP instructions. */
if (nops > 0)
{
fragS *old_frag;
unsigned long old_frag_offset;
int i;
old_frag = frag_now;
old_frag_offset = frag_now_fix ();
for (i = 0; i < nops; i++)
emit_nop ();
if (listing)
{
listing_prev_line ();
/* We may be at the start of a variant frag. In case we
are, make sure there is enough space for the frag
after the frags created by listing_prev_line. The
argument to frag_grow here must be at least as large
as the argument to all other calls to frag_grow in
this file. We don't have to worry about being in the
middle of a variant frag, because the variants insert
all needed nop instructions themselves. */
frag_grow (40);
}
if (insn_label != NULL)
{
assert (S_GET_SEGMENT (insn_label) == now_seg);
insn_label->sy_frag = frag_now;
S_SET_VALUE (insn_label, (valueT) frag_now_fix ());
}
#ifndef NO_ECOFF_DEBUGGING
if (ECOFF_DEBUGGING)
ecoff_fix_loc (old_frag, old_frag_offset);
#endif
}
}
if (reloc_type > BFD_RELOC_UNUSED)
{
/* We need to set up a variant frag. */
assert (mips16 && address_expr != NULL);
f = frag_var (rs_machine_dependent, 4, 0,
RELAX_MIPS16_ENCODE (reloc_type - BFD_RELOC_UNUSED,
mips16_small, mips16_ext),
make_expr_symbol (address_expr), (long) 0,
(char *) NULL);
}
else if (place != NULL)
f = place;
else if (mips16 && ! ip->use_extend && reloc_type != BFD_RELOC_MIPS16_JMP)
f = frag_more (2);
else
f = frag_more (4);
fixp = NULL;
if (address_expr != NULL && reloc_type < BFD_RELOC_UNUSED)
{
if (address_expr->X_op == O_constant)
{
switch (reloc_type)
{
case BFD_RELOC_32:
ip->insn_opcode |= address_expr->X_add_number;
break;
case BFD_RELOC_LO16:
ip->insn_opcode |= address_expr->X_add_number & 0xffff;
break;
case BFD_RELOC_MIPS_JMP:
ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
break;
case BFD_RELOC_MIPS16_JMP:
ip->insn_opcode |=
(((address_expr->X_add_number & 0x7c0000) << 3)
| ((address_expr->X_add_number & 0xf800000) >> 7)
| ((address_expr->X_add_number & 0x3fffc) >> 2));
break;
case BFD_RELOC_16_PCREL_S2:
goto need_reloc;
default:
internalError ();
}
}
else
{
need_reloc:
/* Don't generate a reloc if we are writing into a variant
frag. */
if (place == NULL)
{
fixp = fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
address_expr,
reloc_type == BFD_RELOC_16_PCREL_S2,
reloc_type);
if (unmatched_hi)
{
struct mips_hi_fixup *hi_fixup;
assert (reloc_type == BFD_RELOC_HI16_S);
hi_fixup = ((struct mips_hi_fixup *)
xmalloc (sizeof (struct mips_hi_fixup)));
hi_fixup->fixp = fixp;
hi_fixup->seg = now_seg;
hi_fixup->next = mips_hi_fixup_list;
mips_hi_fixup_list = hi_fixup;
}
}
}
}
if (! mips16 || reloc_type == BFD_RELOC_MIPS16_JMP)
md_number_to_chars (f, ip->insn_opcode, 4);
else
{
if (ip->use_extend)
{
md_number_to_chars (f, 0xf000 | ip->extend, 2);
f += 2;
}
md_number_to_chars (f, ip->insn_opcode, 2);
}
/* Update the register mask information. */
if (! mips16)
{
if (pinfo & INSN_WRITE_GPR_D)
mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD);
if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT);
if (pinfo & INSN_READ_GPR_S)
mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS);
if (pinfo & INSN_WRITE_GPR_31)
mips_gprmask |= 1 << 31;
if (pinfo & INSN_WRITE_FPR_D)
mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FD) & OP_MASK_FD);
if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS);
if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT);
if ((pinfo & INSN_READ_FPR_R) != 0)
mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FR) & OP_MASK_FR);
if (pinfo & INSN_COP)
{
/* We don't keep enough information to sort these cases out. */
}
/* Never set the bit for $0, which is always zero. */
mips_gprmask &=~ 1 << 0;
}
else
{
if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RX)
& MIPS16OP_MASK_RX);
if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RY)
& MIPS16OP_MASK_RY);
if (pinfo & MIPS16_INSN_WRITE_Z)
mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RZ)
& MIPS16OP_MASK_RZ);
if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
mips_gprmask |= 1 << TREG;
if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
mips_gprmask |= 1 << SP;
if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
mips_gprmask |= 1 << RA;
if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
if (pinfo & MIPS16_INSN_READ_Z)
mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
& MIPS16OP_MASK_MOVE32Z);
if (pinfo & MIPS16_INSN_READ_GPR_X)
mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
& MIPS16OP_MASK_REGR32);
}
if (place == NULL && ! mips_noreorder)
{
/* Filling the branch delay slot is more complex. We try to
switch the branch with the previous instruction, which we can
do if the previous instruction does not set up a condition
that the branch tests and if the branch is not itself the
target of any branch. */
if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
|| (pinfo & INSN_COND_BRANCH_DELAY))
{
if (mips_optimize < 2
/* If we have seen .set volatile or .set nomove, don't
optimize. */
|| mips_nomove != 0
/* If we had to emit any NOP instructions, then we
already know we can not swap. */
|| nops != 0
/* If we don't even know the previous insn, we can not
swap. */
|| ! prev_insn_valid
/* If the previous insn is already in a branch delay
slot, then we can not swap. */
|| prev_insn_is_delay_slot
/* If the previous previous insn was in a .set
noreorder, we can't swap. Actually, the MIPS
assembler will swap in this situation. However, gcc
configured -with-gnu-as will generate code like
.set noreorder
lw $4,XXX
.set reorder
INSN
bne $4,$0,foo
in which we can not swap the bne and INSN. If gcc is
not configured -with-gnu-as, it does not output the
.set pseudo-ops. We don't have to check
prev_insn_unreordered, because prev_insn_valid will
be 0 in that case. We don't want to use
prev_prev_insn_valid, because we do want to be able
to swap at the start of a function. */
|| prev_prev_insn_unreordered
/* If the branch is itself the target of a branch, we
can not swap. We cheat on this; all we check for is
whether there is a label on this instruction. If
there are any branches to anything other than a
label, users must use .set noreorder. */
|| insn_label != NULL
/* If the previous instruction is in a variant frag, we
can not do the swap. This does not apply to the
mips16, which uses variant frags for different
purposes. */
|| (! mips16
&& prev_insn_frag->fr_type == rs_machine_dependent)
/* If the branch reads the condition codes, we don't
even try to swap, because in the sequence
ctc1 $X,$31
INSN
INSN
bc1t LABEL
we can not swap, and I don't feel like handling that
case. */
|| (! mips16
&& mips_isa < 4
&& (pinfo & INSN_READ_COND_CODE))
/* We can not swap with an instruction that requires a
delay slot, becase the target of the branch might
interfere with that instruction. */
|| (! mips16
&& mips_isa < 4
&& (prev_pinfo
& (INSN_LOAD_COPROC_DELAY
| INSN_COPROC_MOVE_DELAY
| INSN_WRITE_COND_CODE)))
|| (! interlocks
&& (prev_pinfo
& (INSN_READ_LO
| INSN_READ_HI)))
|| (! mips16
&& mips_isa < 2
&& (prev_pinfo
& (INSN_LOAD_MEMORY_DELAY
| INSN_COPROC_MEMORY_DELAY)))
/* We can not swap with a branch instruction. */
|| (prev_pinfo
& (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY))
/* We do not swap with a trap instruction, since it
complicates trap handlers to have the trap
instruction be in a delay slot. */
|| (prev_pinfo & INSN_TRAP)
/* If the branch reads a register that the previous
instruction sets, we can not swap. */
|| (! mips16
&& (prev_pinfo & INSN_WRITE_GPR_T)
&& insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT),
MIPS_GR_REG))
|| (! mips16
&& (prev_pinfo & INSN_WRITE_GPR_D)
&& insn_uses_reg (ip,
((prev_insn.insn_opcode >> OP_SH_RD)
& OP_MASK_RD),
MIPS_GR_REG))
|| (mips16
&& (((prev_pinfo & MIPS16_INSN_WRITE_X)
&& insn_uses_reg (ip,
((prev_insn.insn_opcode
>> MIPS16OP_SH_RX)
& MIPS16OP_MASK_RX),
MIPS16_REG))
|| ((prev_pinfo & MIPS16_INSN_WRITE_Y)
&& insn_uses_reg (ip,
((prev_insn.insn_opcode
>> MIPS16OP_SH_RY)
& MIPS16OP_MASK_RY),
MIPS16_REG))
|| ((prev_pinfo & MIPS16_INSN_WRITE_Z)
&& insn_uses_reg (ip,
((prev_insn.insn_opcode
>> MIPS16OP_SH_RZ)
& MIPS16OP_MASK_RZ),
MIPS16_REG))
|| ((prev_pinfo & MIPS16_INSN_WRITE_T)
&& insn_uses_reg (ip, TREG, MIPS_GR_REG))
|| ((prev_pinfo & MIPS16_INSN_WRITE_31)
&& insn_uses_reg (ip, RA, MIPS_GR_REG))
|| ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
&& insn_uses_reg (ip,
MIPS16OP_EXTRACT_REG32R (prev_insn.
insn_opcode),
MIPS_GR_REG))))
/* If the branch writes a register that the previous
instruction sets, we can not swap (we know that
branches write only to RD or to $31). */
|| (! mips16
&& (prev_pinfo & INSN_WRITE_GPR_T)
&& (((pinfo & INSN_WRITE_GPR_D)
&& (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT)
== ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
|| ((pinfo & INSN_WRITE_GPR_31)
&& (((prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT)
== 31))))
|| (! mips16
&& (prev_pinfo & INSN_WRITE_GPR_D)
&& (((pinfo & INSN_WRITE_GPR_D)
&& (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD)
== ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
|| ((pinfo & INSN_WRITE_GPR_31)
&& (((prev_insn.insn_opcode >> OP_SH_RD)
& OP_MASK_RD)
== 31))))
|| (mips16
&& (pinfo & MIPS16_INSN_WRITE_31)
&& ((prev_pinfo & MIPS16_INSN_WRITE_31)
|| ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
&& (MIPS16OP_EXTRACT_REG32R (prev_insn.insn_opcode)
== RA))))
/* If the branch writes a register that the previous
instruction reads, we can not swap (we know that
branches only write to RD or to $31). */
|| (! mips16
&& (pinfo & INSN_WRITE_GPR_D)
&& insn_uses_reg (&prev_insn,
((ip->insn_opcode >> OP_SH_RD)
& OP_MASK_RD),
MIPS_GR_REG))
|| (! mips16
&& (pinfo & INSN_WRITE_GPR_31)
&& insn_uses_reg (&prev_insn, 31, MIPS_GR_REG))
|| (mips16
&& (pinfo & MIPS16_INSN_WRITE_31)
&& insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
/* If we are generating embedded PIC code, the branch
might be expanded into a sequence which uses $at, so
we can't swap with an instruction which reads it. */
|| (mips_pic == EMBEDDED_PIC
&& insn_uses_reg (&prev_insn, AT, MIPS_GR_REG))
/* If the previous previous instruction has a load
delay, and sets a register that the branch reads, we
can not swap. */
|| (! mips16
&& mips_isa < 4
&& ((prev_prev_insn.insn_mo->pinfo & INSN_LOAD_COPROC_DELAY)
|| (mips_isa < 2
&& (prev_prev_insn.insn_mo->pinfo
& INSN_LOAD_MEMORY_DELAY)))
&& insn_uses_reg (ip,
((prev_prev_insn.insn_opcode >> OP_SH_RT)
& OP_MASK_RT),
MIPS_GR_REG))
/* If one instruction sets a condition code and the
other one uses a condition code, we can not swap. */
|| ((pinfo & INSN_READ_COND_CODE)
&& (prev_pinfo & INSN_WRITE_COND_CODE))
|| ((pinfo & INSN_WRITE_COND_CODE)
&& (prev_pinfo & INSN_READ_COND_CODE))
/* If the previous instruction uses the PC, we can not
swap. */
|| (mips16
&& (prev_pinfo & MIPS16_INSN_READ_PC))
/* If the previous instruction was extended, we can not
swap. */
|| (mips16 && prev_insn_extended)
/* If the previous instruction had a fixup in mips16
mode, we can not swap. This normally means that the
previous instruction was a 4 byte branch anyhow. */
|| (mips16 && prev_insn_fixp))
{
/* We could do even better for unconditional branches to
portions of this object file; we could pick up the
instruction at the destination, put it in the delay
slot, and bump the destination address. */
emit_nop ();
/* Update the previous insn information. */
prev_prev_insn = *ip;
prev_insn.insn_mo = &dummy_opcode;
}
else
{
/* It looks like we can actually do the swap. */
if (! mips16)
{
char *prev_f;
char temp[4];
prev_f = prev_insn_frag->fr_literal + prev_insn_where;
memcpy (temp, prev_f, 4);
memcpy (prev_f, f, 4);
memcpy (f, temp, 4);
if (prev_insn_fixp)
{
prev_insn_fixp->fx_frag = frag_now;
prev_insn_fixp->fx_where = f - frag_now->fr_literal;
}
if (fixp)
{
fixp->fx_frag = prev_insn_frag;
fixp->fx_where = prev_insn_where;
}
}
else if (reloc_type > BFD_RELOC_UNUSED)
{
char *prev_f;
char temp[2];
/* We are in mips16 mode, and we have just created a
variant frag. We need to extract the old
instruction from the end of the previous frag,
and add it to a new frag. */
prev_f = prev_insn_frag->fr_literal + prev_insn_where;
memcpy (temp, prev_f, 2);
prev_insn_frag->fr_fix -= 2;
if (prev_insn_frag->fr_type == rs_machine_dependent)
{
assert (prev_insn_where == prev_insn_frag->fr_fix);
memcpy (prev_f, prev_f + 2, 2);
}
memcpy (frag_more (2), temp, 2);
}
else
{
char *prev_f;
char temp[2];
assert (prev_insn_fixp == NULL);
prev_f = prev_insn_frag->fr_literal + prev_insn_where;
memcpy (temp, prev_f, 2);
memcpy (prev_f, f, 2);
if (reloc_type != BFD_RELOC_MIPS16_JMP)
memcpy (f, temp, 2);
else
{
memcpy (f, f + 2, 2);
memcpy (f + 2, temp, 2);
}
if (fixp)
{
fixp->fx_frag = prev_insn_frag;
fixp->fx_where = prev_insn_where;
}
}
/* Update the previous insn information; leave prev_insn
unchanged. */
prev_prev_insn = *ip;
}
prev_insn_is_delay_slot = 1;
/* If that was an unconditional branch, forget the previous
insn information. */
if (pinfo & INSN_UNCOND_BRANCH_DELAY)
{
prev_prev_insn.insn_mo = &dummy_opcode;
prev_insn.insn_mo = &dummy_opcode;
}
}
else if (pinfo & INSN_COND_BRANCH_LIKELY)
{
/* We don't yet optimize a branch likely. What we should do
is look at the target, copy the instruction found there
into the delay slot, and increment the branch to jump to
the next instruction. */
emit_nop ();
/* Update the previous insn information. */
prev_prev_insn = *ip;
prev_insn.insn_mo = &dummy_opcode;
}
else
{
/* Update the previous insn information. */
if (nops > 0)
prev_prev_insn.insn_mo = &dummy_opcode;
else
prev_prev_insn = prev_insn;
prev_insn = *ip;
/* Any time we see a branch, we always fill the delay slot
immediately; since this insn is not a branch, we know it
is not in a delay slot. */
prev_insn_is_delay_slot = 0;
}
prev_prev_insn_unreordered = prev_insn_unreordered;
prev_insn_unreordered = 0;
prev_insn_frag = frag_now;
prev_insn_where = f - frag_now->fr_literal;
prev_insn_fixp = fixp;
if (mips16)
prev_insn_extended = ip->use_extend || reloc_type > BFD_RELOC_UNUSED;
prev_insn_valid = 1;
}
/* We just output an insn, so the next one doesn't have a label. */
insn_label = NULL;
}
/* This function forgets that there was any previous instruction or
label. */
static void
mips_no_prev_insn ()
{
prev_insn.insn_mo = &dummy_opcode;
prev_prev_insn.insn_mo = &dummy_opcode;
prev_insn_valid = 0;
prev_insn_is_delay_slot = 0;
prev_insn_unreordered = 0;
prev_insn_extended = 0;
prev_prev_insn_unreordered = 0;
insn_label = NULL;
}
/* This function must be called whenever we turn on noreorder or emit
something other than instructions. It inserts any NOPS which might
be needed by the previous instruction, and clears the information
kept for the previous instructions. */
static void
mips_emit_delays ()
{
if (! mips_noreorder)
{
int nop;
nop = 0;
if ((! mips16
&& mips_isa < 4
&& (! cop_interlocks
&& (prev_insn.insn_mo->pinfo
& (INSN_LOAD_COPROC_DELAY
| INSN_COPROC_MOVE_DELAY
| INSN_WRITE_COND_CODE))))
|| (! interlocks
&& (prev_insn.insn_mo->pinfo
& (INSN_READ_LO
| INSN_READ_HI)))
|| (! mips16
&& mips_isa < 2
&& (prev_insn.insn_mo->pinfo
& (INSN_LOAD_MEMORY_DELAY
| INSN_COPROC_MEMORY_DELAY))))
{
nop = 1;
if ((! mips16
&& mips_isa < 4
&& (! cop_interlocks
&& prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE))
|| (! interlocks
&& ((prev_insn.insn_mo->pinfo & INSN_READ_HI)
|| (prev_insn.insn_mo->pinfo & INSN_READ_LO))))
emit_nop ();
}
else if ((! mips16
&& mips_isa < 4
&& (! cop_interlocks
&& prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE))
|| (! interlocks
&& ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
|| (prev_prev_insn.insn_mo->pinfo & INSN_READ_LO))))
nop = 1;
if (nop)
{
emit_nop ();
if (insn_label != NULL)
{
assert (S_GET_SEGMENT (insn_label) == now_seg);
insn_label->sy_frag = frag_now;
S_SET_VALUE (insn_label, (valueT) frag_now_fix ());
}
}
}
mips_no_prev_insn ();
}
/* Build an instruction created by a macro expansion. This is passed
a pointer to the count of instructions created so far, an
expression, the name of the instruction to build, an operand format
string, and corresponding arguments. */
#ifdef USE_STDARG
static void
macro_build (char *place,
int *counter,
expressionS * ep,
const char *name,
const char *fmt,
...)
#else
static void
macro_build (place, counter, ep, name, fmt, va_alist)
char *place;
int *counter;
expressionS *ep;
const char *name;
const char *fmt;
va_dcl
#endif
{
struct mips_cl_insn insn;
bfd_reloc_code_real_type r;
va_list args;
#ifdef USE_STDARG
va_start (args, fmt);
#else
va_start (args);
#endif
/*
* If the macro is about to expand into a second instruction,
* print a warning if needed. We need to pass ip as a parameter
* to generate a better warning message here...
*/
if (mips_warn_about_macros && place == NULL && *counter == 1)
as_warn ("Macro instruction expanded into multiple instructions");
if (place == NULL)
*counter += 1; /* bump instruction counter */
if (mips16)
{
mips16_macro_build (place, counter, ep, name, fmt, args);
va_end (args);
return;
}
r = BFD_RELOC_UNUSED;
insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
assert (insn.insn_mo);
assert (strcmp (name, insn.insn_mo->name) == 0);
while (strcmp (fmt, insn.insn_mo->args) != 0
|| insn.insn_mo->pinfo == INSN_MACRO
|| ((insn.insn_mo->pinfo & INSN_ISA) == INSN_ISA2
&& mips_isa < 2)
|| ((insn.insn_mo->pinfo & INSN_ISA) == INSN_ISA3
&& mips_isa < 3)
|| ((insn.insn_mo->pinfo & INSN_ISA) == INSN_ISA4
&& mips_isa < 4)
|| ((insn.insn_mo->pinfo & INSN_ISA) == INSN_4650
&& ! mips_4650)
|| ((insn.insn_mo->pinfo & INSN_ISA) == INSN_4010
&& ! mips_4010)
|| ((insn.insn_mo->pinfo & INSN_ISA) == INSN_4100
&& ! mips_4100))
{
++insn.insn_mo;
assert (insn.insn_mo->name);
assert (strcmp (name, insn.insn_mo->name) == 0);
}
insn.insn_opcode = insn.insn_mo->match;
for (;;)
{
switch (*fmt++)
{
case '\0':
break;
case ',':
case '(':
case ')':
continue;
case 't':
case 'w':
case 'E':
insn.insn_opcode |= va_arg (args, int) << 16;
continue;
case 'c':
case 'T':
case 'W':
insn.insn_opcode |= va_arg (args, int) << 16;
continue;
case 'd':
case 'G':
insn.insn_opcode |= va_arg (args, int) << 11;
continue;
case 'V':
case 'S':
insn.insn_opcode |= va_arg (args, int) << 11;
continue;
case 'z':
continue;
case '<':
insn.insn_opcode |= va_arg (args, int) << 6;
continue;
case 'D':
insn.insn_opcode |= va_arg (args, int) << 6;
continue;
case 'B':
insn.insn_opcode |= va_arg (args, int) << 6;
continue;
case 'b':
case 's':
case 'r':
case 'v':
insn.insn_opcode |= va_arg (args, int) << 21;
continue;
case 'i':
case 'j':
case 'o':
r = (bfd_reloc_code_real_type) va_arg (args, int);
assert (r == BFD_RELOC_MIPS_GPREL
|| r == BFD_RELOC_MIPS_LITERAL
|| r == BFD_RELOC_LO16
|| r == BFD_RELOC_MIPS_GOT16
|| r == BFD_RELOC_MIPS_CALL16
|| r == BFD_RELOC_MIPS_GOT_LO16
|| r == BFD_RELOC_MIPS_CALL_LO16
|| (ep->X_op == O_subtract
&& now_seg == text_section
&& r == BFD_RELOC_PCREL_LO16));
continue;
case 'u':
r = (bfd_reloc_code_real_type) va_arg (args, int);
assert (ep != NULL
&& (ep->X_op == O_constant
|| (ep->X_op == O_symbol
&& (r == BFD_RELOC_HI16_S
|| r == BFD_RELOC_HI16
|| r == BFD_RELOC_MIPS_GOT_HI16
|| r == BFD_RELOC_MIPS_CALL_HI16))
|| (ep->X_op == O_subtract
&& now_seg == text_section
&& r == BFD_RELOC_PCREL_HI16_S)));
if (ep->X_op == O_constant)
{
insn.insn_opcode |= (ep->X_add_number >> 16) & 0xffff;
ep = NULL;
r = BFD_RELOC_UNUSED;
}
continue;
case 'p':
assert (ep != NULL);
/*
* This allows macro() to pass an immediate expression for
* creating short branches without creating a symbol.
* Note that the expression still might come from the assembly
* input, in which case the value is not checked for range nor
* is a relocation entry generated (yuck).
*/
if (ep->X_op == O_constant)
{
insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
ep = NULL;
}
else
r = BFD_RELOC_16_PCREL_S2;
continue;
case 'a':
assert (ep != NULL);
r = BFD_RELOC_MIPS_JMP;
continue;
default:
internalError ();
}
break;
}
va_end (args);
assert (r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (place, &insn, ep, r, false);
}
static void
mips16_macro_build (place, counter, ep, name, fmt, args)
char *place;
int *counter;
expressionS *ep;
const char *name;
const char *fmt;
va_list args;
{
struct mips_cl_insn insn;
bfd_reloc_code_real_type r;
r = BFD_RELOC_UNUSED;
insn.insn_mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
assert (insn.insn_mo);
assert (strcmp (name, insn.insn_mo->name) == 0);
while (strcmp (fmt, insn.insn_mo->args) != 0
|| insn.insn_mo->pinfo == INSN_MACRO)
{
++insn.insn_mo;
assert (insn.insn_mo->name);
assert (strcmp (name, insn.insn_mo->name) == 0);
}
insn.insn_opcode = insn.insn_mo->match;
insn.use_extend = false;
for (;;)
{
int c;
c = *fmt++;
switch (c)
{
case '\0':
break;
case ',':
case '(':
case ')':
continue;
case 'y':
case 'w':
insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RY;
continue;
case 'x':
case 'v':
insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RX;
continue;
case 'z':
insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RZ;
continue;
case 'Z':
insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_MOVE32Z;
continue;
case '0':
case 'S':
case 'P':
case 'R':
continue;
case 'X':
insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_REGR32;
continue;
case 'Y':
{
int regno;
regno = va_arg (args, int);
regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
insn.insn_opcode |= regno << MIPS16OP_SH_REG32R;
}
continue;
case '<':
case '>':
case '4':
case '5':
case 'H':
case 'W':
case 'D':
case 'j':
case '8':
case 'V':
case 'C':
case 'U':
case 'k':
case 'K':
case 'p':
case 'q':
{
assert (ep != NULL);
if (ep->X_op != O_constant)
r = BFD_RELOC_UNUSED + c;
else
{
mips16_immed ((char *) NULL, 0, c, ep->X_add_number, false,
false, false, &insn.insn_opcode,
&insn.use_extend, &insn.extend);
ep = NULL;
r = BFD_RELOC_UNUSED;
}
}
continue;
case '6':
insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_IMM6;
continue;
}
break;
}
assert (r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (place, &insn, ep, r, false);
}
/*
* Generate a "lui" instruction.
*/
static void
macro_build_lui (place, counter, ep, regnum)
char *place;
int *counter;
expressionS *ep;
int regnum;
{
expressionS high_expr;
struct mips_cl_insn insn;
bfd_reloc_code_real_type r;
CONST char *name = "lui";
CONST char *fmt = "t,u";
assert (! mips16);
if (place == NULL)
high_expr = *ep;
else
{
high_expr.X_op = O_constant;
high_expr.X_add_number = ep->X_add_number;
}
if (high_expr.X_op == O_constant)
{
/* we can compute the instruction now without a relocation entry */
if (high_expr.X_add_number & 0x8000)
high_expr.X_add_number += 0x10000;
high_expr.X_add_number =
((unsigned long) high_expr.X_add_number >> 16) & 0xffff;
r = BFD_RELOC_UNUSED;
}
else
{
assert (ep->X_op == O_symbol);
/* _gp_disp is a special case, used from s_cpload. */
assert (mips_pic == NO_PIC
|| strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0);
r = BFD_RELOC_HI16_S;
}
/*
* If the macro is about to expand into a second instruction,
* print a warning if needed. We need to pass ip as a parameter
* to generate a better warning message here...
*/
if (mips_warn_about_macros && place == NULL && *counter == 1)
as_warn ("Macro instruction expanded into multiple instructions");
if (place == NULL)
*counter += 1; /* bump instruction counter */
insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
assert (insn.insn_mo);
assert (strcmp (name, insn.insn_mo->name) == 0);
assert (strcmp (fmt, insn.insn_mo->args) == 0);
insn.insn_opcode = insn.insn_mo->match | (regnum << OP_SH_RT);
if (r == BFD_RELOC_UNUSED)
{
insn.insn_opcode |= high_expr.X_add_number;
append_insn (place, &insn, NULL, r, false);
}
else
append_insn (place, &insn, &high_expr, r, false);
}
/* set_at()
* Generates code to set the $at register to true (one)
* if reg is less than the immediate expression.
*/
static void
set_at (counter, reg, unsignedp)
int *counter;
int reg;
int unsignedp;
{
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
macro_build ((char *) NULL, counter, &imm_expr,
unsignedp ? "sltiu" : "slti",
"t,r,j", AT, reg, (int) BFD_RELOC_LO16);
else
{
load_register (counter, AT, &imm_expr, 0);
macro_build ((char *) NULL, counter, NULL,
unsignedp ? "sltu" : "slt",
"d,v,t", AT, reg, AT);
}
}
/* Warn if an expression is not a constant. */
static void
check_absolute_expr (ip, ex)
struct mips_cl_insn *ip;
expressionS *ex;
{
if (ex->X_op != O_constant)
as_warn ("Instruction %s requires absolute expression", ip->insn_mo->name);
}
/* Count the leading zeroes by performing a binary chop. This is a
bulky bit of source, but performance is a LOT better for the
majority of values than a simple loop to count the bits:
for (lcnt = 0; (lcnt < 32); lcnt++)
if ((v) & (1 << (31 - lcnt)))
break;
However it is not code size friendly, and the gain will drop a bit
on certain cached systems.
*/
#define COUNT_TOP_ZEROES(v) \
(((v) & ~0xffff) == 0 \
? ((v) & ~0xff) == 0 \
? ((v) & ~0xf) == 0 \
? ((v) & ~0x3) == 0 \
? ((v) & ~0x1) == 0 \
? !(v) \
? 32 \
: 31 \
: 30 \
: ((v) & ~0x7) == 0 \
? 29 \
: 28 \
: ((v) & ~0x3f) == 0 \
? ((v) & ~0x1f) == 0 \
? 27 \
: 26 \
: ((v) & ~0x7f) == 0 \
? 25 \
: 24 \
: ((v) & ~0xfff) == 0 \
? ((v) & ~0x3ff) == 0 \
? ((v) & ~0x1ff) == 0 \
? 23 \
: 22 \
: ((v) & ~0x7ff) == 0 \
? 21 \
: 20 \
: ((v) & ~0x3fff) == 0 \
? ((v) & ~0x1fff) == 0 \
? 19 \
: 18 \
: ((v) & ~0x7fff) == 0 \
? 17 \
: 16 \
: ((v) & ~0xffffff) == 0 \
? ((v) & ~0xfffff) == 0 \
? ((v) & ~0x3ffff) == 0 \
? ((v) & ~0x1ffff) == 0 \
? 15 \
: 14 \
: ((v) & ~0x7ffff) == 0 \
? 13 \
: 12 \
: ((v) & ~0x3fffff) == 0 \
? ((v) & ~0x1fffff) == 0 \
? 11 \
: 10 \
: ((v) & ~0x7fffff) == 0 \
? 9 \
: 8 \
: ((v) & ~0xfffffff) == 0 \
? ((v) & ~0x3ffffff) == 0 \
? ((v) & ~0x1ffffff) == 0 \
? 7 \
: 6 \
: ((v) & ~0x7ffffff) == 0 \
? 5 \
: 4 \
: ((v) & ~0x3fffffff) == 0 \
? ((v) & ~0x1fffffff) == 0 \
? 3 \
: 2 \
: ((v) & ~0x7fffffff) == 0 \
? 1 \
: 0)
/* load_register()
* This routine generates the least number of instructions neccessary to load
* an absolute expression value into a register.
*/
static void
load_register (counter, reg, ep, dbl)
int *counter;
int reg;
expressionS *ep;
int dbl;
{
int shift, freg;
expressionS hi32, lo32, tmp;
if (ep->X_op != O_big)
{
assert (ep->X_op == O_constant);
if (ep->X_add_number < 0x8000
&& (ep->X_add_number >= 0
|| (ep->X_add_number >= -0x8000
&& (! dbl
|| ! ep->X_unsigned
|| sizeof (ep->X_add_number) > 4))))
{
/* We can handle 16 bit signed values with an addiu to
$zero. No need to ever use daddiu here, since $zero and
the result are always correct in 32 bit mode. */
macro_build ((char *) NULL, counter, ep, "addiu", "t,r,j", reg, 0,
(int) BFD_RELOC_LO16);
return;
}
else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
{
/* We can handle 16 bit unsigned values with an ori to
$zero. */
macro_build ((char *) NULL, counter, ep, "ori", "t,r,i", reg, 0,
(int) BFD_RELOC_LO16);
return;
}
else if ((((ep->X_add_number &~ (offsetT) 0x7fffffff) == 0
|| ((ep->X_add_number &~ (offsetT) 0x7fffffff)
== ~ (offsetT) 0x7fffffff))
&& (! dbl
|| ! ep->X_unsigned
|| sizeof (ep->X_add_number) > 4
|| (ep->X_add_number & 0x80000000) == 0))
|| ((mips_isa < 3 || !dbl)
&& (ep->X_add_number &~ (offsetT) 0xffffffff) == 0))
{
/* 32 bit values require an lui. */
macro_build ((char *) NULL, counter, ep, "lui", "t,u", reg,
(int) BFD_RELOC_HI16);
if ((ep->X_add_number & 0xffff) != 0)
macro_build ((char *) NULL, counter, ep, "ori", "t,r,i", reg, reg,
(int) BFD_RELOC_LO16);
return;
}
}
/* The value is larger than 32 bits. */
if (mips_isa < 3)
{
as_bad ("Number larger than 32 bits");
macro_build ((char *) NULL, counter, ep, "addiu", "t,r,j", reg, 0,
(int) BFD_RELOC_LO16);
return;
}
if (ep->X_op != O_big)
{
hi32 = *ep;
shift = 32;
hi32.X_add_number >>= shift;
hi32.X_add_number &= 0xffffffff;
if ((hi32.X_add_number & 0x80000000) != 0)
hi32.X_add_number |= ~ (offsetT) 0xffffffff;
lo32 = *ep;
lo32.X_add_number &= 0xffffffff;
}
else
{
assert (ep->X_add_number > 2);
if (ep->X_add_number == 3)
generic_bignum[3] = 0;
else if (ep->X_add_number > 4)
as_bad ("Number larger than 64 bits");
lo32.X_op = O_constant;
lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
hi32.X_op = O_constant;
hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
}
if (hi32.X_add_number == 0)
freg = 0;
else
{
if (hi32.X_add_number == 0xffffffff)
{
if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
{
macro_build ((char *) NULL, counter, &lo32, "addiu", "t,r,j", reg, 0,
(int) BFD_RELOC_LO16);
return;
}
if (lo32.X_add_number & 0x80000000)
{
macro_build ((char *) NULL, counter, &lo32, "lui", "t,u", reg,
(int) BFD_RELOC_HI16);
macro_build ((char *) NULL, counter, &lo32, "ori", "t,r,i", reg, reg,
(int) BFD_RELOC_LO16);
return;
}
}
/* Check for 16bit shifted constant: */
shift = 32;
tmp.X_add_number = hi32.X_add_number << shift | lo32.X_add_number;
/* We know that hi32 is non-zero, so start the mask on the first
bit of the hi32 value: */
shift = 17;
do
{
if ((tmp.X_add_number & ~((offsetT)0xffff << shift)) == 0)
{
tmp.X_op = O_constant;
tmp.X_add_number >>= shift;
macro_build ((char *) NULL, counter, &tmp, "ori", "t,r,i", reg, 0,
(int) BFD_RELOC_LO16);
macro_build ((char *) NULL, counter, NULL,
(shift >= 32) ? "dsll32" : "dsll",
"d,w,<", reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
shift++;
} while (shift <= (64 - 16));
freg = 0;
shift = 32;
tmp.X_add_number = hi32.X_add_number << shift | lo32.X_add_number;
while ((tmp.X_add_number & 1) == 0)
{
tmp.X_add_number >>= 1;
freg++;
}
if (((tmp.X_add_number + 1) & tmp.X_add_number) == 0) /* (power-of-2 - 1) */
{
shift = COUNT_TOP_ZEROES((unsigned int)hi32.X_add_number);
if (shift != 0)
{
tmp.X_op = O_constant;
tmp.X_add_number = (offsetT)-1;
macro_build ((char *) NULL, counter, &tmp, "addiu", "t,r,j", reg, 0,
(int) BFD_RELOC_LO16); /* set all ones */
if (freg != 0)
{
freg += shift;
macro_build ((char *) NULL, counter, NULL,
(freg >= 32) ? "dsll32" : "dsll",
"d,w,<", reg, reg,
(freg >= 32) ? freg - 32 : freg);
}
macro_build ((char *) NULL, counter, NULL, (shift >= 32) ? "dsrl32" : "dsrl",
"d,w,<", reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
}
load_register (counter, reg, &hi32, 0);
freg = reg;
}
if ((lo32.X_add_number & 0xffff0000) == 0)
{
if (freg != 0)
{
macro_build ((char *) NULL, counter, NULL, "dsll32", "d,w,<", reg,
freg, 0);
freg = reg;
}
}
else
{
expressionS mid16;
if ((freg == 0) && (lo32.X_add_number == 0xffffffff))
{
macro_build ((char *) NULL, counter, &lo32, "lui", "t,u", reg,
(int) BFD_RELOC_HI16);
macro_build ((char *) NULL, counter, NULL, "dsrl32", "d,w,<", reg,
reg, 0);
return;
}
if (freg != 0)
{
macro_build ((char *) NULL, counter, NULL, "dsll", "d,w,<", reg,
freg, 16);
freg = reg;
}
mid16 = lo32;
mid16.X_add_number >>= 16;
macro_build ((char *) NULL, counter, &mid16, "ori", "t,r,i", reg,
freg, (int) BFD_RELOC_LO16);
macro_build ((char *) NULL, counter, NULL, "dsll", "d,w,<", reg,
reg, 16);
freg = reg;
}
if ((lo32.X_add_number & 0xffff) != 0)
macro_build ((char *) NULL, counter, &lo32, "ori", "t,r,i", reg, freg,
(int) BFD_RELOC_LO16);
}
/* Load an address into a register. */
static void
load_address (counter, reg, ep)
int *counter;
int reg;
expressionS *ep;
{
char *p;
if (ep->X_op != O_constant
&& ep->X_op != O_symbol)
{
as_bad ("expression too complex");
ep->X_op = O_constant;
}
if (ep->X_op == O_constant)
{
load_register (counter, reg, ep, 0);
return;
}
if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, we want
addiu $reg,$gp,<sym> (BFD_RELOC_MIPS_GPREL)
Otherwise we want
lui $reg,<sym> (BFD_RELOC_HI16_S)
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If we have an addend, we always use the latter form. */
if ((valueT) ep->X_add_number >= MAX_GPREL_OFFSET
|| nopic_need_relax (ep->X_add_symbol))
p = NULL;
else
{
frag_grow (20);
macro_build ((char *) NULL, counter, ep,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, GP, (int) BFD_RELOC_MIPS_GPREL);
p = frag_var (rs_machine_dependent, 8, 0,
RELAX_ENCODE (4, 8, 0, 4, 0, mips_warn_about_macros),
ep->X_add_symbol, (long) 0, (char *) NULL);
}
macro_build_lui (p, counter, ep, reg);
if (p != NULL)
p += 4;
macro_build (p, counter, ep,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, reg, (int) BFD_RELOC_LO16);
}
else if (mips_pic == SVR4_PIC && ! mips_big_got)
{
expressionS ex;
/* If this is a reference to an external symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
Otherwise we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after. */
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
frag_grow (20);
macro_build ((char *) NULL, counter, ep,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", reg, (int) BFD_RELOC_MIPS_GOT16, GP);
macro_build ((char *) NULL, counter, (expressionS *) NULL, "nop", "");
p = frag_var (rs_machine_dependent, 4, 0,
RELAX_ENCODE (0, 4, -8, 0, 0, mips_warn_about_macros),
ep->X_add_symbol, (long) 0, (char *) NULL);
macro_build (p, counter, ep,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, reg, (int) BFD_RELOC_LO16);
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad ("PIC code offset overflow (max 16 signed bits)");
ex.X_op = O_constant;
macro_build ((char *) NULL, counter, &ex,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, reg, (int) BFD_RELOC_LO16);
}
}
else if (mips_pic == SVR4_PIC)
{
expressionS ex;
int off;
/* This is the large GOT case. If this is a reference to an
external symbol, we want
lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $reg,$reg,$gp
lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
Otherwise, for a reference to a local symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after. */
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
if (reg_needs_delay (GP))
off = 4;
else
off = 0;
frag_grow (32);
macro_build ((char *) NULL, counter, ep, "lui", "t,u", reg,
(int) BFD_RELOC_MIPS_GOT_HI16);
macro_build ((char *) NULL, counter, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", reg, reg, GP);
macro_build ((char *) NULL, counter, ep,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", reg, (int) BFD_RELOC_MIPS_GOT_LO16, reg);
p = frag_var (rs_machine_dependent, 12 + off, 0,
RELAX_ENCODE (12, 12 + off, off, 8 + off, 0,
mips_warn_about_macros),
ep->X_add_symbol, (long) 0, (char *) NULL);
if (off > 0)
{
/* We need a nop before loading from $gp. This special
check is required because the lui which starts the main
instruction stream does not refer to $gp, and so will not
insert the nop which may be required. */
macro_build (p, counter, (expressionS *) NULL, "nop", "");
p += 4;
}
macro_build (p, counter, ep,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", reg, (int) BFD_RELOC_MIPS_GOT16, GP);
p += 4;
macro_build (p, counter, (expressionS *) NULL, "nop", "");
p += 4;
macro_build (p, counter, ep,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, reg, (int) BFD_RELOC_LO16);
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad ("PIC code offset overflow (max 16 signed bits)");
ex.X_op = O_constant;
macro_build ((char *) NULL, counter, &ex,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, reg, (int) BFD_RELOC_LO16);
}
}
else if (mips_pic == EMBEDDED_PIC)
{
/* We always do
addiu $reg,$gp,<sym> (BFD_RELOC_MIPS_GPREL)
*/
macro_build ((char *) NULL, counter, ep,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", reg, GP, (int) BFD_RELOC_MIPS_GPREL);
}
else
abort ();
}
/*
* Build macros
* This routine implements the seemingly endless macro or synthesized
* instructions and addressing modes in the mips assembly language. Many
* of these macros are simple and are similar to each other. These could
* probably be handled by some kind of table or grammer aproach instead of
* this verbose method. Others are not simple macros but are more like
* optimizing code generation.
* One interesting optimization is when several store macros appear
* consecutivly that would load AT with the upper half of the same address.
* The ensuing load upper instructions are ommited. This implies some kind
* of global optimization. We currently only optimize within a single macro.
* For many of the load and store macros if the address is specified as a
* constant expression in the first 64k of memory (ie ld $2,0x4000c) we
* first load register 'at' with zero and use it as the base register. The
* mips assembler simply uses register $zero. Just one tiny optimization
* we're missing.
*/
static void
macro (ip)
struct mips_cl_insn *ip;
{
register int treg, sreg, dreg, breg;
int tempreg;
int mask;
int icnt = 0;
int used_at;
expressionS expr1;
const char *s;
const char *s2;
const char *fmt;
int likely = 0;
int dbl = 0;
int coproc = 0;
int lr = 0;
offsetT maxnum;
int off;
bfd_reloc_code_real_type r;
char *p;
int hold_mips_optimize;
assert (! mips16);
treg = (ip->insn_opcode >> 16) & 0x1f;
dreg = (ip->insn_opcode >> 11) & 0x1f;
sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
mask = ip->insn_mo->mask;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
switch (mask)
{
case M_DABS:
dbl = 1;
case M_ABS:
/* bgez $a0,.+12
move v0,$a0
sub v0,$zero,$a0
*/
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
expr1.X_add_number = 8;
macro_build ((char *) NULL, &icnt, &expr1, "bgez", "s,p", sreg);
if (dreg == sreg)
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
else
macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, sreg, 0);
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dsub" : "sub",
"d,v,t", dreg, 0, sreg);
--mips_noreorder;
return;
case M_ADD_I:
s = "addi";
s2 = "add";
goto do_addi;
case M_ADDU_I:
s = "addiu";
s2 = "addu";
goto do_addi;
case M_DADD_I:
dbl = 1;
s = "daddi";
s2 = "dadd";
goto do_addi;
case M_DADDU_I:
dbl = 1;
s = "daddiu";
s2 = "daddu";
do_addi:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build ((char *) NULL, &icnt, &imm_expr, s, "t,r,j", treg, sreg,
(int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr, dbl);
macro_build ((char *) NULL, &icnt, NULL, s2, "d,v,t", treg, sreg, AT);
break;
case M_AND_I:
s = "andi";
s2 = "and";
goto do_bit;
case M_OR_I:
s = "ori";
s2 = "or";
goto do_bit;
case M_NOR_I:
s = "";
s2 = "nor";
goto do_bit;
case M_XOR_I:
s = "xori";
s2 = "xor";
do_bit:
if (imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000)
{
if (mask != M_NOR_I)
macro_build ((char *) NULL, &icnt, &imm_expr, s, "t,r,i", treg,
sreg, (int) BFD_RELOC_LO16);
else
{
macro_build ((char *) NULL, &icnt, &imm_expr, "ori", "t,r,i",
treg, sreg, (int) BFD_RELOC_LO16);
macro_build ((char *) NULL, &icnt, NULL, "nor", "d,v,t",
treg, treg, 0);
}
return;
}
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, s2, "d,v,t", treg, sreg, AT);
break;
case M_BEQ_I:
s = "beq";
goto beq_i;
case M_BEQL_I:
s = "beql";
likely = 1;
goto beq_i;
case M_BNE_I:
s = "bne";
goto beq_i;
case M_BNEL_I:
s = "bnel";
likely = 1;
beq_i:
if (imm_expr.X_add_number == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr, s, "s,t,p", sreg,
0);
return;
}
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, &offset_expr, s, "s,t,p", sreg, AT);
break;
case M_BGEL:
likely = 1;
case M_BGE:
if (treg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bgezl" : "bgez",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "blezl" : "blez",
"s,p", treg);
return;
}
macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, sreg, treg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGTL_I:
likely = 1;
case M_BGT_I:
/* check for > max integer */
maxnum = 0x7fffffff;
if (mips_isa >= 3)
{
maxnum <<= 16;
maxnum |= 0xffff;
maxnum <<= 16;
maxnum |= 0xffff;
}
if (imm_expr.X_add_number >= maxnum
&& (mips_isa < 3 || sizeof (maxnum) > 4))
{
do_false:
/* result is always false */
if (! likely)
{
as_warn ("Branch %s is always false (nop)", ip->insn_mo->name);
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
}
else
{
as_warn ("Branch likely %s is always false", ip->insn_mo->name);
macro_build ((char *) NULL, &icnt, &offset_expr, "bnel",
"s,t,p", 0, 0);
}
return;
}
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BGE_I:
case M_BGEL_I:
if (mask == M_BGEL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bgezl" : "bgez",
"s,p", sreg);
return;
}
if (imm_expr.X_add_number == 1)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bgtzl" : "bgtz",
"s,p", sreg);
return;
}
maxnum = 0x7fffffff;
if (mips_isa >= 3)
{
maxnum <<= 16;
maxnum |= 0xffff;
maxnum <<= 16;
maxnum |= 0xffff;
}
maxnum = - maxnum - 1;
if (imm_expr.X_add_number <= maxnum
&& (mips_isa < 3 || sizeof (maxnum) > 4))
{
do_true:
/* result is always true */
as_warn ("Branch %s is always true", ip->insn_mo->name);
macro_build ((char *) NULL, &icnt, &offset_expr, "b", "p");
return;
}
set_at (&icnt, sreg, 0);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGEUL:
likely = 1;
case M_BGEU:
if (treg == 0)
goto do_true;
if (sreg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", 0, treg);
return;
}
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, sreg,
treg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGTUL_I:
likely = 1;
case M_BGTU_I:
if (sreg == 0 || imm_expr.X_add_number == -1)
goto do_false;
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BGEU_I:
case M_BGEUL_I:
if (mask == M_BGEUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_true;
if (imm_expr.X_add_number == 1)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", sreg, 0);
return;
}
set_at (&icnt, sreg, 1);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BGTL:
likely = 1;
case M_BGT:
if (treg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bgtzl" : "bgtz",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bltzl" : "bltz",
"s,p", treg);
return;
}
macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, treg, sreg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BGTUL:
likely = 1;
case M_BGTU:
if (treg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", sreg, 0);
return;
}
if (sreg == 0)
goto do_false;
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, treg,
sreg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLEL:
likely = 1;
case M_BLE:
if (treg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "blezl" : "blez",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bgezl" : "bgez",
"s,p", treg);
return;
}
macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, treg, sreg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BLEL_I:
likely = 1;
case M_BLE_I:
maxnum = 0x7fffffff;
if (mips_isa >= 3)
{
maxnum <<= 16;
maxnum |= 0xffff;
maxnum <<= 16;
maxnum |= 0xffff;
}
if (imm_expr.X_add_number >= maxnum
&& (mips_isa < 3 || sizeof (maxnum) > 4))
goto do_true;
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BLT_I:
case M_BLTL_I:
if (mask == M_BLTL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bltzl" : "bltz",
"s,p", sreg);
return;
}
if (imm_expr.X_add_number == 1)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "blezl" : "blez",
"s,p", sreg);
return;
}
set_at (&icnt, sreg, 0);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLEUL:
likely = 1;
case M_BLEU:
if (treg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", sreg, 0);
return;
}
if (sreg == 0)
goto do_true;
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, treg,
sreg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", AT, 0);
break;
case M_BLEUL_I:
likely = 1;
case M_BLEU_I:
if (sreg == 0 || imm_expr.X_add_number == -1)
goto do_true;
imm_expr.X_add_number++;
/* FALLTHROUGH */
case M_BLTU_I:
case M_BLTUL_I:
if (mask == M_BLTUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_false;
if (imm_expr.X_add_number == 1)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "beql" : "beq",
"s,t,p", sreg, 0);
return;
}
set_at (&icnt, sreg, 1);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLTL:
likely = 1;
case M_BLT:
if (treg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bltzl" : "bltz",
"s,p", sreg);
return;
}
if (sreg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bgtzl" : "bgtz",
"s,p", treg);
return;
}
macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", AT, sreg, treg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_BLTUL:
likely = 1;
case M_BLTU:
if (treg == 0)
goto do_false;
if (sreg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", 0, treg);
return;
}
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", AT, sreg,
treg);
macro_build ((char *) NULL, &icnt, &offset_expr,
likely ? "bnel" : "bne",
"s,t,p", AT, 0);
break;
case M_DDIV_3:
dbl = 1;
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
case M_REM_3:
s = "mfhi";
do_div3:
if (treg == 0)
{
as_warn ("Divide by zero.");
if (mips_trap)
macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", 0, 0);
else
macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7);
return;
}
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "ddiv" : "div",
"z,s,t", sreg, treg);
if (mips_trap)
macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", treg, 0);
else
{
expr1.X_add_number = 8;
macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, 0);
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7);
}
expr1.X_add_number = -1;
macro_build ((char *) NULL, &icnt, &expr1,
dbl ? "daddiu" : "addiu",
"t,r,j", AT, 0, (int) BFD_RELOC_LO16);
expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, AT);
if (dbl)
{
expr1.X_add_number = 1;
macro_build ((char *) NULL, &icnt, &expr1, "daddiu", "t,r,j", AT, 0,
(int) BFD_RELOC_LO16);
macro_build ((char *) NULL, &icnt, NULL, "dsll32", "d,w,<", AT, AT,
31);
}
else
{
expr1.X_add_number = 0x80000000;
macro_build ((char *) NULL, &icnt, &expr1, "lui", "t,u", AT,
(int) BFD_RELOC_HI16);
}
if (mips_trap)
macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", sreg, AT);
else
{
expr1.X_add_number = 8;
macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", sreg, AT);
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
macro_build ((char *) NULL, &icnt, NULL, "break", "c", 6);
}
--mips_noreorder;
macro_build ((char *) NULL, &icnt, NULL, s, "d", dreg);
break;
case M_DIV_3I:
s = "div";
s2 = "mflo";
goto do_divi;
case M_DIVU_3I:
s = "divu";
s2 = "mflo";
goto do_divi;
case M_REM_3I:
s = "div";
s2 = "mfhi";
goto do_divi;
case M_REMU_3I:
s = "divu";
s2 = "mfhi";
goto do_divi;
case M_DDIV_3I:
dbl = 1;
s = "ddiv";
s2 = "mflo";
goto do_divi;
case M_DDIVU_3I:
dbl = 1;
s = "ddivu";
s2 = "mflo";
goto do_divi;
case M_DREM_3I:
dbl = 1;
s = "ddiv";
s2 = "mfhi";
goto do_divi;
case M_DREMU_3I:
dbl = 1;
s = "ddivu";
s2 = "mfhi";
do_divi:
if (imm_expr.X_add_number == 0)
{
as_warn ("Divide by zero.");
if (mips_trap)
macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", 0, 0);
else
macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7);
return;
}
if (imm_expr.X_add_number == 1)
{
if (strcmp (s2, "mflo") == 0)
macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg,
sreg);
else
macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, 0);
return;
}
if (imm_expr.X_add_number == -1
&& s[strlen (s) - 1] != 'u')
{
if (strcmp (s2, "mflo") == 0)
{
if (dbl)
macro_build ((char *) NULL, &icnt, NULL, "dneg", "d,w", dreg,
sreg);
else
macro_build ((char *) NULL, &icnt, NULL, "neg", "d,w", dreg,
sreg);
}
else
macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, 0);
return;
}
load_register (&icnt, AT, &imm_expr, dbl);
macro_build ((char *) NULL, &icnt, NULL, s, "z,s,t", sreg, AT);
macro_build ((char *) NULL, &icnt, NULL, s2, "d", dreg);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
macro_build ((char *) NULL, &icnt, NULL, s, "z,s,t", sreg, treg);
if (mips_trap)
macro_build ((char *) NULL, &icnt, NULL, "teq", "s,t", treg, 0);
else
{
expr1.X_add_number = 8;
macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, 0);
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
macro_build ((char *) NULL, &icnt, NULL, "break", "c", 7);
}
--mips_noreorder;
macro_build ((char *) NULL, &icnt, NULL, s2, "d", dreg);
return;
case M_DLA_AB:
dbl = 1;
case M_LA_AB:
/* Load the address of a symbol into a register. If breg is not
zero, we then add a base register to it. */
/* When generating embedded PIC code, we permit expressions of
the form
la $4,foo-bar
where bar is an address in the .text section. These are used
when getting the addresses of functions. We don't permit
X_add_number to be non-zero, because if the symbol is
external the relaxing code needs to know that any addend is
purely the offset to X_op_symbol. */
if (mips_pic == EMBEDDED_PIC
&& offset_expr.X_op == O_subtract
&& now_seg == text_section
&& (offset_expr.X_op_symbol->sy_value.X_op == O_constant
? S_GET_SEGMENT (offset_expr.X_op_symbol) == text_section
: (offset_expr.X_op_symbol->sy_value.X_op == O_symbol
&& (S_GET_SEGMENT (offset_expr.X_op_symbol
->sy_value.X_add_symbol)
== text_section)))
&& breg == 0
&& offset_expr.X_add_number == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
treg, (int) BFD_RELOC_PCREL_HI16_S);
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", treg, treg, (int) BFD_RELOC_PCREL_LO16);
return;
}
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad ("expression too complex");
offset_expr.X_op = O_constant;
}
if (treg == breg)
{
tempreg = AT;
used_at = 1;
}
else
{
tempreg = treg;
used_at = 0;
}
if (offset_expr.X_op == O_constant)
load_register (&icnt, tempreg, &offset_expr, dbl);
else if (mips_pic == NO_PIC)
{
/* If this is a reference to an GP relative symbol, we want
addiu $tempreg,$gp,<sym> (BFD_RELOC_MIPS_GPREL)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we may as well always use the latter form. */
if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET
|| nopic_need_relax (offset_expr.X_add_symbol))
p = NULL;
else
{
frag_grow (20);
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, GP, (int) BFD_RELOC_MIPS_GPREL);
p = frag_var (rs_machine_dependent, 8, 0,
RELAX_ENCODE (4, 8, 0, 4, 0,
mips_warn_about_macros),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
}
macro_build_lui (p, &icnt, &offset_expr, tempreg);
if (p != NULL)
p += 4;
macro_build (p, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
}
else if (mips_pic == SVR4_PIC && ! mips_big_got)
{
/* If this is a reference to an external symbol, and there
is no constant, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction.
If we have a large constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction. */
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
frag_grow (32);
macro_build ((char *) NULL, &icnt, &offset_expr,
dbl ? "ld" : "lw",
"t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16, GP);
if (expr1.X_add_number == 0)
{
int off;
if (breg == 0)
off = 0;
else
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
off = 4;
}
p = frag_var (rs_machine_dependent, 8 - off, 0,
RELAX_ENCODE (0, 8 - off, -4 - off, 4 - off, 0,
(breg == 0
? mips_warn_about_macros
: 0)),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
if (breg == 0)
{
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
}
macro_build (p, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
/* FIXME: If breg == 0, and the next instruction uses
$tempreg, then if this variant case is used an extra
nop will be generated. */
}
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
macro_build ((char *) NULL, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
(void) frag_var (rs_machine_dependent, 0, 0,
RELAX_ENCODE (0, 0, -12, -4, 0, 0),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
}
else
{
int off1;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != treg)
off1 = 0;
else
{
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", treg, AT, breg);
breg = 0;
tempreg = treg;
off1 = -8;
}
/* Set mips_optimize around the lui instruction to avoid
inserting an unnecessary nop after the lw. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build_lui ((char *) NULL, &icnt, &expr1, AT);
mips_optimize = hold_mips_optimize;
macro_build ((char *) NULL, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, AT, (int) BFD_RELOC_LO16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, AT);
(void) frag_var (rs_machine_dependent, 0, 0,
RELAX_ENCODE (0, 0, -16 + off1, -8, 0, 0),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
used_at = 1;
}
}
else if (mips_pic == SVR4_PIC)
{
int gpdel;
/* This is the large GOT case. If this is a reference to an
external symbol, and there is no constant, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
If we have a large constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
addu $tempreg,$tempreg,$at
*/
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
frag_grow (52);
if (reg_needs_delay (GP))
gpdel = 4;
else
gpdel = 0;
macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
tempreg, (int) BFD_RELOC_MIPS_GOT_HI16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, GP);
macro_build ((char *) NULL, &icnt, &offset_expr,
dbl ? "ld" : "lw",
"t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT_LO16,
tempreg);
if (expr1.X_add_number == 0)
{
int off;
if (breg == 0)
off = 0;
else
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
off = 4;
}
p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
RELAX_ENCODE (12 + off, 12 + gpdel, gpdel,
8 + gpdel, 0,
(breg == 0
? mips_warn_about_macros
: 0)),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
}
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
macro_build ((char *) NULL, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
RELAX_ENCODE (20, 12 + gpdel, gpdel, 8 + gpdel, 0,
(breg == 0
? mips_warn_about_macros
: 0)),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
}
else
{
int adj, dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != treg)
{
adj = 0;
dreg = tempreg;
}
else
{
assert (tempreg == AT);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", treg, AT, breg);
dreg = treg;
adj = 8;
}
/* Set mips_optimize around the lui instruction to avoid
inserting an unnecessary nop after the lw. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build_lui ((char *) NULL, &icnt, &expr1, AT);
mips_optimize = hold_mips_optimize;
macro_build ((char *) NULL, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, AT, (int) BFD_RELOC_LO16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", dreg, dreg, AT);
p = frag_var (rs_machine_dependent, 16 + gpdel + adj, 0,
RELAX_ENCODE (24 + adj, 16 + gpdel + adj, gpdel,
8 + gpdel, 0,
(breg == 0
? mips_warn_about_macros
: 0)),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
used_at = 1;
}
if (gpdel > 0)
{
/* This is needed because this instruction uses $gp, but
the first instruction on the main stream does not. */
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
}
macro_build (p, &icnt, &offset_expr,
dbl ? "ld" : "lw",
"t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16, GP);
p += 4;
if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
macro_build (p, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
/* FIXME: If add_number is 0, and there was no base
register, the external symbol case ended with a load,
so if the symbol turns out to not be external, and
the next instruction uses tempreg, an unnecessary nop
will be inserted. */
}
else
{
if (breg == treg)
{
/* We must add in the base register now, as in the
external symbol case. */
assert (tempreg == AT);
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
macro_build (p, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", treg, AT, breg);
p += 4;
tempreg = treg;
/* We set breg to 0 because we have arranged to add
it in in both cases. */
breg = 0;
}
macro_build_lui (p, &icnt, &expr1, AT);
p += 4;
macro_build (p, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, AT, (int) BFD_RELOC_LO16);
p += 4;
macro_build (p, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, AT);
p += 4;
}
}
else if (mips_pic == EMBEDDED_PIC)
{
/* We use
addiu $tempreg,$gp,<sym> (BFD_RELOC_MIPS_GPREL)
*/
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, GP, (int) BFD_RELOC_MIPS_GPREL);
}
else
abort ();
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", treg, tempreg, breg);
if (! used_at)
return;
break;
case M_J_A:
/* The j instruction may not be used in PIC code, since it
requires an absolute address. We convert it to a b
instruction. */
if (mips_pic == NO_PIC)
macro_build ((char *) NULL, &icnt, &offset_expr, "j", "a");
else
macro_build ((char *) NULL, &icnt, &offset_expr, "b", "p");
return;
/* The jal instructions must be handled as macros because when
generating PIC code they expand to multi-instruction
sequences. Normally they are simple instructions. */
case M_JAL_1:
dreg = RA;
/* Fall through. */
case M_JAL_2:
if (mips_pic == NO_PIC
|| mips_pic == EMBEDDED_PIC)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr",
"d,s", dreg, sreg);
else if (mips_pic == SVR4_PIC)
{
if (sreg != PIC_CALL_REG)
as_warn ("MIPS PIC call to register other than $25");
macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr",
"d,s", dreg, sreg);
if (mips_cprestore_offset < 0)
as_warn ("No .cprestore pseudo-op used in PIC code");
else
{
expr1.X_add_number = mips_cprestore_offset;
macro_build ((char *) NULL, &icnt, &expr1,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", GP, (int) BFD_RELOC_LO16, mips_frame_reg);
}
}
else
abort ();
return;
case M_JAL_A:
if (mips_pic == NO_PIC)
macro_build ((char *) NULL, &icnt, &offset_expr, "jal", "a");
else if (mips_pic == SVR4_PIC)
{
/* If this is a reference to an external symbol, and we are
using a small GOT, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
nop
jalr $25
nop
lw $gp,cprestore($sp)
The cprestore value is set using the .cprestore
pseudo-op. If we are using a big GOT, we want
lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
addu $25,$25,$gp
lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
nop
jalr $25
nop
lw $gp,cprestore($sp)
If the symbol is not external, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $25,$25,<sym> (BFD_RELOC_LO16)
jalr $25
nop
lw $gp,cprestore($sp) */
frag_grow (40);
if (! mips_big_got)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", PIC_CALL_REG,
(int) BFD_RELOC_MIPS_CALL16, GP);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
p = frag_var (rs_machine_dependent, 4, 0,
RELAX_ENCODE (0, 4, -8, 0, 0, 0),
offset_expr.X_add_symbol, (long) 0, (char *) NULL);
}
else
{
int gpdel;
if (reg_needs_delay (GP))
gpdel = 4;
else
gpdel = 0;
macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
PIC_CALL_REG, (int) BFD_RELOC_MIPS_CALL_HI16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", PIC_CALL_REG, PIC_CALL_REG, GP);
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", PIC_CALL_REG,
(int) BFD_RELOC_MIPS_CALL_LO16, PIC_CALL_REG);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
RELAX_ENCODE (16, 12 + gpdel, gpdel, 8 + gpdel,
0, 0),
offset_expr.X_add_symbol, (long) 0, (char *) NULL);
if (gpdel > 0)
{
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
}
macro_build (p, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", PIC_CALL_REG,
(int) BFD_RELOC_MIPS_GOT16, GP);
p += 4;
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
}
macro_build (p, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", PIC_CALL_REG, PIC_CALL_REG,
(int) BFD_RELOC_LO16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"jalr", "s", PIC_CALL_REG);
if (mips_cprestore_offset < 0)
as_warn ("No .cprestore pseudo-op used in PIC code");
else
{
if (mips_noreorder)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"nop", "");
expr1.X_add_number = mips_cprestore_offset;
macro_build ((char *) NULL, &icnt, &expr1,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", GP, (int) BFD_RELOC_LO16,
mips_frame_reg);
}
}
else if (mips_pic == EMBEDDED_PIC)
{
macro_build ((char *) NULL, &icnt, &offset_expr, "bal", "p");
/* The linker may expand the call to a longer sequence which
uses $at, so we must break rather than return. */
break;
}
else
abort ();
return;
case M_LB_AB:
s = "lb";
goto ld;
case M_LBU_AB:
s = "lbu";
goto ld;
case M_LH_AB:
s = "lh";
goto ld;
case M_LHU_AB:
s = "lhu";
goto ld;
case M_LW_AB:
s = "lw";
goto ld;
case M_LWC0_AB:
s = "lwc0";
coproc = 1;
goto ld;
case M_LWC1_AB:
s = "lwc1";
coproc = 1;
goto ld;
case M_LWC2_AB:
s = "lwc2";
coproc = 1;
goto ld;
case M_LWC3_AB:
s = "lwc3";
coproc = 1;
goto ld;
case M_LWL_AB:
s = "lwl";
lr = 1;
goto ld;
case M_LWR_AB:
s = "lwr";
lr = 1;
goto ld;
case M_LDC1_AB:
s = "ldc1";
coproc = 1;
goto ld;
case M_LDC2_AB:
s = "ldc2";
coproc = 1;
goto ld;
case M_LDC3_AB:
s = "ldc3";
coproc = 1;
goto ld;
case M_LDL_AB:
s = "ldl";
lr = 1;
goto ld;
case M_LDR_AB:
s = "ldr";
lr = 1;
goto ld;
case M_LL_AB:
s = "ll";
goto ld;
case M_LLD_AB:
s = "lld";
goto ld;
case M_LWU_AB:
s = "lwu";
ld:
if (breg == treg || coproc || lr)
{
tempreg = AT;
used_at = 1;
}
else
{
tempreg = treg;
used_at = 0;
}
goto ld_st;
case M_SB_AB:
s = "sb";
goto st;
case M_SH_AB:
s = "sh";
goto st;
case M_SW_AB:
s = "sw";
goto st;
case M_SWC0_AB:
s = "swc0";
coproc = 1;
goto st;
case M_SWC1_AB:
s = "swc1";
coproc = 1;
goto st;
case M_SWC2_AB:
s = "swc2";
coproc = 1;
goto st;
case M_SWC3_AB:
s = "swc3";
coproc = 1;
goto st;
case M_SWL_AB:
s = "swl";
goto st;
case M_SWR_AB:
s = "swr";
goto st;
case M_SC_AB:
s = "sc";
goto st;
case M_SCD_AB:
s = "scd";
goto st;
case M_SDC1_AB:
s = "sdc1";
coproc = 1;
goto st;
case M_SDC2_AB:
s = "sdc2";
coproc = 1;
goto st;
case M_SDC3_AB:
s = "sdc3";
coproc = 1;
goto st;
case M_SDL_AB:
s = "sdl";
goto st;
case M_SDR_AB:
s = "sdr";
st:
tempreg = AT;
used_at = 1;
ld_st:
if (mask == M_LWC1_AB
|| mask == M_SWC1_AB
|| mask == M_LDC1_AB
|| mask == M_SDC1_AB
|| mask == M_L_DAB
|| mask == M_S_DAB)
fmt = "T,o(b)";
else if (coproc)
fmt = "E,o(b)";
else
fmt = "t,o(b)";
if (offset_expr.X_op != O_constant
&& offset_expr.X_op != O_symbol)
{
as_bad ("expression too complex");
offset_expr.X_op = O_constant;
}
/* A constant expression in PIC code can be handled just as it
is in non PIC code. */
if (mips_pic == NO_PIC
|| offset_expr.X_op == O_constant)
{
/* If this is a reference to a GP relative symbol, and there
is no base register, we want
<op> $treg,<sym>($gp) (BFD_RELOC_MIPS_GPREL)
Otherwise, if there is no base register, we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
<op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we always use the latter form.
If we have a base register, and this is a reference to a
GP relative symbol, we want
addu $tempreg,$breg,$gp
<op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GPREL)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addu $tempreg,$tempreg,$breg
<op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
With a constant we always use the latter case. */
if (breg == 0)
{
if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET
|| nopic_need_relax (offset_expr.X_add_symbol))
p = NULL;
else
{
frag_grow (20);
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
treg, (int) BFD_RELOC_MIPS_GPREL, GP);
p = frag_var (rs_machine_dependent, 8, 0,
RELAX_ENCODE (4, 8, 0, 4, 0,
(mips_warn_about_macros
|| (used_at && mips_noat))),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
used_at = 0;
}
macro_build_lui (p, &icnt, &offset_expr, tempreg);
if (p != NULL)
p += 4;
macro_build (p, &icnt, &offset_expr, s, fmt, treg,
(int) BFD_RELOC_LO16, tempreg);
}
else
{
if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET
|| nopic_need_relax (offset_expr.X_add_symbol))
p = NULL;
else
{
frag_grow (28);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, breg, GP);
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
treg, (int) BFD_RELOC_MIPS_GPREL, tempreg);
p = frag_var (rs_machine_dependent, 12, 0,
RELAX_ENCODE (8, 12, 0, 8, 0, 0),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
}
macro_build_lui (p, &icnt, &offset_expr, tempreg);
if (p != NULL)
p += 4;
macro_build (p, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, breg);
if (p != NULL)
p += 4;
macro_build (p, &icnt, &offset_expr, s, fmt, treg,
(int) BFD_RELOC_LO16, tempreg);
}
}
else if (mips_pic == SVR4_PIC && ! mips_big_got)
{
/* If this is a reference to an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> $treg,0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> $treg,0($tempreg)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad ("PIC code offset overflow (max 16 signed bits)");
frag_grow (20);
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16, GP);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
p = frag_var (rs_machine_dependent, 4, 0,
RELAX_ENCODE (0, 4, -8, 0, 0, 0),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
macro_build (p, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, breg);
macro_build ((char *) NULL, &icnt, &expr1, s, fmt, treg,
(int) BFD_RELOC_LO16, tempreg);
}
else if (mips_pic == SVR4_PIC)
{
int gpdel;
/* If this is a reference to an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
<op> $treg,0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> $treg,0($tempreg)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad ("PIC code offset overflow (max 16 signed bits)");
if (reg_needs_delay (GP))
gpdel = 4;
else
gpdel = 0;
frag_grow (36);
macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
tempreg, (int) BFD_RELOC_MIPS_GOT_HI16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, GP);
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT_LO16,
tempreg);
p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
RELAX_ENCODE (12, 12 + gpdel, gpdel, 8 + gpdel, 0, 0),
offset_expr.X_add_symbol, (long) 0, (char *) NULL);
if (gpdel > 0)
{
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
}
macro_build (p, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16, GP);
p += 4;
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
macro_build (p, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, tempreg, breg);
macro_build ((char *) NULL, &icnt, &expr1, s, fmt, treg,
(int) BFD_RELOC_LO16, tempreg);
}
else if (mips_pic == EMBEDDED_PIC)
{
/* If there is no base register, we want
<op> $treg,<sym>($gp) (BFD_RELOC_MIPS_GPREL)
If there is a base register, we want
addu $tempreg,$breg,$gp
<op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GPREL)
*/
assert (offset_expr.X_op == O_symbol);
if (breg == 0)
{
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
treg, (int) BFD_RELOC_MIPS_GPREL, GP);
used_at = 0;
}
else
{
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", tempreg, breg, GP);
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
treg, (int) BFD_RELOC_MIPS_GPREL, tempreg);
}
}
else
abort ();
if (! used_at)
return;
break;
case M_LI:
case M_LI_S:
load_register (&icnt, treg, &imm_expr, 0);
return;
case M_DLI:
load_register (&icnt, treg, &imm_expr, 1);
return;
case M_LI_SS:
if (imm_expr.X_op == O_constant)
{
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
"mtc1", "t,G", AT, treg);
break;
}
else
{
assert (offset_expr.X_op == O_symbol
&& strcmp (segment_name (S_GET_SEGMENT
(offset_expr.X_add_symbol)),
".lit4") == 0
&& offset_expr.X_add_number == 0);
macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)",
treg, (int) BFD_RELOC_MIPS_LITERAL, GP);
return;
}
case M_LI_D:
/* We know that sym is in the .rdata section. First we get the
upper 16 bits of the address. */
if (mips_pic == NO_PIC)
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui ((char *) NULL, &icnt, &offset_expr, AT);
}
else if (mips_pic == SVR4_PIC)
{
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP);
}
else if (mips_pic == EMBEDDED_PIC)
{
/* For embedded PIC we pick up the entire address off $gp in
a single instruction. */
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", AT, GP, (int) BFD_RELOC_MIPS_GPREL);
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
}
else
abort ();
/* Now we load the register(s). */
if (mips_isa >= 3)
macro_build ((char *) NULL, &icnt, &offset_expr, "ld", "t,o(b)",
treg, (int) BFD_RELOC_LO16, AT);
else
{
macro_build ((char *) NULL, &icnt, &offset_expr, "lw", "t,o(b)",
treg, (int) BFD_RELOC_LO16, AT);
if (treg != 31)
{
/* FIXME: How in the world do we deal with the possible
overflow here? */
offset_expr.X_add_number += 4;
macro_build ((char *) NULL, &icnt, &offset_expr, "lw", "t,o(b)",
treg + 1, (int) BFD_RELOC_LO16, AT);
}
}
/* To avoid confusion in tc_gen_reloc, we must ensure that this
does not become a variant frag. */
frag_wane (frag_now);
frag_new (0);
break;
case M_LI_DD:
assert (offset_expr.X_op == O_symbol
&& offset_expr.X_add_number == 0);
s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
if (strcmp (s, ".lit8") == 0)
{
if (mips_isa >= 2)
{
macro_build ((char *) NULL, &icnt, &offset_expr, "ldc1",
"T,o(b)", treg, (int) BFD_RELOC_MIPS_LITERAL, GP);
return;
}
breg = GP;
r = BFD_RELOC_MIPS_LITERAL;
goto dob;
}
else
{
assert (strcmp (s, RDATA_SECTION_NAME) == 0);
if (mips_pic == SVR4_PIC)
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui ((char *) NULL, &icnt, &offset_expr, AT);
}
if (mips_isa >= 2)
{
macro_build ((char *) NULL, &icnt, &offset_expr, "ldc1",
"T,o(b)", treg, (int) BFD_RELOC_LO16, AT);
/* To avoid confusion in tc_gen_reloc, we must ensure
that this does not become a variant frag. */
frag_wane (frag_now);
frag_new (0);
break;
}
breg = AT;
r = BFD_RELOC_LO16;
goto dob;
}
case M_L_DOB:
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when loading from memory. */
r = BFD_RELOC_LO16;
dob:
assert (mips_isa < 2);
macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg : treg + 1,
(int) r, breg);
/* FIXME: A possible overflow which I don't know how to deal
with. */
offset_expr.X_add_number += 4;
macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg + 1 : treg,
(int) r, breg);
/* To avoid confusion in tc_gen_reloc, we must ensure that this
does not become a variant frag. */
frag_wane (frag_now);
frag_new (0);
if (breg != AT)
return;
break;
case M_L_DAB:
/*
* The MIPS assembler seems to check for X_add_number not
* being double aligned and generating:
* lui at,%hi(foo+1)
* addu at,at,v1
* addiu at,at,%lo(foo+1)
* lwc1 f2,0(at)
* lwc1 f3,4(at)
* But, the resulting address is the same after relocation so why
* generate the extra instruction?
*/
coproc = 1;
if (mips_isa >= 2)
{
s = "ldc1";
goto ld;
}
s = "lwc1";
fmt = "T,o(b)";
goto ldd_std;
case M_S_DAB:
if (mips_isa >= 2)
{
s = "sdc1";
goto st;
}
s = "swc1";
fmt = "T,o(b)";
coproc = 1;
goto ldd_std;
case M_LD_AB:
if (mips_isa >= 3)
{
s = "ld";
goto ld;
}
s = "lw";
fmt = "t,o(b)";
goto ldd_std;
case M_SD_AB:
if (mips_isa >= 3)
{
s = "sd";
goto st;
}
s = "sw";
fmt = "t,o(b)";
ldd_std:
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad ("expression too complex");
offset_expr.X_op = O_constant;
}
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when loading from memory. We set coproc if we must
load $fn+1 first. */
if (byte_order == LITTLE_ENDIAN)
coproc = 0;
if (mips_pic == NO_PIC
|| offset_expr.X_op == O_constant)
{
/* If this is a reference to a GP relative symbol, we want
<op> $treg,<sym>($gp) (BFD_RELOC_MIPS_GPREL)
<op> $treg+1,<sym>+4($gp) (BFD_RELOC_MIPS_GPREL)
If we have a base register, we use this
addu $at,$breg,$gp
<op> $treg,<sym>($at) (BFD_RELOC_MIPS_GPREL)
<op> $treg+1,<sym>+4($at) (BFD_RELOC_MIPS_GPREL)
If this is not a GP relative symbol, we want
lui $at,<sym> (BFD_RELOC_HI16_S)
<op> $treg,<sym>($at) (BFD_RELOC_LO16)
<op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register, we add it to $at after the
lui instruction. If there is a constant, we always use
the last case. */
if ((valueT) offset_expr.X_add_number >= MAX_GPREL_OFFSET
|| nopic_need_relax (offset_expr.X_add_symbol))
{
p = NULL;
used_at = 1;
}
else
{
int off;
if (breg == 0)
{
frag_grow (28);
tempreg = GP;
off = 0;
used_at = 0;
}
else
{
frag_grow (36);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, GP);
tempreg = AT;
off = 4;
used_at = 1;
}
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
coproc ? treg + 1 : treg,
(int) BFD_RELOC_MIPS_GPREL, tempreg);
offset_expr.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an
undesired nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
coproc ? treg : treg + 1,
(int) BFD_RELOC_MIPS_GPREL, tempreg);
mips_optimize = hold_mips_optimize;
p = frag_var (rs_machine_dependent, 12 + off, 0,
RELAX_ENCODE (8 + off, 12 + off, 0, 4 + off, 1,
used_at && mips_noat),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
/* We just generated two relocs. When tc_gen_reloc
handles this case, it will skip the first reloc and
handle the second. The second reloc already has an
extra addend of 4, which we added above. We must
subtract it out, and then subtract another 4 to make
the first reloc come out right. The second reloc
will come out right because we are going to add 4 to
offset_expr when we build its instruction below. */
offset_expr.X_add_number -= 8;
offset_expr.X_op = O_constant;
}
macro_build_lui (p, &icnt, &offset_expr, AT);
if (p != NULL)
p += 4;
if (breg != 0)
{
macro_build (p, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, AT);
if (p != NULL)
p += 4;
}
macro_build (p, &icnt, &offset_expr, s, fmt,
coproc ? treg + 1 : treg,
(int) BFD_RELOC_LO16, AT);
if (p != NULL)
p += 4;
/* FIXME: How do we handle overflow here? */
offset_expr.X_add_number += 4;
macro_build (p, &icnt, &offset_expr, s, fmt,
coproc ? treg : treg + 1,
(int) BFD_RELOC_LO16, AT);
}
else if (mips_pic == SVR4_PIC && ! mips_big_got)
{
int off;
/* If this is a reference to an external symbol, we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> $treg,0($at)
<op> $treg+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> $treg,<sym>($at) (BFD_RELOC_LO16)
<op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad ("PIC code offset overflow (max 16 signed bits)");
if (breg == 0)
off = 0;
else
off = 4;
frag_grow (24 + off);
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, AT);
macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
coproc ? treg + 1 : treg,
(int) BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
coproc ? treg : treg + 1,
(int) BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
(void) frag_var (rs_machine_dependent, 0, 0,
RELAX_ENCODE (0, 0, -16 - off, -8, 1, 0),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
}
else if (mips_pic == SVR4_PIC)
{
int gpdel, off;
/* If this is a reference to an external symbol, we want
lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $at,$at,$gp
lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
nop
<op> $treg,0($at)
<op> $treg+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> $treg,<sym>($at) (BFD_RELOC_LO16)
<op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad ("PIC code offset overflow (max 16 signed bits)");
if (reg_needs_delay (GP))
gpdel = 4;
else
gpdel = 0;
if (breg == 0)
off = 0;
else
off = 4;
frag_grow (56);
macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
AT, (int) BFD_RELOC_MIPS_GOT_HI16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, AT, GP);
macro_build ((char *) NULL, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT_LO16, AT);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, AT);
macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
coproc ? treg + 1 : treg,
(int) BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
coproc ? treg : treg + 1,
(int) BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
expr1.X_add_number -= 4;
p = frag_var (rs_machine_dependent, 16 + gpdel + off, 0,
RELAX_ENCODE (24 + off, 16 + gpdel + off, gpdel,
8 + gpdel + off, 1, 0),
offset_expr.X_add_symbol, (long) 0,
(char *) NULL);
if (gpdel > 0)
{
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
}
macro_build (p, &icnt, &offset_expr,
mips_isa < 3 ? "lw" : "ld",
"t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16, GP);
p += 4;
macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
p += 4;
if (breg != 0)
{
macro_build (p, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, AT);
p += 4;
}
macro_build (p, &icnt, &expr1, s, fmt,
coproc ? treg + 1 : treg,
(int) BFD_RELOC_LO16, AT);
p += 4;
expr1.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build (p, &icnt, &expr1, s, fmt,
coproc ? treg : treg + 1,
(int) BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
}
else if (mips_pic == EMBEDDED_PIC)
{
/* If there is no base register, we use
<op> $treg,<sym>($gp) (BFD_RELOC_MIPS_GPREL)
<op> $treg+1,<sym>+4($gp) (BFD_RELOC_MIPS_GPREL)
If we have a base register, we use
addu $at,$breg,$gp
<op> $treg,<sym>($at) (BFD_RELOC_MIPS_GPREL)
<op> $treg+1,<sym>+4($at) (BFD_RELOC_MIPS_GPREL)
*/
if (breg == 0)
{
tempreg = GP;
used_at = 0;
}
else
{
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, breg, GP);
tempreg = AT;
used_at = 1;
}
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
coproc ? treg + 1 : treg,
(int) BFD_RELOC_MIPS_GPREL, tempreg);
offset_expr.X_add_number += 4;
macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
coproc ? treg : treg + 1,
(int) BFD_RELOC_MIPS_GPREL, tempreg);
}
else
abort ();
if (! used_at)
return;
break;
case M_LD_OB:
s = "lw";
goto sd_ob;
case M_SD_OB:
s = "sw";
sd_ob:
assert (mips_isa < 3);
macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
offset_expr.X_add_number += 4;
macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg + 1,
(int) BFD_RELOC_LO16, breg);
return;
#ifdef LOSING_COMPILER
default:
macro2 (ip);
return;
}
if (mips_noat)
as_warn ("Macro used $at after \".set noat\"");
}
static void
macro2 (ip)
struct mips_cl_insn *ip;
{
register int treg, sreg, dreg, breg;
int tempreg;
int mask;
int icnt = 0;
int used_at;
expressionS expr1;
const char *s;
const char *s2;
const char *fmt;
int likely = 0;
int dbl = 0;
int coproc = 0;
int lr = 0;
int off;
offsetT maxnum;
bfd_reloc_code_real_type r;
char *p;
treg = (ip->insn_opcode >> 16) & 0x1f;
dreg = (ip->insn_opcode >> 11) & 0x1f;
sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
mask = ip->insn_mo->mask;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
switch (mask)
{
#endif /* LOSING_COMPILER */
case M_DMUL:
dbl = 1;
case M_MUL:
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dmultu" : "multu",
"s,t", sreg, treg);
macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg);
return;
case M_DMUL_I:
dbl = 1;
case M_MUL_I:
/* The MIPS assembler some times generates shifts and adds. I'm
not trying to be that fancy. GCC should do this for us
anyway. */
load_register (&icnt, AT, &imm_expr, dbl);
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dmult" : "mult",
"s,t", sreg, AT);
macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg);
break;
case M_DMULO:
dbl = 1;
case M_MULO:
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dmult" : "mult",
"s,t", sreg, treg);
macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg);
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dsra32" : "sra",
"d,w,<", dreg, dreg, 31);
macro_build ((char *) NULL, &icnt, NULL, "mfhi", "d", AT);
if (mips_trap)
macro_build ((char *) NULL, &icnt, NULL, "tne", "s,t", dreg, AT);
else
{
expr1.X_add_number = 8;
macro_build ((char *) NULL, &icnt, &expr1, "beq", "s,t,p", dreg, AT);
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
macro_build ((char *) NULL, &icnt, NULL, "break", "c", 6);
}
--mips_noreorder;
macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg);
break;
case M_DMULOU:
dbl = 1;
case M_MULOU:
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dmultu" : "multu",
"s,t", sreg, treg);
macro_build ((char *) NULL, &icnt, NULL, "mfhi", "d", AT);
macro_build ((char *) NULL, &icnt, NULL, "mflo", "d", dreg);
if (mips_trap)
macro_build ((char *) NULL, &icnt, NULL, "tne", "s,t", AT, 0);
else
{
expr1.X_add_number = 8;
macro_build ((char *) NULL, &icnt, &expr1, "beq", "s,t,p", AT, 0);
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
macro_build ((char *) NULL, &icnt, NULL, "break", "c", 6);
}
--mips_noreorder;
break;
case M_ROL:
macro_build ((char *) NULL, &icnt, NULL, "subu", "d,v,t", AT, 0, treg);
macro_build ((char *) NULL, &icnt, NULL, "srlv", "d,t,s", AT, sreg, AT);
macro_build ((char *) NULL, &icnt, NULL, "sllv", "d,t,s", dreg, sreg,
treg);
macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_ROL_I:
macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", AT, sreg,
(int) (imm_expr.X_add_number & 0x1f));
macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", dreg, sreg,
(int) ((0 - imm_expr.X_add_number) & 0x1f));
macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_ROR:
macro_build ((char *) NULL, &icnt, NULL, "subu", "d,v,t", AT, 0, treg);
macro_build ((char *) NULL, &icnt, NULL, "sllv", "d,t,s", AT, sreg, AT);
macro_build ((char *) NULL, &icnt, NULL, "srlv", "d,t,s", dreg, sreg,
treg);
macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_ROR_I:
macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", AT, sreg,
(int) (imm_expr.X_add_number & 0x1f));
macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", dreg, sreg,
(int) ((0 - imm_expr.X_add_number) & 0x1f));
macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", dreg, dreg, AT);
break;
case M_S_DOB:
assert (mips_isa < 2);
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when storing to memory. */
macro_build ((char *) NULL, &icnt, &offset_expr, "swc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg : treg + 1,
(int) BFD_RELOC_LO16, breg);
offset_expr.X_add_number += 4;
macro_build ((char *) NULL, &icnt, &offset_expr, "swc1", "T,o(b)",
byte_order == LITTLE_ENDIAN ? treg + 1 : treg,
(int) BFD_RELOC_LO16, breg);
return;
case M_SEQ:
if (sreg == 0)
macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
treg, (int) BFD_RELOC_LO16);
else if (treg == 0)
macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
sreg, (int) BFD_RELOC_LO16);
else
{
macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg,
sreg, treg);
macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
dreg, (int) BFD_RELOC_LO16);
}
return;
case M_SEQ_I:
if (imm_expr.X_add_number == 0)
{
macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
sreg, (int) BFD_RELOC_LO16);
return;
}
if (sreg == 0)
{
as_warn ("Instruction %s: result is always false",
ip->insn_mo->name);
macro_build ((char *) NULL, &icnt, NULL, "move", "d,s", dreg, 0);
return;
}
if (imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000)
{
macro_build ((char *) NULL, &icnt, &imm_expr, "xori", "t,r,i", dreg,
sreg, (int) BFD_RELOC_LO16);
used_at = 0;
}
else if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build ((char *) NULL, &icnt, &imm_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", dreg, sreg,
(int) BFD_RELOC_LO16);
used_at = 0;
}
else
{
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg,
sreg, AT);
used_at = 1;
}
macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg, dreg,
(int) BFD_RELOC_LO16);
if (used_at)
break;
return;
case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
s = "slt";
goto sge;
case M_SGEU:
s = "sltu";
sge:
macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, sreg, treg);
macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
return;
case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
case M_SGEU_I:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build ((char *) NULL, &icnt, &expr1,
mask == M_SGE_I ? "slti" : "sltiu",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
used_at = 0;
}
else
{
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL,
mask == M_SGE_I ? "slt" : "sltu",
"d,v,t", dreg, sreg, AT);
used_at = 1;
}
macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
if (used_at)
break;
return;
case M_SGT: /* sreg > treg <==> treg < sreg */
s = "slt";
goto sgt;
case M_SGTU:
s = "sltu";
sgt:
macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, treg, sreg);
return;
case M_SGT_I: /* sreg > I <==> I < sreg */
s = "slt";
goto sgti;
case M_SGTU_I:
s = "sltu";
sgti:
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, AT, sreg);
break;
case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
s = "slt";
goto sle;
case M_SLEU:
s = "sltu";
sle:
macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, treg, sreg);
macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
return;
case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
s = "slt";
goto slei;
case M_SLEU_I:
s = "sltu";
slei:
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, s, "d,v,t", dreg, AT, sreg);
macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
(int) BFD_RELOC_LO16);
break;
case M_SLT_I:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build ((char *) NULL, &icnt, &imm_expr, "slti", "t,r,j",
dreg, sreg, (int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, "slt", "d,v,t", dreg, sreg, AT);
break;
case M_SLTU_I:
if (imm_expr.X_add_number >= -0x8000 && imm_expr.X_add_number < 0x8000)
{
macro_build ((char *) NULL, &icnt, &imm_expr, "sltiu", "t,r,j",
dreg, sreg, (int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, sreg,
AT);
break;
case M_SNE:
if (sreg == 0)
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0,
treg);
else if (treg == 0)
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0,
sreg);
else
{
macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg,
sreg, treg);
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0,
dreg);
}
return;
case M_SNE_I:
if (imm_expr.X_add_number == 0)
{
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0,
sreg);
return;
}
if (sreg == 0)
{
as_warn ("Instruction %s: result is always true",
ip->insn_mo->name);
macro_build ((char *) NULL, &icnt, &expr1,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", dreg, 0, (int) BFD_RELOC_LO16);
return;
}
if (imm_expr.X_add_number >= 0 && imm_expr.X_add_number < 0x10000)
{
macro_build ((char *) NULL, &icnt, &imm_expr, "xori", "t,r,i",
dreg, sreg, (int) BFD_RELOC_LO16);
used_at = 0;
}
else if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build ((char *) NULL, &icnt, &imm_expr,
mips_isa < 3 ? "addiu" : "daddiu",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
used_at = 0;
}
else
{
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, "xor", "d,v,t", dreg,
sreg, AT);
used_at = 1;
}
macro_build ((char *) NULL, &icnt, NULL, "sltu", "d,v,t", dreg, 0, dreg);
if (used_at)
break;
return;
case M_DSUB_I:
dbl = 1;
case M_SUB_I:
if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number <= 0x8000)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build ((char *) NULL, &icnt, &imm_expr,
dbl ? "daddi" : "addi",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr, dbl);
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dsub" : "sub",
"d,v,t", dreg, sreg, AT);
break;
case M_DSUBU_I:
dbl = 1;
case M_SUBU_I:
if (imm_expr.X_add_number > -0x8000 && imm_expr.X_add_number <= 0x8000)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build ((char *) NULL, &icnt, &imm_expr,
dbl ? "daddiu" : "addiu",
"t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
return;
}
load_register (&icnt, AT, &imm_expr, dbl);
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "dsubu" : "subu",
"d,v,t", dreg, sreg, AT);
break;
case M_TEQ_I:
s = "teq";
goto trap;
case M_TGE_I:
s = "tge";
goto trap;
case M_TGEU_I:
s = "tgeu";
goto trap;
case M_TLT_I:
s = "tlt";
goto trap;
case M_TLTU_I:
s = "tltu";
goto trap;
case M_TNE_I:
s = "tne";
trap:
load_register (&icnt, AT, &imm_expr, 0);
macro_build ((char *) NULL, &icnt, NULL, s, "s,t", sreg, AT);
break;
case M_TRUNCWD:
case M_TRUNCWS:
assert (mips_isa < 2);
sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
/*
* Is the double cfc1 instruction a bug in the mips assembler;
* or is there a reason for it?
*/
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
macro_build ((char *) NULL, &icnt, NULL, "cfc1", "t,G", treg, 31);
macro_build ((char *) NULL, &icnt, NULL, "cfc1", "t,G", treg, 31);
macro_build ((char *) NULL, &icnt, NULL, "nop", "");
expr1.X_add_number = 3;
macro_build ((char *) NULL, &icnt, &expr1, "ori", "t,r,i", AT, treg,
(int) BFD_RELOC_LO16);
expr1.X_add_number = 2;
macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", AT, AT,
(int) BFD_RELOC_LO16);
macro_build ((char *) NULL, &icnt, NULL, "ctc1", "t,G", AT, 31);
macro_build ((char *) NULL, &icnt, NULL, "nop", "");
macro_build ((char *) NULL, &icnt, NULL,
mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S", dreg, sreg);
macro_build ((char *) NULL, &icnt, NULL, "ctc1", "t,G", treg, 31);
macro_build ((char *) NULL, &icnt, NULL, "nop", "");
--mips_noreorder;
break;
case M_ULH:
s = "lb";
goto ulh;
case M_ULHU:
s = "lbu";
ulh:
if (offset_expr.X_add_number >= 0x7fff)
as_bad ("operand overflow");
/* avoid load delay */
if (byte_order == LITTLE_ENDIAN)
offset_expr.X_add_number += 1;
macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
if (byte_order == LITTLE_ENDIAN)
offset_expr.X_add_number -= 1;
else
offset_expr.X_add_number += 1;
macro_build ((char *) NULL, &icnt, &offset_expr, "lbu", "t,o(b)", AT,
(int) BFD_RELOC_LO16, breg);
macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", treg, treg, 8);
macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", treg, treg, AT);
break;
case M_ULD:
s = "ldl";
s2 = "ldr";
off = 7;
goto ulw;
case M_ULW:
s = "lwl";
s2 = "lwr";
off = 3;
ulw:
if (offset_expr.X_add_number >= 0x8000 - off)
as_bad ("operand overflow");
if (byte_order == LITTLE_ENDIAN)
offset_expr.X_add_number += off;
macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
if (byte_order == LITTLE_ENDIAN)
offset_expr.X_add_number -= off;
else
offset_expr.X_add_number += off;
macro_build ((char *) NULL, &icnt, &offset_expr, s2, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
return;
case M_ULD_A:
s = "ldl";
s2 = "ldr";
off = 7;
goto ulwa;
case M_ULW_A:
s = "lwl";
s2 = "lwr";
off = 3;
ulwa:
load_address (&icnt, AT, &offset_expr);
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, AT, breg);
if (byte_order == LITTLE_ENDIAN)
expr1.X_add_number = off;
else
expr1.X_add_number = 0;
macro_build ((char *) NULL, &icnt, &expr1, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
if (byte_order == LITTLE_ENDIAN)
expr1.X_add_number = 0;
else
expr1.X_add_number = off;
macro_build ((char *) NULL, &icnt, &expr1, s2, "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
break;
case M_ULH_A:
case M_ULHU_A:
load_address (&icnt, AT, &offset_expr);
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, AT, breg);
if (byte_order == BIG_ENDIAN)
expr1.X_add_number = 0;
macro_build ((char *) NULL, &icnt, &expr1,
mask == M_ULH_A ? "lb" : "lbu", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
if (byte_order == BIG_ENDIAN)
expr1.X_add_number = 1;
else
expr1.X_add_number = 0;
macro_build ((char *) NULL, &icnt, &expr1, "lbu", "t,o(b)", AT,
(int) BFD_RELOC_LO16, AT);
macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", treg,
treg, 8);
macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", treg,
treg, AT);
break;
case M_USH:
if (offset_expr.X_add_number >= 0x7fff)
as_bad ("operand overflow");
if (byte_order == BIG_ENDIAN)
offset_expr.X_add_number += 1;
macro_build ((char *) NULL, &icnt, &offset_expr, "sb", "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", AT, treg, 8);
if (byte_order == BIG_ENDIAN)
offset_expr.X_add_number -= 1;
else
offset_expr.X_add_number += 1;
macro_build ((char *) NULL, &icnt, &offset_expr, "sb", "t,o(b)", AT,
(int) BFD_RELOC_LO16, breg);
break;
case M_USD:
s = "sdl";
s2 = "sdr";
off = 7;
goto usw;
case M_USW:
s = "swl";
s2 = "swr";
off = 3;
usw:
if (offset_expr.X_add_number >= 0x8000 - off)
as_bad ("operand overflow");
if (byte_order == LITTLE_ENDIAN)
offset_expr.X_add_number += off;
macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
if (byte_order == LITTLE_ENDIAN)
offset_expr.X_add_number -= off;
else
offset_expr.X_add_number += off;
macro_build ((char *) NULL, &icnt, &offset_expr, s2, "t,o(b)", treg,
(int) BFD_RELOC_LO16, breg);
return;
case M_USD_A:
s = "sdl";
s2 = "sdr";
off = 7;
goto uswa;
case M_USW_A:
s = "swl";
s2 = "swr";
off = 3;
uswa:
load_address (&icnt, AT, &offset_expr);
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, AT, breg);
if (byte_order == LITTLE_ENDIAN)
expr1.X_add_number = off;
else
expr1.X_add_number = 0;
macro_build ((char *) NULL, &icnt, &expr1, s, "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
if (byte_order == LITTLE_ENDIAN)
expr1.X_add_number = 0;
else
expr1.X_add_number = off;
macro_build ((char *) NULL, &icnt, &expr1, s2, "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
break;
case M_USH_A:
load_address (&icnt, AT, &offset_expr);
if (breg != 0)
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", AT, AT, breg);
if (byte_order == LITTLE_ENDIAN)
expr1.X_add_number = 0;
macro_build ((char *) NULL, &icnt, &expr1, "sb", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
macro_build ((char *) NULL, &icnt, NULL, "srl", "d,w,<", treg,
treg, 8);
if (byte_order == LITTLE_ENDIAN)
expr1.X_add_number = 1;
else
expr1.X_add_number = 0;
macro_build ((char *) NULL, &icnt, &expr1, "sb", "t,o(b)", treg,
(int) BFD_RELOC_LO16, AT);
if (byte_order == LITTLE_ENDIAN)
expr1.X_add_number = 0;
else
expr1.X_add_number = 1;
macro_build ((char *) NULL, &icnt, &expr1, "lbu", "t,o(b)", AT,
(int) BFD_RELOC_LO16, AT);
macro_build ((char *) NULL, &icnt, NULL, "sll", "d,w,<", treg,
treg, 8);
macro_build ((char *) NULL, &icnt, NULL, "or", "d,v,t", treg,
treg, AT);
break;
default:
as_bad ("Macro %s not implemented yet", ip->insn_mo->name);
break;
}
if (mips_noat)
as_warn ("Macro used $at after \".set noat\"");
}
/* Implement macros in mips16 mode. */
static void
mips16_macro (ip)
struct mips_cl_insn *ip;
{
int mask;
int xreg, yreg, zreg, tmp;
int icnt;
expressionS expr1;
int dbl;
const char *s, *s2, *s3;
mask = ip->insn_mo->mask;
xreg = (ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX;
yreg = (ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY;
zreg = (ip->insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ;
icnt = 0;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
dbl = 0;
switch (mask)
{
default:
internalError ();
case M_DDIV_3:
dbl = 1;
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
case M_REM_3:
s = "mfhi";
do_div3:
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
macro_build ((char *) NULL, &icnt, NULL,
dbl ? "ddiv" : "div",
"0,x,y", xreg, yreg);
expr1.X_add_number = 4;
macro_build ((char *) NULL, &icnt, &expr1, "bnez", "x,p", yreg);
macro_build ((char *) NULL, &icnt, NULL, "nop", "");
macro_build ((char *) NULL, &icnt, NULL, "break", "6", 7);
/* FIXME: The normal code checks for of -1 / -0x80000000 here,
since that causes an overflow. We should do that as well,
but I don't see how to do the comparisons without a temporary
register. */
--mips_noreorder;
macro_build ((char *) NULL, &icnt, NULL, s, "x", zreg);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
mips_emit_delays ();
++mips_noreorder;
mips_any_noreorder = 1;
macro_build ((char *) NULL, &icnt, NULL, s, "0,x,y", xreg, yreg);
expr1.X_add_number = 4;
macro_build ((char *) NULL, &icnt, &expr1, "bnez", "x,p", yreg);
macro_build ((char *) NULL, &icnt, NULL, "nop", "", 0);
macro_build ((char *) NULL, &icnt, NULL, "break", "6", 7);
--mips_noreorder;
macro_build ((char *) NULL, &icnt, NULL, s2, "x", zreg);
break;
case M_DSUBU_I:
dbl = 1;
goto do_subu;
case M_SUBU_I:
do_subu:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build ((char *) NULL, &icnt, &imm_expr,
dbl ? "daddiu" : "addiu",
"y,x,4", yreg, xreg);
break;
case M_SUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build ((char *) NULL, &icnt, &imm_expr, "addiu",
"x,k", xreg);
break;
case M_DSUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build ((char *) NULL, &icnt, &imm_expr, "daddiu",
"y,j", yreg);
break;
case M_BEQ:
s = "cmp";
s2 = "bteqz";
goto do_branch;
case M_BNE:
s = "cmp";
s2 = "btnez";
goto do_branch;
case M_BLT:
s = "slt";
s2 = "btnez";
goto do_branch;
case M_BLTU:
s = "sltu";
s2 = "btnez";
goto do_branch;
case M_BLE:
s = "slt";
s2 = "bteqz";
goto do_reverse_branch;
case M_BLEU:
s = "sltu";
s2 = "bteqz";
goto do_reverse_branch;
case M_BGE:
s = "slt";
s2 = "bteqz";
goto do_branch;
case M_BGEU:
s = "sltu";
s2 = "bteqz";
goto do_branch;
case M_BGT:
s = "slt";
s2 = "btnez";
goto do_reverse_branch;
case M_BGTU:
s = "sltu";
s2 = "btnez";
do_reverse_branch:
tmp = xreg;
xreg = yreg;
yreg = tmp;
do_branch:
macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "x,y",
xreg, yreg);
macro_build ((char *) NULL, &icnt, &offset_expr, s2, "p");
break;
case M_BEQ_I:
s = "cmpi";
s2 = "bteqz";
s3 = "x,U";
goto do_branch_i;
case M_BNE_I:
s = "cmpi";
s2 = "btnez";
s3 = "x,U";
goto do_branch_i;
case M_BLT_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLTU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLE_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BLEU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGE_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGEU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGT_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGTU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
do_addone_branch_i:
++imm_expr.X_add_number;
do_branch_i:
macro_build ((char *) NULL, &icnt, &imm_expr, s, s3, xreg);
macro_build ((char *) NULL, &icnt, &offset_expr, s2, "p");
break;
}
}
/* This routine assembles an instruction into its binary format. As a
side effect, it sets one of the global variables imm_reloc or
offset_reloc to the type of relocation to do if one of the operands
is an address expression. */
static void
mips_ip (str, ip)
char *str;
struct mips_cl_insn *ip;
{
char *s;
const char *args;
char c;
struct mips_opcode *insn;
char *argsStart;
unsigned int regno;
unsigned int lastregno = 0;
char *s_reset;
insn_error = NULL;
for (s = str; islower (*s) || (*s >= '0' && *s <= '3') || *s == '6' || *s == '.'; ++s)
continue;
switch (*s)
{
case '\0':
break;
case ' ':
*s++ = '\0';
break;
default:
as_fatal ("Unknown opcode: `%s'", str);
}
if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
{
insn_error = "unrecognized opcode";
return;
}
argsStart = s;
for (;;)
{
int insn_isa;
assert (strcmp (insn->name, str) == 0);
if (insn->pinfo == INSN_MACRO)
insn_isa = insn->match;
else if ((insn->pinfo & INSN_ISA) == INSN_ISA2)
insn_isa = 2;
else if ((insn->pinfo & INSN_ISA) == INSN_ISA3)
insn_isa = 3;
else if ((insn->pinfo & INSN_ISA) == INSN_ISA4)
insn_isa = 4;
else
insn_isa = 1;
if (insn_isa > mips_isa
|| ((insn->pinfo & INSN_ISA) == INSN_4650
&& ! mips_4650)
|| ((insn->pinfo & INSN_ISA) == INSN_4010
&& ! mips_4010)
|| ((insn->pinfo & INSN_ISA) == INSN_4100
&& ! mips_4100))
{
if (insn + 1 < &mips_opcodes[NUMOPCODES]
&& strcmp (insn->name, insn[1].name) == 0)
{
++insn;
continue;
}
if (insn_isa <= mips_isa)
insn_error = "opcode not supported on this processor";
else
{
static char buf[100];
sprintf (buf, "opcode requires -mips%d or greater", insn_isa);
insn_error = buf;
}
return;
}
ip->insn_mo = insn;
ip->insn_opcode = insn->match;
for (args = insn->args;; ++args)
{
if (*s == ' ')
++s;
switch (*args)
{
case '\0': /* end of args */
if (*s == '\0')
return;
break;
case ',':
if (*s++ == *args)
continue;
s--;
switch (*++args)
{
case 'r':
case 'v':
ip->insn_opcode |= lastregno << 21;
continue;
case 'w':
case 'W':
ip->insn_opcode |= lastregno << 16;
continue;
case 'V':
ip->insn_opcode |= lastregno << 11;
continue;
}
break;
case '(':
/* handle optional base register.
Either the base register is omitted or
we must have a left paren. */
/* this is dependent on the next operand specifier
is a 'b' for base register */
assert (args[1] == 'b');
if (*s == '\0')
return;
case ')': /* these must match exactly */
if (*s++ == *args)
continue;
break;
case '<': /* must be at least one digit */
/*
* According to the manual, if the shift amount is greater
* than 31 or less than 0 the the shift amount should be
* mod 32. In reality the mips assembler issues an error.
* We issue a warning and mask out all but the low 5 bits.
*/
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number > 31)
{
as_warn ("Improper shift amount (%ld)",
(long) imm_expr.X_add_number);
imm_expr.X_add_number = imm_expr.X_add_number & 0x1f;
}
ip->insn_opcode |= imm_expr.X_add_number << 6;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case '>': /* shift amount minus 32 */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number < 32
|| (unsigned long) imm_expr.X_add_number > 63)
break;
ip->insn_opcode |= (imm_expr.X_add_number - 32) << 6;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'k': /* cache code */
case 'h': /* prefx code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number > 31)
{
as_warn ("Invalid value for `%s' (%lu)",
ip->insn_mo->name,
(unsigned long) imm_expr.X_add_number);
imm_expr.X_add_number &= 0x1f;
}
if (*args == 'k')
ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CACHE;
else
ip->insn_opcode |= imm_expr.X_add_number << OP_SH_PREFX;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'c': /* break code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned) imm_expr.X_add_number > 1023)
as_warn ("Illegal break code (%ld)",
(long) imm_expr.X_add_number);
ip->insn_opcode |= imm_expr.X_add_number << 16;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'B': /* syscall code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned) imm_expr.X_add_number > 0xfffff)
as_warn ("Illegal syscall code (%ld)",
(long) imm_expr.X_add_number);
ip->insn_opcode |= imm_expr.X_add_number << 6;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'C': /* Coprocessor code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number >= (1<<25))
{
as_warn ("Coproccesor code > 25 bits (%ld)",
(long) imm_expr.X_add_number);
imm_expr.X_add_number &= ((1<<25) - 1);
}
ip->insn_opcode |= imm_expr.X_add_number;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'b': /* base register */
case 'd': /* destination register */
case 's': /* source register */
case 't': /* target register */
case 'r': /* both target and source */
case 'v': /* both dest and source */
case 'w': /* both dest and target */
case 'E': /* coprocessor target register */
case 'G': /* coprocessor destination register */
case 'x': /* ignore register name */
case 'z': /* must be zero register */
s_reset = s;
if (s[0] == '$')
{
if (isdigit (s[1]))
{
++s;
regno = 0;
do
{
regno *= 10;
regno += *s - '0';
++s;
}
while (isdigit (*s));
if (regno > 31)
as_bad ("Invalid register number (%d)", regno);
}
else if (*args == 'E' || *args == 'G')
goto notreg;
else
{
if (s[1] == 'f' && s[2] == 'p')
{
s += 3;
regno = FP;
}
else if (s[1] == 's' && s[2] == 'p')
{
s += 3;
regno = SP;
}
else if (s[1] == 'g' && s[2] == 'p')
{
s += 3;
regno = GP;
}
else if (s[1] == 'a' && s[2] == 't')
{
s += 3;
regno = AT;
}
else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
{
s += 4;
regno = KT0;
}
else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
{
s += 4;
regno = KT1;
}
else
goto notreg;
}
if (regno == AT
&& ! mips_noat
&& *args != 'E'
&& *args != 'G')
as_warn ("Used $at without \".set noat\"");
c = *args;
if (*s == ' ')
s++;
if (args[1] != *s)
{
if (c == 'r' || c == 'v' || c == 'w')
{
regno = lastregno;
s = s_reset;
args++;
}
}
/* 'z' only matches $0. */
if (c == 'z' && regno != 0)
break;
switch (c)
{
case 'r':
case 's':
case 'v':
case 'b':
ip->insn_opcode |= regno << 21;
break;
case 'd':
case 'G':
ip->insn_opcode |= regno << 11;
break;
case 'w':
case 't':
case 'E':
ip->insn_opcode |= regno << 16;
break;
case 'x':
/* This case exists because on the r3000 trunc
expands into a macro which requires a gp
register. On the r6000 or r4000 it is
assembled into a single instruction which
ignores the register. Thus the insn version
is MIPS_ISA2 and uses 'x', and the macro
version is MIPS_ISA1 and uses 't'. */
break;
case 'z':
/* This case is for the div instruction, which
acts differently if the destination argument
is $0. This only matches $0, and is checked
outside the switch. */
break;
}
lastregno = regno;
continue;
}
notreg:
switch (*args++)
{
case 'r':
case 'v':
ip->insn_opcode |= lastregno << 21;
continue;
case 'w':
ip->insn_opcode |= lastregno << 16;
continue;
}
break;
case 'D': /* floating point destination register */
case 'S': /* floating point source register */
case 'T': /* floating point target register */
case 'R': /* floating point source register */
case 'V':
case 'W':
s_reset = s;
if (s[0] == '$' && s[1] == 'f' && isdigit (s[2]))
{
s += 2;
regno = 0;
do
{
regno *= 10;
regno += *s - '0';
++s;
}
while (isdigit (*s));
if (regno > 31)
as_bad ("Invalid float register number (%d)", regno);
if ((regno & 1) != 0
&& mips_isa < 3
&& ! (strcmp (str, "mtc1") == 0
|| strcmp (str, "mfc1") == 0
|| strcmp (str, "lwc1") == 0
|| strcmp (str, "swc1") == 0
|| strcmp (str, "l.s") == 0
|| strcmp (str, "s.s") == 0))
as_warn ("Float register should be even, was %d",
regno);
c = *args;
if (*s == ' ')
s++;
if (args[1] != *s)
{
if (c == 'V' || c == 'W')
{
regno = lastregno;
s = s_reset;
args++;
}
}
switch (c)
{
case 'D':
ip->insn_opcode |= regno << 6;
break;
case 'V':
case 'S':
ip->insn_opcode |= regno << 11;
break;
case 'W':
case 'T':
ip->insn_opcode |= regno << 16;
break;
case 'R':
ip->insn_opcode |= regno << 21;
break;
}
lastregno = regno;
continue;
}
switch (*args++)
{
case 'V':
ip->insn_opcode |= lastregno << 11;
continue;
case 'W':
ip->insn_opcode |= lastregno << 16;
continue;
}
break;
case 'I':
my_getExpression (&imm_expr, s);
if (imm_expr.X_op != O_big
&& imm_expr.X_op != O_constant)
insn_error = "absolute expression required";
s = expr_end;
continue;
case 'A':
my_getExpression (&offset_expr, s);
imm_reloc = BFD_RELOC_32;
s = expr_end;
continue;
case 'F':
case 'L':
case 'f':
case 'l':
{
int f64;
char *save_in;
char *err;
unsigned char temp[8];
int len;
unsigned int length;
segT seg;
subsegT subseg;
char *p;
/* These only appear as the last operand in an
instruction, and every instruction that accepts
them in any variant accepts them in all variants.
This means we don't have to worry about backing out
any changes if the instruction does not match.
The difference between them is the size of the
floating point constant and where it goes. For 'F'
and 'L' the constant is 64 bits; for 'f' and 'l' it
is 32 bits. Where the constant is placed is based
on how the MIPS assembler does things:
F -- .rdata
L -- .lit8
f -- immediate value
l -- .lit4
The .lit4 and .lit8 sections are only used if
permitted by the -G argument.
When generating embedded PIC code, we use the
.lit8 section but not the .lit4 section (we can do
.lit4 inline easily; we need to put .lit8
somewhere in the data segment, and using .lit8
permits the linker to eventually combine identical
.lit8 entries). */
f64 = *args == 'F' || *args == 'L';
save_in = input_line_pointer;
input_line_pointer = s;
err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
length = len;
s = input_line_pointer;
input_line_pointer = save_in;
if (err != NULL && *err != '\0')
{
as_bad ("Bad floating point constant: %s", err);
memset (temp, '\0', sizeof temp);
length = f64 ? 8 : 4;
}
assert (length == (f64 ? 8 : 4));
if (*args == 'f'
|| (*args == 'l'
&& (! USE_GLOBAL_POINTER_OPT
|| mips_pic == EMBEDDED_PIC
|| g_switch_value < 4)
))
{
imm_expr.X_op = O_constant;
if (byte_order == LITTLE_ENDIAN)
imm_expr.X_add_number =
(((((((int) temp[3] << 8)
| temp[2]) << 8)
| temp[1]) << 8)
| temp[0]);
else
imm_expr.X_add_number =
(((((((int) temp[0] << 8)
| temp[1]) << 8)
| temp[2]) << 8)
| temp[3]);
}
else
{
const char *newname;
segT new_seg;
/* Switch to the right section. */
seg = now_seg;
subseg = now_subseg;
switch (*args)
{
default: /* unused default case avoids warnings. */
case 'L':
newname = RDATA_SECTION_NAME;
if (USE_GLOBAL_POINTER_OPT && g_switch_value >= 8)
newname = ".lit8";
break;
case 'F':
newname = RDATA_SECTION_NAME;
break;
case 'l':
assert (!USE_GLOBAL_POINTER_OPT
|| g_switch_value >= 4);
newname = ".lit4";
break;
}
new_seg = subseg_new (newname, (subsegT) 0);
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
bfd_set_section_flags (stdoutput, new_seg,
(SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_DATA));
frag_align (*args == 'l' ? 2 : 3, 0);
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
record_alignment (new_seg, 4);
else
record_alignment (new_seg, *args == 'l' ? 2 : 3);
if (seg == now_seg)
as_bad ("Can't use floating point insn in this section");
/* Set the argument to the current address in the
section. */
offset_expr.X_op = O_symbol;
offset_expr.X_add_symbol =
symbol_new ("L0\001", now_seg,
(valueT) frag_now_fix (), frag_now);
offset_expr.X_add_number = 0;
/* Put the floating point number into the section. */
p = frag_more ((int) length);
memcpy (p, temp, length);
/* Switch back to the original section. */
subseg_set (seg, subseg);
}
}
continue;
case 'i': /* 16 bit unsigned immediate */
case 'j': /* 16 bit signed immediate */
imm_reloc = BFD_RELOC_LO16;
c = my_getSmallExpression (&imm_expr, s);
if (c != '\0')
{
if (c != 'l')
{
if (imm_expr.X_op == O_constant)
imm_expr.X_add_number =
(imm_expr.X_add_number >> 16) & 0xffff;
else if (c == 'h')
{
imm_reloc = BFD_RELOC_HI16_S;
imm_unmatched_hi = true;
}
else
imm_reloc = BFD_RELOC_HI16;
}
}
if (*args == 'i')
{
if ((c == '\0' && imm_expr.X_op != O_constant)
|| ((imm_expr.X_add_number < 0
|| imm_expr.X_add_number >= 0x10000)
&& imm_expr.X_op == O_constant))
{
if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
!strcmp (insn->name, insn[1].name))
break;
if (imm_expr.X_op != O_constant
&& imm_expr.X_op != O_big)
insn_error = "absolute expression required";
else
as_bad ("16 bit expression not in range 0..65535");
}
}
else
{
int more;
offsetT max;
/* The upper bound should be 0x8000, but
unfortunately the MIPS assembler accepts numbers
from 0x8000 to 0xffff and sign extends them, and
we want to be compatible. We only permit this
extended range for an instruction which does not
provide any further alternates, since those
alternates may handle other cases. People should
use the numbers they mean, rather than relying on
a mysterious sign extension. */
more = (insn + 1 < &mips_opcodes[NUMOPCODES] &&
strcmp (insn->name, insn[1].name) == 0);
if (more)
max = 0x8000;
else
max = 0x10000;
if ((c == '\0' && imm_expr.X_op != O_constant)
|| ((imm_expr.X_add_number < -0x8000
|| imm_expr.X_add_number >= max)
&& imm_expr.X_op == O_constant)
|| (more
&& imm_expr.X_add_number < 0
&& mips_isa >= 3
&& imm_expr.X_unsigned
&& sizeof (imm_expr.X_add_number) <= 4))
{
if (more)
break;
if (imm_expr.X_op != O_constant
&& imm_expr.X_op != O_big)
insn_error = "absolute expression required";
else
as_bad ("16 bit expression not in range -32768..32767");
}
}
s = expr_end;
continue;
case 'o': /* 16 bit offset */
c = my_getSmallExpression (&offset_expr, s);
/* If this value won't fit into a 16 bit offset, then go
find a macro that will generate the 32 bit offset
code pattern. As a special hack, we accept the
difference of two local symbols as a constant. This
is required to suppose embedded PIC switches, which
use an instruction which looks like
lw $4,$L12-$LS12($4)
The problem with handling this in a more general
fashion is that the macro function doesn't expect to
see anything which can be handled in a single
constant instruction. */
if (c == 0
&& (offset_expr.X_op != O_constant
|| offset_expr.X_add_number >= 0x8000
|| offset_expr.X_add_number < -0x8000)
&& (mips_pic != EMBEDDED_PIC
|| offset_expr.X_op != O_subtract
|| now_seg != text_section
|| (S_GET_SEGMENT (offset_expr.X_op_symbol)
!= text_section)))
break;
offset_reloc = BFD_RELOC_LO16;
if (c == 'h' || c == 'H')
{
assert (offset_expr.X_op == O_constant);
offset_expr.X_add_number =
(offset_expr.X_add_number >> 16) & 0xffff;
}
s = expr_end;
continue;
case 'p': /* pc relative offset */
offset_reloc = BFD_RELOC_16_PCREL_S2;
my_getExpression (&offset_expr, s);
s = expr_end;
continue;
case 'u': /* upper 16 bits */
c = my_getSmallExpression (&imm_expr, s);
if (imm_expr.X_op == O_constant
&& (imm_expr.X_add_number < 0
|| imm_expr.X_add_number >= 0x10000))
as_bad ("lui expression not in range 0..65535");
imm_reloc = BFD_RELOC_LO16;
if (c)
{
if (c != 'l')
{
if (imm_expr.X_op == O_constant)
imm_expr.X_add_number =
(imm_expr.X_add_number >> 16) & 0xffff;
else if (c == 'h')
{
imm_reloc = BFD_RELOC_HI16_S;
imm_unmatched_hi = true;
}
else
imm_reloc = BFD_RELOC_HI16;
}
}
s = expr_end;
continue;
case 'a': /* 26 bit address */
my_getExpression (&offset_expr, s);
s = expr_end;
offset_reloc = BFD_RELOC_MIPS_JMP;
continue;
case 'N': /* 3 bit branch condition code */
case 'M': /* 3 bit compare condition code */
if (strncmp (s, "$fcc", 4) != 0)
break;
s += 4;
regno = 0;
do
{
regno *= 10;
regno += *s - '0';
++s;
}
while (isdigit (*s));
if (regno > 7)
as_bad ("invalid condition code register $fcc%d", regno);
if (*args == 'N')
ip->insn_opcode |= regno << OP_SH_BCC;
else
ip->insn_opcode |= regno << OP_SH_CCC;
continue;
default:
fprintf (stderr, "bad char = '%c'\n", *args);
internalError ();
}
break;
}
/* Args don't match. */
if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
!strcmp (insn->name, insn[1].name))
{
++insn;
s = argsStart;
continue;
}
insn_error = "illegal operands";
return;
}
}
/* This routine assembles an instruction into its binary format when
assembling for the mips16. As a side effect, it sets one of the
global variables imm_reloc or offset_reloc to the type of
relocation to do if one of the operands is an address expression.
It also sets mips16_small and mips16_ext if the user explicitly
requested a small or extended instruction. */
static void
mips16_ip (str, ip)
char *str;
struct mips_cl_insn *ip;
{
char *s;
const char *args;
struct mips_opcode *insn;
char *argsstart;
unsigned int regno;
unsigned int lastregno = 0;
char *s_reset;
insn_error = NULL;
mips16_small = false;
mips16_ext = false;
for (s = str; islower (*s); ++s)
;
switch (*s)
{
case '\0':
break;
case ' ':
*s++ = '\0';
break;
case '.':
if (s[1] == 't' && s[2] == ' ')
{
*s = '\0';
mips16_small = true;
s += 3;
break;
}
else if (s[1] == 'e' && s[2] == ' ')
{
*s = '\0';
mips16_ext = true;
s += 3;
break;
}
/* Fall through. */
default:
insn_error = "unknown opcode";
return;
}
if (! mips16_autoextend && ! mips16_ext)
mips16_small = true;
if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
{
insn_error = "unrecognized opcode";
return;
}
argsstart = s;
for (;;)
{
assert (strcmp (insn->name, str) == 0);
ip->insn_mo = insn;
ip->insn_opcode = insn->match;
ip->use_extend = false;
imm_expr.X_op = O_absent;
imm_reloc = BFD_RELOC_UNUSED;
offset_expr.X_op = O_absent;
offset_reloc = BFD_RELOC_UNUSED;
for (args = insn->args; 1; ++args)
{
int c;
if (*s == ' ')
++s;
/* In this switch statement we call break if we did not find
a match, continue if we did find a match, or return if we
are done. */
c = *args;
switch (c)
{
case '\0':
if (*s == '\0')
{
/* Stuff the immediate value in now, if we can. */
if (imm_expr.X_op == O_constant
&& imm_reloc > BFD_RELOC_UNUSED
&& insn->pinfo != INSN_MACRO)
{
mips16_immed ((char *) NULL, 0,
imm_reloc - BFD_RELOC_UNUSED,
imm_expr.X_add_number, true, mips16_small,
mips16_ext, &ip->insn_opcode,
&ip->use_extend, &ip->extend);
imm_expr.X_op = O_absent;
imm_reloc = BFD_RELOC_UNUSED;
}
return;
}
break;
case ',':
if (*s++ == c)
continue;
s--;
switch (*++args)
{
case 'v':
ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
continue;
case 'w':
ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
continue;
}
break;
case '(':
case ')':
if (*s++ == c)
continue;
break;
case 'v':
case 'w':
if (s[0] != '$')
{
if (c == 'v')
ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
else
ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
++args;
continue;
}
/* Fall through. */
case 'x':
case 'y':
case 'z':
case 'Z':
case '0':
case 'S':
case 'R':
case 'X':
case 'Y':
if (s[0] != '$')
break;
s_reset = s;
if (isdigit (s[1]))
{
++s;
regno = 0;
do
{
regno *= 10;
regno += *s - '0';
++s;
}
while (isdigit (*s));
if (regno > 31)
{
as_bad ("invalid register number (%d)", regno);
regno = 2;
}
}
else
{
if (s[1] == 'f' && s[2] == 'p')
{
s += 3;
regno = FP;
}
else if (s[1] == 's' && s[2] == 'p')
{
s += 3;
regno = SP;
}
else if (s[1] == 'g' && s[2] == 'p')
{
s += 3;
regno = GP;
}
else if (s[1] == 'a' && s[2] == 't')
{
s += 3;
regno = AT;
}
else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
{
s += 4;
regno = KT0;
}
else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
{
s += 4;
regno = KT1;
}
else
break;
}
if (*s == ' ')
++s;
if (args[1] != *s)
{
if (c == 'v' || c == 'w')
{
regno = mips16_to_32_reg_map[lastregno];
s = s_reset;
args++;
}
}
switch (c)
{
case 'x':
case 'y':
case 'z':
case 'v':
case 'w':
case 'Z':
regno = mips32_to_16_reg_map[regno];
break;
case '0':
if (regno != 0)
regno = ILLEGAL_REG;
break;
case 'S':
if (regno != SP)
regno = ILLEGAL_REG;
break;
case 'R':
if (regno != RA)
regno = ILLEGAL_REG;
break;
case 'X':
case 'Y':
if (regno == AT && ! mips_noat)
as_warn ("used $at without \".set noat\"");
break;
default:
internalError ();
}
if (regno == ILLEGAL_REG)
break;
switch (c)
{
case 'x':
case 'v':
ip->insn_opcode |= regno << MIPS16OP_SH_RX;
break;
case 'y':
case 'w':
ip->insn_opcode |= regno << MIPS16OP_SH_RY;
break;
case 'z':
ip->insn_opcode |= regno << MIPS16OP_SH_RZ;
break;
case 'Z':
ip->insn_opcode |= regno << MIPS16OP_SH_MOVE32Z;
case '0':
case 'S':
case 'R':
break;
case 'X':
ip->insn_opcode |= regno << MIPS16OP_SH_REGR32;
break;
case 'Y':
regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
ip->insn_opcode |= regno << MIPS16OP_SH_REG32R;
break;
default:
internalError ();
}
lastregno = regno;
continue;
case 'P':
if (strncmp (s, "$pc", 3) == 0)
{
s += 3;
continue;
}
break;
case '<':
case '>':
case '[':
case ']':
case '4':
case '5':
case 'H':
case 'W':
case 'D':
case 'j':
case '8':
case 'V':
case 'C':
case 'U':
case 'k':
case 'K':
if (s[0] == '$' && isdigit (s[1]))
{
/* Looks like a register name. */
break;
}
my_getExpression (&imm_expr, s);
/* We need to relax this instruction. */
imm_reloc = (int) BFD_RELOC_UNUSED + c;
s = expr_end;
continue;
case 'p':
case 'q':
case 'A':
case 'B':
case 'E':
/* We use offset_reloc rather than imm_reloc for the PC
relative operands. This lets macros with both
immediate and address operands work correctly. */
if (s[0] == '$' && isdigit (s[1]))
{
/* Looks like a register name. */
break;
}
my_getExpression (&offset_expr, s);
/* We need to relax this instruction. */
offset_reloc = (int) BFD_RELOC_UNUSED + c;
s = expr_end;
continue;
case '6': /* break code */
my_getExpression (&imm_expr, s);
check_absolute_expr (ip, &imm_expr);
if ((unsigned long) imm_expr.X_add_number > 63)
{
as_warn ("Invalid value for `%s' (%lu)",
ip->insn_mo->name,
(unsigned long) imm_expr.X_add_number);
imm_expr.X_add_number &= 0x3f;
}
ip->insn_opcode |= imm_expr.X_add_number << MIPS16OP_SH_IMM6;
imm_expr.X_op = O_absent;
s = expr_end;
continue;
case 'a': /* 26 bit address */
my_getExpression (&offset_expr, s);
s = expr_end;
offset_reloc = BFD_RELOC_MIPS16_JMP;
ip->insn_opcode <<= 16;
continue;
case 'l': /* register list for entry macro */
case 'L': /* register list for exit macro */
{
int mask;
if (c == 'l')
mask = 0;
else
mask = 7 << 3;
while (*s != '\0')
{
int reg1, reg2;
while (*s == ' ' || *s == ',')
++s;
if (*s != '$')
{
as_bad ("can't parse register list");
break;
}
++s;
reg1 = 0;
while (isdigit (*s))
{
reg1 *= 10;
reg1 += *s - '0';
++s;
}
if (*s == ' ')
++s;
if (*s != '-')
reg2 = reg1;
else
{
++s;
if (*s != '$')
break;
++s;
reg2 = 0;
while (isdigit (*s))
{
reg2 *= 10;
reg2 += *s - '0';
++s;
}
}
if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
mask |= (reg2 - 3) << 3;
else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
mask |= (reg2 - 15) << 1;
else if (reg1 == 31 && reg2 == 31)
mask |= 1;
else
as_bad ("invalid register list");
}
ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
}
continue;
default:
internalError ();
}
break;
}
/* Args don't match. */
if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
strcmp (insn->name, insn[1].name) == 0)
{
++insn;
s = argsstart;
continue;
}
insn_error = "illegal operands";
return;
}
}
/* This structure holds information we know about a mips16 immediate
argument type. */
struct mips16_immed_operand
{
/* The type code used in the argument string in the opcode table. */
int type;
/* The number of bits in the short form of the opcode. */
int nbits;
/* The number of bits in the extended form of the opcode. */
int extbits;
/* The amount by which the short form is shifted when it is used;
for example, the sw instruction has a shift count of 2. */
int shift;
/* The amount by which the short form is shifted when it is stored
into the instruction code. */
int op_shift;
/* Non-zero if the short form is unsigned. */
int unsp;
/* Non-zero if the extended form is unsigned. */
int extu;
/* Non-zero if the value is PC relative. */
int pcrel;
};
/* The mips16 immediate operand types. */
static const struct mips16_immed_operand mips16_immed_operands[] =
{
{ '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
{ '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
{ '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
{ ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
{ '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
{ '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
{ 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
{ 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
{ 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
{ 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
{ '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
{ 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
{ 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
{ 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
{ 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
{ 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
{ 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
{ 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
{ 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
{ 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
{ 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
};
#define MIPS16_NUM_IMMED \
(sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
/* Handle a mips16 instruction with an immediate value. This or's the
small immediate value into *INSN. It sets *USE_EXTEND to indicate
whether an extended value is needed; if one is needed, it sets
*EXTEND to the value. The argument type is TYPE. The value is VAL.
If SMALL is true, an unextended opcode was explicitly requested.
If EXT is true, an extended opcode was explicitly requested. If
WARN is true, warn if EXT does not match reality. */
static void
mips16_immed (file, line, type, val, warn, small, ext, insn, use_extend,
extend)
char *file;
unsigned int line;
int type;
offsetT val;
boolean warn;
boolean small;
boolean ext;
unsigned long *insn;
boolean *use_extend;
unsigned short *extend;
{
register const struct mips16_immed_operand *op;
int mintiny, maxtiny;
boolean needext;
op = mips16_immed_operands;
while (op->type != type)
{
++op;
assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
}
if (op->unsp)
{
if (type == '<' || type == '>' || type == '[' || type == ']')
{
mintiny = 1;
maxtiny = 1 << op->nbits;
}
else
{
mintiny = 0;
maxtiny = (1 << op->nbits) - 1;
}
}
else
{
mintiny = - (1 << (op->nbits - 1));
maxtiny = (1 << (op->nbits - 1)) - 1;
}
/* Branch offsets have an implicit 0 in the lowest bit. */
if (type == 'p' || type == 'q')
{
if ((val & 1) != 0)
as_bad_where (file, line, "branch to odd address");
val /= 2;
}
if ((val & ((1 << op->shift) - 1)) != 0
|| val < (mintiny << op->shift)
|| val > (maxtiny << op->shift))
needext = true;
else
needext = false;
if (warn && ext && ! needext)
as_warn_where (file, line, "extended operand requested but not required");
if (small && needext)
as_bad_where (file, line, "invalid unextended operand value");
if (small || (! ext && ! needext))
{
int insnval;
*use_extend = false;
insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
insnval <<= op->op_shift;
*insn |= insnval;
}
else
{
long minext, maxext;
int extval;
if (op->extu)
{
minext = 0;
maxext = (1 << op->extbits) - 1;
}
else
{
minext = - (1 << (op->extbits - 1));
maxext = (1 << (op->extbits - 1)) - 1;
}
if (val < minext || val > maxext)
as_bad_where (file, line,
"operand value out of range for instruction");
*use_extend = true;
if (op->extbits == 16)
{
extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
val &= 0x1f;
}
else if (op->extbits == 15)
{
extval = ((val >> 11) & 0xf) | (val & 0x7f0);
val &= 0xf;
}
else
{
extval = ((val & 0x1f) << 6) | (val & 0x20);
val = 0;
}
*extend = (unsigned short) extval;
*insn |= val;
}
}
#define LP '('
#define RP ')'
static int
my_getSmallExpression (ep, str)
expressionS *ep;
char *str;
{
char *sp;
int c = 0;
if (*str == ' ')
str++;
if (*str == LP
|| (*str == '%' &&
((str[1] == 'h' && str[2] == 'i')
|| (str[1] == 'H' && str[2] == 'I')
|| (str[1] == 'l' && str[2] == 'o'))
&& str[3] == LP))
{
if (*str == LP)
c = 0;
else
{
c = str[1];
str += 3;
}
/*
* A small expression may be followed by a base register.
* Scan to the end of this operand, and then back over a possible
* base register. Then scan the small expression up to that
* point. (Based on code in sparc.c...)
*/
for (sp = str; *sp && *sp != ','; sp++)
;
if (sp - 4 >= str && sp[-1] == RP)
{
if (isdigit (sp[-2]))
{
for (sp -= 3; sp >= str && isdigit (*sp); sp--)
;
if (*sp == '$' && sp > str && sp[-1] == LP)
{
sp--;
goto do_it;
}
}
else if (sp - 5 >= str
&& sp[-5] == LP
&& sp[-4] == '$'
&& ((sp[-3] == 'f' && sp[-2] == 'p')
|| (sp[-3] == 's' && sp[-2] == 'p')
|| (sp[-3] == 'g' && sp[-2] == 'p')
|| (sp[-3] == 'a' && sp[-2] == 't')))
{
sp -= 5;
do_it:
if (sp == str)
{
/* no expression means zero offset */
if (c)
{
/* %xx(reg) is an error */
ep->X_op = O_absent;
expr_end = str - 3;
}
else
{
ep->X_op = O_constant;
expr_end = sp;
}
ep->X_add_symbol = NULL;
ep->X_op_symbol = NULL;
ep->X_add_number = 0;
}
else
{
*sp = '\0';
my_getExpression (ep, str);
*sp = LP;
}
return c;
}
}
}
my_getExpression (ep, str);
return c; /* => %hi or %lo encountered */
}
static void
my_getExpression (ep, str)
expressionS *ep;
char *str;
{
char *save_in;
save_in = input_line_pointer;
input_line_pointer = str;
expression (ep);
expr_end = input_line_pointer;
input_line_pointer = save_in;
}
/* Turn a string in input_line_pointer into a floating point constant
of type type, and store the appropriate bytes in *litP. The number
of LITTLENUMS emitted is stored in *sizeP . An error message is
returned, or NULL on OK. */
char *
md_atof (type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return "bad call to md_atof";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
if (byte_order == LITTLE_ENDIAN)
{
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
else
{
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
return NULL;
}
void
md_number_to_chars (buf, val, n)
char *buf;
valueT val;
int n;
{
switch (byte_order)
{
case LITTLE_ENDIAN:
number_to_chars_littleendian (buf, val, n);
break;
case BIG_ENDIAN:
number_to_chars_bigendian (buf, val, n);
break;
default:
internalError ();
}
}
CONST char *md_shortopts = "O::g::G:";
struct option md_longopts[] = {
#define OPTION_MIPS1 (OPTION_MD_BASE + 1)
{"mips0", no_argument, NULL, OPTION_MIPS1},
{"mips1", no_argument, NULL, OPTION_MIPS1},
#define OPTION_MIPS2 (OPTION_MD_BASE + 2)
{"mips2", no_argument, NULL, OPTION_MIPS2},
#define OPTION_MIPS3 (OPTION_MD_BASE + 3)
{"mips3", no_argument, NULL, OPTION_MIPS3},
#define OPTION_MIPS4 (OPTION_MD_BASE + 4)
{"mips4", no_argument, NULL, OPTION_MIPS4},
#define OPTION_MCPU (OPTION_MD_BASE + 5)
{"mcpu", required_argument, NULL, OPTION_MCPU},
#define OPTION_MEMBEDDED_PIC (OPTION_MD_BASE + 6)
{"membedded-pic", no_argument, NULL, OPTION_MEMBEDDED_PIC},
#define OPTION_TRAP (OPTION_MD_BASE + 9)
{"trap", no_argument, NULL, OPTION_TRAP},
{"no-break", no_argument, NULL, OPTION_TRAP},
#define OPTION_BREAK (OPTION_MD_BASE + 10)
{"break", no_argument, NULL, OPTION_BREAK},
{"no-trap", no_argument, NULL, OPTION_BREAK},
#define OPTION_EB (OPTION_MD_BASE + 11)
{"EB", no_argument, NULL, OPTION_EB},
#define OPTION_EL (OPTION_MD_BASE + 12)
{"EL", no_argument, NULL, OPTION_EL},
#define OPTION_M4650 (OPTION_MD_BASE + 13)
{"m4650", no_argument, NULL, OPTION_M4650},
#define OPTION_NO_M4650 (OPTION_MD_BASE + 14)
{"no-m4650", no_argument, NULL, OPTION_NO_M4650},
#define OPTION_M4010 (OPTION_MD_BASE + 15)
{"m4010", no_argument, NULL, OPTION_M4010},
#define OPTION_NO_M4010 (OPTION_MD_BASE + 16)
{"no-m4010", no_argument, NULL, OPTION_NO_M4010},
#define OPTION_M4100 (OPTION_MD_BASE + 17)
{"m4100", no_argument, NULL, OPTION_M4100},
#define OPTION_NO_M4100 (OPTION_MD_BASE + 18)
{"no-m4100", no_argument, NULL, OPTION_NO_M4100},
#define OPTION_MIPS16 (OPTION_MD_BASE + 22)
{"mips16", no_argument, NULL, OPTION_MIPS16},
#define OPTION_NO_MIPS16 (OPTION_MD_BASE + 23)
{"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
#define OPTION_CALL_SHARED (OPTION_MD_BASE + 7)
#define OPTION_NON_SHARED (OPTION_MD_BASE + 8)
#define OPTION_XGOT (OPTION_MD_BASE + 19)
#define OPTION_32 (OPTION_MD_BASE + 20)
#define OPTION_64 (OPTION_MD_BASE + 21)
#ifdef OBJ_ELF
{"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
{"xgot", no_argument, NULL, OPTION_XGOT},
{"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
{"non_shared", no_argument, NULL, OPTION_NON_SHARED},
{"32", no_argument, NULL, OPTION_32},
{"64", no_argument, NULL, OPTION_64},
#endif
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);
int
md_parse_option (c, arg)
int c;
char *arg;
{
switch (c)
{
case OPTION_TRAP:
mips_trap = 1;
break;
case OPTION_BREAK:
mips_trap = 0;
break;
case OPTION_EB:
target_big_endian = 1;
break;
case OPTION_EL:
target_big_endian = 0;
break;
case 'O':
if (arg && arg[1] == '0')
mips_optimize = 1;
else
mips_optimize = 2;
break;
case 'g':
if (arg == NULL)
mips_debug = 2;
else
mips_debug = atoi (arg);
/* When the MIPS assembler sees -g or -g2, it does not do
optimizations which limit full symbolic debugging. We take
that to be equivalent to -O0. */
if (mips_debug == 2)
mips_optimize = 0;
break;
case OPTION_MIPS1:
mips_isa = 1;
if (mips_cpu == -1)
mips_cpu = 3000;
break;
case OPTION_MIPS2:
mips_isa = 2;
if (mips_cpu == -1)
mips_cpu = 6000;
break;
case OPTION_MIPS3:
mips_isa = 3;
if (mips_cpu == -1)
mips_cpu = 4000;
break;
case OPTION_MIPS4:
mips_isa = 4;
if (mips_cpu == -1)
mips_cpu = 8000;
break;
case OPTION_MCPU:
{
char *p;
/* Identify the processor type */
p = arg;
if (strcmp (p, "default") == 0
|| strcmp (p, "DEFAULT") == 0)
mips_cpu = -1;
else
{
int sv = 0;
/* We need to cope with the various "vr" prefixes for the 4300
processor. */
if (*p == 'v' || *p == 'V')
{
sv = 1;
p++;
}
if (*p == 'r' || *p == 'R')
p++;
mips_cpu = -1;
switch (*p)
{
case '1':
if (strcmp (p, "10000") == 0
|| strcmp (p, "10k") == 0
|| strcmp (p, "10K") == 0)
mips_cpu = 10000;
break;
case '2':
if (strcmp (p, "2000") == 0
|| strcmp (p, "2k") == 0
|| strcmp (p, "2K") == 0)
mips_cpu = 2000;
break;
case '3':
if (strcmp (p, "3000") == 0
|| strcmp (p, "3k") == 0
|| strcmp (p, "3K") == 0)
mips_cpu = 3000;
break;
case '4':
if (strcmp (p, "4000") == 0
|| strcmp (p, "4k") == 0
|| strcmp (p, "4K") == 0)
mips_cpu = 4000;
else if (strcmp (p, "4100") == 0)
{
mips_cpu = 4100;
if (mips_4100 < 0)
mips_4100 = 1;
}
else if (strcmp (p, "4300") == 0)
mips_cpu = 4300;
else if (strcmp (p, "4400") == 0)
mips_cpu = 4400;
else if (strcmp (p, "4600") == 0)
mips_cpu = 4600;
else if (strcmp (p, "4650") == 0)
{
mips_cpu = 4650;
if (mips_4650 < 0)
mips_4650 = 1;
}
else if (strcmp (p, "4010") == 0)
{
mips_cpu = 4010;
if (mips_4010 < 0)
mips_4010 = 1;
}
break;
case '5':
if (strcmp (p, "5000") == 0
|| strcmp (p, "5k") == 0
|| strcmp (p, "5K") == 0)
mips_cpu = 5000;
break;
case '6':
if (strcmp (p, "6000") == 0
|| strcmp (p, "6k") == 0
|| strcmp (p, "6K") == 0)
mips_cpu = 6000;
break;
case '8':
if (strcmp (p, "8000") == 0
|| strcmp (p, "8k") == 0
|| strcmp (p, "8K") == 0)
mips_cpu = 8000;
break;
case 'o':
if (strcmp (p, "orion") == 0)
mips_cpu = 4600;
break;
}
if (sv && mips_cpu != 4300 && mips_cpu != 4100 && mips_cpu != 5000)
{
as_bad ("ignoring invalid leading 'v' in -mcpu=%s switch", arg);
return 0;
}
if (mips_cpu == -1)
{
as_bad ("invalid architecture -mcpu=%s", arg);
return 0;
}
}
}
break;
case OPTION_M4650:
mips_4650 = 1;
break;
case OPTION_NO_M4650:
mips_4650 = 0;
break;
case OPTION_M4010:
mips_4010 = 1;
break;
case OPTION_NO_M4010:
mips_4010 = 0;
break;
case OPTION_M4100:
mips_4100 = 1;
break;
case OPTION_NO_M4100:
mips_4100 = 0;
break;
case OPTION_MIPS16:
mips16 = 1;
mips_no_prev_insn ();
break;
case OPTION_NO_MIPS16:
mips16 = 0;
mips_no_prev_insn ();
break;
case OPTION_MEMBEDDED_PIC:
mips_pic = EMBEDDED_PIC;
if (USE_GLOBAL_POINTER_OPT && g_switch_seen)
{
as_bad ("-G may not be used with embedded PIC code");
return 0;
}
g_switch_value = 0x7fffffff;
break;
/* When generating ELF code, we permit -KPIC and -call_shared to
select SVR4_PIC, and -non_shared to select no PIC. This is
intended to be compatible with Irix 5. */
case OPTION_CALL_SHARED:
if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
{
as_bad ("-call_shared is supported only for ELF format");
return 0;
}
mips_pic = SVR4_PIC;
if (g_switch_seen && g_switch_value != 0)
{
as_bad ("-G may not be used with SVR4 PIC code");
return 0;
}
g_switch_value = 0;
break;
case OPTION_NON_SHARED:
if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
{
as_bad ("-non_shared is supported only for ELF format");
return 0;
}
mips_pic = NO_PIC;
break;
/* The -xgot option tells the assembler to use 32 offsets when
accessing the got in SVR4_PIC mode. It is for Irix
compatibility. */
case OPTION_XGOT:
mips_big_got = 1;
break;
case 'G':
if (! USE_GLOBAL_POINTER_OPT)
{
as_bad ("-G is not supported for this configuration");
return 0;
}
else if (mips_pic == SVR4_PIC || mips_pic == EMBEDDED_PIC)
{
as_bad ("-G may not be used with SVR4 or embedded PIC code");
return 0;
}
else
g_switch_value = atoi (arg);
g_switch_seen = 1;
break;
/* The -32 and -64 options tell the assembler to output the 32
bit or the 64 bit MIPS ELF format. */
case OPTION_32:
mips_64 = 0;
break;
case OPTION_64:
{
const char **list, **l;
list = bfd_target_list ();
for (l = list; *l != NULL; l++)
if (strcmp (*l, "elf64-bigmips") == 0
|| strcmp (*l, "elf64-littlemips") == 0)
break;
if (*l == NULL)
as_fatal ("No compiled in support for 64 bit object file format");
free (list);
mips_64 = 1;
}
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (stream)
FILE *stream;
{
fprintf(stream, "\
MIPS options:\n\
-membedded-pic generate embedded position independent code\n\
-EB generate big endian output\n\
-EL generate little endian output\n\
-g, -g2 do not remove uneeded NOPs or swap branches\n\
-G NUM allow referencing objects up to NUM bytes\n\
implicitly with the gp register [default 8]\n");
fprintf(stream, "\
-mips1, -mcpu=r{2,3}000 generate code for r2000 and r3000\n\
-mips2, -mcpu=r6000 generate code for r6000\n\
-mips3, -mcpu=r4000 generate code for r4000\n\
-mips4, -mcpu=r8000 generate code for r8000\n\
-mcpu=vr4300 generate code for vr4300\n\
-mcpu=vr4100 generate code for vr4100\n\
-m4650 permit R4650 instructions\n\
-no-m4650 do not permit R4650 instructions\n\
-m4010 permit R4010 instructions\n\
-no-m4010 do not permit R4010 instructions\n\
-m4100 permit VR4100 instructions\n\
-no-m4100 do not permit VR4100 instructions\n");
fprintf(stream, "\
-mips16 generate mips16 instructions\n\
-no-mips16 do not generate mips16 instructions\n");
fprintf(stream, "\
-O0 remove unneeded NOPs, do not swap branches\n\
-O remove unneeded NOPs and swap branches\n\
--trap, --no-break trap exception on div by 0 and mult overflow\n\
--break, --no-trap break exception on div by 0 and mult overflow\n");
#ifdef OBJ_ELF
fprintf(stream, "\
-KPIC, -call_shared generate SVR4 position independent code\n\
-non_shared do not generate position independent code\n\
-xgot assume a 32 bit GOT\n\
-32 create 32 bit object file (default)\n\
-64 create 64 bit object file\n");
#endif
}
void
mips_init_after_args ()
{
if (target_big_endian)
byte_order = BIG_ENDIAN;
else
byte_order = LITTLE_ENDIAN;
}
long
md_pcrel_from (fixP)
fixS *fixP;
{
if (OUTPUT_FLAVOR != bfd_target_aout_flavour
&& fixP->fx_addsy != (symbolS *) NULL
&& ! S_IS_DEFINED (fixP->fx_addsy))
{
/* This makes a branch to an undefined symbol be a branch to the
current location. */
return 4;
}
/* return the address of the delay slot */
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
/* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
reloc for a cons. We could use the definition there, except that
we want to handle 64 bit relocs specially. */
void
cons_fix_new_mips (frag, where, nbytes, exp)
fragS *frag;
int where;
unsigned int nbytes;
expressionS *exp;
{
#ifndef OBJ_ELF
/* If we are assembling in 32 bit mode, turn an 8 byte reloc into a
4 byte reloc. */
if (nbytes == 8 && ! mips_64)
{
if (byte_order == BIG_ENDIAN)
where += 4;
nbytes = 4;
}
#endif
if (nbytes != 2 && nbytes != 4 && nbytes != 8)
as_bad ("Unsupported reloc size %d", nbytes);
fix_new_exp (frag_now, where, (int) nbytes, exp, 0,
(nbytes == 2
? BFD_RELOC_16
: (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
}
/* Sort any unmatched HI16_S relocs so that they immediately precede
the corresponding LO reloc. This is called before md_apply_fix and
tc_gen_reloc. Unmatched HI16_S relocs can only be generated by
explicit use of the %hi modifier. */
void
mips_frob_file ()
{
struct mips_hi_fixup *l;
for (l = mips_hi_fixup_list; l != NULL; l = l->next)
{
segment_info_type *seginfo;
int pass;
assert (l->fixp->fx_r_type == BFD_RELOC_HI16_S);
/* Check quickly whether the next fixup happens to be a matching
%lo. */
if (l->fixp->fx_next != NULL
&& l->fixp->fx_next->fx_r_type == BFD_RELOC_LO16
&& l->fixp->fx_addsy == l->fixp->fx_next->fx_addsy
&& l->fixp->fx_offset == l->fixp->fx_next->fx_offset)
continue;
/* Look through the fixups for this segment for a matching %lo.
When we find one, move the %hi just in front of it. We do
this in two passes. In the first pass, we try to find a
unique %lo. In the second pass, we permit multiple %hi
relocs for a single %lo (this is a GNU extension). */
seginfo = seg_info (l->seg);
for (pass = 0; pass < 2; pass++)
{
fixS *f, *prev;
prev = NULL;
for (f = seginfo->fix_root; f != NULL; f = f->fx_next)
{
/* Check whether this is a %lo fixup which matches l->fixp. */
if (f->fx_r_type == BFD_RELOC_LO16
&& f->fx_addsy == l->fixp->fx_addsy
&& f->fx_offset == l->fixp->fx_offset
&& (pass == 1
|| prev == NULL
|| prev->fx_r_type != BFD_RELOC_HI16_S
|| prev->fx_addsy != f->fx_addsy
|| prev->fx_offset != f->fx_offset))
{
fixS **pf;
/* Move l->fixp before f. */
for (pf = &seginfo->fix_root;
*pf != l->fixp;
pf = &(*pf)->fx_next)
assert (*pf != NULL);
*pf = l->fixp->fx_next;
l->fixp->fx_next = f;
if (prev == NULL)
seginfo->fix_root = l->fixp;
else
prev->fx_next = l->fixp;
break;
}
prev = f;
}
if (f != NULL)
break;
if (pass == 1)
as_warn_where (l->fixp->fx_file, l->fixp->fx_line,
"Unmatched %%hi reloc");
}
}
}
/* When generating embedded PIC code we need to use a special
relocation to represent the difference of two symbols in the .text
section (switch tables use a difference of this sort). See
include/coff/mips.h for details. This macro checks whether this
fixup requires the special reloc. */
#define SWITCH_TABLE(fixp) \
((fixp)->fx_r_type == BFD_RELOC_32 \
&& (fixp)->fx_addsy != NULL \
&& (fixp)->fx_subsy != NULL \
&& S_GET_SEGMENT ((fixp)->fx_addsy) == text_section \
&& S_GET_SEGMENT ((fixp)->fx_subsy) == text_section)
/* When generating embedded PIC code we must keep all PC relative
relocations, in case the linker has to relax a call. We also need
to keep relocations for switch table entries. */
/*ARGSUSED*/
int
mips_force_relocation (fixp)
fixS *fixp;
{
return (mips_pic == EMBEDDED_PIC
&& (fixp->fx_pcrel
|| SWITCH_TABLE (fixp)
|| fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S
|| fixp->fx_r_type == BFD_RELOC_PCREL_LO16));
}
/* Apply a fixup to the object file. */
int
md_apply_fix (fixP, valueP)
fixS *fixP;
valueT *valueP;
{
unsigned char *buf;
long insn, value;
assert (fixP->fx_size == 4
|| fixP->fx_r_type == BFD_RELOC_16
|| fixP->fx_r_type == BFD_RELOC_64);
value = *valueP;
fixP->fx_addnumber = value; /* Remember value for tc_gen_reloc */
if (fixP->fx_addsy == NULL && ! fixP->fx_pcrel)
fixP->fx_done = 1;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MIPS_JMP:
case BFD_RELOC_HI16:
case BFD_RELOC_HI16_S:
case BFD_RELOC_MIPS_GPREL:
case BFD_RELOC_MIPS_LITERAL:
case BFD_RELOC_MIPS_CALL16:
case BFD_RELOC_MIPS_GOT16:
case BFD_RELOC_MIPS_GPREL32:
case BFD_RELOC_MIPS_GOT_HI16:
case BFD_RELOC_MIPS_GOT_LO16:
case BFD_RELOC_MIPS_CALL_HI16:
case BFD_RELOC_MIPS_CALL_LO16:
if (fixP->fx_pcrel)
as_bad_where (fixP->fx_file, fixP->fx_line,
"Invalid PC relative reloc");
/* Nothing needed to do. The value comes from the reloc entry */
break;
case BFD_RELOC_MIPS16_JMP:
/* We currently always generate a reloc against a symbol, which
means that we don't want an addend even if the symbol is
defined. */
fixP->fx_addnumber = 0;
break;
case BFD_RELOC_PCREL_HI16_S:
/* The addend for this is tricky if it is internal, so we just
do everything here rather than in bfd_perform_relocation. */
if ((fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) == 0)
{
/* For an external symbol adjust by the address to make it
pcrel_offset. We use the address of the RELLO reloc
which follows this one. */
value += (fixP->fx_next->fx_frag->fr_address
+ fixP->fx_next->fx_where);
}
if (value & 0x8000)
value += 0x10000;
value >>= 16;
buf = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where;
if (byte_order == BIG_ENDIAN)
buf += 2;
md_number_to_chars (buf, value, 2);
break;
case BFD_RELOC_PCREL_LO16:
/* The addend for this is tricky if it is internal, so we just
do everything here rather than in bfd_perform_relocation. */
if ((fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) == 0)
value += fixP->fx_frag->fr_address + fixP->fx_where;
buf = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where;
if (byte_order == BIG_ENDIAN)
buf += 2;
md_number_to_chars (buf, value, 2);
break;
case BFD_RELOC_64:
/* This is handled like BFD_RELOC_32, but we output a sign
extended value if we are only 32 bits. */
if (fixP->fx_done
|| (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
{
if (8 <= sizeof (valueT))
md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
value, 8);
else
{
long w1, w2;
long hiv;
w1 = w2 = fixP->fx_where;
if (byte_order == BIG_ENDIAN)
w1 += 4;
else
w2 += 4;
md_number_to_chars (fixP->fx_frag->fr_literal + w1, value, 4);
if ((value & 0x80000000) != 0)
hiv = 0xffffffff;
else
hiv = 0;
md_number_to_chars (fixP->fx_frag->fr_literal + w2, hiv, 4);
}
}
break;
case BFD_RELOC_32:
/* If we are deleting this reloc entry, we must fill in the
value now. This can happen if we have a .word which is not
resolved when it appears but is later defined. We also need
to fill in the value if this is an embedded PIC switch table
entry. */
if (fixP->fx_done
|| (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
value, 4);
break;
case BFD_RELOC_16:
/* If we are deleting this reloc entry, we must fill in the
value now. */
assert (fixP->fx_size == 2);
if (fixP->fx_done)
md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
value, 2);
break;
case BFD_RELOC_LO16:
/* When handling an embedded PIC switch statement, we can wind
up deleting a LO16 reloc. See the 'o' case in mips_ip. */
if (fixP->fx_done)
{
if (value < -0x8000 || value > 0x7fff)
as_bad_where (fixP->fx_file, fixP->fx_line,
"relocation overflow");
buf = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where;
if (byte_order == BIG_ENDIAN)
buf += 2;
md_number_to_chars (buf, value, 2);
}
break;
case BFD_RELOC_16_PCREL_S2:
/*
* We need to save the bits in the instruction since fixup_segment()
* might be deleting the relocation entry (i.e., a branch within
* the current segment).
*/
/* TinyRISC can branch to odd addresses */
if ((value & (mips16 ? 0x1 : 0x3)) != 0)
as_warn_where (fixP->fx_file, fixP->fx_line,
"Branch to odd address (%lx)", value);
value >>= 2;
/* update old instruction data */
buf = (unsigned char *) (fixP->fx_where + fixP->fx_frag->fr_literal);
switch (byte_order)
{
case LITTLE_ENDIAN:
insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
break;
case BIG_ENDIAN:
insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
break;
default:
internalError ();
return 0;
}
if (value >= -0x8000 && value < 0x8000)
insn |= value & 0xffff;
else
{
/* The branch offset is too large. If this is an
unconditional branch, and we are not generating PIC code,
we can convert it to an absolute jump instruction. */
if (mips_pic == NO_PIC
&& fixP->fx_done
&& fixP->fx_frag->fr_address >= text_section->vma
&& (fixP->fx_frag->fr_address
< text_section->vma + text_section->_raw_size)
&& ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|| (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
|| (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
{
if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
insn = 0x0c000000; /* jal */
else
insn = 0x08000000; /* j */
fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
fixP->fx_done = 0;
fixP->fx_addsy = section_symbol (text_section);
fixP->fx_addnumber = (value << 2) + md_pcrel_from (fixP);
}
else
{
/* FIXME. It would be possible in principle to handle
conditional branches which overflow. They could be
transformed into a branch around a jump. This would
require setting up variant frags for each different
branch type. The native MIPS assembler attempts to
handle these cases, but it appears to do it
incorrectly. */
as_bad_where (fixP->fx_file, fixP->fx_line,
"Relocation overflow");
}
}
md_number_to_chars ((char *) buf, (valueT) insn, 4);
break;
default:
internalError ();
}
return 1;
}
#if 0
void
printInsn (oc)
unsigned long oc;
{
const struct mips_opcode *p;
int treg, sreg, dreg, shamt;
short imm;
const char *args;
int i;
for (i = 0; i < NUMOPCODES; ++i)
{
p = &mips_opcodes[i];
if (((oc & p->mask) == p->match) && (p->pinfo != INSN_MACRO))
{
printf ("%08lx %s\t", oc, p->name);
treg = (oc >> 16) & 0x1f;
sreg = (oc >> 21) & 0x1f;
dreg = (oc >> 11) & 0x1f;
shamt = (oc >> 6) & 0x1f;
imm = oc;
for (args = p->args;; ++args)
{
switch (*args)
{
case '\0':
printf ("\n");
break;
case ',':
case '(':
case ')':
printf ("%c", *args);
continue;
case 'r':
assert (treg == sreg);
printf ("$%d,$%d", treg, sreg);
continue;
case 'd':
case 'G':
printf ("$%d", dreg);
continue;
case 't':
case 'E':
printf ("$%d", treg);
continue;
case 'k':
printf ("0x%x", treg);
continue;
case 'b':
case 's':
printf ("$%d", sreg);
continue;
case 'a':
printf ("0x%08lx", oc & 0x1ffffff);
continue;
case 'i':
case 'j':
case 'o':
case 'u':
printf ("%d", imm);
continue;
case '<':
case '>':
printf ("$%d", shamt);
continue;
default:
internalError ();
}
break;
}
return;
}
}
printf ("%08lx UNDEFINED\n", oc);
}
#endif
static symbolS *
get_symbol ()
{
int c;
char *name;
symbolS *p;
name = input_line_pointer;
c = get_symbol_end ();
p = (symbolS *) symbol_find_or_make (name);
*input_line_pointer = c;
return p;
}
/* Align the current frag to a given power of two. The MIPS assembler
also automatically adjusts any preceding label. */
static void
mips_align (to, fill, label)
int to;
int fill;
symbolS *label;
{
mips_emit_delays ();
frag_align (to, fill);
record_alignment (now_seg, to);
if (label != NULL)
{
assert (S_GET_SEGMENT (label) == now_seg);
label->sy_frag = frag_now;
S_SET_VALUE (label, (valueT) frag_now_fix ());
}
}
/* Align to a given power of two. .align 0 turns off the automatic
alignment used by the data creating pseudo-ops. */
static void
s_align (x)
int x;
{
register int temp;
register long temp_fill;
long max_alignment = 15;
/*
o Note that the assembler pulls down any immediately preceeding label
to the aligned address.
o It's not documented but auto alignment is reinstated by
a .align pseudo instruction.
o Note also that after auto alignment is turned off the mips assembler
issues an error on attempt to assemble an improperly aligned data item.
We don't.
*/
temp = get_absolute_expression ();
if (temp > max_alignment)
as_bad ("Alignment too large: %d. assumed.", temp = max_alignment);
else if (temp < 0)
{
as_warn ("Alignment negative: 0 assumed.");
temp = 0;
}
if (*input_line_pointer == ',')
{
input_line_pointer++;
temp_fill = get_absolute_expression ();
}
else
temp_fill = 0;
if (temp)
{
auto_align = 1;
mips_align (temp, (int) temp_fill, insn_label);
}
else
{
auto_align = 0;
}
demand_empty_rest_of_line ();
}
void
mips_flush_pending_output ()
{
mips_emit_delays ();
insn_label = NULL;
}
static void
s_change_sec (sec)
int sec;
{
segT seg;
/* When generating embedded PIC code, we only use the .text, .lit8,
.sdata and .sbss sections. We change the .data and .rdata
pseudo-ops to use .sdata. */
if (mips_pic == EMBEDDED_PIC
&& (sec == 'd' || sec == 'r'))
sec = 's';
mips_emit_delays ();
switch (sec)
{
case 't':
s_text (0);
break;
case 'd':
s_data (0);
break;
case 'b':
subseg_set (bss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
break;
case 'r':
if (USE_GLOBAL_POINTER_OPT)
{
seg = subseg_new (RDATA_SECTION_NAME,
(subsegT) get_absolute_expression ());
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
{
bfd_set_section_flags (stdoutput, seg,
(SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_RELOC
| SEC_DATA));
bfd_set_section_alignment (stdoutput, seg, 4);
}
demand_empty_rest_of_line ();
}
else
{
as_bad ("No read only data section in this object file format");
demand_empty_rest_of_line ();
return;
}
break;
case 's':
if (USE_GLOBAL_POINTER_OPT)
{
seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
{
bfd_set_section_flags (stdoutput, seg,
SEC_ALLOC | SEC_LOAD | SEC_RELOC
| SEC_DATA);
bfd_set_section_alignment (stdoutput, seg, 4);
}
demand_empty_rest_of_line ();
break;
}
else
{
as_bad ("Global pointers not supported; recompile -G 0");
demand_empty_rest_of_line ();
return;
}
}
auto_align = 1;
}
void
mips_enable_auto_align ()
{
auto_align = 1;
}
static void
s_cons (log_size)
int log_size;
{
symbolS *label;
label = insn_label;
mips_emit_delays ();
if (log_size > 0 && auto_align)
mips_align (log_size, 0, label);
insn_label = NULL;
cons (1 << log_size);
}
static void
s_float_cons (type)
int type;
{
symbolS *label;
label = insn_label;
mips_emit_delays ();
if (auto_align)
if (type == 'd')
mips_align (3, 0, label);
else
mips_align (2, 0, label);
insn_label = NULL;
float_cons (type);
}
/* Handle .globl. We need to override it because on Irix 5 you are
permitted to say
.globl foo .text
where foo is an undefined symbol, to mean that foo should be
considered to be the address of a function. */
static void
s_mips_globl (x)
int x;
{
char *name;
int c;
symbolS *symbolP;
flagword flag;
name = input_line_pointer;
c = get_symbol_end ();
symbolP = symbol_find_or_make (name);
*input_line_pointer = c;
SKIP_WHITESPACE ();
/* On Irix 5, every global symbol that is not explicitly labelled as
being a function is apparently labelled as being an object. */
flag = BSF_OBJECT;
if (! is_end_of_line[(unsigned char) *input_line_pointer])
{
char *secname;
asection *sec;
secname = input_line_pointer;
c = get_symbol_end ();
sec = bfd_get_section_by_name (stdoutput, secname);
if (sec == NULL)
as_bad ("%s: no such section", secname);
*input_line_pointer = c;
if (sec != NULL && (sec->flags & SEC_CODE) != 0)
flag = BSF_FUNCTION;
}
symbolP->bsym->flags |= flag;
S_SET_EXTERNAL (symbolP);
demand_empty_rest_of_line ();
}
static void
s_option (x)
int x;
{
char *opt;
char c;
opt = input_line_pointer;
c = get_symbol_end ();
if (*opt == 'O')
{
/* FIXME: What does this mean? */
}
else if (strncmp (opt, "pic", 3) == 0)
{
int i;
i = atoi (opt + 3);
if (i == 0)
mips_pic = NO_PIC;
else if (i == 2)
mips_pic = SVR4_PIC;
else
as_bad (".option pic%d not supported", i);
if (USE_GLOBAL_POINTER_OPT && mips_pic == SVR4_PIC)
{
if (g_switch_seen && g_switch_value != 0)
as_warn ("-G may not be used with SVR4 PIC code");
g_switch_value = 0;
bfd_set_gp_size (stdoutput, 0);
}
}
else
as_warn ("Unrecognized option \"%s\"", opt);
*input_line_pointer = c;
demand_empty_rest_of_line ();
}
static void
s_mipsset (x)
int x;
{
char *name = input_line_pointer, ch;
while (!is_end_of_line[(unsigned char) *input_line_pointer])
input_line_pointer++;
ch = *input_line_pointer;
*input_line_pointer = '\0';
if (strcmp (name, "reorder") == 0)
{
if (mips_noreorder)
{
prev_insn_unreordered = 1;
prev_prev_insn_unreordered = 1;
}
mips_noreorder = 0;
}
else if (strcmp (name, "noreorder") == 0)
{
mips_emit_delays ();
mips_noreorder = 1;
mips_any_noreorder = 1;
}
else if (strcmp (name, "at") == 0)
{
mips_noat = 0;
}
else if (strcmp (name, "noat") == 0)
{
mips_noat = 1;
}
else if (strcmp (name, "macro") == 0)
{
mips_warn_about_macros = 0;
}
else if (strcmp (name, "nomacro") == 0)
{
if (mips_noreorder == 0)
as_bad ("`noreorder' must be set before `nomacro'");
mips_warn_about_macros = 1;
}
else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
{
mips_nomove = 0;
}
else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
{
mips_nomove = 1;
}
else if (strcmp (name, "bopt") == 0)
{
mips_nobopt = 0;
}
else if (strcmp (name, "nobopt") == 0)
{
mips_nobopt = 1;
}
else if (strcmp (name, "mips16") == 0
|| strcmp (name, "MIPS-16") == 0)
mips16 = 1;
else if (strcmp (name, "nomips16") == 0
|| strcmp (name, "noMIPS-16") == 0)
mips16 = 0;
else if (strncmp (name, "mips", 4) == 0)
{
int isa;
/* Permit the user to change the ISA on the fly. Needless to
say, misuse can cause serious problems. */
isa = atoi (name + 4);
if (isa == 0)
mips_isa = file_mips_isa;
else if (isa < 1 || isa > 4)
as_bad ("unknown ISA level");
else
mips_isa = isa;
}
else if (strcmp (name, "autoextend") == 0)
mips16_autoextend = 1;
else if (strcmp (name, "noautoextend") == 0)
mips16_autoextend = 0;
else
{
as_warn ("Tried to set unrecognized symbol: %s\n", name);
}
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* Handle the .abicalls pseudo-op. I believe this is equivalent to
.option pic2. It means to generate SVR4 PIC calls. */
static void
s_abicalls (ignore)
int ignore;
{
mips_pic = SVR4_PIC;
if (USE_GLOBAL_POINTER_OPT)
{
if (g_switch_seen && g_switch_value != 0)
as_warn ("-G may not be used with SVR4 PIC code");
g_switch_value = 0;
}
bfd_set_gp_size (stdoutput, 0);
demand_empty_rest_of_line ();
}
/* Handle the .cpload pseudo-op. This is used when generating SVR4
PIC code. It sets the $gp register for the function based on the
function address, which is in the register named in the argument.
This uses a relocation against _gp_disp, which is handled specially
by the linker. The result is:
lui $gp,%hi(_gp_disp)
addiu $gp,$gp,%lo(_gp_disp)
addu $gp,$gp,.cpload argument
The .cpload argument is normally $25 == $t9. */
static void
s_cpload (ignore)
int ignore;
{
expressionS ex;
int icnt = 0;
/* If we are not generating SVR4 PIC code, .cpload is ignored. */
if (mips_pic != SVR4_PIC)
{
s_ignore (0);
return;
}
/* .cpload should be a in .set noreorder section. */
if (mips_noreorder == 0)
as_warn (".cpload not in noreorder section");
ex.X_op = O_symbol;
ex.X_add_symbol = symbol_find_or_make ("_gp_disp");
ex.X_op_symbol = NULL;
ex.X_add_number = 0;
/* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
ex.X_add_symbol->bsym->flags |= BSF_OBJECT;
macro_build_lui ((char *) NULL, &icnt, &ex, GP);
macro_build ((char *) NULL, &icnt, &ex, "addiu", "t,r,j", GP, GP,
(int) BFD_RELOC_LO16);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "addu", "d,v,t",
GP, GP, tc_get_register (0));
demand_empty_rest_of_line ();
}
/* Handle the .cprestore pseudo-op. This stores $gp into a given
offset from $sp. The offset is remembered, and after making a PIC
call $gp is restored from that location. */
static void
s_cprestore (ignore)
int ignore;
{
expressionS ex;
int icnt = 0;
/* If we are not generating SVR4 PIC code, .cprestore is ignored. */
if (mips_pic != SVR4_PIC)
{
s_ignore (0);
return;
}
mips_cprestore_offset = get_absolute_expression ();
ex.X_op = O_constant;
ex.X_add_symbol = NULL;
ex.X_op_symbol = NULL;
ex.X_add_number = mips_cprestore_offset;
macro_build ((char *) NULL, &icnt, &ex,
mips_isa < 3 ? "sw" : "sd",
"t,o(b)", GP, (int) BFD_RELOC_LO16, SP);
demand_empty_rest_of_line ();
}
/* Handle the .gpword pseudo-op. This is used when generating PIC
code. It generates a 32 bit GP relative reloc. */
static void
s_gpword (ignore)
int ignore;
{
symbolS *label;
expressionS ex;
char *p;
/* When not generating PIC code, this is treated as .word. */
if (mips_pic != SVR4_PIC)
{
s_cons (2);
return;
}
label = insn_label;
mips_emit_delays ();
if (auto_align)
mips_align (2, 0, label);
insn_label = NULL;
expression (&ex);
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad ("Unsupported use of .gpword");
ignore_rest_of_line ();
}
p = frag_more (4);
md_number_to_chars (p, (valueT) 0, 4);
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, 0,
BFD_RELOC_MIPS_GPREL32);
demand_empty_rest_of_line ();
}
/* Handle the .cpadd pseudo-op. This is used when dealing with switch
tables in SVR4 PIC code. */
static void
s_cpadd (ignore)
int ignore;
{
int icnt = 0;
int reg;
/* This is ignored when not generating SVR4 PIC code. */
if (mips_pic != SVR4_PIC)
{
s_ignore (0);
return;
}
/* Add $gp to the register named as an argument. */
reg = tc_get_register (0);
macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
mips_isa < 3 ? "addu" : "daddu",
"d,v,t", reg, reg, GP);
demand_empty_rest_of_line ();
}
/* Parse a register string into a number. Called from the ECOFF code
to parse .frame. The argument is non-zero if this is the frame
register, so that we can record it in mips_frame_reg. */
int
tc_get_register (frame)
int frame;
{
int reg;
SKIP_WHITESPACE ();
if (*input_line_pointer++ != '$')
{
as_warn ("expected `$'");
reg = 0;
}
else if (isdigit ((unsigned char) *input_line_pointer))
{
reg = get_absolute_expression ();
if (reg < 0 || reg >= 32)
{
as_warn ("Bad register number");
reg = 0;
}
}
else
{
if (strncmp (input_line_pointer, "fp", 2) == 0)
reg = FP;
else if (strncmp (input_line_pointer, "sp", 2) == 0)
reg = SP;
else if (strncmp (input_line_pointer, "gp", 2) == 0)
reg = GP;
else if (strncmp (input_line_pointer, "at", 2) == 0)
reg = AT;
else
{
as_warn ("Unrecognized register name");
reg = 0;
}
input_line_pointer += 2;
}
if (frame)
mips_frame_reg = reg != 0 ? reg : SP;
return reg;
}
valueT
md_section_align (seg, addr)
asection *seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
#ifdef OBJ_ELF
/* We don't need to align ELF sections to the full alignment.
However, Irix 5 may prefer that we align them at least to a 16
byte boundary. */
if (align > 4)
align = 4;
#endif
return ((addr + (1 << align) - 1) & (-1 << align));
}
/* Utility routine, called from above as well. If called while the
input file is still being read, it's only an approximation. (For
example, a symbol may later become defined which appeared to be
undefined earlier.) */
static int
nopic_need_relax (sym)
symbolS *sym;
{
if (sym == 0)
return 0;
if (USE_GLOBAL_POINTER_OPT)
{
const char *symname;
int change;
/* Find out whether this symbol can be referenced off the GP
register. It can be if it is smaller than the -G size or if
it is in the .sdata or .sbss section. Certain symbols can
not be referenced off the GP, although it appears as though
they can. */
symname = S_GET_NAME (sym);
if (symname != (const char *) NULL
&& (strcmp (symname, "eprol") == 0
|| strcmp (symname, "etext") == 0
|| strcmp (symname, "_gp") == 0
|| strcmp (symname, "edata") == 0
|| strcmp (symname, "_fbss") == 0
|| strcmp (symname, "_fdata") == 0
|| strcmp (symname, "_ftext") == 0
|| strcmp (symname, "end") == 0
|| strcmp (symname, "_gp_disp") == 0))
change = 1;
else if (! S_IS_DEFINED (sym)
&& (0
#ifndef NO_ECOFF_DEBUGGING
|| (sym->ecoff_extern_size != 0
&& sym->ecoff_extern_size <= g_switch_value)
#endif
|| (S_GET_VALUE (sym) != 0
&& S_GET_VALUE (sym) <= g_switch_value)))
change = 0;
else
{
const char *segname;
segname = segment_name (S_GET_SEGMENT (sym));
assert (strcmp (segname, ".lit8") != 0
&& strcmp (segname, ".lit4") != 0);
change = (strcmp (segname, ".sdata") != 0
&& strcmp (segname, ".sbss") != 0);
}
return change;
}
else
/* We are not optimizing for the GP register. */
return 1;
}
/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
extended opcode. SEC is the section the frag is in. */
static int
mips16_extended_frag (fragp, sec, stretch)
fragS *fragp;
asection *sec;
long stretch;
{
int type;
register const struct mips16_immed_operand *op;
offsetT val;
int mintiny, maxtiny;
segT symsec;
if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
return 0;
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
return 1;
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
op = mips16_immed_operands;
while (op->type != type)
{
++op;
assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
}
if (op->unsp)
{
if (type == '<' || type == '>' || type == '[' || type == ']')
{
mintiny = 1;
maxtiny = 1 << op->nbits;
}
else
{
mintiny = 0;
maxtiny = (1 << op->nbits) - 1;
}
}
else
{
mintiny = - (1 << (op->nbits - 1));
maxtiny = (1 << (op->nbits - 1)) - 1;
}
/* We can't call S_GET_VALUE here, because we don't want to lock in
a particular frag address. */
if (fragp->fr_symbol->sy_value.X_op == O_constant)
{
val = (fragp->fr_symbol->sy_value.X_add_number
+ fragp->fr_symbol->sy_frag->fr_address);
symsec = S_GET_SEGMENT (fragp->fr_symbol);
}
else if (fragp->fr_symbol->sy_value.X_op == O_symbol
&& (fragp->fr_symbol->sy_value.X_add_symbol->sy_value.X_op
== O_constant))
{
val = (fragp->fr_symbol->sy_value.X_add_symbol->sy_value.X_add_number
+ fragp->fr_symbol->sy_value.X_add_symbol->sy_frag->fr_address
+ fragp->fr_symbol->sy_value.X_add_number
+ fragp->fr_symbol->sy_frag->fr_address);
symsec = S_GET_SEGMENT (fragp->fr_symbol->sy_value.X_add_symbol);
}
else
return 1;
if (op->pcrel)
{
addressT addr;
/* We won't have the section when we are called from
mips_relax_frag. However, we will always have been called
from md_estimate_size_before_relax first. If this is a
branch to a different section, we mark it as such. If SEC is
NULL, and the frag is not marked, then it must be a branch to
the same section. */
if (sec == NULL)
{
if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
return 1;
}
else
{
if (symsec != sec)
{
fragp->fr_subtype =
RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
/* FIXME: We should support this, and let the linker
catch branches and loads that are out of range. */
as_bad_where (fragp->fr_file, fragp->fr_line,
"unsupported PC relative reference to different section");
return 1;
}
}
/* In this case, we know for sure that the symbol fragment is in
the same section. If the fr_address of the symbol fragment
is greater then the address of this fragment we want to add
in STRETCH in order to get a better estimate of the address.
This particularly matters because of the shift bits. */
if (stretch != 0
&& fragp->fr_symbol->sy_frag->fr_address >= fragp->fr_address)
{
fragS *f;
/* Adjust stretch for any alignment frag. */
for (f = fragp; f != fragp->fr_symbol->sy_frag; f = f->fr_next)
{
assert (f != NULL);
if (f->fr_type == rs_align || f->fr_type == rs_align_code)
{
if (stretch < 0)
stretch = - ((- stretch)
& ~ ((1 << (int) f->fr_offset) - 1));
else
stretch &= ~ ((1 << (int) f->fr_offset) - 1);
if (stretch == 0)
break;
}
}
val += stretch;
}
addr = fragp->fr_address + fragp->fr_fix + 2;
/* If we are currently assuming that this frag should be
extended, then the current address is two bytes higher. */
if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
addr += 2;
val -= addr & ~ ((1 << op->shift) - 1);
/* Branch offsets have an implicit 0 in the lowest bit. */
if (type == 'p' || type == 'q')
val /= 2;
/* If any of the shifted bits are set, we must use an extended
opcode. If the address depends on the size of this
instruction, this can lead to a loop, so we arrange to always
use an extended opcode. We only check this when we are in
the main relaxation loop, when SEC is NULL. */
if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
{
fragp->fr_subtype =
RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
return 1;
}
/* If we are about to mark a frag as extended because the value
is precisely maxtiny + 1, then there is a chance of an
infinite loop as in the following code:
la $4,foo
.skip 1020
.align 2
foo:
In this case when the la is extended, foo is 0x3fc bytes
away, so the la can be shrunk, but then foo is 0x400 away, so
the la must be extended. To avoid this loop, we mark the
frag as extended if it was small, and is about to become
extended with a value of maxtiny + 1. */
if (val == ((maxtiny + 1) << op->shift)
&& ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
&& sec == NULL)
{
fragp->fr_subtype =
RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
return 1;
}
}
else if (symsec != absolute_section && sec != NULL)
as_bad_where (fragp->fr_file, fragp->fr_line, "unsupported relocation");
if ((val & ((1 << op->shift) - 1)) != 0
|| val < (mintiny << op->shift)
|| val > (maxtiny << op->shift))
return 1;
else
return 0;
}
/* Estimate the size of a frag before relaxing. Unless this is the
mips16, we are not really relaxing here, and the final size is
encoded in the subtype information. For the mips16, we have to
decide whether we are using an extended opcode or not. */
/*ARGSUSED*/
int
md_estimate_size_before_relax (fragp, segtype)
fragS *fragp;
asection *segtype;
{
int change;
if (RELAX_MIPS16_P (fragp->fr_subtype))
{
if (mips16_extended_frag (fragp, segtype, 0))
{
fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
return 4;
}
else
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
return 2;
}
}
if (mips_pic == NO_PIC)
{
change = nopic_need_relax (fragp->fr_symbol);
}
else if (mips_pic == SVR4_PIC)
{
asection *symsec = fragp->fr_symbol->bsym->section;
/* This must duplicate the test in adjust_reloc_syms. */
change = (symsec != &bfd_und_section
&& symsec != &bfd_abs_section
&& ! bfd_is_com_section (symsec));
}
else
abort ();
if (change)
{
/* Record the offset to the first reloc in the fr_opcode field.
This lets md_convert_frag and tc_gen_reloc know that the code
must be expanded. */
fragp->fr_opcode = (fragp->fr_literal
+ fragp->fr_fix
- RELAX_OLD (fragp->fr_subtype)
+ RELAX_RELOC1 (fragp->fr_subtype));
/* FIXME: This really needs as_warn_where. */
if (RELAX_WARN (fragp->fr_subtype))
as_warn ("AT used after \".set noat\" or macro used after \".set nomacro\"");
}
if (! change)
return 0;
else
return RELAX_NEW (fragp->fr_subtype) - RELAX_OLD (fragp->fr_subtype);
}
/* Translate internal representation of relocation info to BFD target
format. */
arelent **
tc_gen_reloc (section, fixp)
asection *section;
fixS *fixp;
{
static arelent *retval[4];
arelent *reloc;
bfd_reloc_code_real_type code;
reloc = retval[0] = (arelent *) xmalloc (sizeof (arelent));
retval[1] = NULL;
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (mips_pic == EMBEDDED_PIC
&& SWITCH_TABLE (fixp))
{
/* For a switch table entry we use a special reloc. The addend
is actually the difference between the reloc address and the
subtrahend. */
reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy);
if (OUTPUT_FLAVOR != bfd_target_ecoff_flavour)
as_fatal ("Double check fx_r_type in tc-mips.c:tc_gen_reloc");
fixp->fx_r_type = BFD_RELOC_GPREL32;
}
else if (fixp->fx_r_type == BFD_RELOC_PCREL_LO16)
{
/* We use a special addend for an internal RELLO reloc. */
if (fixp->fx_addsy->bsym->flags & BSF_SECTION_SYM)
reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy);
else
reloc->addend = fixp->fx_addnumber + reloc->address;
}
else if (fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S)
{
assert (fixp->fx_next != NULL
&& fixp->fx_next->fx_r_type == BFD_RELOC_PCREL_LO16);
/* We use a special addend for an internal RELHI reloc. The
reloc is relative to the RELLO; adjust the addend
accordingly. */
if (fixp->fx_addsy->bsym->flags & BSF_SECTION_SYM)
reloc->addend = (fixp->fx_next->fx_frag->fr_address
+ fixp->fx_next->fx_where
- S_GET_VALUE (fixp->fx_subsy));
else
reloc->addend = (fixp->fx_addnumber
+ fixp->fx_next->fx_frag->fr_address
+ fixp->fx_next->fx_where);
}
else if (fixp->fx_pcrel == 0)
reloc->addend = fixp->fx_addnumber;
else
{
if (OUTPUT_FLAVOR != bfd_target_aout_flavour)
/* A gruesome hack which is a result of the gruesome gas reloc
handling. */
reloc->addend = reloc->address;
else
reloc->addend = -reloc->address;
}
/* If this is a variant frag, we may need to adjust the existing
reloc and generate a new one. */
if (fixp->fx_frag->fr_opcode != NULL
&& (fixp->fx_r_type == BFD_RELOC_MIPS_GPREL
|| fixp->fx_r_type == BFD_RELOC_MIPS_GOT16
|| fixp->fx_r_type == BFD_RELOC_MIPS_CALL16
|| fixp->fx_r_type == BFD_RELOC_MIPS_GOT_HI16
|| fixp->fx_r_type == BFD_RELOC_MIPS_GOT_LO16
|| fixp->fx_r_type == BFD_RELOC_MIPS_CALL_HI16
|| fixp->fx_r_type == BFD_RELOC_MIPS_CALL_LO16))
{
arelent *reloc2;
assert (! RELAX_MIPS16_P (fixp->fx_frag->fr_subtype));
/* If this is not the last reloc in this frag, then we have two
GPREL relocs, or a GOT_HI16/GOT_LO16 pair, or a
CALL_HI16/CALL_LO16, both of which are being replaced. Let
the second one handle all of them. */
if (fixp->fx_next != NULL
&& fixp->fx_frag == fixp->fx_next->fx_frag)
{
assert ((fixp->fx_r_type == BFD_RELOC_MIPS_GPREL
&& fixp->fx_next->fx_r_type == BFD_RELOC_MIPS_GPREL)
|| (fixp->fx_r_type == BFD_RELOC_MIPS_GOT_HI16
&& (fixp->fx_next->fx_r_type
== BFD_RELOC_MIPS_GOT_LO16))
|| (fixp->fx_r_type == BFD_RELOC_MIPS_CALL_HI16
&& (fixp->fx_next->fx_r_type
== BFD_RELOC_MIPS_CALL_LO16)));
retval[0] = NULL;
return retval;
}
fixp->fx_where = fixp->fx_frag->fr_opcode - fixp->fx_frag->fr_literal;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc2 = retval[1] = (arelent *) xmalloc (sizeof (arelent));
retval[2] = NULL;
reloc2->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc2->address = (reloc->address
+ (RELAX_RELOC2 (fixp->fx_frag->fr_subtype)
- RELAX_RELOC1 (fixp->fx_frag->fr_subtype)));
reloc2->addend = fixp->fx_addnumber;
reloc2->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO16);
assert (reloc2->howto != NULL);
if (RELAX_RELOC3 (fixp->fx_frag->fr_subtype))
{
arelent *reloc3;
reloc3 = retval[2] = (arelent *) xmalloc (sizeof (arelent));
retval[3] = NULL;
*reloc3 = *reloc2;
reloc3->address += 4;
}
if (mips_pic == NO_PIC)
{
assert (fixp->fx_r_type == BFD_RELOC_MIPS_GPREL);
fixp->fx_r_type = BFD_RELOC_HI16_S;
}
else if (mips_pic == SVR4_PIC)
{
switch (fixp->fx_r_type)
{
default:
abort ();
case BFD_RELOC_MIPS_GOT16:
break;
case BFD_RELOC_MIPS_CALL16:
case BFD_RELOC_MIPS_GOT_LO16:
case BFD_RELOC_MIPS_CALL_LO16:
fixp->fx_r_type = BFD_RELOC_MIPS_GOT16;
break;
}
}
else
abort ();
}
/* Since DIFF_EXPR_OK is defined in tc-mips.h, it is possible that
fixup_segment converted a non-PC relative reloc into a PC
relative reloc. In such a case, we need to convert the reloc
code. */
code = fixp->fx_r_type;
if (fixp->fx_pcrel)
{
switch (code)
{
case BFD_RELOC_8:
code = BFD_RELOC_8_PCREL;
break;
case BFD_RELOC_16:
code = BFD_RELOC_16_PCREL;
break;
case BFD_RELOC_32:
code = BFD_RELOC_32_PCREL;
break;
case BFD_RELOC_64:
code = BFD_RELOC_64_PCREL;
break;
case BFD_RELOC_8_PCREL:
case BFD_RELOC_16_PCREL:
case BFD_RELOC_32_PCREL:
case BFD_RELOC_64_PCREL:
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_PCREL_HI16_S:
case BFD_RELOC_PCREL_LO16:
break;
default:
as_bad_where (fixp->fx_file, fixp->fx_line,
"Cannot make %s relocation PC relative",
bfd_get_reloc_code_name (code));
}
}
/* To support a PC relative reloc when generating embedded PIC code
for ECOFF, we use a Cygnus extension. We check for that here to
make sure that we don't let such a reloc escape normally. */
if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour
&& code == BFD_RELOC_16_PCREL_S2
&& mips_pic != EMBEDDED_PIC)
reloc->howto = NULL;
else
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
if (reloc->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"Can not represent %s relocation in this object file format",
bfd_get_reloc_code_name (code));
retval[0] = NULL;
}
return retval;
}
/* Relax a machine dependent frag. This returns the amount by which
the current size of the frag should change. */
int
mips_relax_frag (fragp, stretch)
fragS *fragp;
long stretch;
{
if (! RELAX_MIPS16_P (fragp->fr_subtype))
return 0;
if (mips16_extended_frag (fragp, (asection *) NULL, stretch))
{
if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
return 0;
fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
return 2;
}
else
{
if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
return 0;
fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
return -2;
}
return 0;
}
/* Convert a machine dependent frag. */
void
md_convert_frag (abfd, asec, fragp)
bfd *abfd;
segT asec;
fragS *fragp;
{
int old, new;
char *fixptr;
if (RELAX_MIPS16_P (fragp->fr_subtype))
{
int type;
register const struct mips16_immed_operand *op;
boolean small, ext;
offsetT val;
bfd_byte *buf;
unsigned long insn;
boolean use_extend;
unsigned short extend;
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
op = mips16_immed_operands;
while (op->type != type)
++op;
if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
small = false;
ext = true;
}
else
{
small = true;
ext = false;
}
resolve_symbol_value (fragp->fr_symbol);
val = S_GET_VALUE (fragp->fr_symbol);
if (op->pcrel)
{
addressT addr;
addr = fragp->fr_address + fragp->fr_fix + 2;
if (ext)
addr += 2;
addr &= ~ (addressT) ((1 << op->shift) - 1);
val -= addr;
}
buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
switch (byte_order)
{
default:
internalError ();
case LITTLE_ENDIAN:
insn = bfd_getl16 (buf);
break;
case BIG_ENDIAN:
insn = bfd_getb16 (buf);
break;
}
mips16_immed (fragp->fr_file, fragp->fr_line, type, val, false, small,
ext, &insn, &use_extend, &extend);
if (use_extend)
{
md_number_to_chars (buf, 0xf000 | extend, 2);
fragp->fr_fix += 2;
buf += 2;
}
md_number_to_chars (buf, insn, 2);
fragp->fr_fix += 2;
buf += 2;
}
else
{
if (fragp->fr_opcode == NULL)
return;
old = RELAX_OLD (fragp->fr_subtype);
new = RELAX_NEW (fragp->fr_subtype);
fixptr = fragp->fr_literal + fragp->fr_fix;
if (new > 0)
memcpy (fixptr - old, fixptr, new);
fragp->fr_fix += new - old;
}
}
/* This function is called whenever a label is defined. It is used
when handling branch delays; if a branch has a label, we assume we
can not move it. */
void
mips_define_label (sym)
symbolS *sym;
{
insn_label = sym;
#ifdef OBJ_ELF
if (mips16)
S_SET_OTHER (insn_label, STO_MIPS16);
#endif
}
/* Decide whether a label is local. This is called by LOCAL_LABEL.
In order to work with gcc when using mips-tfile, we must keep all
local labels. However, in other cases, we want to discard them,
since they are useless. */
int
mips_local_label (name)
const char *name;
{
#ifndef NO_ECOFF_DEBUGGING
if (ECOFF_DEBUGGING
&& mips_debug != 0
&& ! ecoff_debugging_seen)
{
/* We were called with -g, but we didn't see any debugging
information. That may mean that gcc is smuggling debugging
information through to mips-tfile, in which case we must
generate all local labels. */
return 0;
}
#endif
/* Here it's OK to discard local labels. */
return name[0] == '$';
}
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
/* Some special processing for a MIPS ELF file. */
void
mips_elf_final_processing ()
{
/* Write out the register information. */
if (! mips_64)
{
Elf32_RegInfo s;
s.ri_gprmask = mips_gprmask;
s.ri_cprmask[0] = mips_cprmask[0];
s.ri_cprmask[1] = mips_cprmask[1];
s.ri_cprmask[2] = mips_cprmask[2];
s.ri_cprmask[3] = mips_cprmask[3];
/* The gp_value field is set by the MIPS ELF backend. */
bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
((Elf32_External_RegInfo *)
mips_regmask_frag));
}
else
{
Elf64_Internal_RegInfo s;
s.ri_gprmask = mips_gprmask;
s.ri_pad = 0;
s.ri_cprmask[0] = mips_cprmask[0];
s.ri_cprmask[1] = mips_cprmask[1];
s.ri_cprmask[2] = mips_cprmask[2];
s.ri_cprmask[3] = mips_cprmask[3];
/* The gp_value field is set by the MIPS ELF backend. */
bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
((Elf64_External_RegInfo *)
mips_regmask_frag));
}
/* Set the MIPS ELF flag bits. FIXME: There should probably be some
sort of BFD interface for this. */
if (mips_any_noreorder)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
if (mips_pic != NO_PIC)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
}
#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
/* These functions should really be defined by the object file format,
since they are related to debugging information. However, this
code has to work for the a.out format, which does not define them,
so we provide simple versions here. These don't actually generate
any debugging information, but they do simple checking and someday
somebody may make them useful. */
typedef struct loc
{
struct loc *loc_next;
unsigned long loc_fileno;
unsigned long loc_lineno;
unsigned long loc_offset;
unsigned short loc_delta;
unsigned short loc_count;
#if 0
fragS *loc_frag;
#endif
}
locS;
typedef struct proc
{
struct proc *proc_next;
struct symbol *proc_isym;
struct symbol *proc_end;
unsigned long proc_reg_mask;
unsigned long proc_reg_offset;
unsigned long proc_fpreg_mask;
unsigned long proc_fpreg_offset;
unsigned long proc_frameoffset;
unsigned long proc_framereg;
unsigned long proc_pcreg;
locS *proc_iline;
struct file *proc_file;
int proc_index;
}
procS;
typedef struct file
{
struct file *file_next;
unsigned long file_fileno;
struct symbol *file_symbol;
struct symbol *file_end;
struct proc *file_proc;
int file_numprocs;
}
fileS;
static struct obstack proc_frags;
static procS *proc_lastP;
static procS *proc_rootP;
static int numprocs;
static void
md_obj_begin ()
{
obstack_begin (&proc_frags, 0x2000);
}
static void
md_obj_end ()
{
/* check for premature end, nesting errors, etc */
if (proc_lastP && proc_lastP->proc_end == NULL)
as_warn ("missing `.end' at end of assembly");
}
static long
get_number ()
{
int negative = 0;
long val = 0;
if (*input_line_pointer == '-')
{
++input_line_pointer;
negative = 1;
}
if (!isdigit (*input_line_pointer))
as_bad ("Expected simple number.");
if (input_line_pointer[0] == '0')
{
if (input_line_pointer[1] == 'x')
{
input_line_pointer += 2;
while (isxdigit (*input_line_pointer))
{
val <<= 4;
val |= hex_value (*input_line_pointer++);
}
return negative ? -val : val;
}
else
{
++input_line_pointer;
while (isdigit (*input_line_pointer))
{
val <<= 3;
val |= *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
}
if (!isdigit (*input_line_pointer))
{
printf (" *input_line_pointer == '%c' 0x%02x\n",
*input_line_pointer, *input_line_pointer);
as_warn ("Invalid number");
return -1;
}
while (isdigit (*input_line_pointer))
{
val *= 10;
val += *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
/* The .file directive; just like the usual .file directive, but there
is an initial number which is the ECOFF file index. */
static void
s_file (x)
int x;
{
int line;
line = get_number ();
s_app_file (0);
}
/* The .end directive. */
static void
s_mipsend (x)
int x;
{
symbolS *p;
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
p = get_symbol ();
demand_empty_rest_of_line ();
}
else
p = NULL;
if (now_seg != text_section)
as_warn (".end not in text section");
if (!proc_lastP)
{
as_warn (".end and no .ent seen yet.");
return;
}
if (p != NULL)
{
assert (S_GET_NAME (p));
if (strcmp (S_GET_NAME (p), S_GET_NAME (proc_lastP->proc_isym)))
as_warn (".end symbol does not match .ent symbol.");
}
proc_lastP->proc_end = (symbolS *) 1;
}
/* The .aent and .ent directives. */
static void
s_ent (aent)
int aent;
{
int number = 0;
procS *procP;
symbolS *symbolP;
symbolP = get_symbol ();
if (*input_line_pointer == ',')
input_line_pointer++;
SKIP_WHITESPACE ();
if (isdigit (*input_line_pointer) || *input_line_pointer == '-')
number = get_number ();
if (now_seg != text_section)
as_warn (".ent or .aent not in text section.");
if (!aent && proc_lastP && proc_lastP->proc_end == NULL)
as_warn ("missing `.end'");
if (!aent)
{
procP = (procS *) obstack_alloc (&proc_frags, sizeof (*procP));
procP->proc_isym = symbolP;
procP->proc_reg_mask = 0;
procP->proc_reg_offset = 0;
procP->proc_fpreg_mask = 0;
procP->proc_fpreg_offset = 0;
procP->proc_frameoffset = 0;
procP->proc_framereg = 0;
procP->proc_pcreg = 0;
procP->proc_end = NULL;
procP->proc_next = NULL;
if (proc_lastP)
proc_lastP->proc_next = procP;
else
proc_rootP = procP;
proc_lastP = procP;
numprocs++;
}
demand_empty_rest_of_line ();
}
/* The .frame directive. */
#if 0
static void
s_frame (x)
int x;
{
char str[100];
symbolS *symP;
int frame_reg;
int frame_off;
int pcreg;
frame_reg = tc_get_register (1);
if (*input_line_pointer == ',')
input_line_pointer++;
frame_off = get_absolute_expression ();
if (*input_line_pointer == ',')
input_line_pointer++;
pcreg = tc_get_register (0);
/* bob third eye */
assert (proc_rootP);
proc_rootP->proc_framereg = frame_reg;
proc_rootP->proc_frameoffset = frame_off;
proc_rootP->proc_pcreg = pcreg;
/* bob macho .frame */
/* We don't have to write out a frame stab for unoptimized code. */
if (!(frame_reg == FP && frame_off == 0))
{
if (!proc_lastP)
as_warn ("No .ent for .frame to use.");
(void) sprintf (str, "R%d;%d", frame_reg, frame_off);
symP = symbol_new (str, N_VFP, 0, frag_now);
S_SET_TYPE (symP, N_RMASK);
S_SET_OTHER (symP, 0);
S_SET_DESC (symP, 0);
symP->sy_forward = proc_lastP->proc_isym;
/* bob perhaps I should have used pseudo set */
}
demand_empty_rest_of_line ();
}
#endif
/* The .fmask and .mask directives. */
#if 0
static void
s_mask (reg_type)
char reg_type;
{
char str[100], *strP;
symbolS *symP;
int i;
unsigned int mask;
int off;
mask = get_number ();
if (*input_line_pointer == ',')
input_line_pointer++;
off = get_absolute_expression ();
/* bob only for coff */
assert (proc_rootP);
if (reg_type == 'F')
{
proc_rootP->proc_fpreg_mask = mask;
proc_rootP->proc_fpreg_offset = off;
}
else
{
proc_rootP->proc_reg_mask = mask;
proc_rootP->proc_reg_offset = off;
}
/* bob macho .mask + .fmask */
/* We don't have to write out a mask stab if no saved regs. */
if (!(mask == 0))
{
if (!proc_lastP)
as_warn ("No .ent for .mask to use.");
strP = str;
for (i = 0; i < 32; i++)
{
if (mask % 2)
{
sprintf (strP, "%c%d,", reg_type, i);
strP += strlen (strP);
}
mask /= 2;
}
sprintf (strP, ";%d,", off);
symP = symbol_new (str, N_RMASK, 0, frag_now);
S_SET_TYPE (symP, N_RMASK);
S_SET_OTHER (symP, 0);
S_SET_DESC (symP, 0);
symP->sy_forward = proc_lastP->proc_isym;
/* bob perhaps I should have used pseudo set */
}
}
#endif
/* The .loc directive. */
#if 0
static void
s_loc (x)
int x;
{
symbolS *symbolP;
int lineno;
int addroff;
assert (now_seg == text_section);
lineno = get_number ();
addroff = frag_now_fix ();
symbolP = symbol_new ("", N_SLINE, addroff, frag_now);
S_SET_TYPE (symbolP, N_SLINE);
S_SET_OTHER (symbolP, 0);
S_SET_DESC (symbolP, lineno);
symbolP->sy_segment = now_seg;
}
#endif