old-cross-binutils/sim/d10v/simops.c
1997-12-02 00:27:27 +00:00

3035 lines
62 KiB
C

#include "config.h"
#include <signal.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include "d10v_sim.h"
#include "simops.h"
#include "sys/syscall.h"
extern char *strrchr ();
enum op_types {
OP_VOID,
OP_REG,
OP_REG_OUTPUT,
OP_DREG,
OP_DREG_OUTPUT,
OP_ACCUM,
OP_ACCUM_OUTPUT,
OP_ACCUM_REVERSE,
OP_CR,
OP_CR_OUTPUT,
OP_CR_REVERSE,
OP_FLAG,
OP_FLAG_OUTPUT,
OP_CONSTANT16,
OP_CONSTANT8,
OP_CONSTANT3,
OP_CONSTANT4,
OP_MEMREF,
OP_MEMREF2,
OP_POSTDEC,
OP_POSTINC,
OP_PREDEC,
OP_R2,
OP_R3,
OP_R4,
OP_R2R3
};
#ifdef DEBUG
static void trace_input_func PARAMS ((char *name,
enum op_types in1,
enum op_types in2,
enum op_types in3));
#define trace_input(name, in1, in2, in3) do { if (d10v_debug) trace_input_func (name, in1, in2, in3); } while (0)
static void trace_output_func PARAMS ((enum op_types result));
#define trace_output(result) do { if (d10v_debug) trace_output_func (result); } while (0)
#ifndef SIZE_INSTRUCTION
#define SIZE_INSTRUCTION 8
#endif
#ifndef SIZE_OPERANDS
#define SIZE_OPERANDS 18
#endif
#ifndef SIZE_VALUES
#define SIZE_VALUES 13
#endif
#ifndef SIZE_LOCATION
#define SIZE_LOCATION 20
#endif
#ifndef SIZE_PC
#define SIZE_PC 6
#endif
#ifndef SIZE_LINE_NUMBER
#define SIZE_LINE_NUMBER 4
#endif
static void
trace_input_func (name, in1, in2, in3)
char *name;
enum op_types in1;
enum op_types in2;
enum op_types in3;
{
char *comma;
enum op_types in[3];
int i;
char buf[1024];
char *p;
long tmp;
char *type;
const char *filename;
const char *functionname;
unsigned int linenumber;
bfd_vma byte_pc;
if ((d10v_debug & DEBUG_TRACE) == 0)
return;
switch (State.ins_type)
{
default:
case INS_UNKNOWN: type = " ?"; break;
case INS_LEFT: type = " L"; break;
case INS_RIGHT: type = " R"; break;
case INS_LEFT_PARALLEL: type = "*L"; break;
case INS_RIGHT_PARALLEL: type = "*R"; break;
case INS_LEFT_COND_TEST: type = "?L"; break;
case INS_RIGHT_COND_TEST: type = "?R"; break;
case INS_LEFT_COND_EXE: type = "&L"; break;
case INS_RIGHT_COND_EXE: type = "&R"; break;
case INS_LONG: type = " B"; break;
}
if ((d10v_debug & DEBUG_LINE_NUMBER) == 0)
(*d10v_callback->printf_filtered) (d10v_callback,
"0x%.*x %s: %-*s ",
SIZE_PC, (unsigned)PC,
type,
SIZE_INSTRUCTION, name);
else
{
buf[0] = '\0';
byte_pc = decode_pc ();
if (text && byte_pc >= text_start && byte_pc < text_end)
{
filename = (const char *)0;
functionname = (const char *)0;
linenumber = 0;
if (bfd_find_nearest_line (prog_bfd, text, (struct symbol_cache_entry **)0, byte_pc - text_start,
&filename, &functionname, &linenumber))
{
p = buf;
if (linenumber)
{
sprintf (p, "#%-*d ", SIZE_LINE_NUMBER, linenumber);
p += strlen (p);
}
else
{
sprintf (p, "%-*s ", SIZE_LINE_NUMBER+1, "---");
p += SIZE_LINE_NUMBER+2;
}
if (functionname)
{
sprintf (p, "%s ", functionname);
p += strlen (p);
}
else if (filename)
{
char *q = strrchr (filename, '/');
sprintf (p, "%s ", (q) ? q+1 : filename);
p += strlen (p);
}
if (*p == ' ')
*p = '\0';
}
}
(*d10v_callback->printf_filtered) (d10v_callback,
"0x%.*x %s: %-*.*s %-*s ",
SIZE_PC, (unsigned)PC,
type,
SIZE_LOCATION, SIZE_LOCATION, buf,
SIZE_INSTRUCTION, name);
}
in[0] = in1;
in[1] = in2;
in[2] = in3;
comma = "";
p = buf;
for (i = 0; i < 3; i++)
{
switch (in[i])
{
case OP_VOID:
case OP_R2:
case OP_R3:
case OP_R4:
case OP_R2R3:
break;
case OP_REG:
case OP_REG_OUTPUT:
case OP_DREG:
case OP_DREG_OUTPUT:
sprintf (p, "%sr%d", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_CR:
case OP_CR_OUTPUT:
case OP_CR_REVERSE:
sprintf (p, "%scr%d", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_ACCUM:
case OP_ACCUM_OUTPUT:
case OP_ACCUM_REVERSE:
sprintf (p, "%sa%d", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_CONSTANT16:
sprintf (p, "%s%d", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_CONSTANT8:
sprintf (p, "%s%d", comma, SEXT8(OP[i]));
p += strlen (p);
comma = ",";
break;
case OP_CONSTANT4:
sprintf (p, "%s%d", comma, SEXT4(OP[i]));
p += strlen (p);
comma = ",";
break;
case OP_CONSTANT3:
sprintf (p, "%s%d", comma, SEXT3(OP[i]));
p += strlen (p);
comma = ",";
break;
case OP_MEMREF:
sprintf (p, "%s@r%d", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_MEMREF2:
sprintf (p, "%s@(%d,r%d)", comma, (int16)OP[i], OP[i+1]);
p += strlen (p);
comma = ",";
break;
case OP_POSTINC:
sprintf (p, "%s@r%d+", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_POSTDEC:
sprintf (p, "%s@r%d-", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_PREDEC:
sprintf (p, "%s@-r%d", comma, OP[i]);
p += strlen (p);
comma = ",";
break;
case OP_FLAG:
case OP_FLAG_OUTPUT:
if (OP[i] == 0)
sprintf (p, "%sf0", comma);
else if (OP[i] == 1)
sprintf (p, "%sf1", comma);
else
sprintf (p, "%sc", comma);
p += strlen (p);
comma = ",";
break;
}
}
if ((d10v_debug & DEBUG_VALUES) == 0)
{
*p++ = '\n';
*p = '\0';
(*d10v_callback->printf_filtered) (d10v_callback, "%s", buf);
}
else
{
*p = '\0';
(*d10v_callback->printf_filtered) (d10v_callback, "%-*s", SIZE_OPERANDS, buf);
p = buf;
for (i = 0; i < 3; i++)
{
buf[0] = '\0';
switch (in[i])
{
case OP_VOID:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s", SIZE_VALUES, "");
break;
case OP_REG_OUTPUT:
case OP_DREG_OUTPUT:
case OP_CR_OUTPUT:
case OP_ACCUM_OUTPUT:
case OP_FLAG_OUTPUT:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s", SIZE_VALUES, "---");
break;
case OP_REG:
case OP_MEMREF:
case OP_POSTDEC:
case OP_POSTINC:
case OP_PREDEC:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.regs[OP[i]]);
break;
case OP_DREG:
tmp = (long)((((uint32) State.regs[OP[i]]) << 16) | ((uint32) State.regs[OP[i]+1]));
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.8lx", SIZE_VALUES-10, "", tmp);
break;
case OP_CR:
case OP_CR_REVERSE:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.cregs[OP[i]]);
break;
case OP_ACCUM:
case OP_ACCUM_REVERSE:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.2x%.8lx", SIZE_VALUES-12, "",
((int)(State.a[OP[i]] >> 32) & 0xff),
((unsigned long)State.a[OP[i]]) & 0xffffffff);
break;
case OP_CONSTANT16:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)OP[i]);
break;
case OP_CONSTANT4:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)SEXT4(OP[i]));
break;
case OP_CONSTANT8:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)SEXT8(OP[i]));
break;
case OP_CONSTANT3:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)SEXT3(OP[i]));
break;
case OP_FLAG:
if (OP[i] == 0)
(*d10v_callback->printf_filtered) (d10v_callback, "%*sF0 = %d", SIZE_VALUES-6, "",
State.F0 != 0);
else if (OP[i] == 1)
(*d10v_callback->printf_filtered) (d10v_callback, "%*sF1 = %d", SIZE_VALUES-6, "",
State.F1 != 0);
else
(*d10v_callback->printf_filtered) (d10v_callback, "%*sC = %d", SIZE_VALUES-5, "",
State.C != 0);
break;
case OP_MEMREF2:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)OP[i]);
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.regs[OP[++i]]);
break;
case OP_R2:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.regs[2]);
break;
case OP_R3:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.regs[3]);
break;
case OP_R4:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.regs[4]);
break;
case OP_R2R3:
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.regs[2]);
(*d10v_callback->printf_filtered) (d10v_callback, "%*s0x%.4x", SIZE_VALUES-6, "",
(uint16)State.regs[3]);
i++;
break;
}
}
}
(*d10v_callback->flush_stdout) (d10v_callback);
}
static void
trace_output_func (result)
enum op_types result;
{
if ((d10v_debug & (DEBUG_TRACE | DEBUG_VALUES)) == (DEBUG_TRACE | DEBUG_VALUES))
{
long tmp;
switch (result)
{
default:
putchar ('\n');
break;
case OP_REG:
case OP_REG_OUTPUT:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.4x F0=%d F1=%d C=%d\n", SIZE_VALUES-6, "",
(uint16)State.regs[OP[0]],
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_DREG:
case OP_DREG_OUTPUT:
tmp = (long)((((uint32) State.regs[OP[0]]) << 16) | ((uint32) State.regs[OP[0]+1]));
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.8lx F0=%d F1=%d C=%d\n", SIZE_VALUES-10, "", tmp,
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_CR:
case OP_CR_OUTPUT:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.4x F0=%d F1=%d C=%d\n", SIZE_VALUES-6, "",
(uint16)State.cregs[OP[0]],
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_CR_REVERSE:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.4x F0=%d F1=%d C=%d\n", SIZE_VALUES-6, "",
(uint16)State.cregs[OP[1]],
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_ACCUM:
case OP_ACCUM_OUTPUT:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.2x%.8lx F0=%d F1=%d C=%d\n", SIZE_VALUES-12, "",
((int)(State.a[OP[0]] >> 32) & 0xff),
((unsigned long)State.a[OP[0]]) & 0xffffffff,
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_ACCUM_REVERSE:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.2x%.8lx F0=%d F1=%d C=%d\n", SIZE_VALUES-12, "",
((int)(State.a[OP[1]] >> 32) & 0xff),
((unsigned long)State.a[OP[1]]) & 0xffffffff,
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_FLAG:
case OP_FLAG_OUTPUT:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s F0=%d F1=%d C=%d\n", SIZE_VALUES, "",
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_R2:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.4x F0=%d F1=%d C=%d\n", SIZE_VALUES-6, "",
(uint16)State.regs[2],
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
case OP_R2R3:
(*d10v_callback->printf_filtered) (d10v_callback, " :: %*s0x%.4x%.4x F0=%d F1=%d C=%d\n", SIZE_VALUES-10, "",
(uint16)State.regs[2], (uint16)State.regs[3],
State.F0 != 0, State.F1 != 0, State.C != 0);
break;
}
}
(*d10v_callback->flush_stdout) (d10v_callback);
}
#else
#define trace_input(NAME, IN1, IN2, IN3)
#define trace_output(RESULT)
#endif
/* abs */
void
OP_4607 ()
{
trace_input ("abs", OP_REG, OP_VOID, OP_VOID);
State.F1 = State.F0;
if ((int16)(State.regs[OP[0]]) < 0)
{
State.regs[OP[0]] = -(int16)(State.regs[OP[0]]);
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_REG);
}
/* abs */
void
OP_5607 ()
{
int64 tmp;
trace_input ("abs", OP_ACCUM, OP_VOID, OP_VOID);
State.F1 = State.F0;
State.a[OP[0]] = SEXT40(State.a[OP[0]]);
if (State.a[OP[0]] < 0 )
{
tmp = -State.a[OP[0]];
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if (tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_ACCUM);
}
/* add */
void
OP_200 ()
{
uint16 tmp = State.regs[OP[0]];
trace_input ("add", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] += State.regs[OP[1]];
if ( tmp > State.regs[OP[0]])
State.C = 1;
else
State.C = 0;
trace_output (OP_REG);
}
/* add */
void
OP_1201 ()
{
int64 tmp;
tmp = SEXT40(State.a[OP[0]]) + (SEXT16 (State.regs[OP[1]]) << 16 | State.regs[OP[1]+1]);
trace_input ("add", OP_ACCUM, OP_REG, OP_VOID);
if (State.ST)
{
if ( tmp > MAX32)
State.a[OP[0]] = MAX32;
else if ( tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* add */
void
OP_1203 ()
{
int64 tmp;
tmp = SEXT40(State.a[OP[0]]) + SEXT40(State.a[OP[1]]);
trace_input ("add", OP_ACCUM, OP_ACCUM, OP_VOID);
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if ( tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* add2w */
void
OP_1200 ()
{
uint32 tmp;
uint32 a = (State.regs[OP[0]]) << 16 | State.regs[OP[0]+1];
uint32 b = (State.regs[OP[1]]) << 16 | State.regs[OP[1]+1];
trace_input ("add2w", OP_DREG, OP_DREG, OP_VOID);
tmp = a + b;
State.C = (tmp < a);
State.regs[OP[0]] = tmp >> 16;
State.regs[OP[0]+1] = tmp & 0xFFFF;
trace_output (OP_DREG);
}
/* add3 */
void
OP_1000000 ()
{
uint16 tmp = State.regs[OP[1]];
State.regs[OP[0]] = tmp + OP[2];
trace_input ("add3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16);
State.C = (State.regs[OP[0]] < tmp);
trace_output (OP_REG);
}
/* addac3 */
void
OP_17000200 ()
{
int64 tmp;
tmp = SEXT40(State.a[OP[2]]) + SEXT40 ((State.regs[OP[1]] << 16) | State.regs[OP[1]+1]);
trace_input ("addac3", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM);
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
trace_output (OP_DREG);
}
/* addac3 */
void
OP_17000202 ()
{
int64 tmp;
tmp = SEXT40(State.a[OP[1]]) + SEXT40(State.a[OP[2]]);
trace_input ("addac3", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM);
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
trace_output (OP_DREG);
}
/* addac3s */
void
OP_17001200 ()
{
int64 tmp;
State.F1 = State.F0;
trace_input ("addac3s", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM);
tmp = SEXT40(State.a[OP[2]]) + SEXT40 ((State.regs[OP[1]] << 16) | State.regs[OP[1]+1]);
if ( tmp > MAX32)
{
State.regs[OP[0]] = 0x7fff;
State.regs[OP[0]+1] = 0xffff;
State.F0 = 1;
}
else if (tmp < MIN32)
{
State.regs[OP[0]] = 0x8000;
State.regs[OP[0]+1] = 0;
State.F0 = 1;
}
else
{
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
State.F0 = 0;
}
trace_output (OP_DREG);
}
/* addac3s */
void
OP_17001202 ()
{
int64 tmp;
State.F1 = State.F0;
trace_input ("addac3s", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM);
tmp = SEXT40(State.a[OP[1]]) + SEXT40(State.a[OP[2]]);
if ( tmp > MAX32)
{
State.regs[OP[0]] = 0x7fff;
State.regs[OP[0]+1] = 0xffff;
State.F0 = 1;
}
else if (tmp < MIN32)
{
State.regs[OP[0]] = 0x8000;
State.regs[OP[0]+1] = 0;
State.F0 = 1;
}
else
{
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
State.F0 = 0;
}
trace_output (OP_DREG);
}
/* addi */
void
OP_201 ()
{
uint tmp = State.regs[OP[0]];
if (OP[1] == 0)
OP[1] = 16;
trace_input ("addi", OP_REG, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] += OP[1];
State.C = (State.regs[OP[0]] < tmp);
trace_output (OP_REG);
}
/* and */
void
OP_C00 ()
{
trace_input ("and", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] &= State.regs[OP[1]];
trace_output (OP_REG);
}
/* and3 */
void
OP_6000000 ()
{
trace_input ("and3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16);
State.regs[OP[0]] = State.regs[OP[1]] & OP[2];
trace_output (OP_REG);
}
/* bclri */
void
OP_C01 ()
{
trace_input ("bclri", OP_REG, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] &= ~(0x8000 >> OP[1]);
trace_output (OP_REG);
}
/* bl.s */
void
OP_4900 ()
{
trace_input ("bl.s", OP_CONSTANT8, OP_R2, OP_R3);
State.regs[13] = PC+1;
JMP( PC + SEXT8 (OP[0]));
trace_output (OP_VOID);
}
/* bl.l */
void
OP_24800000 ()
{
trace_input ("bl.l", OP_CONSTANT16, OP_R2, OP_R3);
State.regs[13] = PC+1;
JMP (PC + OP[0]);
trace_output (OP_VOID);
}
/* bnoti */
void
OP_A01 ()
{
trace_input ("bnoti", OP_REG, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] ^= 0x8000 >> OP[1];
trace_output (OP_REG);
}
/* bra.s */
void
OP_4800 ()
{
trace_input ("bra.s", OP_CONSTANT8, OP_VOID, OP_VOID);
JMP (PC + SEXT8 (OP[0]));
trace_output (OP_VOID);
}
/* bra.l */
void
OP_24000000 ()
{
trace_input ("bra.l", OP_CONSTANT16, OP_VOID, OP_VOID);
JMP (PC + OP[0]);
trace_output (OP_VOID);
}
/* brf0f.s */
void
OP_4A00 ()
{
trace_input ("brf0f.s", OP_CONSTANT8, OP_VOID, OP_VOID);
if (State.F0 == 0)
JMP (PC + SEXT8 (OP[0]));
trace_output (OP_FLAG);
}
/* brf0f.l */
void
OP_25000000 ()
{
trace_input ("brf0f.l", OP_CONSTANT16, OP_VOID, OP_VOID);
if (State.F0 == 0)
JMP (PC + OP[0]);
trace_output (OP_FLAG);
}
/* brf0t.s */
void
OP_4B00 ()
{
trace_input ("brf0t.s", OP_CONSTANT8, OP_VOID, OP_VOID);
if (State.F0)
JMP (PC + SEXT8 (OP[0]));
trace_output (OP_FLAG);
}
/* brf0t.l */
void
OP_25800000 ()
{
trace_input ("brf0t.l", OP_CONSTANT16, OP_VOID, OP_VOID);
if (State.F0)
JMP (PC + OP[0]);
trace_output (OP_FLAG);
}
/* bseti */
void
OP_801 ()
{
trace_input ("bseti", OP_REG, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] |= 0x8000 >> OP[1];
trace_output (OP_REG);
}
/* btsti */
void
OP_E01 ()
{
trace_input ("btsti", OP_REG, OP_CONSTANT16, OP_VOID);
State.F1 = State.F0;
State.F0 = (State.regs[OP[0]] & (0x8000 >> OP[1])) ? 1 : 0;
trace_output (OP_FLAG);
}
/* clrac */
void
OP_5601 ()
{
trace_input ("clrac", OP_ACCUM_OUTPUT, OP_VOID, OP_VOID);
State.a[OP[0]] = 0;
trace_output (OP_ACCUM);
}
/* cmp */
void
OP_600 ()
{
trace_input ("cmp", OP_REG, OP_REG, OP_VOID);
State.F1 = State.F0;
State.F0 = ((int16)(State.regs[OP[0]]) < (int16)(State.regs[OP[1]])) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmp */
void
OP_1603 ()
{
trace_input ("cmp", OP_ACCUM, OP_ACCUM, OP_VOID);
State.F1 = State.F0;
State.F0 = (SEXT40(State.a[OP[0]]) < SEXT40(State.a[OP[1]])) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpeq */
void
OP_400 ()
{
trace_input ("cmpeq", OP_REG, OP_REG, OP_VOID);
State.F1 = State.F0;
State.F0 = (State.regs[OP[0]] == State.regs[OP[1]]) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpeq */
void
OP_1403 ()
{
trace_input ("cmpeq", OP_ACCUM, OP_ACCUM, OP_VOID);
State.F1 = State.F0;
State.F0 = ((State.a[OP[0]] & MASK40) == (State.a[OP[1]] & MASK40)) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpeqi.s */
void
OP_401 ()
{
trace_input ("cmpeqi.s", OP_REG, OP_CONSTANT4, OP_VOID);
State.F1 = State.F0;
State.F0 = (State.regs[OP[0]] == (reg_t)SEXT4(OP[1])) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpeqi.l */
void
OP_2000000 ()
{
trace_input ("cmpeqi.l", OP_REG, OP_CONSTANT16, OP_VOID);
State.F1 = State.F0;
State.F0 = (State.regs[OP[0]] == (reg_t)OP[1]) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpi.s */
void
OP_601 ()
{
trace_input ("cmpi.s", OP_REG, OP_CONSTANT4, OP_VOID);
State.F1 = State.F0;
State.F0 = ((int16)(State.regs[OP[0]]) < (int16)SEXT4(OP[1])) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpi.l */
void
OP_3000000 ()
{
trace_input ("cmpi.l", OP_REG, OP_CONSTANT16, OP_VOID);
State.F1 = State.F0;
State.F0 = ((int16)(State.regs[OP[0]]) < (int16)(OP[1])) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpu */
void
OP_4600 ()
{
trace_input ("cmpu", OP_REG, OP_REG, OP_VOID);
State.F1 = State.F0;
State.F0 = (State.regs[OP[0]] < State.regs[OP[1]]) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cmpui */
void
OP_23000000 ()
{
trace_input ("cmpui", OP_REG, OP_CONSTANT16, OP_VOID);
State.F1 = State.F0;
State.F0 = (State.regs[OP[0]] < (reg_t)OP[1]) ? 1 : 0;
trace_output (OP_FLAG);
}
/* cpfg */
void
OP_4E09 ()
{
uint8 *src, *dst;
trace_input ("cpfg", OP_FLAG_OUTPUT, OP_FLAG, OP_VOID);
if (OP[0] == 0)
dst = &State.F0;
else
dst = &State.F1;
if (OP[1] == 0)
src = &State.F0;
else if (OP[1] == 1)
src = &State.F1;
else
src = &State.C;
*dst = *src;
trace_output (OP_FLAG);
}
/* dbt */
void
OP_5F20 ()
{
/* d10v_callback->printf_filtered(d10v_callback, "***** DBT ***** PC=%x\n",PC); */
State.exception = SIGTRAP;
}
/* divs */
void
OP_14002800 ()
{
uint16 foo, tmp, tmpf;
trace_input ("divs", OP_DREG, OP_REG, OP_VOID);
foo = (State.regs[OP[0]] << 1) | (State.regs[OP[0]+1] >> 15);
tmp = (int16)foo - (int16)(State.regs[OP[1]]);
tmpf = (foo >= State.regs[OP[1]]) ? 1 : 0;
State.regs[OP[0]] = (tmpf == 1) ? tmp : foo;
State.regs[OP[0]+1] = (State.regs[OP[0]+1] << 1) | tmpf;
trace_output (OP_DREG);
}
/* exef0f */
void
OP_4E04 ()
{
trace_input ("exef0f", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F0 == 0);
trace_output (OP_FLAG);
}
/* exef0t */
void
OP_4E24 ()
{
trace_input ("exef0t", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F0 != 0);
trace_output (OP_FLAG);
}
/* exef1f */
void
OP_4E40 ()
{
trace_input ("exef1f", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F1 == 0);
trace_output (OP_FLAG);
}
/* exef1t */
void
OP_4E42 ()
{
trace_input ("exef1t", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F1 != 0);
trace_output (OP_FLAG);
}
/* exefaf */
void
OP_4E00 ()
{
trace_input ("exefaf", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F0 == 0) & (State.F1 == 0);
trace_output (OP_FLAG);
}
/* exefat */
void
OP_4E02 ()
{
trace_input ("exefat", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F0 == 0) & (State.F1 != 0);
trace_output (OP_FLAG);
}
/* exetaf */
void
OP_4E20 ()
{
trace_input ("exetaf", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F0 != 0) & (State.F1 == 0);
trace_output (OP_FLAG);
}
/* exetat */
void
OP_4E22 ()
{
trace_input ("exetat", OP_VOID, OP_VOID, OP_VOID);
State.exe = (State.F0 != 0) & (State.F1 != 0);
trace_output (OP_FLAG);
}
/* exp */
void
OP_15002A00 ()
{
uint32 tmp, foo;
int i;
trace_input ("exp", OP_REG_OUTPUT, OP_DREG, OP_VOID);
if (((int16)State.regs[OP[1]]) >= 0)
tmp = (State.regs[OP[1]] << 16) | State.regs[OP[1]+1];
else
tmp = ~((State.regs[OP[1]] << 16) | State.regs[OP[1]+1]);
foo = 0x40000000;
for (i=1;i<17;i++)
{
if (tmp & foo)
{
State.regs[OP[0]] = i-1;
trace_output (OP_REG);
return;
}
foo >>= 1;
}
State.regs[OP[0]] = 16;
trace_output (OP_REG);
}
/* exp */
void
OP_15002A02 ()
{
int64 tmp, foo;
int i;
trace_input ("exp", OP_REG_OUTPUT, OP_ACCUM, OP_VOID);
tmp = SEXT40(State.a[OP[1]]);
if (tmp < 0)
tmp = ~tmp & MASK40;
foo = 0x4000000000LL;
for (i=1;i<25;i++)
{
if (tmp & foo)
{
State.regs[OP[0]] = i-9;
trace_output (OP_REG);
return;
}
foo >>= 1;
}
State.regs[OP[0]] = 16;
trace_output (OP_REG);
}
/* jl */
void
OP_4D00 ()
{
trace_input ("jl", OP_REG, OP_R2, OP_R3);
State.regs[13] = PC+1;
JMP (State.regs[OP[0]]);
trace_output (OP_VOID);
}
/* jmp */
void
OP_4C00 ()
{
trace_input ("jmp", OP_REG,
(OP[0] == 13) ? OP_R2 : OP_VOID,
(OP[0] == 13) ? OP_R3 : OP_VOID);
JMP (State.regs[OP[0]]);
trace_output (OP_VOID);
}
/* ld */
void
OP_30000000 ()
{
trace_input ("ld", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID);
State.regs[OP[0]] = RW (OP[1] + State.regs[OP[2]]);
trace_output (OP_REG);
}
/* ld */
void
OP_6401 ()
{
trace_input ("ld", OP_REG_OUTPUT, OP_POSTDEC, OP_VOID);
State.regs[OP[0]] = RW (State.regs[OP[1]]);
INC_ADDR(State.regs[OP[1]],-2);
trace_output (OP_REG);
}
/* ld */
void
OP_6001 ()
{
trace_input ("ld", OP_REG_OUTPUT, OP_POSTINC, OP_VOID);
State.regs[OP[0]] = RW (State.regs[OP[1]]);
INC_ADDR(State.regs[OP[1]],2);
trace_output (OP_REG);
}
/* ld */
void
OP_6000 ()
{
trace_input ("ld", OP_REG_OUTPUT, OP_MEMREF, OP_VOID);
State.regs[OP[0]] = RW (State.regs[OP[1]]);
trace_output (OP_REG);
}
/* ld2w */
void
OP_31000000 ()
{
uint16 addr = State.regs[OP[2]];
trace_input ("ld2w", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID);
State.regs[OP[0]] = RW (OP[1] + addr);
State.regs[OP[0]+1] = RW (OP[1] + addr + 2);
trace_output (OP_DREG);
}
/* ld2w */
void
OP_6601 ()
{
uint16 addr = State.regs[OP[1]];
trace_input ("ld2w", OP_REG_OUTPUT, OP_POSTDEC, OP_VOID);
State.regs[OP[0]] = RW (addr);
State.regs[OP[0]+1] = RW (addr+2);
INC_ADDR(State.regs[OP[1]],-4);
trace_output (OP_DREG);
}
/* ld2w */
void
OP_6201 ()
{
uint16 addr = State.regs[OP[1]];
trace_input ("ld2w", OP_REG_OUTPUT, OP_POSTINC, OP_VOID);
State.regs[OP[0]] = RW (addr);
State.regs[OP[0]+1] = RW (addr+2);
INC_ADDR(State.regs[OP[1]],4);
trace_output (OP_DREG);
}
/* ld2w */
void
OP_6200 ()
{
uint16 addr = State.regs[OP[1]];
trace_input ("ld2w", OP_REG_OUTPUT, OP_MEMREF, OP_VOID);
State.regs[OP[0]] = RW (addr);
State.regs[OP[0]+1] = RW (addr+2);
trace_output (OP_DREG);
}
/* ldb */
void
OP_38000000 ()
{
trace_input ("ldb", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID);
State.regs[OP[0]] = SEXT8 (RB (OP[1] + State.regs[OP[2]]));
trace_output (OP_REG);
}
/* ldb */
void
OP_7000 ()
{
trace_input ("ldb", OP_REG_OUTPUT, OP_MEMREF, OP_VOID);
State.regs[OP[0]] = SEXT8 (RB (State.regs[OP[1]]));
trace_output (OP_REG);
}
/* ldi.s */
void
OP_4001 ()
{
trace_input ("ldi.s", OP_REG_OUTPUT, OP_CONSTANT4, OP_VOID);
State.regs[OP[0]] = SEXT4(OP[1]);
trace_output (OP_REG);
}
/* ldi.l */
void
OP_20000000 ()
{
trace_input ("ldi.l", OP_REG_OUTPUT, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] = OP[1];
trace_output (OP_REG);
}
/* ldub */
void
OP_39000000 ()
{
trace_input ("ldub", OP_REG_OUTPUT, OP_MEMREF2, OP_VOID);
State.regs[OP[0]] = RB (OP[1] + State.regs[OP[2]]);
trace_output (OP_REG);
}
/* ldub */
void
OP_7200 ()
{
trace_input ("ldub", OP_REG_OUTPUT, OP_MEMREF, OP_VOID);
State.regs[OP[0]] = RB (State.regs[OP[1]]);
trace_output (OP_REG);
}
/* mac */
void
OP_2A00 ()
{
int64 tmp;
trace_input ("mac", OP_ACCUM, OP_REG, OP_REG);
tmp = SEXT40 ((int16)(State.regs[OP[1]]) * (int16)(State.regs[OP[2]]));
if (State.FX)
tmp = SEXT40( (tmp << 1) & MASK40);
if (State.ST && tmp > MAX32)
tmp = MAX32;
tmp += SEXT40(State.a[OP[0]]);
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if (tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* macsu */
void
OP_1A00 ()
{
int64 tmp;
trace_input ("macsu", OP_ACCUM, OP_REG, OP_REG);
tmp = SEXT40 ((int16)State.regs[OP[1]] * State.regs[OP[2]]);
if (State.FX)
tmp = SEXT40( (tmp << 1) & MASK40);
State.a[OP[0]] = (SEXT40 (State.a[OP[0]]) + tmp) & MASK40;
trace_output (OP_ACCUM);
}
/* macu */
void
OP_3A00 ()
{
int64 tmp;
trace_input ("macu", OP_ACCUM, OP_REG, OP_REG);
tmp = SEXT40 (State.regs[OP[1]] * State.regs[OP[2]]);
if (State.FX)
tmp = SEXT40( (tmp << 1) & MASK40);
State.a[OP[0]] = (SEXT40 (State.a[OP[0]]) + tmp) & MASK40;
trace_output (OP_ACCUM);
}
/* max */
void
OP_2600 ()
{
trace_input ("max", OP_REG, OP_REG, OP_VOID);
State.F1 = State.F0;
if ((int16)State.regs[OP[1]] > (int16)State.regs[OP[0]])
{
State.regs[OP[0]] = State.regs[OP[1]];
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_REG);
}
/* max */
void
OP_3600 ()
{
int64 tmp;
trace_input ("max", OP_ACCUM, OP_DREG, OP_VOID);
State.F1 = State.F0;
tmp = SEXT16 (State.regs[OP[1]]) << 16 | State.regs[OP[1]+1];
if (tmp > SEXT40(State.a[OP[0]]))
{
State.a[OP[0]] = tmp & MASK40;
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_ACCUM);
}
/* max */
void
OP_3602 ()
{
trace_input ("max", OP_ACCUM, OP_ACCUM, OP_VOID);
State.F1 = State.F0;
if (SEXT40(State.a[OP[1]]) > SEXT40(State.a[OP[0]]))
{
State.a[OP[0]] = State.a[OP[1]];
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_ACCUM);
}
/* min */
void
OP_2601 ()
{
trace_input ("min", OP_REG, OP_REG, OP_VOID);
State.F1 = State.F0;
if ((int16)State.regs[OP[1]] < (int16)State.regs[OP[0]])
{
State.regs[OP[0]] = State.regs[OP[1]];
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_REG);
}
/* min */
void
OP_3601 ()
{
int64 tmp;
trace_input ("min", OP_ACCUM, OP_DREG, OP_VOID);
State.F1 = State.F0;
tmp = SEXT16 (State.regs[OP[1]]) << 16 | State.regs[OP[1]+1];
if (tmp < SEXT40(State.a[OP[0]]))
{
State.a[OP[0]] = tmp & MASK40;
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_ACCUM);
}
/* min */
void
OP_3603 ()
{
trace_input ("min", OP_ACCUM, OP_ACCUM, OP_VOID);
State.F1 = State.F0;
if (SEXT40(State.a[OP[1]]) < SEXT40(State.a[OP[0]]))
{
State.a[OP[0]] = State.a[OP[1]];
State.F0 = 1;
}
else
State.F0 = 0;
trace_output (OP_ACCUM);
}
/* msb */
void
OP_2800 ()
{
int64 tmp;
trace_input ("msb", OP_ACCUM, OP_REG, OP_REG);
tmp = SEXT40 ((int16)(State.regs[OP[1]]) * (int16)(State.regs[OP[2]]));
if (State.FX)
tmp = SEXT40 ((tmp << 1) & MASK40);
if (State.ST && tmp > MAX32)
tmp = MAX32;
tmp = SEXT40(State.a[OP[0]]) - tmp;
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if (tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* msbsu */
void
OP_1800 ()
{
int64 tmp;
trace_input ("msbsu", OP_ACCUM, OP_REG, OP_REG);
tmp = SEXT40 ((int16)State.regs[OP[1]] * State.regs[OP[2]]);
if (State.FX)
tmp = SEXT40( (tmp << 1) & MASK40);
State.a[OP[0]] = (SEXT40 (State.a[OP[0]]) - tmp) & MASK40;
trace_output (OP_ACCUM);
}
/* msbu */
void
OP_3800 ()
{
int64 tmp;
trace_input ("msbu", OP_ACCUM, OP_REG, OP_REG);
tmp = SEXT40 (State.regs[OP[1]] * State.regs[OP[2]]);
if (State.FX)
tmp = SEXT40( (tmp << 1) & MASK40);
State.a[OP[0]] = (SEXT40 (State.a[OP[0]]) - tmp) & MASK40;
trace_output (OP_ACCUM);
}
/* mul */
void
OP_2E00 ()
{
trace_input ("mul", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] *= State.regs[OP[1]];
trace_output (OP_REG);
}
/* mulx */
void
OP_2C00 ()
{
int64 tmp;
trace_input ("mulx", OP_ACCUM_OUTPUT, OP_REG, OP_REG);
tmp = SEXT40 ((int16)(State.regs[OP[1]]) * (int16)(State.regs[OP[2]]));
if (State.FX)
tmp = SEXT40 ((tmp << 1) & MASK40);
if (State.ST && tmp > MAX32)
State.a[OP[0]] = MAX32;
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* mulxsu */
void
OP_1C00 ()
{
int64 tmp;
trace_input ("mulxsu", OP_ACCUM_OUTPUT, OP_REG, OP_REG);
tmp = SEXT40 ((int16)(State.regs[OP[1]]) * State.regs[OP[2]]);
if (State.FX)
tmp <<= 1;
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* mulxu */
void
OP_3C00 ()
{
int64 tmp;
trace_input ("mulxu", OP_ACCUM_OUTPUT, OP_REG, OP_REG);
tmp = SEXT40 (State.regs[OP[1]] * State.regs[OP[2]]);
if (State.FX)
tmp <<= 1;
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* mv */
void
OP_4000 ()
{
trace_input ("mv", OP_REG_OUTPUT, OP_REG, OP_VOID);
State.regs[OP[0]] = State.regs[OP[1]];
trace_output (OP_REG);
}
/* mv2w */
void
OP_5000 ()
{
trace_input ("mv2w", OP_DREG_OUTPUT, OP_DREG, OP_VOID);
State.regs[OP[0]] = State.regs[OP[1]];
State.regs[OP[0]+1] = State.regs[OP[1]+1];
trace_output (OP_DREG);
}
/* mv2wfac */
void
OP_3E00 ()
{
trace_input ("mv2wfac", OP_DREG_OUTPUT, OP_ACCUM, OP_VOID);
State.regs[OP[0]] = (State.a[OP[1]] >> 16) & 0xffff;
State.regs[OP[0]+1] = State.a[OP[1]] & 0xffff;
trace_output (OP_DREG);
}
/* mv2wtac */
void
OP_3E01 ()
{
trace_input ("mv2wtac", OP_DREG, OP_ACCUM_OUTPUT, OP_VOID);
State.a[OP[1]] = (SEXT16 (State.regs[OP[0]]) << 16 | State.regs[OP[0]+1]) & MASK40;
trace_output (OP_ACCUM_REVERSE);
}
/* mvac */
void
OP_3E03 ()
{
trace_input ("mvac", OP_ACCUM_OUTPUT, OP_ACCUM, OP_VOID);
State.a[OP[0]] = State.a[OP[1]];
trace_output (OP_ACCUM);
}
/* mvb */
void
OP_5400 ()
{
trace_input ("mvb", OP_REG_OUTPUT, OP_REG, OP_VOID);
State.regs[OP[0]] = SEXT8 (State.regs[OP[1]] & 0xff);
trace_output (OP_REG);
}
/* mvf0f */
void
OP_4400 ()
{
trace_input ("mf0f", OP_REG_OUTPUT, OP_REG, OP_VOID);
if (State.F0 == 0)
State.regs[OP[0]] = State.regs[OP[1]];
trace_output (OP_REG);
}
/* mvf0t */
void
OP_4401 ()
{
trace_input ("mf0t", OP_REG_OUTPUT, OP_REG, OP_VOID);
if (State.F0)
State.regs[OP[0]] = State.regs[OP[1]];
trace_output (OP_REG);
}
/* mvfacg */
void
OP_1E04 ()
{
trace_input ("mvfacg", OP_REG_OUTPUT, OP_ACCUM, OP_VOID);
State.regs[OP[0]] = (State.a[OP[1]] >> 32) & 0xff;
trace_output (OP_ACCUM);
}
/* mvfachi */
void
OP_1E00 ()
{
trace_input ("mvfachi", OP_REG_OUTPUT, OP_ACCUM, OP_VOID);
State.regs[OP[0]] = (State.a[OP[1]] >> 16) & 0xffff;
trace_output (OP_REG);
}
/* mvfaclo */
void
OP_1E02 ()
{
trace_input ("mvfaclo", OP_REG_OUTPUT, OP_ACCUM, OP_VOID);
State.regs[OP[0]] = State.a[OP[1]] & 0xffff;
trace_output (OP_REG);
}
/* mvfc */
void
OP_5200 ()
{
trace_input ("mvfc", OP_REG_OUTPUT, OP_CR, OP_VOID);
if (OP[1] == 0)
{
/* PSW is treated specially */
PSW = 0;
if (State.SM) PSW |= 0x8000;
if (State.EA) PSW |= 0x2000;
if (State.DB) PSW |= 0x1000;
if (State.IE) PSW |= 0x400;
if (State.RP) PSW |= 0x200;
if (State.MD) PSW |= 0x100;
if (State.FX) PSW |= 0x80;
if (State.ST) PSW |= 0x40;
if (State.F0) PSW |= 8;
if (State.F1) PSW |= 4;
if (State.C) PSW |= 1;
}
State.regs[OP[0]] = State.cregs[OP[1]];
trace_output (OP_REG);
}
/* mvtacg */
void
OP_1E41 ()
{
trace_input ("mvtacg", OP_REG, OP_ACCUM, OP_VOID);
State.a[OP[1]] &= MASK32;
State.a[OP[1]] |= (int64)(State.regs[OP[0]] & 0xff) << 32;
trace_output (OP_ACCUM_REVERSE);
}
/* mvtachi */
void
OP_1E01 ()
{
uint16 tmp;
trace_input ("mvtachi", OP_REG, OP_ACCUM, OP_VOID);
tmp = State.a[OP[1]] & 0xffff;
State.a[OP[1]] = (SEXT16 (State.regs[OP[0]]) << 16 | tmp) & MASK40;
trace_output (OP_ACCUM_REVERSE);
}
/* mvtaclo */
void
OP_1E21 ()
{
trace_input ("mvtaclo", OP_REG, OP_ACCUM, OP_VOID);
State.a[OP[1]] = (SEXT16 (State.regs[OP[0]])) & MASK40;
trace_output (OP_ACCUM_REVERSE);
}
/* mvtc */
void
OP_5600 ()
{
trace_input ("mvtc", OP_REG, OP_CR_OUTPUT, OP_VOID);
State.cregs[OP[1]] = State.regs[OP[0]];
if (OP[1] == 0)
{
/* PSW is treated specially */
State.SM = (PSW & 0x8000) ? 1 : 0;
State.EA = (PSW & 0x2000) ? 1 : 0;
State.DB = (PSW & 0x1000) ? 1 : 0;
State.IE = (PSW & 0x400) ? 1 : 0;
State.RP = (PSW & 0x200) ? 1 : 0;
State.MD = (PSW & 0x100) ? 1 : 0;
State.FX = (PSW & 0x80) ? 1 : 0;
State.ST = (PSW & 0x40) ? 1 : 0;
State.F0 = (PSW & 8) ? 1 : 0;
State.F1 = (PSW & 4) ? 1 : 0;
State.C = PSW & 1;
if (State.ST && !State.FX)
{
(*d10v_callback->printf_filtered) (d10v_callback,
"ERROR at PC 0x%x: ST can only be set when FX is set.\n",
PC<<2);
State.exception = SIGILL;
}
}
trace_output (OP_CR_REVERSE);
}
/* mvub */
void
OP_5401 ()
{
trace_input ("mvub", OP_REG_OUTPUT, OP_REG, OP_VOID);
State.regs[OP[0]] = State.regs[OP[1]] & 0xff;
trace_output (OP_REG);
}
/* neg */
void
OP_4605 ()
{
trace_input ("neg", OP_REG, OP_VOID, OP_VOID);
State.regs[OP[0]] = 0 - State.regs[OP[0]];
trace_output (OP_REG);
}
/* neg */
void
OP_5605 ()
{
int64 tmp;
trace_input ("neg", OP_ACCUM, OP_VOID, OP_VOID);
tmp = -SEXT40(State.a[OP[0]]);
if (State.ST)
{
if ( tmp > MAX32)
State.a[OP[0]] = MAX32;
else if (tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* nop */
void
OP_5E00 ()
{
trace_input ("nop", OP_VOID, OP_VOID, OP_VOID);
ins_type_counters[ (int)State.ins_type ]--; /* don't count nops as normal instructions */
switch (State.ins_type)
{
default:
ins_type_counters[ (int)INS_UNKNOWN ]++;
break;
case INS_LEFT_PARALLEL:
/* Don't count a parallel op that includes a NOP as a true parallel op */
ins_type_counters[ (int)INS_RIGHT_PARALLEL ]--;
ins_type_counters[ (int)INS_RIGHT ]++;
ins_type_counters[ (int)INS_LEFT_NOPS ]++;
break;
case INS_LEFT:
case INS_LEFT_COND_EXE:
ins_type_counters[ (int)INS_LEFT_NOPS ]++;
break;
case INS_RIGHT_PARALLEL:
/* Don't count a parallel op that includes a NOP as a true parallel op */
ins_type_counters[ (int)INS_LEFT_PARALLEL ]--;
ins_type_counters[ (int)INS_LEFT ]++;
ins_type_counters[ (int)INS_RIGHT_NOPS ]++;
break;
case INS_RIGHT:
case INS_RIGHT_COND_EXE:
ins_type_counters[ (int)INS_RIGHT_NOPS ]++;
break;
}
trace_output (OP_VOID);
}
/* not */
void
OP_4603 ()
{
trace_input ("not", OP_REG, OP_VOID, OP_VOID);
State.regs[OP[0]] = ~(State.regs[OP[0]]);
trace_output (OP_REG);
}
/* or */
void
OP_800 ()
{
trace_input ("or", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] |= State.regs[OP[1]];
trace_output (OP_REG);
}
/* or3 */
void
OP_4000000 ()
{
trace_input ("or3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16);
State.regs[OP[0]] = State.regs[OP[1]] | OP[2];
trace_output (OP_REG);
}
/* rac */
void
OP_5201 ()
{
int64 tmp;
int shift = SEXT3 (OP[2]);
trace_input ("rac", OP_DREG_OUTPUT, OP_ACCUM, OP_CONSTANT3);
if (OP[1] != 0)
{
(*d10v_callback->printf_filtered) (d10v_callback,
"ERROR at PC 0x%x: instruction only valid for A0\n",
PC<<2);
State.exception = SIGILL;
}
State.F1 = State.F0;
if (shift >=0)
tmp = ((State.a[0] << 16) | (State.a[1] & 0xffff)) << shift;
else
tmp = ((State.a[0] << 16) | (State.a[1] & 0xffff)) >> -shift;
tmp = ( SEXT60(tmp) + 0x8000 ) >> 16;
if (tmp > MAX32)
{
State.regs[OP[0]] = 0x7fff;
State.regs[OP[0]+1] = 0xffff;
State.F0 = 1;
}
else if (tmp < MIN32)
{
State.regs[OP[0]] = 0x8000;
State.regs[OP[0]+1] = 0;
State.F0 = 1;
}
else
{
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
State.F0 = 0;
}
trace_output (OP_DREG);
}
/* rachi */
void
OP_4201 ()
{
signed64 tmp;
int shift = SEXT3 (OP[2]);
trace_input ("rachi", OP_REG_OUTPUT, OP_ACCUM, OP_CONSTANT3);
State.F1 = State.F0;
if (shift >=0)
tmp = SEXT40 (State.a[OP[1]]) << shift;
else
tmp = SEXT40 (State.a[OP[1]]) >> -shift;
tmp += 0x8000;
if (tmp > SEXT44 (SIGNED64 (0x0007fffffff)))
{
State.regs[OP[0]] = 0x7fff;
State.F0 = 1;
}
else if (tmp < SEXT44 (SIGNED64 (0xfff80000000)))
{
State.regs[OP[0]] = 0x8000;
State.F0 = 1;
}
else
{
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.F0 = 0;
}
trace_output (OP_REG);
}
/* rep */
void
OP_27000000 ()
{
trace_input ("rep", OP_REG, OP_CONSTANT16, OP_VOID);
RPT_S = PC + 1;
RPT_E = PC + OP[1];
RPT_C = State.regs[OP[0]];
State.RP = 1;
if (RPT_C == 0)
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: rep with count=0 is illegal.\n");
State.exception = SIGILL;
}
if (OP[1] < 4)
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: rep must include at least 4 instructions.\n");
State.exception = SIGILL;
}
trace_output (OP_VOID);
}
/* repi */
void
OP_2F000000 ()
{
trace_input ("repi", OP_CONSTANT16, OP_CONSTANT16, OP_VOID);
RPT_S = PC + 1;
RPT_E = PC + OP[1];
RPT_C = OP[0];
State.RP = 1;
if (RPT_C == 0)
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: repi with count=0 is illegal.\n");
State.exception = SIGILL;
}
if (OP[1] < 4)
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: repi must include at least 4 instructions.\n");
State.exception = SIGILL;
}
trace_output (OP_VOID);
}
/* rtd */
void
OP_5F60 ()
{
d10v_callback->printf_filtered(d10v_callback, "ERROR: rtd - NOT IMPLEMENTED\n");
State.exception = SIGILL;
}
/* rte */
void
OP_5F40 ()
{
trace_input ("rte", OP_VOID, OP_VOID, OP_VOID);
PC = BPC;
PSW = BPSW;
trace_output (OP_VOID);
}
/* sadd */
void
OP_1223 ()
{
int64 tmp;
trace_input ("sadd", OP_ACCUM, OP_ACCUM, OP_VOID);
tmp = SEXT40(State.a[OP[0]]) + (SEXT40(State.a[OP[1]]) >> 16);
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if (tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* setf0f */
void
OP_4611 ()
{
trace_input ("setf0f", OP_REG_OUTPUT, OP_VOID, OP_VOID);
State.regs[OP[0]] = (State.F0 == 0) ? 1 : 0;
trace_output (OP_REG);
}
/* setf0t */
void
OP_4613 ()
{
trace_input ("setf0t", OP_REG_OUTPUT, OP_VOID, OP_VOID);
State.regs[OP[0]] = (State.F0 == 1) ? 1 : 0;
trace_output (OP_REG);
}
/* sleep */
void
OP_5FC0 ()
{
trace_input ("sleep", OP_VOID, OP_VOID, OP_VOID);
State.IE = 1;
trace_output (OP_VOID);
}
/* sll */
void
OP_2200 ()
{
trace_input ("sll", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] <<= (State.regs[OP[1]] & 0xf);
trace_output (OP_REG);
}
/* sll */
void
OP_3200 ()
{
int64 tmp;
trace_input ("sll", OP_ACCUM, OP_REG, OP_VOID);
if ((State.regs[OP[1]] & 31) <= 16)
tmp = SEXT40 (State.a[OP[0]]) << (State.regs[OP[1]] & 31);
else
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: shift value %d too large.\n", State.regs[OP[1]] & 31);
State.exception = SIGILL;
return;
}
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if (tmp < 0xffffff80000000LL)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* slli */
void
OP_2201 ()
{
trace_input ("slli", OP_REG, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] <<= OP[1];
trace_output (OP_REG);
}
/* slli */
void
OP_3201 ()
{
int64 tmp;
if (OP[1] == 0)
OP[1] = 16;
trace_input ("slli", OP_ACCUM, OP_CONSTANT16, OP_VOID);
tmp = SEXT40(State.a[OP[0]]) << OP[1];
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if (tmp < 0xffffff80000000LL)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* slx */
void
OP_460B ()
{
trace_input ("slx", OP_REG, OP_FLAG, OP_VOID);
State.regs[OP[0]] = (State.regs[OP[0]] << 1) | State.F0;
trace_output (OP_REG);
}
/* sra */
void
OP_2400 ()
{
trace_input ("sra", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] = ((int16)(State.regs[OP[0]])) >> (State.regs[OP[1]] & 0xf);
trace_output (OP_REG);
}
/* sra */
void
OP_3400 ()
{
trace_input ("sra", OP_ACCUM, OP_REG, OP_VOID);
if ((State.regs[OP[1]] & 31) <= 16)
State.a[OP[0]] = (SEXT40(State.a[OP[0]]) >> (State.regs[OP[1]] & 31)) & MASK40;
else
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: shift value %d too large.\n", State.regs[OP[1]] & 31);
State.exception = SIGILL;
return;
}
trace_output (OP_ACCUM);
}
/* srai */
void
OP_2401 ()
{
trace_input ("srai", OP_REG, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] = ((int16)(State.regs[OP[0]])) >> OP[1];
trace_output (OP_REG);
}
/* srai */
void
OP_3401 ()
{
if (OP[1] == 0)
OP[1] = 16;
trace_input ("srai", OP_ACCUM, OP_CONSTANT16, OP_VOID);
State.a[OP[0]] = (SEXT40(State.a[OP[0]]) >> OP[1]) & MASK40;
trace_output (OP_ACCUM);
}
/* srl */
void
OP_2000 ()
{
trace_input ("srl", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] >>= (State.regs[OP[1]] & 0xf);
trace_output (OP_REG);
}
/* srl */
void
OP_3000 ()
{
trace_input ("srl", OP_ACCUM, OP_REG, OP_VOID);
if ((State.regs[OP[1]] & 31) <= 16)
State.a[OP[0]] = (uint64)((State.a[OP[0]] & MASK40) >> (State.regs[OP[1]] & 31));
else
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: shift value %d too large.\n", State.regs[OP[1]] & 31);
State.exception = SIGILL;
return;
}
trace_output (OP_ACCUM);
}
/* srli */
void
OP_2001 ()
{
trace_input ("srli", OP_REG, OP_CONSTANT16, OP_VOID);
State.regs[OP[0]] >>= OP[1];
trace_output (OP_REG);
}
/* srli */
void
OP_3001 ()
{
if (OP[1] == 0)
OP[1] = 16;
trace_input ("srli", OP_ACCUM, OP_CONSTANT16, OP_VOID);
State.a[OP[0]] = (uint64)(State.a[OP[0]] & MASK40) >> OP[1];
trace_output (OP_ACCUM);
}
/* srx */
void
OP_4609 ()
{
uint16 tmp;
trace_input ("srx", OP_REG, OP_FLAG, OP_VOID);
tmp = State.F0 << 15;
State.regs[OP[0]] = (State.regs[OP[0]] >> 1) | tmp;
trace_output (OP_REG);
}
/* st */
void
OP_34000000 ()
{
trace_input ("st", OP_REG, OP_MEMREF2, OP_VOID);
SW (OP[1] + State.regs[OP[2]], State.regs[OP[0]]);
trace_output (OP_VOID);
}
/* st */
void
OP_6800 ()
{
trace_input ("st", OP_REG, OP_MEMREF, OP_VOID);
SW (State.regs[OP[1]], State.regs[OP[0]]);
trace_output (OP_VOID);
}
/* st */
void
OP_6C1F ()
{
trace_input ("st", OP_REG, OP_PREDEC, OP_VOID);
if ( OP[1] != 15 )
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot pre-decrement any registers but r15 (SP).\n");
State.exception = SIGILL;
return;
}
State.regs[OP[1]] -= 2;
SW (State.regs[OP[1]], State.regs[OP[0]]);
trace_output (OP_VOID);
}
/* st */
void
OP_6801 ()
{
trace_input ("st", OP_REG, OP_POSTINC, OP_VOID);
SW (State.regs[OP[1]], State.regs[OP[0]]);
INC_ADDR (State.regs[OP[1]],2);
trace_output (OP_VOID);
}
/* st */
void
OP_6C01 ()
{
trace_input ("st", OP_REG, OP_POSTDEC, OP_VOID);
if ( OP[1] == 15 )
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot post-decrement register r15 (SP).\n");
State.exception = SIGILL;
return;
}
SW (State.regs[OP[1]], State.regs[OP[0]]);
INC_ADDR (State.regs[OP[1]],-2);
trace_output (OP_VOID);
}
/* st2w */
void
OP_35000000 ()
{
trace_input ("st2w", OP_DREG, OP_MEMREF2, OP_VOID);
SW (State.regs[OP[2]]+OP[1], State.regs[OP[0]]);
SW (State.regs[OP[2]]+OP[1]+2, State.regs[OP[0]+1]);
trace_output (OP_VOID);
}
/* st2w */
void
OP_6A00 ()
{
trace_input ("st2w", OP_DREG, OP_MEMREF, OP_VOID);
SW (State.regs[OP[1]], State.regs[OP[0]]);
SW (State.regs[OP[1]]+2, State.regs[OP[0]+1]);
trace_output (OP_VOID);
}
/* st2w */
void
OP_6E1F ()
{
trace_input ("st2w", OP_DREG, OP_PREDEC, OP_VOID);
if ( OP[1] != 15 )
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot pre-decrement any registers but r15 (SP).\n");
State.exception = SIGILL;
return;
}
State.regs[OP[1]] -= 4;
SW (State.regs[OP[1]], State.regs[OP[0]]);
SW (State.regs[OP[1]]+2, State.regs[OP[0]+1]);
trace_output (OP_VOID);
}
/* st2w */
void
OP_6A01 ()
{
trace_input ("st2w", OP_DREG, OP_POSTINC, OP_VOID);
SW (State.regs[OP[1]], State.regs[OP[0]]);
SW (State.regs[OP[1]]+2, State.regs[OP[0]+1]);
INC_ADDR (State.regs[OP[1]],4);
trace_output (OP_VOID);
}
/* st2w */
void
OP_6E01 ()
{
trace_input ("st2w", OP_DREG, OP_POSTDEC, OP_VOID);
if ( OP[1] == 15 )
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: cannot post-decrement register r15 (SP).\n");
State.exception = SIGILL;
return;
}
SW (State.regs[OP[1]], State.regs[OP[0]]);
SW (State.regs[OP[1]]+2, State.regs[OP[0]+1]);
INC_ADDR (State.regs[OP[1]],-4);
trace_output (OP_VOID);
}
/* stb */
void
OP_3C000000 ()
{
trace_input ("stb", OP_REG, OP_MEMREF2, OP_VOID);
SB (State.regs[OP[2]]+OP[1], State.regs[OP[0]]);
trace_output (OP_VOID);
}
/* stb */
void
OP_7800 ()
{
trace_input ("stb", OP_REG, OP_MEMREF, OP_VOID);
SB (State.regs[OP[1]], State.regs[OP[0]]);
trace_output (OP_VOID);
}
/* stop */
void
OP_5FE0 ()
{
trace_input ("stop", OP_VOID, OP_VOID, OP_VOID);
State.exception = SIG_D10V_STOP;
trace_output (OP_VOID);
}
/* sub */
void
OP_0 ()
{
uint16 tmp;
trace_input ("sub", OP_REG, OP_REG, OP_VOID);
tmp = State.regs[OP[0]] - State.regs[OP[1]];
State.C = (tmp > State.regs[OP[0]]);
State.regs[OP[0]] = tmp;
trace_output (OP_REG);
}
/* sub */
void
OP_1001 ()
{
int64 tmp;
trace_input ("sub", OP_ACCUM, OP_DREG, OP_VOID);
tmp = SEXT40(State.a[OP[0]]) - (SEXT16 (State.regs[OP[1]]) << 16 | State.regs[OP[1]+1]);
if (State.ST)
{
if ( tmp > MAX32)
State.a[OP[0]] = MAX32;
else if ( tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* sub */
void
OP_1003 ()
{
int64 tmp;
trace_input ("sub", OP_ACCUM, OP_ACCUM, OP_VOID);
tmp = SEXT40(State.a[OP[0]]) - SEXT40(State.a[OP[1]]);
if (State.ST)
{
if (tmp > MAX32)
State.a[OP[0]] = MAX32;
else if ( tmp < MIN32)
State.a[OP[0]] = MIN32;
else
State.a[OP[0]] = tmp & MASK40;
}
else
State.a[OP[0]] = tmp & MASK40;
trace_output (OP_ACCUM);
}
/* sub2w */
void
OP_1000 ()
{
uint32 tmp,a,b;
trace_input ("sub2w", OP_DREG, OP_DREG, OP_VOID);
a = (uint32)((State.regs[OP[0]] << 16) | State.regs[OP[0]+1]);
b = (uint32)((State.regs[OP[1]] << 16) | State.regs[OP[1]+1]);
/* see ../common/sim-alu.h for a more extensive discussion on how to
compute the carry/overflow bits */
tmp = a - b;
State.C = (a >= b);
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
trace_output (OP_DREG);
}
/* subac3 */
void
OP_17000000 ()
{
int64 tmp;
trace_input ("subac3", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM);
tmp = SEXT40 ((State.regs[OP[1]] << 16) | State.regs[OP[1]+1]) - SEXT40 (State.a[OP[2]]);
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
trace_output (OP_DREG);
}
/* subac3 */
void
OP_17000002 ()
{
int64 tmp;
trace_input ("subac3", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM);
tmp = SEXT40(State.a[OP[1]]) - SEXT40(State.a[OP[2]]);
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
trace_output (OP_DREG);
}
/* subac3s */
void
OP_17001000 ()
{
int64 tmp;
trace_input ("subac3s", OP_DREG_OUTPUT, OP_DREG, OP_ACCUM);
State.F1 = State.F0;
tmp = SEXT40 ((State.regs[OP[1]] << 16) | State.regs[OP[1]+1]) - SEXT40(State.a[OP[2]]);
if ( tmp > MAX32)
{
State.regs[OP[0]] = 0x7fff;
State.regs[OP[0]+1] = 0xffff;
State.F0 = 1;
}
else if (tmp < MIN32)
{
State.regs[OP[0]] = 0x8000;
State.regs[OP[0]+1] = 0;
State.F0 = 1;
}
else
{
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
State.F0 = 0;
}
trace_output (OP_DREG);
}
/* subac3s */
void
OP_17001002 ()
{
int64 tmp;
trace_input ("subac3s", OP_DREG_OUTPUT, OP_ACCUM, OP_ACCUM);
State.F1 = State.F0;
tmp = SEXT40(State.a[OP[1]]) - SEXT40(State.a[OP[2]]);
if ( tmp > MAX32)
{
State.regs[OP[0]] = 0x7fff;
State.regs[OP[0]+1] = 0xffff;
State.F0 = 1;
}
else if (tmp < MIN32)
{
State.regs[OP[0]] = 0x8000;
State.regs[OP[0]+1] = 0;
State.F0 = 1;
}
else
{
State.regs[OP[0]] = (tmp >> 16) & 0xffff;
State.regs[OP[0]+1] = tmp & 0xffff;
State.F0 = 0;
}
trace_output (OP_DREG);
}
/* subi */
void
OP_1 ()
{
unsigned tmp;
if (OP[1] == 0)
OP[1] = 16;
trace_input ("subi", OP_REG, OP_CONSTANT16, OP_VOID);
/* see ../common/sim-alu.h for a more extensive discussion on how to
compute the carry/overflow bits. */
/* since OP[1] is never <= 0, -OP[1] == ~OP[1]+1 can never overflow */
tmp = ((unsigned)(unsigned16) State.regs[OP[0]]
+ (unsigned)(unsigned16) ( - OP[1]));
State.C = (tmp >= (1 << 16));
State.regs[OP[0]] = tmp;
trace_output (OP_REG);
}
/* trap */
void
OP_5F00 ()
{
trace_input ("trap", OP_CONSTANT4, OP_VOID, OP_VOID);
trace_output (OP_VOID);
switch (OP[0])
{
default:
#if 0
(*d10v_callback->printf_filtered) (d10v_callback, "Unknown trap code %d\n", OP[0]);
State.exception = SIGILL;
#else
/* Use any other traps for batch debugging. */
{
int i;
static int first_time = 1;
if (first_time)
{
first_time = 0;
(*d10v_callback->printf_filtered) (d10v_callback, "Trap # PC ");
for (i = 0; i < 16; i++)
(*d10v_callback->printf_filtered) (d10v_callback, " %sr%d", (i > 9) ? "" : " ", i);
(*d10v_callback->printf_filtered) (d10v_callback, " a0 a1 f0 f1 c\n");
}
(*d10v_callback->printf_filtered) (d10v_callback, "Trap %2d 0x%.4x:", (int)OP[0], (int)PC);
for (i = 0; i < 16; i++)
(*d10v_callback->printf_filtered) (d10v_callback, " %.4x", (int) State.regs[i]);
for (i = 0; i < 2; i++)
(*d10v_callback->printf_filtered) (d10v_callback, " %.2x%.8lx",
((int)(State.a[i] >> 32) & 0xff),
((unsigned long)State.a[i]) & 0xffffffff);
(*d10v_callback->printf_filtered) (d10v_callback, " %d %d %d\n",
State.F0 != 0, State.F1 != 0, State.C != 0);
(*d10v_callback->flush_stdout) (d10v_callback);
break;
}
#endif
case 0: /* old system call trap, to be deleted */
case 15: /* new system call trap */
/* Trap 15 is used for simulating low-level I/O */
{
errno = 0;
/* Registers passed to trap 0 */
#define FUNC State.regs[6] /* function number */
#define PARM1 State.regs[2] /* optional parm 1 */
#define PARM2 State.regs[3] /* optional parm 2 */
#define PARM3 State.regs[4] /* optional parm 3 */
#define PARM4 State.regs[5] /* optional parm 3 */
/* Registers set by trap 0 */
#define RETVAL State.regs[2] /* return value */
#define RETVAL_HIGH State.regs[2] /* return value */
#define RETVAL_LOW State.regs[3] /* return value */
#define RETERR State.regs[4] /* return error code */
/* Turn a pointer in a register into a pointer into real memory. */
#define MEMPTR(x) ((char *)(dmem_addr(x)))
switch (FUNC)
{
#if !defined(__GO32__) && !defined(_WIN32)
case SYS_fork:
RETVAL = fork ();
trace_input ("<fork>", OP_VOID, OP_VOID, OP_VOID);
trace_output (OP_R2);
break;
case SYS_getpid:
trace_input ("<getpid>", OP_VOID, OP_VOID, OP_VOID);
RETVAL = getpid ();
trace_output (OP_R2);
break;
case SYS_kill:
trace_input ("<kill>", OP_REG, OP_REG, OP_VOID);
if (PARM1 == getpid ())
{
trace_output (OP_VOID);
State.exception = PARM2;
}
else
{
int os_sig = -1;
switch (PARM2)
{
#ifdef SIGHUP
case 1: os_sig = SIGHUP; break;
#endif
#ifdef SIGINT
case 2: os_sig = SIGINT; break;
#endif
#ifdef SIGQUIT
case 3: os_sig = SIGQUIT; break;
#endif
#ifdef SIGILL
case 4: os_sig = SIGILL; break;
#endif
#ifdef SIGTRAP
case 5: os_sig = SIGTRAP; break;
#endif
#ifdef SIGABRT
case 6: os_sig = SIGABRT; break;
#elif defined(SIGIOT)
case 6: os_sig = SIGIOT; break;
#endif
#ifdef SIGEMT
case 7: os_sig = SIGEMT; break;
#endif
#ifdef SIGFPE
case 8: os_sig = SIGFPE; break;
#endif
#ifdef SIGKILL
case 9: os_sig = SIGKILL; break;
#endif
#ifdef SIGBUS
case 10: os_sig = SIGBUS; break;
#endif
#ifdef SIGSEGV
case 11: os_sig = SIGSEGV; break;
#endif
#ifdef SIGSYS
case 12: os_sig = SIGSYS; break;
#endif
#ifdef SIGPIPE
case 13: os_sig = SIGPIPE; break;
#endif
#ifdef SIGALRM
case 14: os_sig = SIGALRM; break;
#endif
#ifdef SIGTERM
case 15: os_sig = SIGTERM; break;
#endif
#ifdef SIGURG
case 16: os_sig = SIGURG; break;
#endif
#ifdef SIGSTOP
case 17: os_sig = SIGSTOP; break;
#endif
#ifdef SIGTSTP
case 18: os_sig = SIGTSTP; break;
#endif
#ifdef SIGCONT
case 19: os_sig = SIGCONT; break;
#endif
#ifdef SIGCHLD
case 20: os_sig = SIGCHLD; break;
#elif defined(SIGCLD)
case 20: os_sig = SIGCLD; break;
#endif
#ifdef SIGTTIN
case 21: os_sig = SIGTTIN; break;
#endif
#ifdef SIGTTOU
case 22: os_sig = SIGTTOU; break;
#endif
#ifdef SIGIO
case 23: os_sig = SIGIO; break;
#elif defined (SIGPOLL)
case 23: os_sig = SIGPOLL; break;
#endif
#ifdef SIGXCPU
case 24: os_sig = SIGXCPU; break;
#endif
#ifdef SIGXFSZ
case 25: os_sig = SIGXFSZ; break;
#endif
#ifdef SIGVTALRM
case 26: os_sig = SIGVTALRM; break;
#endif
#ifdef SIGPROF
case 27: os_sig = SIGPROF; break;
#endif
#ifdef SIGWINCH
case 28: os_sig = SIGWINCH; break;
#endif
#ifdef SIGLOST
case 29: os_sig = SIGLOST; break;
#endif
#ifdef SIGUSR1
case 30: os_sig = SIGUSR1; break;
#endif
#ifdef SIGUSR2
case 31: os_sig = SIGUSR2; break;
#endif
}
if (os_sig == -1)
{
trace_output (OP_VOID);
(*d10v_callback->printf_filtered) (d10v_callback, "Unknown signal %d\n", PARM2);
(*d10v_callback->flush_stdout) (d10v_callback);
State.exception = SIGILL;
}
else
{
RETVAL = kill (PARM1, PARM2);
trace_output (OP_R2);
}
}
break;
case SYS_execve:
RETVAL = execve (MEMPTR (PARM1), (char **) MEMPTR (PARM2),
(char **)MEMPTR (PARM3));
trace_input ("<execve>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
break;
#ifdef SYS_execv
case SYS_execv:
RETVAL = execve (MEMPTR (PARM1), (char **) MEMPTR (PARM2), NULL);
trace_input ("<execv>", OP_R2, OP_R3, OP_VOID);
trace_output (OP_R2);
break;
#endif
case SYS_pipe:
{
reg_t buf;
int host_fd[2];
buf = PARM1;
RETVAL = pipe (host_fd);
SW (buf, host_fd[0]);
buf += sizeof(uint16);
SW (buf, host_fd[1]);
trace_input ("<pipe>", OP_R2, OP_VOID, OP_VOID);
trace_output (OP_R2);
}
break;
#ifdef SYS_wait
case SYS_wait:
{
int status;
RETVAL = wait (&status);
if (PARM1)
SW (PARM1, status);
trace_input ("<wait>", OP_R2, OP_VOID, OP_VOID);
trace_output (OP_R2);
}
break;
#endif
#else
case SYS_getpid:
trace_input ("<getpid>", OP_VOID, OP_VOID, OP_VOID);
RETVAL = 1;
trace_output (OP_R2);
break;
case SYS_kill:
trace_input ("<kill>", OP_REG, OP_REG, OP_VOID);
trace_output (OP_VOID);
State.exception = PARM2;
break;
#endif
case SYS_read:
RETVAL = d10v_callback->read (d10v_callback, PARM1, MEMPTR (PARM2),
PARM3);
trace_input ("<read>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
break;
case SYS_write:
if (PARM1 == 1)
RETVAL = (int)d10v_callback->write_stdout (d10v_callback,
MEMPTR (PARM2), PARM3);
else
RETVAL = (int)d10v_callback->write (d10v_callback, PARM1,
MEMPTR (PARM2), PARM3);
trace_input ("<write>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
break;
case SYS_lseek:
{
unsigned long ret = d10v_callback->lseek (d10v_callback, PARM1,
(((unsigned long)PARM2) << 16) || (unsigned long)PARM3,
PARM4);
RETVAL_HIGH = ret >> 16;
RETVAL_LOW = ret & 0xffff;
}
trace_input ("<lseek>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2R3);
break;
case SYS_close:
RETVAL = d10v_callback->close (d10v_callback, PARM1);
trace_input ("<close>", OP_R2, OP_VOID, OP_VOID);
trace_output (OP_R2);
break;
case SYS_open:
RETVAL = d10v_callback->open (d10v_callback, MEMPTR (PARM1), PARM2);
trace_input ("<open>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
trace_input ("<open>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
break;
case SYS_exit:
State.exception = SIG_D10V_EXIT;
trace_input ("<exit>", OP_R2, OP_VOID, OP_VOID);
trace_output (OP_VOID);
break;
case SYS_stat:
/* stat system call */
{
struct stat host_stat;
reg_t buf;
RETVAL = stat (MEMPTR (PARM1), &host_stat);
buf = PARM2;
/* The hard-coded offsets and sizes were determined by using
* the D10V compiler on a test program that used struct stat.
*/
SW (buf, host_stat.st_dev);
SW (buf+2, host_stat.st_ino);
SW (buf+4, host_stat.st_mode);
SW (buf+6, host_stat.st_nlink);
SW (buf+8, host_stat.st_uid);
SW (buf+10, host_stat.st_gid);
SW (buf+12, host_stat.st_rdev);
SLW (buf+16, host_stat.st_size);
SLW (buf+20, host_stat.st_atime);
SLW (buf+28, host_stat.st_mtime);
SLW (buf+36, host_stat.st_ctime);
}
trace_input ("<stat>", OP_R2, OP_R3, OP_VOID);
trace_output (OP_R2);
break;
case SYS_chown:
RETVAL = chown (MEMPTR (PARM1), PARM2, PARM3);
trace_input ("<chown>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
break;
case SYS_chmod:
RETVAL = chmod (MEMPTR (PARM1), PARM2);
trace_input ("<chmod>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
break;
#ifdef SYS_utime
case SYS_utime:
/* Cast the second argument to void *, to avoid type mismatch
if a prototype is present. */
RETVAL = utime (MEMPTR (PARM1), (void *) MEMPTR (PARM2));
trace_input ("<utime>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2);
break;
#endif
#ifdef SYS_time
case SYS_time:
{
unsigned long ret = time (PARM1 ? MEMPTR (PARM1) : NULL);
RETVAL_HIGH = ret >> 16;
RETVAL_LOW = ret & 0xffff;
}
trace_input ("<time>", OP_R2, OP_R3, OP_R4);
trace_output (OP_R2R3);
break;
#endif
default:
abort ();
}
RETERR = (RETVAL == (uint16) -1) ? d10v_callback->get_errno(d10v_callback) : 0;
break;
}
}
}
/* tst0i */
void
OP_7000000 ()
{
trace_input ("tst0i", OP_REG, OP_CONSTANT16, OP_VOID);
State.F1 = State.F0;
State.F0 = (State.regs[OP[0]] & OP[1]) ? 1 : 0;
trace_output (OP_FLAG);
}
/* tst1i */
void
OP_F000000 ()
{
trace_input ("tst1i", OP_REG, OP_CONSTANT16, OP_VOID);
State.F1 = State.F0;
State.F0 = (~(State.regs[OP[0]]) & OP[1]) ? 1 : 0;
trace_output (OP_FLAG);
}
/* wait */
void
OP_5F80 ()
{
trace_input ("wait", OP_VOID, OP_VOID, OP_VOID);
State.IE = 1;
trace_output (OP_VOID);
}
/* xor */
void
OP_A00 ()
{
trace_input ("xor", OP_REG, OP_REG, OP_VOID);
State.regs[OP[0]] ^= State.regs[OP[1]];
trace_output (OP_REG);
}
/* xor3 */
void
OP_5000000 ()
{
trace_input ("xor3", OP_REG_OUTPUT, OP_REG, OP_CONSTANT16);
State.regs[OP[0]] = State.regs[OP[1]] ^ OP[2];
trace_output (OP_REG);
}