old-cross-binutils/gas/config/tc-v850.c
1997-08-25 18:21:02 +00:00

1570 lines
37 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-v850.c -- Assembler code for the NEC V850
Copyright (C) 1996, 1997 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <ctype.h>
#include "as.h"
#include "subsegs.h"
#include "opcode/v850.h"
/* sign-extend a 16-bit number */
#define SEXT16(x) ((((x) & 0xffff) ^ (~ 0x7fff)) + 0x8000)
/* Temporarily holds the reloc in a cons expression. */
static bfd_reloc_code_real_type hold_cons_reloc;
/* Structure to hold information about predefined registers. */
struct reg_name
{
const char *name;
int value;
};
/* Generic assembler global variables which must be defined by all targets. */
/* Characters which always start a comment. */
const char comment_chars[] = "#";
/* Characters which start a comment at the beginning of a line. */
const char line_comment_chars[] = ";#";
/* Characters which may be used to separate multiple commands on a
single line. */
const char line_separator_chars[] = ";";
/* Characters which are used to indicate an exponent in a floating
point number. */
const char EXP_CHARS[] = "eE";
/* Characters which mean that a number is a floating point constant,
as in 0d1.0. */
const char FLT_CHARS[] = "dD";
const relax_typeS md_relax_table[] = {
{0xff, -0x100, 2, 1},
{0x1fffff, -0x200000, 6, 0},
};
/* local functions */
static unsigned long v850_insert_operand
PARAMS ((unsigned long insn, const struct v850_operand *operand,
offsetT val, char *file, unsigned int line));
/* fixups */
#define MAX_INSN_FIXUPS (5)
struct v850_fixup
{
expressionS exp;
int opindex;
bfd_reloc_code_real_type reloc;
};
struct v850_fixup fixups[MAX_INSN_FIXUPS];
static int fc;
static void
v850_section (int arg)
{
char saved_c;
char * ptr;
for (ptr = input_line_pointer; * ptr != '\n' && * ptr != 0; ptr ++)
if (* ptr == ',' && ptr[1] == '.')
break;
saved_c = * ptr;
* ptr = ';';
obj_elf_section (arg);
* ptr = saved_c;
}
void
v850_bss (int ignore)
{
register int temp = get_absolute_expression ();
subseg_set (bss_section, (subsegT) temp);
demand_empty_rest_of_line ();
}
void
v850_offset (int ignore)
{
register int temp = get_absolute_expression ();
subseg_set (now_seg, (subsegT) temp);
demand_empty_rest_of_line ();
}
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{"bss", v850_bss, 0},
{"offset", v850_offset, 0},
{"section", v850_section, 0},
{"word", cons, 4},
{ NULL, NULL, 0}
};
/* Opcode hash table. */
static struct hash_control *v850_hash;
/* This table is sorted. Suitable for searching by a binary search. */
static const struct reg_name pre_defined_registers[] =
{
{ "ep", 30 }, /* ep - element ptr */
{ "gp", 4 }, /* gp - global ptr */
{ "lp", 31 }, /* lp - link ptr */
{ "r0", 0 },
{ "r1", 1 },
{ "r10", 10 },
{ "r11", 11 },
{ "r12", 12 },
{ "r13", 13 },
{ "r14", 14 },
{ "r15", 15 },
{ "r16", 16 },
{ "r17", 17 },
{ "r18", 18 },
{ "r19", 19 },
{ "r2", 2 },
{ "r20", 20 },
{ "r21", 21 },
{ "r22", 22 },
{ "r23", 23 },
{ "r24", 24 },
{ "r25", 25 },
{ "r26", 26 },
{ "r27", 27 },
{ "r28", 28 },
{ "r29", 29 },
{ "r3", 3 },
{ "r30", 30 },
{ "r31", 31 },
{ "r4", 4 },
{ "r5", 5 },
{ "r6", 6 },
{ "r7", 7 },
{ "r8", 8 },
{ "r9", 9 },
{ "sp", 3 }, /* sp - stack ptr */
{ "tp", 5 }, /* tp - text ptr */
{ "zero", 0 },
};
#define REG_NAME_CNT (sizeof (pre_defined_registers) / sizeof (struct reg_name))
static const struct reg_name system_registers[] =
{
/* start-sanitize-v850e */
{ "ctbp", 20 },
{ "ctpc", 16 },
{ "ctpsw", 17 },
{ "dbpc", 18 },
{ "dbpsw", 19 },
/* end-sanitize-v850e */
{ "ecr", 4 },
{ "eipc", 0 },
{ "eipsw", 1 },
{ "fepc", 2 },
{ "fepsw", 3 },
{ "psw", 5 },
};
#define SYSREG_NAME_CNT (sizeof (system_registers) / sizeof (struct reg_name))
static const struct reg_name cc_names[] =
{
{ "c", 0x1 },
{ "e", 0x2 },
{ "ge", 0xe },
{ "gt", 0xf },
{ "h", 0xb },
{ "l", 0x1 },
{ "le", 0x7 },
{ "lt", 0x6 },
{ "n", 0x4 },
{ "nc", 0x9 },
{ "ne", 0xa },
{ "nh", 0x3 },
{ "nl", 0x9 },
{ "ns", 0xc },
{ "nv", 0x8 },
{ "nz", 0xa },
{ "p", 0xc },
{ "s", 0x4 },
{ "sa", 0xd },
{ "t", 0x5 },
{ "v", 0x0 },
{ "z", 0x2 },
};
#define CC_NAME_CNT (sizeof(cc_names) / sizeof(struct reg_name))
/* reg_name_search does a binary search of the given register table
to see if "name" is a valid regiter name. Returns the register
number from the array on success, or -1 on failure. */
static int
reg_name_search (regs, regcount, name)
const struct reg_name *regs;
int regcount;
const char *name;
{
int middle, low, high;
int cmp;
low = 0;
high = regcount - 1;
do
{
middle = (low + high) / 2;
cmp = strcasecmp (name, regs[middle].name);
if (cmp < 0)
high = middle - 1;
else if (cmp > 0)
low = middle + 1;
else
return regs[middle].value;
}
while (low <= high);
return -1;
}
/* Summary of register_name().
*
* in: Input_line_pointer points to 1st char of operand.
*
* out: A expressionS.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state.
*/
static boolean
register_name (expressionP)
expressionS *expressionP;
{
int reg_number;
char *name;
char *start;
char c;
/* Find the spelling of the operand */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT, name);
* input_line_pointer = c; /* put back the delimiting char */
/* look to see if it's in the register table */
if (reg_number >= 0)
{
expressionP->X_op = O_register;
expressionP->X_add_number = reg_number;
/* make the rest nice */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* reset the line as if we had not done anything */
input_line_pointer = start;
return false;
}
}
/* Summary of system_register_name().
*
* in: Input_line_pointer points to 1st char of operand.
*
* out: A expressionS.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state.
*/
static boolean
system_register_name (expressionP, accept_numbers)
expressionS * expressionP;
boolean accept_numbers;
{
int reg_number;
char *name;
char *start;
char c;
/* Find the spelling of the operand */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (system_registers, SYSREG_NAME_CNT, name);
* input_line_pointer = c; /* put back the delimiting char */
if (reg_number < 0
&& accept_numbers)
{
input_line_pointer = start; /* reset input_line pointer */
if (isdigit (* input_line_pointer))
reg_number = strtol (input_line_pointer, & input_line_pointer, 10);
/* Make sure that the register number is allowable. */
if ( reg_number < 0
|| reg_number > 5
/* start-sanitize-v850e */
&& reg_number < 16
|| reg_number > 20
/* end-sanitize-v850e */
)
{
reg_number = -1;
}
}
/* look to see if it's in the register table */
if (reg_number >= 0)
{
expressionP->X_op = O_register;
expressionP->X_add_number = reg_number;
/* make the rest nice */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* reset the line as if we had not done anything */
input_line_pointer = start;
return false;
}
}
/* Summary of cc_name().
*
* in: Input_line_pointer points to 1st char of operand.
*
* out: A expressionS.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state.
*/
static boolean
cc_name (expressionP)
expressionS *expressionP;
{
int reg_number;
char *name;
char *start;
char c;
/* Find the spelling of the operand */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (cc_names, CC_NAME_CNT, name);
* input_line_pointer = c; /* put back the delimiting char */
/* look to see if it's in the register table */
if (reg_number >= 0)
{
expressionP->X_op = O_constant;
expressionP->X_add_number = reg_number;
/* make the rest nice */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* reset the line as if we had not done anything */
input_line_pointer = start;
return false;
}
}
static void
skip_white_space (void)
{
while ( * input_line_pointer == ' '
|| * input_line_pointer == '\t')
++ input_line_pointer;
}
/* start-sanitize-v850e */
/* Summary of parse_register_list ().
*
* in: Input_line_pointer points to 1st char of a list of registers.
* insn is the partially constructed instruction.
* operand is the operand being inserted.
*
* out: True if the parse completed successfully, False otherwise.
* If the parse completes the correct bit fields in the
* instruction will be filled in.
*
* Parses register lists with the syntax:
*
* { rX }
* { rX, rY }
* { rX - rY }
* { rX - rY, rZ }
* etc
*
* and also parses constant epxressions whoes bits indicate the
* registers in the lists. The LSB in the expression refers to
* the lowest numbered permissable register in the register list,
* and so on upwards. System registers are considered to be very
* high numbers.
*
*/
static char *
parse_register_list
(
unsigned long * insn,
const struct v850_operand * operand
)
{
static int type1_regs[ 32 ] = { 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 };
/* start-sanitize-v850eq */
static int type2_regs[ 32 ] = { 19, 18, 17, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 };
static int type3_regs[ 32 ] = { 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 15, 13, 12, 7, 6, 5, 4, 11, 10, 9, 8 };
/* end-sanitize-v850eq */
int * regs;
expressionS exp;
/* Select a register array to parse. */
switch (operand->shift)
{
case 0xffe00001: regs = type1_regs; break;
/* start-sanitize-v850eq */
case 0xfff8000f: regs = type2_regs; break;
case 0xfff8001f: regs = type3_regs; break;
/* end-sanitize-v850eq */
default:
as_bad ("unknown operand shift: %x\n", operand->shift );
return "internal failure in parse_register_list";
}
skip_white_space();
/* If the expression starts with a curly brace it is a register list.
Otherwise it is a constant expression ,whoes bits indicate which
registers are to be included in the list. */
if (* input_line_pointer != '{')
{
int bits;
int reg;
int i;
expression (& exp);
if (exp.X_op != O_constant)
return "constant expression or register list expected";
/* start-sanitize-v850eq */
if (regs == type1_regs)
/* end-sanitize-v850eq */
{
if (exp.X_add_number & 0xFFFFF000)
return "high bits set in register list expression";
for (reg = 20; reg < 32; reg ++)
if (exp.X_add_number & (1 << (reg - 20)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
* insn |= (1 << i);
}
}
/* start-sanitize-v850eq */
else if (regs == type2_regs)
{
if (exp.X_add_number & 0xFFFE0000)
return "high bits set in register list expression";
for (reg = 1; reg < 16; reg ++)
if (exp.X_add_number & (1 << (reg - 1)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
* insn |= (1 << i);
}
if (exp.X_add_number & (1 << 15))
* insn |= (1 << 3);
if (exp.X_add_number & (1 << 16))
* insn |= (1 << 19);
}
else /* regs == type3_regs */
{
if (exp.X_add_number & 0xFFFE0000)
return "high bits set in register list expression";
for (reg = 16; reg < 32; reg ++)
if (exp.X_add_number & (1 << (reg - 16)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
* insn |= (1 << i);
}
if (exp.X_add_number & (1 << 16))
* insn |= (1 << 19);
}
/* end-sanitize-v850eq */
return NULL;
}
input_line_pointer ++;
/* Parse the register list until a terminator (closing curly brace or new-line) is found. */
for (;;)
{
if (register_name (& exp))
{
int i;
/* Locate the given register in the list, and if it is there, insert the corresponding bit into the instruction. */
for (i = 0; i < 32; i++)
{
if (regs[ i ] == exp.X_add_number)
{
* insn |= (1 << i);
break;
}
}
if (i == 32)
{
return "illegal register included in list";
}
}
else if (system_register_name (& exp, true))
{
if (regs == type1_regs)
{
return "system registers cannot be included in list";
}
else if (exp.X_add_number == 5)
{
if (regs == type2_regs)
return "PSW cannot be included in list";
else
* insn |= 0x8;
}
else
* insn |= 0x80000;
}
else if (* input_line_pointer == '}')
{
input_line_pointer ++;
break;
}
else if (* input_line_pointer == ',')
{
input_line_pointer ++;
continue;
}
else if (* input_line_pointer == '-')
{
/* We have encountered a range of registers: rX - rY */
int j;
expressionS exp2;
/* Skip the dash. */
++ input_line_pointer;
/* Get the second register in the range. */
if (! register_name (& exp2))
{
return "second register should follow dash in register list";
exp2.X_add_number = exp.X_add_number;
}
/* Add the rest of the registers in the range. */
for (j = exp.X_add_number + 1; j <= exp2.X_add_number; j++)
{
int i;
/* Locate the given register in the list, and if it is there, insert the corresponding bit into the instruction. */
for (i = 0; i < 32; i++)
{
if (regs[ i ] == j)
{
* insn |= (1 << i);
break;
}
}
if (i == 32)
{
return "illegal register included in list";
}
}
}
else
{
break;
}
skip_white_space();
}
return NULL;
}
/* end-sanitize-v850e */
CONST char * md_shortopts = "m:";
struct option md_longopts[] =
{
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof md_longopts;
void
md_show_usage (stream)
FILE *stream;
{
fprintf (stream, "V850 options:\n");
fprintf (stream, "\tnone at present\n");
}
int
md_parse_option (c, arg)
int c;
char * arg;
{
return 0;
}
symbolS *
md_undefined_symbol (name)
char *name;
{
return 0;
}
char *
md_atof (type, litp, sizep)
int type;
char *litp;
int *sizep;
{
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizep = 0;
return "bad call to md_atof";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizep = prec * 2;
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litp, (valueT) words[i], 2);
litp += 2;
}
return NULL;
}
/* Very gross. */
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd;
asection *sec;
fragS *fragP;
{
subseg_change (sec, 0);
if (fragP->fr_subtype == 0)
{
fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int)fragP->fr_opcode);
fragP->fr_var = 0;
fragP->fr_fix += 2;
}
else if (fragP->fr_subtype == 1)
{
/* Reverse the condition of the first branch. */
fragP->fr_literal[0] &= 0xf7;
/* Mask off all the displacement bits. */
fragP->fr_literal[0] &= 0x8f;
fragP->fr_literal[1] &= 0x07;
/* Now set the displacement bits so that we branch
around the unconditional branch. */
fragP->fr_literal[0] |= 0x30;
/* Now create the unconditional branch + fixup to the final
target. */
md_number_to_chars (&fragP->fr_literal[2], 0x00000780, 4);
fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int)fragP->fr_opcode + 1);
fragP->fr_var = 0;
fragP->fr_fix += 6;
}
else
abort ();
}
valueT
md_section_align (seg, addr)
asection *seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
void
md_begin ()
{
char *prev_name = "";
register const struct v850_opcode *op;
v850_hash = hash_new();
/* Insert unique names into hash table. The V850 instruction set
has many identical opcode names that have different opcodes based
on the operands. This hash table then provides a quick index to
the first opcode with a particular name in the opcode table. */
op = v850_opcodes;
while (op->name)
{
if (strcmp (prev_name, op->name))
{
prev_name = (char *) op->name;
hash_insert (v850_hash, op->name, (char *) op);
}
op++;
}
}
static bfd_reloc_code_real_type
v850_reloc_prefix ()
{
if (strncmp(input_line_pointer, "hi0(", 4) == 0)
{
input_line_pointer += 3;
return BFD_RELOC_HI16;
}
if (strncmp(input_line_pointer, "hi(", 3) == 0)
{
input_line_pointer += 2;
return BFD_RELOC_HI16_S;
}
if (strncmp (input_line_pointer, "lo(", 3) == 0)
{
input_line_pointer += 2;
return BFD_RELOC_LO16;
}
if (strncmp (input_line_pointer, "sdaoff(", 7) == 0)
{
input_line_pointer += 6;
return BFD_RELOC_V850_SDA_OFFSET;
}
if (strncmp (input_line_pointer, "zdaoff(", 7) == 0)
{
input_line_pointer += 6;
return BFD_RELOC_V850_ZDA_OFFSET;
}
if (strncmp (input_line_pointer, "tdaoff(", 7) == 0)
{
input_line_pointer += 6;
return BFD_RELOC_V850_TDA_OFFSET;
}
/* Disgusting */
if (strncmp(input_line_pointer, "(hi0(", 5) == 0)
{
input_line_pointer += 4;
return BFD_RELOC_HI16;
}
if (strncmp(input_line_pointer, "(hi(", 4) == 0)
{
input_line_pointer += 3;
return BFD_RELOC_HI16_S;
}
if (strncmp (input_line_pointer, "(lo(", 4) == 0)
{
input_line_pointer += 3;
return BFD_RELOC_LO16;
}
if (strncmp (input_line_pointer, "(sdaoff(", 8) == 0)
{
input_line_pointer += 7;
return BFD_RELOC_V850_SDA_OFFSET;
}
if (strncmp (input_line_pointer, "(zdaoff(", 8) == 0)
{
input_line_pointer += 7;
return BFD_RELOC_V850_ZDA_OFFSET;
}
if (strncmp (input_line_pointer, "(tdaoff(", 8) == 0)
{
input_line_pointer += 7;
return BFD_RELOC_V850_TDA_OFFSET;
}
return BFD_RELOC_UNUSED;
}
void
md_assemble (str)
char * str;
{
char * s;
char * start_of_operands;
struct v850_opcode * opcode;
struct v850_opcode * next_opcode;
const unsigned char * opindex_ptr;
int next_opindex;
int relaxable;
unsigned long insn;
unsigned long insn_size;
char * f;
int i;
int match;
bfd_reloc_code_real_type reloc;
boolean extra_data_after_insn = false;
unsigned extra_data_len;
unsigned long extra_data;
char * saved_input_line_pointer;
/* Get the opcode. */
for (s = str; *s != '\0' && ! isspace (*s); s++)
continue;
if (*s != '\0')
*s++ = '\0';
/* find the first opcode with the proper name */
opcode = (struct v850_opcode *)hash_find (v850_hash, str);
if (opcode == NULL)
{
as_bad ("Unrecognized opcode: `%s'", str);
ignore_rest_of_line ();
return;
}
str = s;
while (isspace (* str))
++ str;
start_of_operands = str;
saved_input_line_pointer = input_line_pointer;
for (;;)
{
const char * errmsg = NULL;
relaxable = 0;
fc = 0;
match = 0;
next_opindex = 0;
insn = opcode->opcode;
extra_data_after_insn = false;
input_line_pointer = str = start_of_operands;
for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++)
{
const struct v850_operand * operand;
char * hold;
expressionS ex;
if (next_opindex == 0)
{
operand = & v850_operands[ * opindex_ptr ];
}
else
{
operand = & v850_operands[ next_opindex ];
next_opindex = 0;
}
errmsg = NULL;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']')
++str;
if (operand->flags & V850_OPERAND_RELAX)
relaxable = 1;
/* Gather the operand. */
hold = input_line_pointer;
input_line_pointer = str;
/*fprintf (stderr, "operand: %s index = %d, opcode = %s\n", input_line_pointer, opindex_ptr - opcode->operands, opcode->name );*/
/* lo(), hi(), hi0(), etc... */
if ((reloc = v850_reloc_prefix()) != BFD_RELOC_UNUSED)
{
expression (& ex);
if (ex.X_op == O_constant)
{
switch (reloc)
{
case BFD_RELOC_LO16:
{
/* Truncate, then sign extend the value. */
ex.X_add_number = SEXT16 (ex.X_add_number);
break;
}
case BFD_RELOC_HI16:
{
/* Truncate, then sign extend the value. */
ex.X_add_number = SEXT16 (ex.X_add_number >> 16);
break;
}
case BFD_RELOC_HI16_S:
{
/* Truncate, then sign extend the value. */
int temp = (ex.X_add_number >> 16) & 0xffff;
temp += (ex.X_add_number >> 15) & 1;
ex.X_add_number = SEXT16 (temp);
break;
}
default:
break;
}
insn = v850_insert_operand (insn, operand, ex.X_add_number,
(char *) NULL, 0);
}
else
{
if (fc > MAX_INSN_FIXUPS)
as_fatal ("too many fixups");
/* Adjust any offsets for sst.{h,w}/sld.{h,w} instructions */
if (operand->flags & V850_OPERAND_ADJUST_SHORT_MEMORY)
ex.X_add_number >>= 1;
fixups[fc].exp = ex;
fixups[fc].opindex = *opindex_ptr;
fixups[fc].reloc = reloc;
fc++;
}
}
else
{
errmsg = NULL;
if ((operand->flags & V850_OPERAND_REG) != 0)
{
if (!register_name (& ex))
{
errmsg = "invalid register name";
}
if ((operand->flags & V850_NOT_R0)
&& ex.X_add_number == 0)
{
errmsg = "register r0 cannot be used here";
}
}
else if ((operand->flags & V850_OPERAND_SRG) != 0)
{
if (!system_register_name (& ex, true))
{
errmsg = "UGG invalid system register name";
}
}
else if ((operand->flags & V850_OPERAND_EP) != 0)
{
char * start = input_line_pointer;
char c = get_symbol_end ();
if (strcmp (start, "ep") != 0 && strcmp (start, "r30") != 0)
{
/* Put things back the way we found them. */
*input_line_pointer = c;
input_line_pointer = start;
errmsg = "expected EP register";
goto error;
}
*input_line_pointer = c;
str = input_line_pointer;
input_line_pointer = hold;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']')
++str;
continue;
}
else if ((operand->flags & V850_OPERAND_CC) != 0)
{
if (!cc_name (& ex))
{
errmsg = "invalid condition code name";
}
}
else if (operand->flags & V850E_PUSH_POP)
{
errmsg = parse_register_list (& insn, operand);
/* The parse_register_list() function has already done everything, so fake a dummy expression. */
ex.X_op = O_constant;
ex.X_add_number = 0;
}
else if (operand->flags & V850E_IMMEDIATE16)
{
expression (& ex);
if (ex.X_op != O_constant)
errmsg = "constant expression expected";
else if (ex.X_add_number & 0xffff0000)
{
if (ex.X_add_number & 0xffff)
errmsg = "constant too big to fit into instruction";
else if ((insn & 0x001fffc0) == 0x00130780)
ex.X_add_number >>= 16;
else
errmsg = "constant too big to fit into instruction";
}
extra_data_after_insn = true;
extra_data_len = 2;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
}
else if (operand->flags & V850E_IMMEDIATE32)
{
expression (& ex);
if (ex.X_op != O_constant)
errmsg = "constant expression expected";
extra_data_after_insn = true;
extra_data_len = 4;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
}
else if (register_name (&ex)
&& (operand->flags & V850_OPERAND_REG) == 0)
{
errmsg = "syntax error: register not expected";
}
else if (system_register_name (& ex, false)
&& (operand->flags & V850_OPERAND_SRG) == 0)
{
errmsg = "syntax error: system register not expected";
}
else if (cc_name (&ex)
&& (operand->flags & V850_OPERAND_CC) == 0)
{
errmsg = "syntax error: condition code not expected";
}
else
{
expression (& ex);
/* start-sanitize-v850e */
/* Special case:
If we are assembling a MOV instruction (or a CALLT.... :-)
and the immediate value does not fit into the bits available
then create a fake error so that the next MOV instruction
will be selected. This one has a 32 bit immediate field. */
if (((insn & 0x07e0) == 0x0200)
&& ex.X_op == O_constant
&& (ex.X_add_number < (- (1 << (operand->bits - 1))) || ex.X_add_number > ((1 << operand->bits) - 1)))
errmsg = "use bigger instruction";
/* end-sanitize-v850e */
}
if (errmsg)
goto error;
/*fprintf (stderr, "insn: %x, operand %d, op: %d, add_number: %d\n", insn, opindex_ptr - opcode->operands, ex.X_op, ex.X_add_number );*/
switch (ex.X_op)
{
case O_illegal:
errmsg = "illegal operand";
goto error;
case O_absent:
errmsg = "missing operand";
goto error;
case O_register:
if ((operand->flags & (V850_OPERAND_REG | V850_OPERAND_SRG)) == 0)
{
errmsg = "invalid operand";
goto error;
}
insn = v850_insert_operand (insn, operand, ex.X_add_number,
(char *) NULL, 0);
break;
case O_constant:
insn = v850_insert_operand (insn, operand, ex.X_add_number,
(char *) NULL, 0);
break;
default:
/* We need to generate a fixup for this expression. */
if (fc >= MAX_INSN_FIXUPS)
as_fatal ("too many fixups");
fixups[fc].exp = ex;
fixups[fc].opindex = *opindex_ptr;
fixups[fc].reloc = BFD_RELOC_UNUSED;
++fc;
break;
}
}
str = input_line_pointer;
input_line_pointer = hold;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']'
|| *str == ')')
++str;
}
match = 1;
error:
if (match == 0)
{
next_opcode = opcode + 1;
if (next_opcode->opcode != 0 && !strcmp (next_opcode->name, opcode->name))
{
opcode = next_opcode;
continue;
}
as_bad ("%s", errmsg);
ignore_rest_of_line ();
input_line_pointer = saved_input_line_pointer;
return;
}
break;
}
while (isspace (*str))
++str;
if (*str != '\0')
as_bad ("junk at end of line: `%s'", str);
input_line_pointer = str;
/* Write out the instruction.
Four byte insns have an opcode with the two high bits on. */
if (relaxable && fc > 0)
{
f = frag_var (rs_machine_dependent, 6, 4, 0,
fixups[0].exp.X_add_symbol,
fixups[0].exp.X_add_number,
(char *)fixups[0].opindex);
insn_size = 2;
md_number_to_chars (f, insn, insn_size);
md_number_to_chars (f + 2, 0, 4);
fc = 0;
}
else
{
if ((insn & 0x0600) == 0x0600)
insn_size = 4;
else
insn_size = 2;
/* start-sanitize-v850e */
/* Special case: 32 bit MOV */
if ((insn & 0xffe0) == 0x0620)
insn_size = 2;
/* end_sanitize-v850e */
f = frag_more (insn_size);
md_number_to_chars (f, insn, insn_size);
if (extra_data_after_insn)
{
f = frag_more (extra_data_len);
md_number_to_chars (f, extra_data, extra_data_len);
extra_data_after_insn = false;
}
}
/* Create any fixups. At this point we do not use a
bfd_reloc_code_real_type, but instead just use the
BFD_RELOC_UNUSED plus the operand index. This lets us easily
handle fixups for any operand type, although that is admittedly
not a very exciting feature. We pick a BFD reloc type in
md_apply_fix. */
for (i = 0; i < fc; i++)
{
const struct v850_operand *operand;
operand = &v850_operands[fixups[i].opindex];
if (fixups[i].reloc != BFD_RELOC_UNUSED)
{
reloc_howto_type *reloc_howto = bfd_reloc_type_lookup (stdoutput, fixups[i].reloc);
int size;
int offset;
fixS *fixP;
if (!reloc_howto)
abort();
size = bfd_get_reloc_size (reloc_howto);
/* The "size" of a TDA_OFFSET reloc varies depending
on what kind of instruction it's used in! */
if (reloc_howto->type == 11 && insn_size > 2)
size = 2;
if (size < 1 || size > 4)
abort();
offset = 4 - size;
fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset, size,
&fixups[i].exp,
reloc_howto->pc_relative,
fixups[i].reloc);
switch (fixups[i].reloc)
{
case BFD_RELOC_LO16:
case BFD_RELOC_HI16:
case BFD_RELOC_HI16_S:
fixP->fx_no_overflow = 1;
break;
}
}
else
{
fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
&fixups[i].exp,
1 /* FIXME: V850_OPERAND_RELATIVE ??? */,
((bfd_reloc_code_real_type)
(fixups[i].opindex + (int) BFD_RELOC_UNUSED)));
}
}
input_line_pointer = saved_input_line_pointer;
}
/* if while processing a fixup, a reloc really needs to be created */
/* then it is done here */
arelent *
tc_gen_reloc (seg, fixp)
asection *seg;
fixS *fixp;
{
arelent *reloc;
reloc = (arelent *) xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"reloc %d not supported by object file format", (int)fixp->fx_r_type);
return NULL;
}
reloc->addend = fixp->fx_addnumber;
/* printf("tc_gen_reloc: addr=%x addend=%x\n", reloc->address, reloc->addend); */
return reloc;
}
/* Assume everything will fit in two bytes, then expand as necessary. */
int
md_estimate_size_before_relax (fragp, seg)
fragS *fragp;
asection *seg;
{
fragp->fr_var = 4;
return 2;
}
long
md_pcrel_from (fixp)
fixS *fixp;
{
/* If the symbol is undefined, or in a section other than our own,
then let the linker figure it out. */
if (fixp->fx_addsy != (symbolS *) NULL && ! S_IS_DEFINED (fixp->fx_addsy))
{
/* The symbol is undefined. Let the linker figure it out. */
return 0;
}
return fixp->fx_frag->fr_address + fixp->fx_where;
}
int
md_apply_fix3 (fixp, valuep, seg)
fixS *fixp;
valueT *valuep;
segT seg;
{
valueT value;
char *where;
if (fixp->fx_addsy == (symbolS *) NULL)
{
value = *valuep;
fixp->fx_done = 1;
}
else if (fixp->fx_pcrel)
value = *valuep;
else
{
value = fixp->fx_offset;
if (fixp->fx_subsy != (symbolS *) NULL)
{
if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
value -= S_GET_VALUE (fixp->fx_subsy);
else
{
/* We don't actually support subtracting a symbol. */
as_bad_where (fixp->fx_file, fixp->fx_line,
"expression too complex");
}
}
}
/* printf("md_apply_fix: value=0x%x type=%d\n", value, fixp->fx_r_type); */
if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED)
{
int opindex;
const struct v850_operand *operand;
char *where;
unsigned long insn;
opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED;
operand = &v850_operands[opindex];
/* Fetch the instruction, insert the fully resolved operand
value, and stuff the instruction back again.
Note the instruction has been stored in little endian
format! */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
insn = bfd_getl32((unsigned char *) where);
insn = v850_insert_operand (insn, operand, (offsetT) value,
fixp->fx_file, fixp->fx_line);
bfd_putl32((bfd_vma) insn, (unsigned char *) where);
if (fixp->fx_done)
{
/* Nothing else to do here. */
return 1;
}
/* Determine a BFD reloc value based on the operand information.
We are only prepared to turn a few of the operands into relocs. */
if (operand->bits == 22)
fixp->fx_r_type = BFD_RELOC_V850_22_PCREL;
else if (operand->bits == 9)
fixp->fx_r_type = BFD_RELOC_V850_9_PCREL;
else if (operand->bits == 16)
fixp->fx_r_type = BFD_RELOC_V850_16_PCREL;
else
{
as_bad_where(fixp->fx_file, fixp->fx_line,
"unresolved expression that must be resolved");
fixp->fx_done = 1;
return 1;
}
}
else if (fixp->fx_done)
{
/* We still have to insert the value into memory! */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
if (fixp->fx_size == 1)
*where = value & 0xff;
if (fixp->fx_size == 2)
bfd_putl16(value & 0xffff, (unsigned char *) where);
if (fixp->fx_size == 4)
bfd_putl32(value, (unsigned char *) where);
}
fixp->fx_addnumber = value;
return 1;
}
/* Insert an operand value into an instruction. */
static unsigned long
v850_insert_operand (insn, operand, val, file, line)
unsigned long insn;
const struct v850_operand * operand;
offsetT val;
char *file;
unsigned int line;
{
if (operand->bits != 32)
{
long min, max;
offsetT test;
if ((operand->flags & V850_OPERAND_SIGNED) != 0)
{
max = (1 << (operand->bits - 1)) - 1;
min = - (1 << (operand->bits - 1));
}
else
{
max = (1 << operand->bits) - 1;
min = 0;
}
test = val;
if (test < (offsetT) min || test > (offsetT) max)
{
const char * err =
"operand out of range (%s not between %ld and %ld)";
char buf[100];
sprint_value (buf, test);
if (file == (char *) NULL)
as_warn (err, buf, min, max);
else
as_warn_where (file, line, err, buf, min, max);
}
}
if (operand->insert)
{
const char * message = NULL;
insn = (*operand->insert) (insn, val, & message);
if (message != NULL)
{
if (file == (char *) NULL)
as_warn (message);
else
as_warn_where (file, line, message);
}
}
else
insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift);
return insn;
}
/* Parse a cons expression. We have to handle hi(), lo(), etc
on the v850. */
void
parse_cons_expression_v850 (exp)
expressionS *exp;
{
/* See if there's a reloc prefix like hi() we have to handle. */
hold_cons_reloc = v850_reloc_prefix ();
/* Do normal expression parsing. */
expression (exp);
}
/* Create a fixup for a cons expression. If parse_cons_expression_v850
found a reloc prefix, then we use that reloc, else we choose an
appropriate one based on the size of the expression. */
void
cons_fix_new_v850 (frag, where, size, exp)
fragS *frag;
int where;
int size;
expressionS *exp;
{
if (hold_cons_reloc == BFD_RELOC_UNUSED)
{
if (size == 4)
hold_cons_reloc = BFD_RELOC_32;
if (size == 2)
hold_cons_reloc = BFD_RELOC_16;
if (size == 1)
hold_cons_reloc = BFD_RELOC_8;
}
if (exp != NULL)
fix_new_exp (frag, where, size, exp, 0, hold_cons_reloc);
else
fix_new (frag, where, size, NULL, 0, 0, hold_cons_reloc);
}