2981 lines
82 KiB
C
2981 lines
82 KiB
C
/* tc-dvp.c -- Assembler for the DVP
|
||
Copyright (C) 1997, 1998 Free Software Foundation.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include <stdio.h>
|
||
#include <ctype.h>
|
||
|
||
#include "as.h"
|
||
#include "subsegs.h"
|
||
/* Needed by opcode/dvp.h. */
|
||
#include "dis-asm.h"
|
||
#include "opcode/dvp.h"
|
||
#include "elf/mips.h"
|
||
|
||
#ifdef USE_STDARG
|
||
#include <stdarg.h>
|
||
#else
|
||
#include <varargs.h>
|
||
#endif
|
||
|
||
/* Value of VIF `nop' instruction. */
|
||
#define VIFNOP 0
|
||
|
||
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
||
|
||
/* Compute DMA operand index number of OP. */
|
||
#define DMA_OPERAND_INDEX(op) ((op) - dma_operands)
|
||
|
||
/* Our local label prefix. */
|
||
#define LOCAL_LABEL_PREFIX ".L"
|
||
/* Label prefix for end markers used in autocounts. */
|
||
#define END_LABEL_PREFIX ".L.end."
|
||
/* Label to use for unique labels. */
|
||
#define UNIQUE_LABEL_PREFIX ".L.dvptmp."
|
||
/* Prefix for mips version of labels defined in vu code.
|
||
Note that symbols that begin with '$' are local symbols
|
||
on mips targets, so we can't begin it with '$'. */
|
||
#define VU_LABEL_PREFIX "_$"
|
||
|
||
static long parse_float PARAMS ((char **, const char **));
|
||
static symbolS * create_label PARAMS ((const char *, const char *));
|
||
static symbolS * create_colon_label PARAMS ((int, const char *, const char *));
|
||
static char * unique_name PARAMS ((const char *));
|
||
static symbolS * compute_mpgloc PARAMS ((symbolS *, symbolS *, symbolS *));
|
||
static int compute_nloop PARAMS ((gif_type, int, int));
|
||
static void check_nloop PARAMS ((gif_type, int, int, int,
|
||
char *, unsigned int));
|
||
static long eval_expr PARAMS ((dvp_cpu, int, int, const char *, ...));
|
||
static long parse_dma_addr_autocount ();
|
||
static void inline_dma_data PARAMS ((int, DVP_INSN *));
|
||
static void setup_dma_autocount PARAMS ((const char *, DVP_INSN *, int));
|
||
|
||
static void insert_operand
|
||
PARAMS ((dvp_cpu, const dvp_opcode *, const dvp_operand *, int,
|
||
DVP_INSN *, offsetT, const char **));
|
||
static void insert_operand_final
|
||
PARAMS ((dvp_cpu, const dvp_operand *, int,
|
||
DVP_INSN *, offsetT, char *, unsigned int));
|
||
|
||
static void insert_mpg_marker PARAMS ((unsigned long));
|
||
static void insert_unpack_marker PARAMS ((unsigned long));
|
||
static int insert_file PARAMS ((const char *,
|
||
void (*) PARAMS ((unsigned long)),
|
||
unsigned long, int));
|
||
|
||
static int vif_insn_type PARAMS ((char));
|
||
static int vif_length_value PARAMS ((char, int, int, int));
|
||
static void install_vif_length PARAMS ((char *, int));
|
||
|
||
const char comment_chars[] = ";";
|
||
const char line_comment_chars[] = "#";
|
||
const char line_separator_chars[] = "!";
|
||
const char EXP_CHARS[] = "eE";
|
||
const char FLT_CHARS[] = "dD";
|
||
|
||
/* Current assembler state.
|
||
Instructions like mpg and direct are followed by a restricted set of
|
||
instructions. In the case of a '*' length argument an end marker must
|
||
be provided. (e.g. mpg is followed by vu insns until a .EndMpg is
|
||
seen).
|
||
|
||
Allowed state transitions:
|
||
ASM_INIT <--> ASM_MPG
|
||
ASM_DIRECT <--> ASM_GIF
|
||
ASM_UNPACK
|
||
ASM_VU
|
||
|
||
FIXME: Make the ASM_INIT -> ASM_VU a one way transition.
|
||
".vu" must be seen at the top of the file,
|
||
and cannot be switched out of.
|
||
*/
|
||
|
||
typedef enum {
|
||
ASM_INIT, ASM_DIRECT, ASM_MPG, ASM_UNPACK, ASM_VU, ASM_GIF
|
||
} asm_state;
|
||
|
||
/* We need to maintain a stack of the current and previous status to handle
|
||
such things as "direct ...; gifpacked ... ; .endgif ; .enddirect". */
|
||
#define MAX_STATE_DEPTH 2
|
||
static asm_state asm_state_stack[MAX_STATE_DEPTH];
|
||
/* Current state's index in the stack. */
|
||
static int cur_state_index;
|
||
/* Macro to fetch the current state. */
|
||
#define CUR_ASM_STATE (asm_state_stack[cur_state_index])
|
||
|
||
/* Functions to push/pop the state stack. */
|
||
static void push_asm_state PARAMS ((asm_state));
|
||
static void pop_asm_state PARAMS ((int));
|
||
static void set_asm_state PARAMS ((asm_state));
|
||
|
||
/* Set to non-zero if any non-vu insn seen.
|
||
Used to control type of relocations emitted. */
|
||
static int non_vu_insn_seen_p = 0;
|
||
|
||
/* Current cpu (machine variant) type state.
|
||
We copy the mips16 way of recording what the current machine type is in
|
||
the code. A label is created whenever necessary and has an "other" value
|
||
the denotes the machine type. */
|
||
static dvp_cpu cur_cpu;
|
||
/* Record the current mach type. */
|
||
static void record_mach PARAMS ((dvp_cpu, int));
|
||
/* Force emission of mach type label at next insn.
|
||
This isn't static as TC_START_LABEL uses it. */
|
||
int force_mach_label PARAMS ((void));
|
||
/* Given a dvp_cpu value, return the STO_DVP value to use. */
|
||
static int cpu_sto PARAMS ((dvp_cpu, const char **));
|
||
|
||
/* Nonzero if inside .DmaData. */
|
||
static int dma_data_state = 0;
|
||
/* Label of .DmaData (internally generated for inline data). */
|
||
static const char *dma_data_name;
|
||
|
||
/* Variable length VIF insn support. */
|
||
/* Label at start of insn's data. */
|
||
static symbolS *vif_data_start;
|
||
/* Label at end of insn's data. */
|
||
static symbolS *vif_data_end;
|
||
|
||
/* Special symbol $.mpgloc. The value is in bytes. */
|
||
static symbolS *mpgloc_sym;
|
||
|
||
/* GIF insn support. */
|
||
/* Type of insn. */
|
||
static int gif_insn_type;
|
||
/* Name of label of insn's data. */
|
||
static const char *gif_data_name;
|
||
/* Pointer to frag of insn. */
|
||
static fragS *gif_insn_frag;
|
||
/* Pointer to current gif insn in gif_insn_frag. */
|
||
static char *gif_insn_frag_loc;
|
||
/* The length value specified in the insn, or -1 if '*'. */
|
||
static int gif_user_value;
|
||
|
||
/* Count of vu insns seen since the last mpg.
|
||
Set to -1 to disable automatic mpg insertion. */
|
||
static int vu_count;
|
||
|
||
/* Non-zero if packing vif instructions in dma tags. */
|
||
static int dma_pack_vif_p;
|
||
|
||
/* Non-zero if dma insns are to be included in the output.
|
||
This is the default, but writing "if (! no_dma)" is klunky. */
|
||
static int output_dma = 1;
|
||
/* Non-zero if vif insns are to be included in the output. */
|
||
static int output_vif = 1;
|
||
|
||
/* Current opcode/operand for use by md_operand. */
|
||
static const dvp_opcode *cur_opcode;
|
||
static const dvp_operand *cur_operand;
|
||
|
||
/* Options for the `caller' argument to s_endmpg. */
|
||
typedef enum { ENDMPG_USER, ENDMPG_INTERNAL, ENDMPG_MIDDLE } endmpg_caller;
|
||
|
||
/* Relaxation support. */
|
||
#define RELAX_MPG 1
|
||
#define RELAX_DIRECT 2
|
||
/* vu insns aren't relaxed, but they use machine dependent frags so we
|
||
must handle them during relaxation */
|
||
#define RELAX_VU 3
|
||
#define RELAX_ENCODE(type, growth) (10 + (growth))
|
||
#define RELAX_GROWTH(state) ((state) - 10)
|
||
/* Return non-zero if STATE represents a relaxed state. */
|
||
#define RELAX_DONE_P(state) ((state) >= 10)
|
||
|
||
const char *md_shortopts = "";
|
||
|
||
struct option md_longopts[] =
|
||
{
|
||
#define OPTION_NO_DMA (OPTION_MD_BASE + 1)
|
||
{ "no-dma", no_argument, NULL, OPTION_NO_DMA },
|
||
#define OPTION_NO_DMA_VIF (OPTION_NO_DMA + 1)
|
||
{ "no-dma-vif", no_argument, NULL, OPTION_NO_DMA_VIF },
|
||
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof(md_longopts);
|
||
|
||
int
|
||
md_parse_option (c, arg)
|
||
int c;
|
||
char *arg;
|
||
{
|
||
switch (c)
|
||
{
|
||
case OPTION_NO_DMA :
|
||
output_dma = 0;
|
||
break;
|
||
case OPTION_NO_DMA_VIF :
|
||
output_dma = 0;
|
||
output_vif = 0;
|
||
break;
|
||
default :
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (stream)
|
||
FILE *stream;
|
||
{
|
||
fprintf (stream, "\
|
||
DVP options:\n\
|
||
-no-dma do not include DMA instructions in the output\n\
|
||
-no-dma-vif do not include DMA or VIF instructions in the output\n\
|
||
");
|
||
}
|
||
|
||
static void s_dmadata PARAMS ((int));
|
||
static void s_enddmadata PARAMS ((int));
|
||
static void s_dmapackvif PARAMS ((int));
|
||
static void s_enddirect PARAMS ((int));
|
||
static void s_endmpg PARAMS ((int));
|
||
static void s_endunpack PARAMS ((int));
|
||
static void s_endgif PARAMS ((int));
|
||
static void s_state PARAMS ((int));
|
||
|
||
/* The target specific pseudo-ops which we support. */
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
{ "word", cons, 4 },
|
||
{ "quad", cons, 16 },
|
||
{ "dmadata", s_dmadata, 0 },
|
||
{ "dmapackvif", s_dmapackvif, 0 },
|
||
{ "enddirect", s_enddirect, 0 },
|
||
{ "enddmadata", s_enddmadata, 0 },
|
||
{ "endmpg", s_endmpg, ENDMPG_USER },
|
||
{ "endunpack", s_endunpack, 0 },
|
||
{ "endgif", s_endgif, 0 },
|
||
{ "vu", s_state, ASM_VU },
|
||
{ NULL, NULL, 0 }
|
||
};
|
||
|
||
void
|
||
md_begin ()
|
||
{
|
||
/* Initialize the opcode tables.
|
||
This involves computing the hash chains. */
|
||
dvp_opcode_init_tables (0);
|
||
|
||
/* Force a mach type label for the first insn. */
|
||
force_mach_label ();
|
||
|
||
/* Initialize the parsing state. */
|
||
cur_state_index = 0;
|
||
set_asm_state (ASM_INIT);
|
||
|
||
/* Pack vif insns in dma tags by default. */
|
||
dma_pack_vif_p = 1;
|
||
|
||
/* Disable automatic mpg insertion. */
|
||
vu_count = -1;
|
||
|
||
/* Create special symbols. */
|
||
mpgloc_sym = expr_build_uconstant (0);
|
||
|
||
/* Set the type of the output file to r5900. */
|
||
bfd_set_arch_mach (stdoutput, bfd_arch_mips, 5900);
|
||
}
|
||
|
||
/* We need to keep a list of fixups. We can't simply generate them as
|
||
we go, because that would require us to first create the frag, and
|
||
that would screw up references to ``.''. */
|
||
|
||
struct dvp_fixup
|
||
{
|
||
/* the cpu this fixup is associated with */
|
||
dvp_cpu cpu;
|
||
/* index into `dvp_operands' */
|
||
int opindex;
|
||
/* byte offset from beginning of instruction */
|
||
int offset;
|
||
/* user specified value [when there is one] */
|
||
int user_value;
|
||
/* wl,cl values, only used with unpack insn */
|
||
short wl,cl;
|
||
/* the expression */
|
||
expressionS exp;
|
||
};
|
||
|
||
#define MAX_FIXUPS 5
|
||
|
||
static int fixup_count;
|
||
static struct dvp_fixup fixups[MAX_FIXUPS];
|
||
|
||
/* Given a cpu type and operand number, return a temporary reloc type
|
||
for use in generating the fixup that encodes the cpu type and operand. */
|
||
static int encode_fixup_reloc_type PARAMS ((dvp_cpu, int));
|
||
/* Given an encoded fixup reloc type, decode it into cpu and operand. */
|
||
static void decode_fixup_reloc_type PARAMS ((int, dvp_cpu *,
|
||
const dvp_operand **));
|
||
|
||
static void assemble_dma PARAMS ((char *));
|
||
static void assemble_gif PARAMS ((char *));
|
||
static void assemble_vif PARAMS ((char *));
|
||
static void assemble_vu PARAMS ((char *));
|
||
static const dvp_opcode * assemble_vu_insn PARAMS ((dvp_cpu,
|
||
const dvp_opcode *,
|
||
const dvp_operand *,
|
||
char **, char *));
|
||
static const dvp_opcode * assemble_one_insn PARAMS ((dvp_cpu,
|
||
const dvp_opcode *,
|
||
const dvp_operand *,
|
||
int, int,
|
||
char **, DVP_INSN *));
|
||
|
||
/* Main entry point for assembling an instruction. */
|
||
|
||
void
|
||
md_assemble (str)
|
||
char *str;
|
||
{
|
||
/* Skip leading white space. */
|
||
while (isspace (*str))
|
||
str++;
|
||
|
||
/* After a gif tag, no insns can appear until a .endgif is seen. */
|
||
if (CUR_ASM_STATE == ASM_GIF)
|
||
{
|
||
as_bad ("missing .endgif");
|
||
pop_asm_state (1);
|
||
}
|
||
/* Ditto for unpack. */
|
||
if (CUR_ASM_STATE == ASM_UNPACK)
|
||
{
|
||
as_bad ("missing .endunpack");
|
||
pop_asm_state (1);
|
||
}
|
||
#if 0 /* this doesn't work of course as gif insns may follow */
|
||
/* Ditto for direct. */
|
||
if (CUR_ASM_STATE == ASM_DIRECT)
|
||
{
|
||
as_bad ("missing .enddirect");
|
||
pop_asm_state (1);
|
||
}
|
||
#endif
|
||
|
||
if (CUR_ASM_STATE == ASM_INIT)
|
||
{
|
||
if (strncasecmp (str, "dma", 3) == 0)
|
||
assemble_dma (str);
|
||
else if (strncasecmp (str, "gif", 3) == 0)
|
||
assemble_gif (str);
|
||
else
|
||
assemble_vif (str);
|
||
non_vu_insn_seen_p = 1;
|
||
}
|
||
else if (CUR_ASM_STATE == ASM_DIRECT)
|
||
{
|
||
assemble_gif (str);
|
||
non_vu_insn_seen_p = 1;
|
||
}
|
||
else if (CUR_ASM_STATE == ASM_VU
|
||
|| CUR_ASM_STATE == ASM_MPG)
|
||
assemble_vu (str);
|
||
else
|
||
as_fatal ("internal error: unknown parse state");
|
||
}
|
||
|
||
/* Subroutine of md_assemble to assemble DMA instructions. */
|
||
|
||
static void
|
||
assemble_dma (str)
|
||
char *str;
|
||
{
|
||
DVP_INSN insn_buf[2];
|
||
/* Insn's length, in 32 bit words. */
|
||
int len;
|
||
/* Pointer to allocated frag. */
|
||
char *f;
|
||
int i;
|
||
const dvp_opcode *opcode;
|
||
|
||
if (output_dma)
|
||
{
|
||
/* Do an implicit alignment to a 16 byte boundary.
|
||
Do it now so that inline dma data labels are at the right place. */
|
||
/* ??? One can certainly argue all this implicit alignment is
|
||
questionable. The thing is assembler programming is all that will
|
||
mostly likely ever be done and not doing so forces an extra [and
|
||
arguably unnecessary] burden on the programmer. */
|
||
frag_align (4, 0, 0);
|
||
record_alignment (now_seg, 4);
|
||
}
|
||
|
||
/* This is the DMA tag. */
|
||
insn_buf[0] = 0;
|
||
insn_buf[1] = 0;
|
||
|
||
opcode = assemble_one_insn (DVP_DMA,
|
||
dma_opcode_lookup_asm (str), dma_operands,
|
||
0, 0, &str, insn_buf);
|
||
if (opcode == NULL)
|
||
return;
|
||
if (!output_dma)
|
||
return;
|
||
|
||
record_mach (DVP_DMA, 0);
|
||
|
||
f = frag_more (8);
|
||
|
||
/* Write out the DMA instruction. */
|
||
for (i = 0; i < 2; ++i)
|
||
md_number_to_chars (f + i * 4, insn_buf[i], 4);
|
||
|
||
/* Create any fixups. */
|
||
/* FIXME: It might eventually be possible to combine all the various
|
||
copies of this bit of code. */
|
||
for (i = 0; i < fixup_count; ++i)
|
||
{
|
||
int op_type, reloc_type, offset;
|
||
const dvp_operand *operand;
|
||
|
||
/* Create a fixup for this operand.
|
||
At this point we do not use a bfd_reloc_code_real_type for
|
||
operands residing in the insn, but instead just use the
|
||
operand index. This lets us easily handle fixups for any
|
||
operand type, although that is admittedly not a very exciting
|
||
feature. We pick a BFD reloc type in md_apply_fix. */
|
||
|
||
op_type = fixups[i].opindex;
|
||
offset = fixups[i].offset;
|
||
reloc_type = encode_fixup_reloc_type (DVP_DMA, op_type);
|
||
operand = &dma_operands[op_type];
|
||
fix_new_exp (frag_now, f + offset - frag_now->fr_literal, 4,
|
||
&fixups[i].exp,
|
||
(operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0,
|
||
(bfd_reloc_code_real_type) reloc_type);
|
||
}
|
||
|
||
/* The upper two words are vif insns. */
|
||
record_mach (DVP_VIF, 0);
|
||
|
||
/* If not doing dma/vif packing, fill out the insn with vif nops.
|
||
??? We take advantage of the fact that the default fill value of zero
|
||
is the vifnop insn. This occurs for example when handling mpg
|
||
alignment. It also occurs when one dma tag immediately follows the
|
||
previous one. */
|
||
if (! dma_pack_vif_p)
|
||
{
|
||
f = frag_more (8);
|
||
md_number_to_chars (f + 0, VIFNOP, 4);
|
||
md_number_to_chars (f + 4, VIFNOP, 4);
|
||
}
|
||
}
|
||
|
||
/* Subroutine of md_assemble to assemble VIF instructions. */
|
||
|
||
static void
|
||
assemble_vif (str)
|
||
char *str;
|
||
{
|
||
/* Space for the instruction.
|
||
The variable length insns can require much more space than this.
|
||
It is allocated later, when we know we have such an insn. */
|
||
DVP_INSN insn_buf[5];
|
||
/* Insn's length, in 32 bit words. */
|
||
int len;
|
||
/* Pointer to allocated frag. */
|
||
char *f;
|
||
int i,wl,cl;
|
||
const dvp_opcode *opcode;
|
||
fragS * insn_frag;
|
||
/* Name of file to read data from. */
|
||
const char *file;
|
||
/* Length in 32 bit words. */
|
||
int data_len;
|
||
/* Macro expansion, if there is one. */
|
||
char * macstr;
|
||
|
||
/* First check for macros. */
|
||
macstr = dvp_expand_macro (vif_macros, vif_macro_count, str);
|
||
if (macstr)
|
||
{
|
||
/* The macro may expand into several insns (delimited with '\n'),
|
||
so loop. */
|
||
char * next = macstr;
|
||
do
|
||
{
|
||
char *p = strchr (next, '\n');
|
||
if (p)
|
||
*p = 0;
|
||
assemble_vif (next);
|
||
next = p ? p + 1 : 0;
|
||
}
|
||
while (next);
|
||
free (macstr);
|
||
return;
|
||
}
|
||
|
||
opcode = assemble_one_insn (DVP_VIF,
|
||
vif_opcode_lookup_asm (str), vif_operands,
|
||
0, 0, &str, insn_buf);
|
||
if (opcode == NULL)
|
||
return;
|
||
|
||
if (opcode->flags & VIF_OPCODE_LENVAR)
|
||
len = 1; /* actual data follows later */
|
||
else if (opcode->flags & VIF_OPCODE_LEN2)
|
||
len = 2;
|
||
else if (opcode->flags & VIF_OPCODE_LEN5)
|
||
len = 5;
|
||
else
|
||
len = 1;
|
||
|
||
/* We still have to switch modes (if mpg for example) so we can't exit
|
||
early if -no-vif. */
|
||
|
||
if (output_vif)
|
||
{
|
||
/* Record the mach before doing the alignment so that we properly
|
||
disassemble any inserted vifnop's. For mpg and direct insns
|
||
force the recording of the mach type for the next insn. The data
|
||
will switch the mach type and we want to ensure it's switched
|
||
back. */
|
||
|
||
if (opcode->flags & (VIF_OPCODE_MPG | VIF_OPCODE_DIRECT))
|
||
record_mach (DVP_VIF, 1);
|
||
else
|
||
record_mach (DVP_VIF, 0);
|
||
|
||
/* For variable length instructions record a fixup that is the symbol
|
||
marking the end of the data. eval_expr will queue the fixup
|
||
which will then be emitted later. */
|
||
if (opcode->flags & VIF_OPCODE_LENVAR)
|
||
{
|
||
char *name;
|
||
|
||
asprintf (&name, "%s%s", LOCAL_LABEL_PREFIX,
|
||
unique_name ("varlen"));
|
||
vif_data_end = symbol_new (name, now_seg, 0, 0);
|
||
symbol_table_insert (vif_data_end);
|
||
fixups[fixup_count].cpu = DVP_VIF;
|
||
fixups[fixup_count].exp.X_op = O_symbol;
|
||
fixups[fixup_count].exp.X_add_symbol = vif_data_end;
|
||
fixups[fixup_count].exp.X_add_number = 0;
|
||
fixups[fixup_count].opindex = vif_operand_datalen_special;
|
||
fixups[fixup_count].offset = 0;
|
||
|
||
/* See what the user specified. */
|
||
vif_get_var_data (&file, &data_len);
|
||
if (file)
|
||
data_len = -1;
|
||
fixups[fixup_count].user_value = data_len;
|
||
/* Get the wl,cl values. Only useful for the unpack insn but
|
||
it doesn't hurt to always record them. */
|
||
vif_get_wl_cl (&wl, &cl);
|
||
fixups[fixup_count].wl = wl;
|
||
fixups[fixup_count].cl = cl;
|
||
++fixup_count;
|
||
}
|
||
|
||
/* Obtain space in which to store the instruction. */
|
||
|
||
if (opcode->flags & VIF_OPCODE_MPG)
|
||
{
|
||
/* The data must be aligned on a 64 bit boundary (so the mpg insn
|
||
comes just before that 64 bit boundary).
|
||
Do this by putting the mpg insn in a relaxable fragment
|
||
with a symbol that marks the beginning of the aligned data. */
|
||
|
||
/* Ensure relaxable fragments are in their own fragment.
|
||
Otherwise md_apply_fix3 mishandles fixups to insns earlier
|
||
in the fragment (because we set fr_opcode for the `mpg' insn
|
||
because it can move in the fragment). */
|
||
frag_wane (frag_now);
|
||
frag_new (0);
|
||
|
||
/* One could combine the previous two lines with the following.
|
||
They're not for clarity: keep separate the actions being
|
||
performed. */
|
||
|
||
/* This dance with frag_grow is so we can record frag_now in
|
||
insn_frag. frag_var always changes frag_now. We must allocate
|
||
the maximal amount of space we need so there's room to move
|
||
the insn in the frag during relaxation. */
|
||
frag_grow (8);
|
||
/* Allocate space for the fixed part. */
|
||
f = frag_more (4);
|
||
insn_frag = frag_now;
|
||
|
||
frag_var (rs_machine_dependent,
|
||
4, /* max chars */
|
||
0, /* variable part is empty at present */
|
||
RELAX_MPG, /* subtype */
|
||
NULL, /* no symbol */
|
||
0, /* offset */
|
||
f); /* opcode */
|
||
|
||
frag_align (3, 0, 0);
|
||
record_alignment (now_seg, 3);
|
||
|
||
/* Put a symbol at the start of data. The relaxation code uses
|
||
this to figure out how many bytes to insert. $.mpgloc
|
||
calculations also use it. */
|
||
vif_data_start = create_colon_label (STO_DVP_VU, LOCAL_LABEL_PREFIX,
|
||
unique_name ("mpg"));
|
||
insn_frag->fr_symbol = vif_data_start;
|
||
|
||
/* Get the value of mpgloc. If it wasn't '*'
|
||
then update $.mpgloc. */
|
||
{
|
||
int mpgloc = vif_get_mpgloc ();
|
||
if (mpgloc != -1)
|
||
{
|
||
mpgloc_sym->sy_value.X_op = O_constant;
|
||
/* The value is recorded in bytes. */
|
||
mpgloc_sym->sy_value.X_add_number = mpgloc * 8;
|
||
mpgloc_sym->sy_value.X_unsigned = 1;
|
||
}
|
||
}
|
||
}
|
||
else if (opcode->flags & VIF_OPCODE_DIRECT)
|
||
{
|
||
/* The data must be aligned on a 128 bit boundary (so the direct insn
|
||
comes just before that 128 bit boundary).
|
||
Do this by putting the direct insn in a relaxable fragment.
|
||
with a symbol that marks the beginning of the aligned data. */
|
||
|
||
/* Ensure relaxable fragments are in their own fragment.
|
||
Otherwise md_apply_fix3 mishandles fixups to insns earlier
|
||
in the fragment (because we set fr_opcode for the `direct' insn
|
||
because it can move in the fragment). */
|
||
frag_wane (frag_now);
|
||
frag_new (0);
|
||
|
||
/* One could combine the previous two lines with the following.
|
||
They're not for clarity: keep separate the actions being
|
||
performed. */
|
||
|
||
/* This dance with frag_grow is so we can record frag_now in
|
||
insn_frag. frag_var always changes frag_now. We must allocate
|
||
the maximal amount of space we need so there's room to move
|
||
the insn in the frag during relaxation. */
|
||
frag_grow (16);
|
||
/* Allocate space for the fixed part. */
|
||
f = frag_more (4);
|
||
insn_frag = frag_now;
|
||
|
||
frag_var (rs_machine_dependent,
|
||
12, /* max chars */
|
||
0, /* variable part is empty at present */
|
||
RELAX_DIRECT, /* subtype */
|
||
NULL, /* no symbol */
|
||
0, /* offset */
|
||
f); /* opcode */
|
||
|
||
frag_align (4, 0, 0);
|
||
record_alignment (now_seg, 4);
|
||
|
||
/* Put a symbol at the start of data. The relaxation code uses
|
||
this to figure out how many bytes to insert. */
|
||
vif_data_start = create_colon_label (0, LOCAL_LABEL_PREFIX,
|
||
unique_name ("direct"));
|
||
insn_frag->fr_symbol = vif_data_start;
|
||
}
|
||
else if (opcode->flags & VIF_OPCODE_UNPACK)
|
||
{
|
||
f = frag_more (len * 4);
|
||
insn_frag = frag_now;
|
||
/* Put a symbol at the start of data. $.unpackloc calculations
|
||
use it. */
|
||
/* ??? $.unpackloc is gone. Is this also used for data length
|
||
verification? */
|
||
vif_data_start = create_colon_label (STO_DVP_VIF, LOCAL_LABEL_PREFIX,
|
||
unique_name ("unpack"));
|
||
}
|
||
else
|
||
{
|
||
/* Reminder: it is important to fetch enough space in one call to
|
||
`frag_more'. We use (f - frag_now->fr_literal) to compute where
|
||
we are and we don't want frag_now to change between calls. */
|
||
f = frag_more (len * 4);
|
||
insn_frag = frag_now;
|
||
}
|
||
|
||
/* Write out the instruction. */
|
||
for (i = 0; i < len; ++i)
|
||
md_number_to_chars (f + i * 4, insn_buf[i], 4);
|
||
|
||
/* Create any fixups. */
|
||
/* FIXME: It might eventually be possible to combine all the various
|
||
copies of this bit of code. */
|
||
for (i = 0; i < fixup_count; ++i)
|
||
{
|
||
int op_type, reloc_type, offset;
|
||
const dvp_operand *operand;
|
||
fixS *fixP;
|
||
|
||
/* Create a fixup for this operand.
|
||
At this point we do not use a bfd_reloc_code_real_type for
|
||
operands residing in the insn, but instead just use the
|
||
operand index. This lets us easily handle fixups for any
|
||
operand type, although that is admittedly not a very exciting
|
||
feature. We pick a BFD reloc type in md_apply_fix. */
|
||
|
||
op_type = fixups[i].opindex;
|
||
offset = fixups[i].offset;
|
||
reloc_type = encode_fixup_reloc_type (DVP_VIF, op_type);
|
||
operand = &vif_operands[op_type];
|
||
fixP = fix_new_exp (insn_frag, f + offset - insn_frag->fr_literal, 4,
|
||
&fixups[i].exp,
|
||
(operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0,
|
||
(bfd_reloc_code_real_type) reloc_type);
|
||
fixP->tc_fix_data.user_value = fixups[i].user_value;
|
||
fixP->tc_fix_data.wl = fixups[i].wl;
|
||
fixP->tc_fix_data.cl = fixups[i].cl;
|
||
|
||
/* Set fx_tcbit so other parts of the code know this fixup is for
|
||
a vif insn. */
|
||
fixP->fx_tcbit = 1;
|
||
}
|
||
}
|
||
|
||
/* Handle variable length insns. */
|
||
|
||
if (opcode->flags & VIF_OPCODE_LENVAR)
|
||
{
|
||
/* See what the user specified. */
|
||
vif_get_var_data (&file, &data_len);
|
||
|
||
if (file)
|
||
{
|
||
int byte_len;
|
||
|
||
/* The handling for each of mpg,direct,unpack is basically the same:
|
||
- emit a label to set the mach type for the data we're inserting
|
||
- switch to the new assembler state
|
||
- insert the file
|
||
- call the `end' handler */
|
||
|
||
if (opcode->flags & VIF_OPCODE_MPG)
|
||
{
|
||
record_mach (DVP_VUUP, 1);
|
||
set_asm_state (ASM_MPG);
|
||
byte_len = insert_file (file, insert_mpg_marker, 0, 256 * 8);
|
||
s_endmpg (ENDMPG_INTERNAL);
|
||
}
|
||
else if (opcode->flags & VIF_OPCODE_DIRECT)
|
||
{
|
||
record_mach (DVP_GIF, 1);
|
||
set_asm_state (ASM_DIRECT);
|
||
byte_len = insert_file (file, NULL, 0, 0);
|
||
s_enddirect (1);
|
||
}
|
||
else if (opcode->flags & VIF_OPCODE_UNPACK)
|
||
{
|
||
int max_len = 0; /*unpack_max_byte_len (insn_buf[0]);*/
|
||
set_asm_state (ASM_UNPACK);
|
||
byte_len = insert_file (file, NULL /*insert_unpack_marker*/,
|
||
insn_buf[0], max_len);
|
||
s_endunpack (1);
|
||
}
|
||
else
|
||
as_fatal ("internal error: unknown cpu type for variable length vif insn");
|
||
}
|
||
else /* file == NULL */
|
||
{
|
||
/* data_len == -1 means the value must be computed from
|
||
the data. */
|
||
if (data_len <= -2)
|
||
as_bad ("invalid data length");
|
||
|
||
if (output_vif && data_len != -1)
|
||
install_vif_length (f, data_len);
|
||
|
||
if (opcode->flags & VIF_OPCODE_MPG)
|
||
{
|
||
set_asm_state (ASM_MPG);
|
||
/* Enable automatic mpg insertion every 256 insns. */
|
||
vu_count = 0;
|
||
}
|
||
else if (opcode->flags & VIF_OPCODE_DIRECT)
|
||
set_asm_state (ASM_DIRECT);
|
||
else if (opcode->flags & VIF_OPCODE_UNPACK)
|
||
set_asm_state (ASM_UNPACK);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Subroutine of md_assemble to assemble GIF instructions. */
|
||
|
||
static void
|
||
assemble_gif (str)
|
||
char *str;
|
||
{
|
||
DVP_INSN insn_buf[4];
|
||
const dvp_opcode *opcode;
|
||
char *f;
|
||
int i;
|
||
|
||
insn_buf[0] = insn_buf[1] = insn_buf[2] = insn_buf[3] = 0;
|
||
|
||
opcode = assemble_one_insn (DVP_GIF,
|
||
gif_opcode_lookup_asm (str), gif_operands,
|
||
0, 0, &str, insn_buf);
|
||
if (opcode == NULL)
|
||
return;
|
||
|
||
/* Do an implicit alignment to a 16 byte boundary. */
|
||
frag_align (4, 0, 0);
|
||
record_alignment (now_seg, 4);
|
||
|
||
/* Insert a label so we can compute the number of quadwords when the
|
||
.endgif is seen. This is put before the mach type label because gif
|
||
insns are followed by data and we don't want the disassembler to try
|
||
to disassemble them as mips insns (since it uses the st_other field)
|
||
of the closest label to choose the mach type and since we don't have
|
||
a special st_other value for "data". */
|
||
gif_data_name = S_GET_NAME (create_colon_label (0, LOCAL_LABEL_PREFIX,
|
||
unique_name ("gifdata")));
|
||
|
||
record_mach (DVP_GIF, 1);
|
||
|
||
gif_insn_frag_loc = f = frag_more (16);
|
||
gif_insn_frag = frag_now;
|
||
for (i = 0; i < 4; ++i)
|
||
md_number_to_chars (f + i * 4, insn_buf[i], 4);
|
||
|
||
/* Record the type of the gif tag so we know how to compute nloop
|
||
in s_endgif. */
|
||
if (strcmp (opcode->mnemonic, "gifpacked") == 0)
|
||
gif_insn_type = GIF_PACKED;
|
||
else if (strcmp (opcode->mnemonic, "gifreglist") == 0)
|
||
gif_insn_type = GIF_REGLIST;
|
||
else if (strcmp (opcode->mnemonic, "gifimage") == 0)
|
||
gif_insn_type = GIF_IMAGE;
|
||
else
|
||
abort ();
|
||
push_asm_state (ASM_GIF);
|
||
}
|
||
|
||
/* Subroutine of md_assemble to assemble VU instructions. */
|
||
|
||
static void
|
||
assemble_vu (str)
|
||
char *str;
|
||
{
|
||
int i;
|
||
char *f;
|
||
const dvp_opcode *opcode;
|
||
/* The lower instruction has the lower address so insns[0] = lower insn,
|
||
insns[1] = upper insn. */
|
||
DVP_INSN insns[2];
|
||
fragS * insn_frag;
|
||
|
||
/* Handle automatic mpg insertion if enabled. */
|
||
if (CUR_ASM_STATE == ASM_MPG
|
||
&& vu_count == 256)
|
||
insert_mpg_marker (0);
|
||
|
||
/* Do an implicit alignment to a 8 byte boundary. */
|
||
frag_align (3, 0, 0);
|
||
record_alignment (now_seg, 3);
|
||
|
||
record_mach (DVP_VUUP, 0);
|
||
|
||
#ifdef VERTICAL_BAR_SEPARATOR
|
||
char *p = strchr (str, '|');
|
||
|
||
if (p == NULL)
|
||
{
|
||
as_bad ("lower slot missing in `%s'", str);
|
||
return;
|
||
}
|
||
|
||
*p = 0;
|
||
opcode = assemble_one_insn (DVP_VUUP,
|
||
vu_upper_opcode_lookup_asm (str), vu_operands,
|
||
0, 4, &str, &insns[1]);
|
||
*p = '|';
|
||
str = p + 1;
|
||
#else
|
||
opcode = assemble_one_insn (DVP_VUUP,
|
||
vu_upper_opcode_lookup_asm (str), vu_operands,
|
||
0, 4, &str, &insns[1]);
|
||
#endif
|
||
|
||
/* Don't assemble next one if we couldn't assemble the first. */
|
||
if (opcode == NULL)
|
||
return;
|
||
|
||
/* Assemble the lower insn.
|
||
Pass `fixup_count' for `init_fixup_count' so that we don't clobber
|
||
any fixups the upper insn had. */
|
||
opcode = assemble_one_insn (DVP_VULO,
|
||
vu_lower_opcode_lookup_asm (str), vu_operands,
|
||
fixup_count, 0, &str, &insns[0]);
|
||
if (opcode == NULL)
|
||
return;
|
||
|
||
/* If there were fixups and we're inside mpg, create a machine dependent
|
||
fragment so that we can record the current value of $.mpgloc in fr_symbol.
|
||
Reminder: it is important to fetch enough space in one call to
|
||
`frag_more'. We use (f - frag_now->fr_literal) to compute where
|
||
we are and we don't want frag_now to change between calls. */
|
||
if (fixup_count != 0
|
||
&& CUR_ASM_STATE == ASM_MPG)
|
||
{
|
||
symbolS * cur_mpgloc;
|
||
|
||
/* Ensure we get a new frag. */
|
||
frag_wane (frag_now);
|
||
frag_new (0);
|
||
|
||
/* Compute the current $.mpgloc. */
|
||
cur_mpgloc = compute_mpgloc (mpgloc_sym, vif_data_start,
|
||
expr_build_dot ());
|
||
|
||
/* We need to use frag_now afterwards, so we can't just call frag_var.
|
||
Instead we use frag_more and save the value of frag_now in
|
||
insn_frag. */
|
||
f = frag_more (8);
|
||
insn_frag = frag_now;
|
||
/* Turn the frag into a machine dependent frag. */
|
||
frag_variant (rs_machine_dependent,
|
||
0, /* max chars */
|
||
0, /* no variable part */
|
||
RELAX_VU, /* subtype */
|
||
cur_mpgloc, /* $.mpgloc */
|
||
0, /* offset */
|
||
NULL); /* opcode */
|
||
}
|
||
else
|
||
{
|
||
f = frag_more (8);
|
||
insn_frag = frag_now;
|
||
}
|
||
|
||
/* Write out the instructions. */
|
||
md_number_to_chars (f, insns[0], 4);
|
||
md_number_to_chars (f + 4, insns[1], 4);
|
||
|
||
/* Create any fixups. */
|
||
for (i = 0; i < fixup_count; ++i)
|
||
{
|
||
int op_type, reloc_type;
|
||
const dvp_operand *operand;
|
||
dvp_cpu cpu;
|
||
|
||
/* Create a fixup for this operand.
|
||
At this point we do not use a bfd_reloc_code_real_type for
|
||
operands residing in the insn, but instead just use the
|
||
operand index. This lets us easily handle fixups for any
|
||
operand type, although that is admittedly not a very exciting
|
||
feature. We pick a BFD reloc type in md_apply_fix. */
|
||
|
||
cpu = fixups[i].cpu;
|
||
op_type = fixups[i].opindex;
|
||
reloc_type = encode_fixup_reloc_type (cpu, op_type);
|
||
operand = &vu_operands[op_type];
|
||
|
||
/* Branch operands inside mpg have to be handled specially.
|
||
We want a pc relative relocation in a section different from our own.
|
||
See the br-2.s dejagnu testcase for a good example. */
|
||
if (CUR_ASM_STATE == ASM_MPG
|
||
&& (operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0)
|
||
{
|
||
symbolS *e1,*e2,*diff_expr;
|
||
|
||
/* For "br foo" we want "foo - (. + 8)". */
|
||
e1 = expr_build_binary (O_add, insn_frag->fr_symbol,
|
||
expr_build_uconstant (8));
|
||
e2 = make_expr_symbol (&fixups[i].exp);
|
||
diff_expr = expr_build_binary (O_subtract, e2, e1);
|
||
fixups[i].exp.X_op = O_symbol;
|
||
fixups[i].exp.X_add_symbol = diff_expr;
|
||
fixups[i].exp.X_add_number = 0;
|
||
}
|
||
|
||
fix_new_exp (insn_frag, f + fixups[i].offset - insn_frag->fr_literal, 4,
|
||
&fixups[i].exp,
|
||
CUR_ASM_STATE == ASM_MPG /* pcrel */
|
||
? 0
|
||
: (operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0,
|
||
(bfd_reloc_code_real_type) reloc_type);
|
||
}
|
||
|
||
/* If this was the "loi" pseudo-insn, we need to set the `i' bit. */
|
||
if (strcmp (opcode->mnemonic, "loi") == 0)
|
||
f[7] |= 0x80;
|
||
|
||
/* Increment the vu insn counter.
|
||
If get reach 256 we need to insert an `mpg'. */
|
||
++vu_count;
|
||
}
|
||
|
||
/* Assemble one instruction at *PSTR.
|
||
CPU indicates what component we're assembling for.
|
||
The assembled instruction is stored in INSN_BUF.
|
||
OPCODE is a pointer to the head of the hash chain.
|
||
INIT_FIXUP_COUNT is the initial value for `fixup_count'.
|
||
It exists to allow the fixups for multiple calls to this insn to be
|
||
queued up before actually emitting them.
|
||
*PSTR is updated to point passed the parsed instruction.
|
||
|
||
If the insn is successfully parsed the result is a pointer to the opcode
|
||
entry that successfully matched and *PSTR is updated to point passed
|
||
the parsed insn. If an error occurs the result is NULL and *PSTR is left
|
||
at some random point in the string (??? may wish to leave it pointing where
|
||
the error occured). */
|
||
|
||
static const dvp_opcode *
|
||
assemble_one_insn (cpu, opcode, operand_table, init_fixup_count, fixup_offset,
|
||
pstr, insn_buf)
|
||
dvp_cpu cpu;
|
||
const dvp_opcode *opcode;
|
||
const dvp_operand *operand_table;
|
||
int init_fixup_count;
|
||
int fixup_offset;
|
||
char **pstr;
|
||
DVP_INSN *insn_buf;
|
||
{
|
||
char *start, *str;
|
||
|
||
/* Keep looking until we find a match. */
|
||
|
||
start = str = *pstr;
|
||
for ( ; opcode != NULL; opcode = DVP_OPCODE_NEXT_ASM (opcode))
|
||
{
|
||
int past_opcode_p, num_suffixes;
|
||
const unsigned char *syn;
|
||
|
||
/* Ensure the mnemonic part matches. */
|
||
for (str = start, syn = opcode->mnemonic; *syn != '\0'; ++str, ++syn)
|
||
if (tolower (*str) != tolower (*syn))
|
||
break;
|
||
if (*syn != '\0')
|
||
continue;
|
||
|
||
/* Scan the syntax string. If it doesn't match, try the next one. */
|
||
|
||
dvp_opcode_init_parse ();
|
||
insn_buf[opcode->opcode_word] = opcode->value;
|
||
fixup_count = init_fixup_count;
|
||
past_opcode_p = 0;
|
||
num_suffixes = 0;
|
||
|
||
/* We don't check for (*str != '\0') here because we want to parse
|
||
any trailing fake arguments in the syntax string. */
|
||
for (/*str = start, */ syn = opcode->syntax; *syn != '\0'; )
|
||
{
|
||
int mods,index;
|
||
const dvp_operand *operand;
|
||
const char *errmsg;
|
||
long value;
|
||
|
||
/* Non operand chars must match exactly.
|
||
Operand chars that are letters are not part of symbols
|
||
and are case insensitive. */
|
||
if (*syn < 128)
|
||
{
|
||
if (tolower (*str) == tolower (*syn))
|
||
{
|
||
if (*syn == ' ')
|
||
past_opcode_p = 1;
|
||
++syn;
|
||
++str;
|
||
}
|
||
else
|
||
break;
|
||
continue;
|
||
}
|
||
|
||
/* We have a suffix or an operand. Pick out any modifiers. */
|
||
mods = 0;
|
||
index = DVP_OPERAND_INDEX (*syn);
|
||
while (DVP_MOD_P (operand_table[index].flags))
|
||
{
|
||
mods |= operand_table[index].flags & DVP_MOD_BITS;
|
||
++syn;
|
||
index = DVP_OPERAND_INDEX (*syn);
|
||
}
|
||
operand = operand_table + index;
|
||
|
||
if (operand->flags & DVP_OPERAND_FAKE)
|
||
{
|
||
long value = 0;
|
||
|
||
if (operand->flags & DVP_OPERAND_DMA_INLINE)
|
||
{
|
||
inline_dma_data ((mods & DVP_OPERAND_AUTOCOUNT) != 0,
|
||
insn_buf);
|
||
++syn;
|
||
continue;
|
||
}
|
||
|
||
if (operand->parse)
|
||
{
|
||
errmsg = NULL;
|
||
value = (*operand->parse) (opcode, operand, mods,
|
||
&str, &errmsg);
|
||
if (errmsg)
|
||
break;
|
||
}
|
||
if (operand->insert)
|
||
{
|
||
errmsg = NULL;
|
||
(*operand->insert) (opcode, operand, mods, insn_buf,
|
||
(offsetT) value, &errmsg);
|
||
/* If we get an error, go on to try the next insn. */
|
||
if (errmsg)
|
||
break;
|
||
}
|
||
++syn;
|
||
continue;
|
||
}
|
||
|
||
/* Are we finished with suffixes? */
|
||
if (!past_opcode_p)
|
||
{
|
||
long suf_value;
|
||
|
||
if (!(operand->flags & DVP_OPERAND_SUFFIX))
|
||
as_fatal ("internal error: bad opcode table, missing suffix flag");
|
||
|
||
/* If we're at a space in the input string, we want to skip the
|
||
remaining suffixes. There may be some fake ones though, so
|
||
just go on to try the next one. */
|
||
if (*str == ' ')
|
||
{
|
||
++syn;
|
||
continue;
|
||
}
|
||
|
||
/* Parse the suffix. */
|
||
errmsg = NULL;
|
||
suf_value = (*operand->parse) (opcode, operand, mods, &str,
|
||
&errmsg);
|
||
if (errmsg)
|
||
{
|
||
/* This can happen, for example, in ARC's in "blle foo" and
|
||
we're currently using the template "b%q%.n %j". The "bl"
|
||
insn occurs later in the table so "lle" isn't an illegal
|
||
suffix. */
|
||
break;
|
||
}
|
||
|
||
/* Insert the suffix's value into the insn. */
|
||
insert_operand (cpu, opcode, operand, mods, insn_buf,
|
||
(offsetT) suf_value, &errmsg);
|
||
|
||
++syn;
|
||
continue;
|
||
}
|
||
|
||
/* This is an operand, either a register or an expression of
|
||
some kind. */
|
||
|
||
value = 0;
|
||
|
||
if (operand->flags & DVP_OPERAND_SUFFIX)
|
||
as_fatal ("internal error: bad opcode table, suffix wrong");
|
||
|
||
/* Is there anything left to parse?
|
||
We don't check for this at the top because we want to parse
|
||
any trailing fake arguments in the syntax string. */
|
||
/* ??? This doesn't allow operands with a legal value of "". */
|
||
if (*str == '\0')
|
||
break;
|
||
|
||
/* Parse the operand. */
|
||
if (operand->flags & DVP_OPERAND_FLOAT)
|
||
{
|
||
errmsg = 0;
|
||
value = parse_float (&str, &errmsg);
|
||
if (errmsg)
|
||
break;
|
||
}
|
||
else if ((operand->flags & DVP_OPERAND_DMA_ADDR)
|
||
&& (mods & DVP_OPERAND_AUTOCOUNT))
|
||
{
|
||
errmsg = 0;
|
||
value = parse_dma_addr_autocount (opcode, operand, mods,
|
||
insn_buf, &str, &errmsg);
|
||
if (errmsg)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
char *origstr,*hold;
|
||
expressionS exp;
|
||
|
||
/* First see if there is a special parser. */
|
||
origstr = str;
|
||
if (operand->parse)
|
||
{
|
||
errmsg = NULL;
|
||
value = (*operand->parse) (opcode, operand, mods,
|
||
&str, &errmsg);
|
||
if (errmsg)
|
||
break;
|
||
}
|
||
|
||
/* If there wasn't a special parser, or there was and it
|
||
left the input stream unchanged, use the general
|
||
expression parser. */
|
||
if (str == origstr)
|
||
{
|
||
hold = input_line_pointer;
|
||
input_line_pointer = str;
|
||
/* Set cur_{opcode,operand} for md_operand. */
|
||
cur_opcode = opcode;
|
||
cur_operand = operand;
|
||
expression (&exp);
|
||
cur_opcode = NULL;
|
||
str = input_line_pointer;
|
||
input_line_pointer = hold;
|
||
|
||
if (exp.X_op == O_illegal
|
||
|| exp.X_op == O_absent)
|
||
break;
|
||
else if (exp.X_op == O_constant)
|
||
value = exp.X_add_number;
|
||
else if (exp.X_op == O_register)
|
||
as_fatal ("internal error: got O_register");
|
||
else
|
||
{
|
||
/* We need to generate a fixup for this expression. */
|
||
if (fixup_count >= MAX_FIXUPS)
|
||
as_fatal ("internal error: too many fixups");
|
||
fixups[fixup_count].cpu = cpu;
|
||
fixups[fixup_count].exp = exp;
|
||
fixups[fixup_count].opindex = index;
|
||
/* FIXME: Revisit. Do we really need operand->word?
|
||
The endianness of a 128 bit DMAtag is rather
|
||
twisted. How about defining word 0 as the word with
|
||
the lowest address and basing operand-shift off that.
|
||
operand->word could then be deleted. */
|
||
fixups[fixup_count].offset = fixup_offset;
|
||
if (operand->word != 0)
|
||
fixups[fixup_count].offset += operand->word * 4;
|
||
else
|
||
fixups[fixup_count].offset += (operand->shift / 32) * 4;
|
||
++fixup_count;
|
||
value = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Insert the register or expression into the instruction. */
|
||
errmsg = NULL;
|
||
insert_operand (cpu, opcode, operand, mods, insn_buf,
|
||
(offsetT) value, &errmsg);
|
||
if (errmsg != (const char *) NULL)
|
||
break;
|
||
|
||
++syn;
|
||
}
|
||
|
||
/* If we're at the end of the syntax string, we're done. */
|
||
if (*syn == '\0')
|
||
{
|
||
int i;
|
||
|
||
/* For the moment we assume a valid `str' can only contain blanks
|
||
now. IE: We needn't try again with a longer version of the
|
||
insn and it is assumed that longer versions of insns appear
|
||
before shorter ones (eg: lsr r2,r3,1 vs lsr r2,r3). */
|
||
|
||
while (isspace (*str))
|
||
++str;
|
||
|
||
if (*str != '\0'
|
||
#ifndef VERTICAL_BAR_SEPARATOR
|
||
&& cpu != DVP_VUUP
|
||
#endif
|
||
)
|
||
as_bad ("junk at end of line: `%s'", str);
|
||
|
||
/* It's now up to the caller to emit the instruction and any
|
||
relocations. */
|
||
*pstr = str;
|
||
return opcode;
|
||
}
|
||
|
||
/* Try the next entry. */
|
||
}
|
||
|
||
as_bad ("bad instruction `%s'", start);
|
||
return 0;
|
||
}
|
||
|
||
/* Given a dvp cpu type, return it's STO_DVP value.
|
||
The label prefix to use is stored in *PNAME. */
|
||
|
||
static int
|
||
cpu_sto (cpu, pname)
|
||
dvp_cpu cpu;
|
||
const char **pname;
|
||
{
|
||
switch (cpu)
|
||
{
|
||
case DVP_DMA : *pname = ".dma."; return STO_DVP_DMA;
|
||
case DVP_VIF : *pname = ".vif."; return STO_DVP_VIF;
|
||
case DVP_GIF : *pname = ".gif."; return STO_DVP_GIF;
|
||
case DVP_VUUP : *pname = ".vu."; return STO_DVP_VU;
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Record the current mach type in the object file.
|
||
If FORCE_NEXT_P is non-zero, force a label to be emitted the next time
|
||
we're called. This is useful for variable length instructions that can
|
||
have labels embedded within them. */
|
||
|
||
static void
|
||
record_mach (cpu, force_next_p)
|
||
dvp_cpu cpu;
|
||
int force_next_p;
|
||
{
|
||
symbolS *label;
|
||
const char *name;
|
||
int sto;
|
||
|
||
if (cpu == cur_cpu)
|
||
return;
|
||
|
||
sto = cpu_sto (cpu, &name);
|
||
|
||
label = create_colon_label (sto, "", unique_name (name));
|
||
|
||
if (force_next_p)
|
||
cur_cpu = DVP_UNKNOWN;
|
||
else
|
||
cur_cpu = cpu;
|
||
}
|
||
|
||
/* Force emission of mach type label at next insn.
|
||
This isn't static as TC_START_LABEL uses it.
|
||
The result is the value of TC_START_LABEL. */
|
||
|
||
int
|
||
force_mach_label ()
|
||
{
|
||
cur_cpu = DVP_UNKNOWN;
|
||
return 1;
|
||
}
|
||
|
||
/* Push/pop the current parsing state. */
|
||
|
||
static void
|
||
push_asm_state (new_state)
|
||
asm_state new_state;
|
||
{
|
||
++cur_state_index;
|
||
if (cur_state_index == MAX_STATE_DEPTH)
|
||
as_fatal ("internal error: unexpected state push");
|
||
asm_state_stack[cur_state_index] = new_state;
|
||
}
|
||
|
||
/* TOP_OK_P is non-zero if it's ok that we're at the top of the stack.
|
||
This happens if there are errors in the assembler code.
|
||
We just reset the stack to its "init" state. */
|
||
|
||
static void
|
||
pop_asm_state (top_ok_p)
|
||
int top_ok_p;
|
||
{
|
||
if (cur_state_index == 0)
|
||
{
|
||
if (top_ok_p)
|
||
asm_state_stack[cur_state_index] = ASM_INIT;
|
||
else
|
||
as_fatal ("internal error: unexpected state pop");
|
||
}
|
||
else
|
||
--cur_state_index;
|
||
}
|
||
|
||
static void
|
||
set_asm_state (state)
|
||
asm_state state;
|
||
{
|
||
CUR_ASM_STATE = state;
|
||
}
|
||
|
||
void
|
||
md_operand (expressionP)
|
||
expressionS *expressionP;
|
||
{
|
||
/* Check if this is a '*' for mpgloc. */
|
||
if (cur_opcode
|
||
&& (cur_opcode->flags & VIF_OPCODE_MPG) != 0
|
||
&& (cur_operand->flags & DVP_OPERAND_VU_ADDRESS) != 0
|
||
&& *input_line_pointer == '*')
|
||
{
|
||
expressionP->X_op = O_symbol;
|
||
expressionP->X_add_symbol = mpgloc_sym;
|
||
expressionP->X_add_number = 0;
|
||
|
||
/* Advance over the '*'. */
|
||
++input_line_pointer;
|
||
}
|
||
}
|
||
|
||
valueT
|
||
md_section_align (segment, size)
|
||
segT segment;
|
||
valueT size;
|
||
{
|
||
int align = bfd_get_section_alignment (stdoutput, segment);
|
||
return ((size + (1 << align) - 1) & (-1 << align));
|
||
}
|
||
|
||
symbolS *
|
||
md_undefined_symbol (name)
|
||
char *name;
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Called after parsing the file via md_after_pass_hook. */
|
||
|
||
void
|
||
dvp_after_pass_hook ()
|
||
{
|
||
/* If doing dma packing, ensure the last dma tag is filled out. */
|
||
if (dma_pack_vif_p)
|
||
{
|
||
/* Nothing to do as vifnops are zero and frag_align at beginning
|
||
of dmatag is all we need. */
|
||
}
|
||
|
||
#if 0 /* ??? Doesn't work unless we keep track of the nested include file
|
||
level. */
|
||
/* Check for missing .EndMpg, and supply one if necessary. */
|
||
if (CUR_ASM_STATE == ASM_MPG)
|
||
s_endmpg (ENDMPG_INTERNAL);
|
||
else if (CUR_ASM_STATE == ASM_DIRECT)
|
||
s_enddirect (0);
|
||
else if (CUR_ASM_STATE == ASM_UNPACK)
|
||
s_endunpack (0);
|
||
#endif
|
||
}
|
||
|
||
/* Called via tc_frob_label when a label is defined. */
|
||
|
||
void
|
||
dvp_frob_label (sym)
|
||
symbolS *sym;
|
||
{
|
||
const char * name = S_GET_NAME (sym);
|
||
|
||
/* All labels in vu code must be specially marked for the disassembler.
|
||
The disassembler ignores all previous information at each new label
|
||
(that has a higher address than the last one). */
|
||
if (CUR_ASM_STATE == ASM_MPG
|
||
|| CUR_ASM_STATE == ASM_VU)
|
||
S_SET_OTHER (sym, STO_DVP_VU);
|
||
|
||
/* If inside an mpg, move vu space labels to their own section and create
|
||
the corresponding _$ version in normal space. */
|
||
|
||
if (CUR_ASM_STATE == ASM_MPG
|
||
/* Only do this special processing for user specified symbols.
|
||
Not sure how we can distinguish them other than by some prefix. */
|
||
&& *name != '.' && *name != '$'
|
||
/* Check for recursive invocation creating the _$name. */
|
||
&& strncmp (name, VU_LABEL_PREFIX, sizeof (VU_LABEL_PREFIX) - 1) != 0)
|
||
{
|
||
/* Move this symbol to vu space. */
|
||
symbolS * cur_mpgloc = compute_mpgloc (mpgloc_sym, vif_data_start,
|
||
expr_build_dot ());
|
||
S_SET_SEGMENT (sym, expr_section);
|
||
sym->sy_value = cur_mpgloc->sy_value;
|
||
sym->sy_frag = &zero_address_frag;
|
||
|
||
/* Create the _$ symbol in normal space. */
|
||
create_colon_label (STO_DVP_VU, VU_LABEL_PREFIX, name);
|
||
}
|
||
}
|
||
|
||
/* mpg/direct alignment is handled via relaxation */
|
||
|
||
/* Return an initial guess of the length by which a fragment must grow to
|
||
hold a branch to reach its destination.
|
||
Also updates fr_type/fr_subtype as necessary.
|
||
|
||
Called just before doing relaxation.
|
||
Any symbol that is now undefined will not become defined.
|
||
The guess for fr_var is ACTUALLY the growth beyond fr_fix.
|
||
Whatever we do to grow fr_fix or fr_var contributes to our returned value.
|
||
Although it may not be explicit in the frag, pretend fr_var starts with a
|
||
0 value. */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragP, segment)
|
||
fragS * fragP;
|
||
segT segment;
|
||
{
|
||
/* Our initial estimate is always 0. */
|
||
return 0;
|
||
}
|
||
|
||
/* Perform the relaxation.
|
||
All we have to do is figure out how many bytes we need to insert to
|
||
get to the recorded symbol (which is at the required alignment).
|
||
This function is also called for machine dependent vu insn frags.
|
||
In this case the growth is always 0. */
|
||
|
||
long
|
||
dvp_relax_frag (fragP, stretch)
|
||
fragS * fragP;
|
||
long stretch;
|
||
{
|
||
/* Address of variable part. */
|
||
long address = fragP->fr_address + fragP->fr_fix;
|
||
/* Symbol marking start of data. */
|
||
symbolS * symbolP = fragP->fr_symbol;
|
||
/* Address of the symbol. */
|
||
long target;
|
||
long growth;
|
||
|
||
/* subtype >= 10 means "done" */
|
||
if (RELAX_DONE_P (fragP->fr_subtype))
|
||
return 0;
|
||
|
||
/* vu insn? */
|
||
if (fragP->fr_subtype == RELAX_VU)
|
||
{
|
||
fragP->fr_subtype = RELAX_ENCODE (RELAX_VU, 0);
|
||
return 0;
|
||
}
|
||
|
||
target = S_GET_VALUE (symbolP) + symbolP->sy_frag->fr_address;
|
||
|
||
if (fragP->fr_subtype == RELAX_MPG)
|
||
{
|
||
growth = target - address;
|
||
if (growth < 0)
|
||
as_fatal ("internal error: bad mpg alignment handling");
|
||
fragP->fr_subtype = RELAX_ENCODE (RELAX_MPG, growth);
|
||
return growth;
|
||
}
|
||
|
||
if (fragP->fr_subtype == RELAX_DIRECT)
|
||
{
|
||
growth = target - address;
|
||
if (growth < 0)
|
||
as_fatal ("internal error: bad direct alignment handling");
|
||
fragP->fr_subtype = RELAX_ENCODE (RELAX_DIRECT, growth);
|
||
return growth;
|
||
}
|
||
|
||
as_fatal ("internal error: unknown fr_subtype");
|
||
}
|
||
|
||
/* *fragP has been relaxed to its final size, and now needs to have
|
||
the bytes inside it modified to conform to the new size.
|
||
|
||
Called after relaxation is finished.
|
||
fragP->fr_type == rs_machine_dependent.
|
||
fragP->fr_subtype is the subtype of what the address relaxed to. */
|
||
|
||
void
|
||
md_convert_frag (abfd, sec, fragP)
|
||
bfd * abfd;
|
||
segT sec;
|
||
fragS * fragP;
|
||
{
|
||
int growth = RELAX_GROWTH (fragP->fr_subtype);
|
||
|
||
fragP->fr_fix += growth;
|
||
|
||
if (growth != 0)
|
||
{
|
||
/* We had to grow this fragment. Shift the mpg/direct insn to the end
|
||
(so it abuts the following data). */
|
||
DVP_INSN insn = bfd_getl32 (fragP->fr_opcode);
|
||
md_number_to_chars (fragP->fr_opcode, VIFNOP, 4);
|
||
if (growth > 4)
|
||
md_number_to_chars (fragP->fr_opcode + 4, VIFNOP, 4);
|
||
if (growth > 8)
|
||
md_number_to_chars (fragP->fr_opcode + 8, VIFNOP, 4);
|
||
md_number_to_chars (fragP->fr_literal + fragP->fr_fix - 4, insn, 4);
|
||
|
||
/* Adjust fr_opcode so md_apply_fix3 works with the right bytes. */
|
||
fragP->fr_opcode += growth;
|
||
}
|
||
}
|
||
|
||
/* Functions concerning relocs. */
|
||
|
||
/* Spacing between each cpu type's operand numbers.
|
||
Should be at least as big as any operand table. */
|
||
#define RELOC_SPACING 256
|
||
|
||
/* Given a cpu type and operand number, return a temporary reloc type
|
||
for use in generating the fixup that encodes the cpu type and operand
|
||
number. */
|
||
|
||
static int
|
||
encode_fixup_reloc_type (cpu, opnum)
|
||
dvp_cpu cpu;
|
||
int opnum;
|
||
{
|
||
return (int) BFD_RELOC_UNUSED + ((int) cpu * RELOC_SPACING) + opnum;
|
||
}
|
||
|
||
/* Given a fixup reloc type, decode it into cpu type and operand. */
|
||
|
||
static void
|
||
decode_fixup_reloc_type (fixup_reloc, cpuP, operandP)
|
||
int fixup_reloc;
|
||
dvp_cpu *cpuP;
|
||
const dvp_operand **operandP;
|
||
{
|
||
dvp_cpu cpu = (fixup_reloc - (int) BFD_RELOC_UNUSED) / RELOC_SPACING;
|
||
int opnum = (fixup_reloc - (int) BFD_RELOC_UNUSED) % RELOC_SPACING;
|
||
|
||
*cpuP = cpu;
|
||
switch (cpu)
|
||
{
|
||
case DVP_VUUP : *operandP = &vu_operands[opnum]; break;
|
||
case DVP_VULO : *operandP = &vu_operands[opnum]; break;
|
||
case DVP_DMA : *operandP = &dma_operands[opnum]; break;
|
||
case DVP_VIF : *operandP = &vif_operands[opnum]; break;
|
||
case DVP_GIF : *operandP = &gif_operands[opnum]; break;
|
||
default : as_fatal ("internal error: bad fixup encoding");
|
||
}
|
||
}
|
||
|
||
/* The location from which a PC relative jump should be calculated,
|
||
given a PC relative reloc. */
|
||
|
||
long
|
||
md_pcrel_from_section (fixP, sec)
|
||
fixS *fixP;
|
||
segT sec;
|
||
{
|
||
if (fixP->fx_addsy != (symbolS *) NULL
|
||
&& (! S_IS_DEFINED (fixP->fx_addsy)
|
||
|| S_GET_SEGMENT (fixP->fx_addsy) != sec))
|
||
{
|
||
/* If fx_tcbit is set this is for a vif insn and thus should never
|
||
happen in correct code. */
|
||
/* ??? The error message could be a bit more descriptive. */
|
||
if (fixP->fx_tcbit)
|
||
as_bad ("unable to compute length of vif insn");
|
||
/* The symbol is undefined (or is defined but not in this section).
|
||
Let the linker figure it out. +8: branch offsets are relative to the
|
||
delay slot. */
|
||
return 8;
|
||
}
|
||
|
||
/* If fx_tcbit is set, this is a vif end-of-variable-length-insn marker.
|
||
In this case the offset is relative to the start of data.
|
||
Otherwise we assume this is a vu branch. In this case
|
||
offsets are calculated based on the address of the next insn. */
|
||
if (fixP->fx_tcbit)
|
||
{
|
||
/* As a further refinement, if fr_opcode is NULL this is `unpack'
|
||
which doesn't involve any relaxing. */
|
||
if (fixP->fx_frag->fr_opcode == NULL)
|
||
return fixP->fx_frag->fr_address + fixP->fx_where + 4;
|
||
else
|
||
return fixP->fx_frag->fr_address + fixP->fx_frag->fr_fix;
|
||
}
|
||
else
|
||
return ((fixP->fx_frag->fr_address + fixP->fx_where) & -8L) + 8;
|
||
}
|
||
|
||
/* Apply a fixup to the object code. This is called for all the
|
||
fixups we generated by calls to fix_new_exp. At this point all symbol
|
||
values should be fully resolved, and we attempt to completely resolve the
|
||
reloc. If we can not do that, we determine the correct reloc code and put
|
||
it back in the fixup. */
|
||
|
||
int
|
||
md_apply_fix3 (fixP, valueP, seg)
|
||
fixS *fixP;
|
||
valueT *valueP;
|
||
segT seg;
|
||
{
|
||
char *where = fixP->fx_frag->fr_literal + fixP->fx_where;
|
||
valueT value;
|
||
|
||
/* FIXME FIXME FIXME: The value we are passed in *valueP includes
|
||
the symbol values. Since we are using BFD_ASSEMBLER, if we are
|
||
doing this relocation the code in write.c is going to call
|
||
bfd_perform_relocation, which is also going to use the symbol
|
||
value. That means that if the reloc is fully resolved we want to
|
||
use *valueP since bfd_perform_relocation is not being used.
|
||
However, if the reloc is not fully resolved we do not want to use
|
||
*valueP, and must use fx_offset instead. However, if the reloc
|
||
is PC relative, we do want to use *valueP since it includes the
|
||
result of md_pcrel_from. This is confusing. */
|
||
|
||
if (fixP->fx_addsy == (symbolS *) NULL)
|
||
{
|
||
value = *valueP;
|
||
fixP->fx_done = 1;
|
||
}
|
||
else if (fixP->fx_pcrel)
|
||
{
|
||
value = *valueP;
|
||
}
|
||
else
|
||
{
|
||
value = fixP->fx_offset;
|
||
if (fixP->fx_subsy != (symbolS *) NULL)
|
||
{
|
||
if (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section)
|
||
value -= S_GET_VALUE (fixP->fx_subsy);
|
||
else
|
||
{
|
||
/* We can't actually support subtracting a symbol. */
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
"expression too complex");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check for dvp operands. These are indicated with a reloc value
|
||
>= BFD_RELOC_UNUSED. */
|
||
|
||
if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED)
|
||
{
|
||
dvp_cpu cpu;
|
||
const dvp_operand *operand;
|
||
DVP_INSN insn;
|
||
fragS *fragP = fixP->fx_frag;
|
||
|
||
/* If this was a relaxable insn, the opcode may have moved. Find it. */
|
||
if (fragP->fr_opcode != NULL)
|
||
where = fragP->fr_opcode;
|
||
|
||
decode_fixup_reloc_type ((int) fixP->fx_r_type,
|
||
& cpu, & operand);
|
||
|
||
/* For variable length vif insn data lengths, validate the user specified
|
||
value or install the computed value in the instruction. */
|
||
if (cpu == DVP_VIF
|
||
&& (operand - vif_operands) == vif_operand_datalen_special)
|
||
{
|
||
int insn_type = vif_insn_type (where[3]);
|
||
value = vif_length_value (where[3],
|
||
fixP->tc_fix_data.wl, fixP->tc_fix_data.cl,
|
||
value);
|
||
if (fixP->tc_fix_data.user_value != -1)
|
||
{
|
||
/* We can't do this for unpack insns with wl > cl. */
|
||
if ((insn_type != VIF_OPCODE_UNPACK
|
||
|| (fixP->tc_fix_data.wl <= fixP->tc_fix_data.cl))
|
||
&& fixP->tc_fix_data.user_value != value)
|
||
as_warn_where (fixP->fx_file, fixP->fx_line,
|
||
"specified length value doesn't match computed value");
|
||
/* Don't override the user specified value. */
|
||
}
|
||
else
|
||
{
|
||
if (output_vif)
|
||
{
|
||
install_vif_length (where, value);
|
||
}
|
||
}
|
||
fixP->fx_done = 1;
|
||
return 1;
|
||
}
|
||
|
||
/* For the gif nloop operand, if it was specified by the user ensure
|
||
it matches the value we computed. */
|
||
if (cpu == DVP_GIF
|
||
&& (operand - gif_operands) == gif_operand_nloop)
|
||
{
|
||
value = compute_nloop (fixP->tc_fix_data.type,
|
||
fixP->tc_fix_data.nregs,
|
||
value);
|
||
if (fixP->tc_fix_data.user_value != -1)
|
||
{
|
||
check_nloop (fixP->tc_fix_data.type,
|
||
fixP->tc_fix_data.nregs,
|
||
fixP->tc_fix_data.user_value,
|
||
value,
|
||
fixP->fx_file, fixP->fx_line);
|
||
/* Don't override the user specified value. */
|
||
fixP->fx_done = 1;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Fetch the instruction, insert the fully resolved operand
|
||
value, and stuff the instruction back again. The fixup is recorded
|
||
at the appropriate word so pass DVP_MOD_THIS_WORD so any offset
|
||
specified in the tables is ignored. */
|
||
insn = bfd_getl32 ((unsigned char *) where);
|
||
insert_operand_final (cpu, operand, DVP_MOD_THIS_WORD, &insn,
|
||
(offsetT) value, fixP->fx_file, fixP->fx_line);
|
||
bfd_putl32 ((bfd_vma) insn, (unsigned char *) where);
|
||
|
||
/* If this is mpgloc/unpackloc, we're done. */
|
||
if (operand->flags & (DVP_OPERAND_VU_ADDRESS | DVP_OPERAND_UNPACK_ADDRESS))
|
||
fixP->fx_done = 1;
|
||
|
||
if (fixP->fx_done)
|
||
{
|
||
/* Nothing else to do here. */
|
||
return 1;
|
||
}
|
||
|
||
/* Determine a BFD reloc value based on the operand information.
|
||
We are only prepared to turn a few of the operands into relocs. */
|
||
if ((operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0)
|
||
{
|
||
assert (operand->bits == 11
|
||
&& operand->shift == 0);
|
||
|
||
/* The fixup isn't recorded as a pc relative branch to some label.
|
||
Instead a complicated expression is used to compute the desired
|
||
value. Well, that didn't work and we have to emit a reloc.
|
||
Things are tricky because the result we want is the difference
|
||
of two addresses in a section potentially different from the one
|
||
the reloc is in. Ugh.
|
||
The solution is to emit two relocs, one that adds the target
|
||
address and one that subtracts the source address + 8 (the
|
||
linker will perform the byte->dword conversion).
|
||
This is rather complicated and rather than risk breaking
|
||
existing code we fall back on the old way if the file only
|
||
contains vu code. In this case the file is intended to
|
||
be fully linked with other vu code and thus we have a normal
|
||
situation where the relocation directly corresponds to the
|
||
branch insn. */
|
||
|
||
if (non_vu_insn_seen_p)
|
||
{
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
"can't handle mpg loaded vu code with branch relocations");
|
||
fixP->fx_done = 1;
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
fixP->fx_r_type = BFD_RELOC_MIPS_DVP_11_PCREL;
|
||
}
|
||
}
|
||
else if ((operand->flags & DVP_OPERAND_DMA_ADDR) != 0
|
||
|| (operand->flags & DVP_OPERAND_DMA_NEXT) != 0)
|
||
{
|
||
assert (operand->bits == 27
|
||
&& operand->shift == 4);
|
||
fixP->fx_r_type = BFD_RELOC_MIPS_DVP_27_S4;
|
||
}
|
||
else
|
||
{
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
"unresolved expression that must be resolved");
|
||
fixP->fx_done = 1;
|
||
return 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_8:
|
||
md_number_to_chars (where, value, 1);
|
||
break;
|
||
case BFD_RELOC_16:
|
||
md_number_to_chars (where, value, 2);
|
||
break;
|
||
case BFD_RELOC_32:
|
||
md_number_to_chars (where, value, 4);
|
||
break;
|
||
default:
|
||
as_fatal ("internal error: unexpected fixup");
|
||
}
|
||
}
|
||
|
||
fixP->fx_addnumber = value;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Translate internal representation of relocation info to BFD target
|
||
format. */
|
||
|
||
arelent *
|
||
tc_gen_reloc (section, fixP)
|
||
asection *section;
|
||
fixS *fixP;
|
||
{
|
||
arelent *reloc;
|
||
|
||
reloc = (arelent *) xmalloc (sizeof (arelent));
|
||
|
||
reloc->sym_ptr_ptr = &fixP->fx_addsy->bsym;
|
||
reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
|
||
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
|
||
if (reloc->howto == (reloc_howto_type *) NULL)
|
||
{
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
"internal error: can't export reloc type %d (`%s')",
|
||
fixP->fx_r_type, bfd_get_reloc_code_name (fixP->fx_r_type));
|
||
return NULL;
|
||
}
|
||
|
||
assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
|
||
|
||
reloc->addend = fixP->fx_addnumber;
|
||
|
||
return reloc;
|
||
}
|
||
|
||
/* Write a value out to the object file, using the appropriate endianness. */
|
||
|
||
void
|
||
md_number_to_chars (buf, val, n)
|
||
char *buf;
|
||
valueT val;
|
||
int n;
|
||
{
|
||
if (target_big_endian)
|
||
number_to_chars_bigendian (buf, val, n);
|
||
else
|
||
number_to_chars_littleendian (buf, val, n);
|
||
}
|
||
|
||
/* Turn a string in input_line_pointer into a floating point constant of type
|
||
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
|
||
emitted is stored in *sizeP . An error message is returned, or NULL on OK.
|
||
*/
|
||
|
||
/* Equal to MAX_PRECISION in atof-ieee.c */
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
char *
|
||
md_atof (type, litP, sizeP)
|
||
char type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
int i,prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
char *t;
|
||
char *atof_ieee ();
|
||
|
||
switch (type)
|
||
{
|
||
case 'f':
|
||
case 'F':
|
||
case 's':
|
||
case 'S':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
case 'D':
|
||
case 'r':
|
||
case 'R':
|
||
prec = 4;
|
||
break;
|
||
|
||
/* FIXME: Some targets allow other format chars for bigger sizes here. */
|
||
|
||
default:
|
||
*sizeP = 0;
|
||
return "Bad call to md_atof()";
|
||
}
|
||
|
||
t = atof_ieee (input_line_pointer, type, words);
|
||
if (t)
|
||
input_line_pointer = t;
|
||
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
||
|
||
if (target_big_endian)
|
||
{
|
||
for (i = 0; i < prec; i++)
|
||
{
|
||
md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = prec - 1; i >= 0; i--)
|
||
{
|
||
md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Miscellaneous utilities. */
|
||
|
||
/* Parse a 32 bit floating point number.
|
||
The result is those 32 bits as an integer. */
|
||
|
||
static long
|
||
parse_float (pstr, errmsg)
|
||
char **pstr;
|
||
const char **errmsg;
|
||
{
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
char *p;
|
||
|
||
p = atof_ieee (*pstr, 'f', words);
|
||
*pstr = p;
|
||
return (words[0] << 16) | words[1];
|
||
}
|
||
|
||
/* Scan a symbol and return a pointer to one past the end. */
|
||
|
||
#define issymchar(ch) (isalnum(ch) || ch == '_')
|
||
static char *
|
||
scan_symbol (sym)
|
||
char *sym;
|
||
{
|
||
while (*sym && issymchar (*sym))
|
||
++sym;
|
||
return sym;
|
||
}
|
||
|
||
/* Evaluate an expression for an operand.
|
||
The result is the value of the expression if it can be evaluated,
|
||
or 0 if it cannot (say because some symbols haven't been defined yet)
|
||
in which case a fixup is queued.
|
||
|
||
If OPINDEX is 0, don't queue any fixups, just return 0. */
|
||
|
||
static long
|
||
#ifdef USE_STDARG
|
||
eval_expr (dvp_cpu cpu, int opindex, int offset, const char *fmt, ...)
|
||
#else
|
||
eval_expr (cpu, opindex, offset, fmt, va_alist)
|
||
dvp_cpu cpu;
|
||
int opindex,offset;
|
||
const char *fmt;
|
||
va_dcl
|
||
#endif
|
||
{
|
||
long value;
|
||
va_list ap;
|
||
char *str,*save_input;
|
||
expressionS exp;
|
||
|
||
#ifdef USE_STDARG
|
||
va_start (ap, fmt);
|
||
#else
|
||
va_start (ap);
|
||
#endif
|
||
vasprintf (&str, fmt, ap);
|
||
va_end (ap);
|
||
|
||
save_input = input_line_pointer;
|
||
input_line_pointer = str;
|
||
expression (&exp);
|
||
input_line_pointer = save_input;
|
||
free (str);
|
||
if (exp.X_op == O_constant)
|
||
value = exp.X_add_number;
|
||
else
|
||
{
|
||
if (opindex != 0)
|
||
{
|
||
fixups[fixup_count].cpu = cpu;
|
||
fixups[fixup_count].exp = exp;
|
||
fixups[fixup_count].opindex = opindex;
|
||
fixups[fixup_count].offset = offset;
|
||
fixups[fixup_count].user_value = -1;
|
||
fixups[fixup_count].wl = -1;
|
||
fixups[fixup_count].cl = -1;
|
||
++fixup_count;
|
||
}
|
||
value = 0;
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* Create a label named by concatenating PREFIX to NAME. */
|
||
|
||
static symbolS *
|
||
create_label (prefix, name)
|
||
const char *prefix, *name;
|
||
{
|
||
int namelen = strlen (name);
|
||
int prefixlen = strlen (prefix);
|
||
char *fullname;
|
||
symbolS *result;
|
||
|
||
fullname = xmalloc (prefixlen + namelen + 1);
|
||
strcpy (fullname, prefix);
|
||
strcat (fullname, name);
|
||
result = symbol_find_or_make (fullname);
|
||
free (fullname);
|
||
return result;
|
||
}
|
||
|
||
/* Create a label named by concatenating PREFIX to NAME,
|
||
and define it as `.'.
|
||
STO, if non-zero, is the st_other value to assign to this label.
|
||
If STO is zero `cur_cpu', call force_mach_label to force record_mach to
|
||
emit a cpu label. Otherwise the disassembler gets confused. */
|
||
|
||
static symbolS *
|
||
create_colon_label (sto, prefix, name)
|
||
int sto;
|
||
const char *prefix, *name;
|
||
{
|
||
int namelen = strlen (name);
|
||
int prefixlen = strlen (prefix);
|
||
char *fullname;
|
||
symbolS *result;
|
||
|
||
fullname = xmalloc (prefixlen + namelen + 1);
|
||
strcpy (fullname, prefix);
|
||
strcat (fullname, name);
|
||
result = colon (fullname);
|
||
if (sto)
|
||
S_SET_OTHER (result, sto);
|
||
else
|
||
force_mach_label ();
|
||
free (fullname);
|
||
return result;
|
||
}
|
||
|
||
/* Return a malloc'd string useful in creating unique labels.
|
||
PREFIX is the prefix to use or NULL if we're to pick one. */
|
||
|
||
static char *
|
||
unique_name (prefix)
|
||
const char *prefix;
|
||
{
|
||
static int counter;
|
||
char *result;
|
||
|
||
if (prefix == NULL)
|
||
prefix = UNIQUE_LABEL_PREFIX;
|
||
asprintf (&result, "%s%d", prefix, counter);
|
||
++counter;
|
||
return result;
|
||
}
|
||
|
||
/* Compute a value for $.mpgloc given a symbol at the start of a chunk
|
||
of code, the $.mpgloc value for the start, and a symbol at the end
|
||
of the chunk of code. */
|
||
|
||
static symbolS *
|
||
compute_mpgloc (startloc, startsym, endsym)
|
||
symbolS * startloc;
|
||
symbolS * startsym;
|
||
symbolS * endsym;
|
||
{
|
||
symbolS *s;
|
||
|
||
s = expr_build_binary (O_subtract, endsym, startsym);
|
||
s = expr_build_binary (O_add, startloc, s);
|
||
return s;
|
||
}
|
||
|
||
/* Compute a value for nloop. */
|
||
|
||
static int
|
||
compute_nloop (type, nregs, bytes)
|
||
gif_type type;
|
||
int nregs, bytes;
|
||
{
|
||
int computed_nloop;
|
||
|
||
switch (type)
|
||
{
|
||
case GIF_PACKED :
|
||
/* We can't compute a value if no regs were specified and there is a
|
||
non-zero amount of data. Just set to something useful, a warning
|
||
will be issued later. */
|
||
if (nregs == 0)
|
||
nregs = 1;
|
||
computed_nloop = (bytes >> 4) / nregs;
|
||
break;
|
||
case GIF_REGLIST :
|
||
if (nregs == 0)
|
||
nregs = 1;
|
||
computed_nloop = (bytes >> 3) / nregs;
|
||
break;
|
||
case GIF_IMAGE :
|
||
computed_nloop = bytes >> 4;
|
||
break;
|
||
}
|
||
|
||
return computed_nloop;
|
||
}
|
||
|
||
/* Issue a warning if the user specified nloop value doesn't match the
|
||
computed value. */
|
||
|
||
static void
|
||
check_nloop (type, nregs, user_nloop, computed_nloop, file, line)
|
||
gif_type type;
|
||
int nregs,user_nloop,computed_nloop;
|
||
char *file;
|
||
unsigned int line;
|
||
{
|
||
if (user_nloop != computed_nloop)
|
||
as_warn_where (file, line, "nloop value does not match amount of data");
|
||
}
|
||
|
||
/* Compute the auto-count value for a DMA tag.
|
||
INLINE_P is non-zero if the dma data is inline. */
|
||
|
||
static void
|
||
setup_dma_autocount (name, insn_buf, inline_p)
|
||
const char *name;
|
||
DVP_INSN *insn_buf;
|
||
int inline_p;
|
||
{
|
||
long count;
|
||
|
||
if (inline_p)
|
||
{
|
||
/* -1: The count is the number of following quadwords, so skip the one
|
||
containing the dma tag. */
|
||
count = eval_expr (DVP_DMA, dma_operand_count, 0,
|
||
"((%s%s - %s) >> 4) - 1", END_LABEL_PREFIX, name, name);
|
||
}
|
||
else
|
||
{
|
||
/* We don't want to subtract 1 here as the begin and end labels
|
||
properly surround the data we want to compute the length of. */
|
||
count = eval_expr (DVP_DMA, dma_operand_count, 0,
|
||
"(%s%s - %s) >> 4", END_LABEL_PREFIX, name, name);
|
||
}
|
||
|
||
/* Store the count field. */
|
||
insn_buf[0] &= 0xffff0000;
|
||
insn_buf[0] |= count & 0x0000ffff;
|
||
}
|
||
|
||
/* Record that inline data follows. */
|
||
|
||
static void
|
||
inline_dma_data (autocount_p, insn_buf)
|
||
int autocount_p;
|
||
DVP_INSN *insn_buf;
|
||
{
|
||
if (dma_data_state != 0 )
|
||
{
|
||
as_bad ("DmaData blocks cannot be nested.");
|
||
return;
|
||
}
|
||
|
||
dma_data_state = 1;
|
||
|
||
if (autocount_p)
|
||
{
|
||
dma_data_name = S_GET_NAME (create_colon_label (0, "", unique_name (NULL)));
|
||
setup_dma_autocount (dma_data_name, insn_buf, 1);
|
||
}
|
||
else
|
||
dma_data_name = 0;
|
||
}
|
||
|
||
/* Compute the auto-count value for a DMA tag with out-of-line data. */
|
||
|
||
static long
|
||
parse_dma_addr_autocount (opcode, operand, mods, insn_buf, pstr, errmsg)
|
||
const dvp_opcode *opcode;
|
||
const dvp_operand *operand;
|
||
int mods;
|
||
DVP_INSN *insn_buf;
|
||
char **pstr;
|
||
const char **errmsg;
|
||
{
|
||
char *start = *pstr;
|
||
char *end = start;
|
||
long retval;
|
||
/* Data reference must be a .DmaData label. */
|
||
symbolS *label, *label2, *endlabel;
|
||
const char *name;
|
||
char c;
|
||
|
||
label = label2 = 0;
|
||
if (! is_name_beginner (*start))
|
||
{
|
||
*errmsg = "invalid .DmaData label";
|
||
return 0;
|
||
}
|
||
|
||
name = start;
|
||
end = scan_symbol (name);
|
||
c = *end;
|
||
*end = 0;
|
||
label = symbol_find_or_make (name);
|
||
*end = c;
|
||
|
||
label2 = create_label ("_$", name);
|
||
endlabel = create_label (END_LABEL_PREFIX, name);
|
||
|
||
retval = eval_expr (DVP_DMA, dma_operand_addr, 4, name);
|
||
|
||
setup_dma_autocount (name, insn_buf, 0);
|
||
|
||
*pstr = end;
|
||
return retval;
|
||
}
|
||
|
||
/* Compute the type of vif insn of IBYTE.
|
||
IBYTE is the msb of the insn.
|
||
This is only used for mpg,direct,unpack insns.
|
||
The result is one of VIF_OPCODE_{DIRECT,DIRECTHL,MPG,UNPACK}. */
|
||
|
||
static int
|
||
vif_insn_type (ibyte)
|
||
char ibyte;
|
||
{
|
||
switch (ibyte & 0x70)
|
||
{
|
||
case 0x50 :
|
||
return (ibyte & 1) ? VIF_OPCODE_DIRECTHL : VIF_OPCODE_DIRECT;
|
||
case 0x40 :
|
||
return VIF_OPCODE_MPG;
|
||
case 0x60 :
|
||
case 0x70 :
|
||
return VIF_OPCODE_UNPACK;
|
||
default :
|
||
as_fatal ("internal error: bad call to vif_insn_type");
|
||
}
|
||
}
|
||
|
||
/* Return the length value to insert in a VIF instruction whose upper
|
||
byte is IBYTE and whose data length is BYTES.
|
||
WL,CL are used for unpack insns and are the stcycl values in effect.
|
||
This does not do the max -> 0 conversion. */
|
||
|
||
static int
|
||
vif_length_value (ibyte, wl, cl, bytes)
|
||
char ibyte;
|
||
int wl,cl;
|
||
int bytes;
|
||
{
|
||
switch (ibyte & 0x70)
|
||
{
|
||
case 0x50 : /* direct */
|
||
/* ??? Worry about data /= 16 cuts off? */
|
||
return bytes / 16;
|
||
case 0x40 : /* mpg */
|
||
/* ??? Worry about data /= 8 cuts off? */
|
||
return bytes / 8;
|
||
case 0x60 : /* unpack */
|
||
case 0x70 :
|
||
return vif_unpack_len_value (ibyte & 15, wl, cl, bytes);
|
||
default :
|
||
as_fatal ("internal error: bad call to vif_length_value");
|
||
}
|
||
}
|
||
|
||
/* Install length LEN in the vif insn at BUF.
|
||
LEN is the actual value to store, except that the max->0 conversion
|
||
hasn't been done (we do it).
|
||
The bytes in BUF are in target order. */
|
||
|
||
static void
|
||
install_vif_length (buf, len)
|
||
char *buf;
|
||
int len;
|
||
{
|
||
unsigned char ibyte = buf[3];
|
||
|
||
if ((ibyte & 0x70) == 0x40)
|
||
{
|
||
/* mpg */
|
||
if (len > 256)
|
||
as_bad ("`mpg' data length must be between 1 and 256");
|
||
buf[2] = len == 256 ? 0 : len;
|
||
}
|
||
else if ((ibyte & 0x70) == 0x50)
|
||
{
|
||
/* direct/directhl */
|
||
if (len > 65536)
|
||
as_bad ("`direct' data length must be between 1 and 65536");
|
||
len = len == 65536 ? 0 : len;
|
||
buf[0] = len;
|
||
buf[1] = len >> 8;
|
||
}
|
||
else if ((ibyte & 0x60) == 0x60)
|
||
{
|
||
/* unpack */
|
||
/* len == -1 means wl,cl are unknown and thus we can't compute
|
||
a useful value */
|
||
if (len == -1)
|
||
{
|
||
as_bad ("missing `stcycle', can't compute length of `unpack' insn");
|
||
len = 1;
|
||
}
|
||
if (len < 0 || len > 256)
|
||
as_bad ("`unpack' data length must be between 0 and 256");
|
||
/* 256 is recorded as 0 in the insn */
|
||
len = len == 256 ? 0 : len;
|
||
buf[2] = len;
|
||
}
|
||
else
|
||
as_fatal ("internal error: bad call to install_vif_length");
|
||
}
|
||
|
||
/* Finish off the current set of mpg insns, and start a new set.
|
||
The IGNORE arg exists because insert_unpack_marker uses it and both
|
||
of these functions are passed to insert_file. */
|
||
|
||
static void
|
||
insert_mpg_marker (ignore)
|
||
unsigned long ignore;
|
||
{
|
||
s_endmpg (ENDMPG_MIDDLE);
|
||
/* mpgloc is updated by s_endmpg. */
|
||
md_assemble ("mpg *,*");
|
||
/* Record the cpu type in case we're in the middle of reading binary
|
||
data. */
|
||
record_mach (DVP_VUUP, 0);
|
||
}
|
||
|
||
/* Finish off the current unpack insn and start a new one.
|
||
INSN0 is the first word of the insn and is used to figure out what
|
||
kind of unpack insn it is. */
|
||
|
||
static void
|
||
insert_unpack_marker (insn0)
|
||
unsigned long insn0;
|
||
{
|
||
}
|
||
|
||
/* Insert a file into the output.
|
||
The -I arg passed to GAS is used to specify where to find the file.
|
||
INSERT_MARKER if non-NULL is called every SIZE bytes with an argument of
|
||
INSERT_MARKER_ARG. This is used by the mpg insn to insert mpg's every 256
|
||
insns and by the unpack insn.
|
||
The result is the number of bytes inserted.
|
||
If an error occurs an error message is printed and zero is returned. */
|
||
|
||
static int
|
||
insert_file (file, insert_marker, insert_marker_arg, size)
|
||
const char *file;
|
||
void (*insert_marker) PARAMS ((unsigned long));
|
||
unsigned long insert_marker_arg;
|
||
int size;
|
||
{
|
||
FILE *f;
|
||
char buf[256];
|
||
int i, n, total, left_before_marker;
|
||
char *path;
|
||
|
||
path = xmalloc (strlen (file) + include_dir_maxlen + 5 /*slop*/);
|
||
f = NULL;
|
||
for (i = 0; i < include_dir_count; i++)
|
||
{
|
||
strcpy (path, include_dirs[i]);
|
||
strcat (path, "/");
|
||
strcat (path, file);
|
||
if ((f = fopen (path, FOPEN_RB)) != NULL)
|
||
break;
|
||
}
|
||
free (path);
|
||
if (f == NULL)
|
||
f = fopen (file, FOPEN_RB);
|
||
if (f == NULL)
|
||
{
|
||
as_bad ("unable to read file `%s'", file);
|
||
return 0;
|
||
}
|
||
|
||
total = 0;
|
||
left_before_marker = 0;
|
||
do {
|
||
int bytes;
|
||
if (insert_marker)
|
||
bytes = MIN (size - left_before_marker, sizeof (buf));
|
||
else
|
||
bytes = sizeof (buf);
|
||
n = fread (buf, 1, bytes, f);
|
||
if (n > 0)
|
||
{
|
||
char *fr = frag_more (n);
|
||
memcpy (fr, buf, n);
|
||
total += n;
|
||
if (insert_marker)
|
||
{
|
||
left_before_marker += n;
|
||
if (left_before_marker > size)
|
||
as_fatal ("internal error: file insertion sanity checky failed");
|
||
if (left_before_marker == size)
|
||
{
|
||
(*insert_marker) (insert_marker_arg);
|
||
left_before_marker = 0;
|
||
}
|
||
}
|
||
}
|
||
} while (n > 0);
|
||
|
||
fclose (f);
|
||
/* We assume the file is smaller than 2^31 bytes.
|
||
Ok, we shouldn't make any assumptions. */
|
||
return total;
|
||
}
|
||
|
||
/* Insert an operand value into an instruction. */
|
||
|
||
static void
|
||
insert_operand (cpu, opcode, operand, mods, insn_buf, val, errmsg)
|
||
dvp_cpu cpu;
|
||
const dvp_opcode *opcode;
|
||
const dvp_operand *operand;
|
||
int mods;
|
||
DVP_INSN *insn_buf;
|
||
offsetT val;
|
||
const char **errmsg;
|
||
{
|
||
if (operand->insert)
|
||
{
|
||
(*operand->insert) (opcode, operand, mods, insn_buf, (long) val, errmsg);
|
||
}
|
||
else
|
||
{
|
||
/* We currently assume a field does not cross a word boundary. */
|
||
int shift = ((mods & DVP_MOD_THIS_WORD)
|
||
? (operand->shift & 31)
|
||
: operand->shift);
|
||
/* FIXME: revisit */
|
||
if (operand->word == 0)
|
||
{
|
||
int word = (mods & DVP_MOD_THIS_WORD) ? 0 : (shift / 32);
|
||
if (operand->bits == 32)
|
||
insn_buf[word] = val;
|
||
else
|
||
{
|
||
shift = shift % 32;
|
||
insn_buf[word] |= ((long) val & ((1 << operand->bits) - 1)) << shift;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int word = (mods & DVP_MOD_THIS_WORD) ? 0 : operand->word;
|
||
if (operand->bits == 32)
|
||
insn_buf[word] = val;
|
||
else
|
||
{
|
||
long temp = (long) val & ((1 << operand->bits) - 1);
|
||
insn_buf[word] |= temp << operand->shift;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Insert an operand's final value into an instruction.
|
||
Here we can give warning messages about operand values if we want to. */
|
||
|
||
static void
|
||
insert_operand_final (cpu, operand, mods, insn_buf, val, file, line)
|
||
dvp_cpu cpu;
|
||
const dvp_operand *operand;
|
||
int mods;
|
||
DVP_INSN *insn_buf;
|
||
offsetT val;
|
||
char *file;
|
||
unsigned int line;
|
||
{
|
||
if (operand->bits != 32)
|
||
{
|
||
offsetT min, max, test;
|
||
|
||
/* ??? This test belongs more properly in the insert handler. */
|
||
if ((operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0)
|
||
{
|
||
if ((val & 7) != 0)
|
||
{
|
||
if (file == (char *) NULL)
|
||
as_warn ("branch to misaligned address");
|
||
else
|
||
as_warn_where (file, line, "branch to misaligned address");
|
||
}
|
||
val >>= 3;
|
||
}
|
||
/* ??? This test belongs more properly in the insert handler. */
|
||
else if ((operand->flags & DVP_OPERAND_VU_ADDRESS) != 0)
|
||
{
|
||
if ((val & 7) != 0)
|
||
{
|
||
if (file == (char *) NULL)
|
||
as_warn ("misaligned vu address");
|
||
else
|
||
as_warn_where (file, line, "misaligned vu address");
|
||
}
|
||
val >>= 3;
|
||
}
|
||
|
||
if ((operand->flags & DVP_OPERAND_SIGNED) != 0)
|
||
{
|
||
if ((operand->flags & DVP_OPERAND_SIGNOPT) != 0)
|
||
max = (1 << operand->bits) - 1;
|
||
else
|
||
max = (1 << (operand->bits - 1)) - 1;
|
||
min = - (1 << (operand->bits - 1));
|
||
}
|
||
else
|
||
{
|
||
max = (1 << operand->bits) - 1;
|
||
min = 0;
|
||
}
|
||
|
||
if ((operand->flags & DVP_OPERAND_NEGATIVE) != 0)
|
||
test = - val;
|
||
else
|
||
test = val;
|
||
|
||
if (test < (offsetT) min || test > (offsetT) max)
|
||
{
|
||
const char *err =
|
||
"operand out of range (%s not between %ld and %ld)";
|
||
char buf[100];
|
||
|
||
sprint_value (buf, test);
|
||
if (file == (char *) NULL)
|
||
as_warn (err, buf, min, max);
|
||
else
|
||
as_warn_where (file, line, err, buf, min, max);
|
||
}
|
||
}
|
||
|
||
{
|
||
const char *errmsg = NULL;
|
||
insert_operand (cpu, NULL, operand, mods, insn_buf, val, &errmsg);
|
||
if (errmsg != NULL)
|
||
as_warn_where (file, line, errmsg);
|
||
}
|
||
}
|
||
|
||
/* DVP pseudo ops. */
|
||
|
||
static void
|
||
s_dmadata (ignore)
|
||
int ignore;
|
||
{
|
||
char *name, c;
|
||
|
||
dma_data_name = 0;
|
||
|
||
if (dma_data_state != 0)
|
||
{
|
||
as_bad ("DmaData blocks cannot be nested.");
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
dma_data_state = 1;
|
||
|
||
SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
|
||
name = input_line_pointer;
|
||
|
||
if (!is_name_beginner (*name))
|
||
{
|
||
as_bad ("invalid identifier for \".DmaData\"");
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
/* Do an implicit alignment to a 16 byte boundary. */
|
||
frag_align (4, 0, 0);
|
||
record_alignment (now_seg, 4);
|
||
|
||
c = get_symbol_end ();
|
||
line_label = colon (name); /* user-defined label */
|
||
dma_data_name = S_GET_NAME (line_label);
|
||
*input_line_pointer = c;
|
||
|
||
/* Force emission of a machine type label for the next insn. */
|
||
force_mach_label ();
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
s_enddmadata (ignore)
|
||
int ignore;
|
||
{
|
||
if (dma_data_state != 1)
|
||
{
|
||
as_warn (".EndDmaData encountered outside a DmaData block -- ignored.");
|
||
ignore_rest_of_line ();
|
||
dma_data_name = 0;
|
||
}
|
||
dma_data_state = 0;
|
||
demand_empty_rest_of_line ();
|
||
|
||
/* If count provided, verify it is correct. */
|
||
/* ... */
|
||
|
||
/* Fill the data out to a multiple of 16 bytes. */
|
||
/* FIXME: Are the fill contents right? */
|
||
frag_align (4, 0, 0);
|
||
|
||
/* "label" points to beginning of block.
|
||
Create a name for the final label like _$<name>. */
|
||
if (dma_data_name)
|
||
create_colon_label (0, END_LABEL_PREFIX, dma_data_name);
|
||
}
|
||
|
||
static void
|
||
s_dmapackvif (ignore)
|
||
int ignore;
|
||
{
|
||
/* Syntax: .dmapackvif 0|1 */
|
||
|
||
/* Leading whitespace is part of operand. */
|
||
SKIP_WHITESPACE ();
|
||
switch (*input_line_pointer++)
|
||
{
|
||
case '0':
|
||
dma_pack_vif_p = 0;
|
||
break;
|
||
case '1':
|
||
dma_pack_vif_p = 1;
|
||
break;
|
||
default:
|
||
as_bad ("illegal argument to `.dmapackvif'");
|
||
}
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* INTERNAL_P is non-zero if invoked internally by this file rather than
|
||
by the user. In this case we don't touch the input stream. */
|
||
|
||
static void
|
||
s_enddirect (internal_p)
|
||
int internal_p;
|
||
{
|
||
if (CUR_ASM_STATE != ASM_DIRECT)
|
||
{
|
||
as_bad ("`.enddirect' has no matching `direct' instruction");
|
||
return;
|
||
}
|
||
|
||
/* Record in the end data symbol the current location. */
|
||
if (now_seg != S_GET_SEGMENT (vif_data_end))
|
||
as_bad (".enddirect in different section");
|
||
vif_data_end->sy_frag = frag_now;
|
||
S_SET_VALUE (vif_data_end, (valueT) frag_now_fix ());
|
||
|
||
set_asm_state (ASM_INIT);
|
||
|
||
/* Needn't be reset, but to catch bugs it is. */
|
||
vif_data_end = NULL;
|
||
|
||
if (! internal_p)
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* CALLER denotes who's calling us.
|
||
If ENDMPG_USER then .endmpg was found in the input stream.
|
||
If ENDMPG_INTERNAL then we've been invoked to finish off file insertion.
|
||
If ENDMPG_MIDDLE then we've been invoked in the middle of a long stretch
|
||
of vu code. */
|
||
|
||
static void
|
||
s_endmpg (caller)
|
||
int caller;
|
||
{
|
||
if (CUR_ASM_STATE != ASM_MPG)
|
||
{
|
||
as_bad ("`.endmpg' has no matching `mpg' instruction");
|
||
return;
|
||
}
|
||
|
||
/* Record in the end data symbol the current location. */
|
||
if (now_seg != S_GET_SEGMENT (vif_data_end))
|
||
as_bad (".endmpg in different section");
|
||
vif_data_end->sy_frag = frag_now;
|
||
S_SET_VALUE (vif_data_end, (valueT) frag_now_fix ());
|
||
|
||
/* Update $.mpgloc.
|
||
We have to leave the old value alone as it may be used in fixups
|
||
already recorded. Since compute_mpgloc allocates a new symbol for the
|
||
result we're ok. The new value is the old value plus the number of
|
||
double words in this chunk. */
|
||
mpgloc_sym = compute_mpgloc (mpgloc_sym, vif_data_start, vif_data_end);
|
||
|
||
set_asm_state (ASM_INIT);
|
||
|
||
/* Needn't be reset, but to catch bugs it is. */
|
||
vif_data_end = NULL;
|
||
|
||
/* Reset the vu insn counter. */
|
||
if (caller != ENDMPG_MIDDLE)
|
||
vu_count = -1;
|
||
|
||
if (caller == ENDMPG_USER)
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* INTERNAL_P is non-zero if invoked internally by this file rather than
|
||
by the user. In this case we don't touch the input stream. */
|
||
|
||
static void
|
||
s_endunpack (internal_p)
|
||
int internal_p;
|
||
{
|
||
if (CUR_ASM_STATE != ASM_UNPACK)
|
||
{
|
||
as_bad ("`.endunpack' has no matching `unpack' instruction");
|
||
return;
|
||
}
|
||
|
||
/* Record in the end data symbol the current location. */
|
||
/* ??? $.unpackloc is gone. Is this also used for data length
|
||
verification? */
|
||
if (now_seg != S_GET_SEGMENT (vif_data_end))
|
||
as_bad (".endunpack in different section");
|
||
vif_data_end->sy_frag = frag_now;
|
||
S_SET_VALUE (vif_data_end, (valueT) frag_now_fix ());
|
||
|
||
/* Round up to next word boundary. */
|
||
frag_align (2, 0, 0);
|
||
|
||
set_asm_state (ASM_INIT);
|
||
|
||
/* Needn't be reset, but to catch bugs it is. */
|
||
vif_data_end = NULL;
|
||
|
||
if (! internal_p)
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
s_endgif (ignore)
|
||
int ignore;
|
||
{
|
||
int bytes;
|
||
int specified_nloop = gif_nloop ();
|
||
int computed_nloop;
|
||
int nregs = gif_nregs ();
|
||
char *file;
|
||
unsigned int line;
|
||
|
||
as_where (&file, &line);
|
||
|
||
if (CUR_ASM_STATE != ASM_GIF)
|
||
{
|
||
as_bad (".endgif doesn't follow a gif tag");
|
||
return;
|
||
}
|
||
pop_asm_state (0);
|
||
|
||
/* Fill out to proper boundary.
|
||
??? This may cause eval_expr to always queue a fixup. So be it. */
|
||
switch (gif_insn_type)
|
||
{
|
||
case GIF_PACKED : frag_align (4, 0, 0); break;
|
||
case GIF_REGLIST : frag_align (3, 0, 0); break;
|
||
case GIF_IMAGE : frag_align (4, 0, 0); break;
|
||
}
|
||
|
||
/* The -16 is because the `gif_data_name' label is emitted at the
|
||
start of the gif tag. If we're in a different frag from the one we
|
||
started with, this can't be computed until much later. To cope we queue
|
||
a fixup and deal with it then.
|
||
??? The other way to handle this is by having expr() compute "syma - symb"
|
||
when they're in different fragments but the difference is constant.
|
||
Not sure how much of a slowdown that will introduce though. */
|
||
fixup_count = 0;
|
||
bytes = eval_expr (DVP_GIF, gif_operand_nloop, 0, ". - %s - 16", gif_data_name);
|
||
|
||
/* Compute a value for nloop if we can. */
|
||
|
||
if (fixup_count == 0)
|
||
{
|
||
computed_nloop = compute_nloop (gif_insn_type, nregs, bytes);
|
||
|
||
/* If the user specified nloop, verify it. */
|
||
if (specified_nloop != -1)
|
||
check_nloop (gif_insn_type, nregs,
|
||
specified_nloop, computed_nloop,
|
||
file, line);
|
||
}
|
||
|
||
/* If computation of nloop can't be done yet, queue a fixup and do it later.
|
||
Otherwise validate nloop if specified or write the computed value into
|
||
the insn. */
|
||
|
||
if (fixup_count != 0)
|
||
{
|
||
/* FIXME: It might eventually be possible to combine all the various
|
||
copies of this bit of code. */
|
||
int op_type, reloc_type, offset;
|
||
const dvp_operand *operand;
|
||
fixS *fix;
|
||
|
||
op_type = fixups[0].opindex;
|
||
offset = fixups[0].offset;
|
||
reloc_type = encode_fixup_reloc_type (DVP_GIF, op_type);
|
||
operand = &gif_operands[op_type];
|
||
fix = fix_new_exp (gif_insn_frag,
|
||
(gif_insn_frag_loc + offset
|
||
- gif_insn_frag->fr_literal),
|
||
4, &fixups[0].exp, 0,
|
||
(bfd_reloc_code_real_type) reloc_type);
|
||
/* Record user specified value so we can test it when we compute the
|
||
actual value. */
|
||
fix->tc_fix_data.type = gif_insn_type;
|
||
fix->tc_fix_data.nregs = nregs;
|
||
fix->tc_fix_data.user_value = specified_nloop;
|
||
}
|
||
else if (specified_nloop != -1)
|
||
; /* nothing to do */
|
||
else
|
||
{
|
||
DVP_INSN insn = bfd_getl32 (gif_insn_frag_loc);
|
||
insert_operand_final (DVP_GIF, &gif_operands[gif_operand_nloop],
|
||
DVP_MOD_THIS_WORD, &insn,
|
||
(offsetT) computed_nloop, file, line);
|
||
bfd_putl32 ((bfd_vma) insn, gif_insn_frag_loc);
|
||
}
|
||
|
||
/* These needn't be reset, but to catch bugs they are. */
|
||
gif_data_name = NULL;
|
||
gif_insn_frag = NULL;
|
||
gif_insn_frag_loc = NULL;
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
s_state (state)
|
||
int state;
|
||
{
|
||
/* If in MPG state and the user requests to change to VU state,
|
||
leave the state as MPG. This happens when we see an mpg followed
|
||
by a .include that has .vu. Note that no attempt is made to support
|
||
an include depth > 1 for this case. */
|
||
if (CUR_ASM_STATE == ASM_MPG && state == ASM_VU)
|
||
return;
|
||
|
||
/* If changing to the VU state, we need to set up things for $.mpgloc
|
||
calculations. */
|
||
if (state == ASM_VU)
|
||
{
|
||
/* FIXME: May need to check that we're not clobbering currently
|
||
in use versions of these. Also need to worry about which section
|
||
the .vu is issued in. On the other hand, ".vu" isn't intended
|
||
to be supported everywhere. */
|
||
mpgloc_sym = expr_build_uconstant (0);
|
||
vif_data_start = expr_build_dot ();
|
||
}
|
||
|
||
set_asm_state (state);
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|