old-cross-binutils/gdb/dwarf2expr.h
Joel Brobecker 0acf8b658c Fix DW_OP_GNU_regval_type with FP registers
Consider the following code, compiled at -O2 on ppc-linux:

    procedure Increment (Val : in out Float; Msg : String);

The implementation does not really matter in this case). In our example,
this function is being called from a function with Param_1 set to 99.0.
Trying to break inside that function, and running until reaching that
breakpoint yields:

    (gdb) b increment
    Breakpoint 1 at 0x100014b4: file callee.adb, line 6.
    (gdb) run
    Starting program: /[...]/foo

    Breakpoint 1, callee.increment (val=99.0, val@entry=0.0, msg=...)
        at callee.adb:6
    6             if Val > 200.0 then

The @entry value for parameter "val" is incorrect, it should be 99.0.

The associated call-site parameter DIE looks like this:

        .uleb128 0xc     # (DIE (0x115) DW_TAG_GNU_call_site_parameter)
        .byte   0x2      # DW_AT_location
        .byte   0x90     # DW_OP_regx
        .uleb128 0x21
        .byte   0x3      # DW_AT_GNU_call_site_value
        .byte   0xf5     # DW_OP_GNU_regval_type
        .uleb128 0x3f
        .uleb128 0x25

The DW_AT_GNU_call_site_value uses a DW_OP_GNU_regval_type
operation, referencing register 0x3f=63, which is $f31,
an 8-byte floating register. In that register, the value is
stored using the usual 8-byte float format:

    (gdb) info float
    f31            99.0 (raw 0x4058c00000000000)

The current code evaluating DW_OP_GNU_regval_type operations
currently is (dwarf2expr.c:execute_stack_op):

            result = (ctx->funcs->read_reg) (ctx->baton, reg);
            result_val = value_from_ulongest (address_type, result);
            result_val = value_from_contents (type,
                                              value_contents_all (result_val));

What the ctx->funcs->read_reg function does is read the contents
of the register as if it contained an address. The rest of the code
continues that assumption, thinking it's OK to then use that to
create an address/ulongest struct value, which we then re-type
to the type specified by DW_OP_GNU_regval_type.

We're getting 0.0 above because the read_reg implementations
end up treating the contents of the FP register as an integral,
reading only 4 out of the 8 bytes. Being a big-endian target,
we read the high-order ones, which gives us zero.

This patch fixes the problem by introducing a new callback to
read the contents of a register as a given type, and then adjust
the handling of DW_OP_GNU_regval_type to use that new callback.

gdb/ChangeLog:

        * dwarf2expr.h (struct dwarf_expr_context_funcs) <read_reg>:
        Extend the documentation a bit.
        <get_reg_value>: New field.
        * dwarf2loc.c (dwarf_expr_get_reg_value)
        (needs_frame_get_reg_value): New functions.
        (dwarf_expr_ctx_funcs, needs_frame_ctx_funcs): Add "get_reg_value"
        callback.
        * dwarf2-frame.c (get_reg_value): New function.
        (dwarf2_frame_ctx_funcs): Add "get_reg_value" callback.
        * dwarf2expr.c (execute_stack_op) <DW_OP_GNU_regval_type>:
        Use new callback to compute result_val.

gdb/testsuite/ChangeLog:

        * gdb.ada/O2_float_param: New testcase.
2013-11-14 22:38:48 -05:00

349 lines
12 KiB
C

/* DWARF 2 Expression Evaluator.
Copyright (C) 2001-2013 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dan@dberlin.org>.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (DWARF2EXPR_H)
#define DWARF2EXPR_H
#include "leb128.h"
#include "gdbtypes.h"
struct dwarf_expr_context;
/* Virtual method table for struct dwarf_expr_context below. */
struct dwarf_expr_context_funcs
{
/* Return the value of register number REGNUM (a DWARF register number),
read as an address. */
CORE_ADDR (*read_reg) (void *baton, int regnum);
/* Return a value of type TYPE, stored in register number REGNUM
of the frame associated to the given BATON.
REGNUM is a DWARF register number. */
struct value *(*get_reg_value) (void *baton, struct type *type, int regnum);
/* Read LENGTH bytes at ADDR into BUF. */
void (*read_mem) (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t length);
/* Return the location expression for the frame base attribute, in
START and LENGTH. The result must be live until the current
expression evaluation is complete. */
void (*get_frame_base) (void *baton, const gdb_byte **start, size_t *length);
/* Return the CFA for the frame. */
CORE_ADDR (*get_frame_cfa) (void *baton);
/* Return the PC for the frame. */
CORE_ADDR (*get_frame_pc) (void *baton);
/* Return the thread-local storage address for
DW_OP_GNU_push_tls_address. */
CORE_ADDR (*get_tls_address) (void *baton, CORE_ADDR offset);
/* Execute DW_AT_location expression for the DWARF expression subroutine in
the DIE at DIE_OFFSET in the CU from CTX. Do not touch STACK while it
being passed to and returned from the called DWARF subroutine. */
void (*dwarf_call) (struct dwarf_expr_context *ctx, cu_offset die_offset);
/* Return the base type given by the indicated DIE. This can throw
an exception if the DIE is invalid or does not represent a base
type. If can also be NULL in the special case where the
callbacks are not performing evaluation, and thus it is
meaningful to substitute a stub type of the correct size. */
struct type *(*get_base_type) (struct dwarf_expr_context *ctx, cu_offset die);
/* Push on DWARF stack an entry evaluated for DW_TAG_GNU_call_site's
parameter matching KIND and KIND_U at the caller of specified BATON.
If DEREF_SIZE is not -1 then use DW_AT_GNU_call_site_data_value instead of
DW_AT_GNU_call_site_value. */
void (*push_dwarf_reg_entry_value) (struct dwarf_expr_context *ctx,
enum call_site_parameter_kind kind,
union call_site_parameter_u kind_u,
int deref_size);
/* Return the address indexed by DW_OP_GNU_addr_index.
This can throw an exception if the index is out of range. */
CORE_ADDR (*get_addr_index) (void *baton, unsigned int index);
#if 0
/* Not yet implemented. */
/* Return the `object address' for DW_OP_push_object_address. */
CORE_ADDR (*get_object_address) (void *baton);
#endif
};
/* The location of a value. */
enum dwarf_value_location
{
/* The piece is in memory.
The value on the dwarf stack is its address. */
DWARF_VALUE_MEMORY,
/* The piece is in a register.
The value on the dwarf stack is the register number. */
DWARF_VALUE_REGISTER,
/* The piece is on the dwarf stack. */
DWARF_VALUE_STACK,
/* The piece is a literal. */
DWARF_VALUE_LITERAL,
/* The piece was optimized out. */
DWARF_VALUE_OPTIMIZED_OUT,
/* The piece is an implicit pointer. */
DWARF_VALUE_IMPLICIT_POINTER
};
/* The dwarf expression stack. */
struct dwarf_stack_value
{
struct value *value;
/* Non-zero if the piece is in memory and is known to be
on the program's stack. It is always ok to set this to zero.
This is used, for example, to optimize memory access from the target.
It can vastly speed up backtraces on long latency connections when
"set stack-cache on". */
int in_stack_memory;
};
/* The expression evaluator works with a dwarf_expr_context, describing
its current state and its callbacks. */
struct dwarf_expr_context
{
/* The stack of values, allocated with xmalloc. */
struct dwarf_stack_value *stack;
/* The number of values currently pushed on the stack, and the
number of elements allocated to the stack. */
int stack_len, stack_allocated;
/* Target architecture to use for address operations. */
struct gdbarch *gdbarch;
/* Target address size in bytes. */
int addr_size;
/* DW_FORM_ref_addr size in bytes. If -1 DWARF is executed from a frame
context and operations depending on DW_FORM_ref_addr are not allowed. */
int ref_addr_size;
/* Offset used to relocate DW_OP_addr and DW_OP_GNU_addr_index arguments. */
CORE_ADDR offset;
/* An opaque argument provided by the caller, which will be passed
to all of the callback functions. */
void *baton;
/* Callback functions. */
const struct dwarf_expr_context_funcs *funcs;
/* The current depth of dwarf expression recursion, via DW_OP_call*,
DW_OP_fbreg, DW_OP_push_object_address, etc., and the maximum
depth we'll tolerate before raising an error. */
int recursion_depth, max_recursion_depth;
/* Location of the value. */
enum dwarf_value_location location;
/* For DWARF_VALUE_LITERAL, the current literal value's length and
data. For DWARF_VALUE_IMPLICIT_POINTER, LEN is the offset of the
target DIE of sect_offset kind. */
ULONGEST len;
const gdb_byte *data;
/* Initialization status of variable: Non-zero if variable has been
initialized; zero otherwise. */
int initialized;
/* An array of pieces. PIECES points to its first element;
NUM_PIECES is its length.
Each time DW_OP_piece is executed, we add a new element to the
end of this array, recording the current top of the stack, the
current location, and the size given as the operand to
DW_OP_piece. We then pop the top value from the stack, reset the
location, and resume evaluation.
The Dwarf spec doesn't say whether DW_OP_piece pops the top value
from the stack. We do, ensuring that clients of this interface
expecting to see a value left on the top of the stack (say, code
evaluating frame base expressions or CFA's specified with
DW_CFA_def_cfa_expression) will get an error if the expression
actually marks all the values it computes as pieces.
If an expression never uses DW_OP_piece, num_pieces will be zero.
(It would be nice to present these cases as expressions yielding
a single piece, so that callers need not distinguish between the
no-DW_OP_piece and one-DW_OP_piece cases. But expressions with
no DW_OP_piece operations have no value to place in a piece's
'size' field; the size comes from the surrounding data. So the
two cases need to be handled separately.) */
int num_pieces;
struct dwarf_expr_piece *pieces;
};
/* A piece of an object, as recorded by DW_OP_piece or DW_OP_bit_piece. */
struct dwarf_expr_piece
{
enum dwarf_value_location location;
union
{
struct
{
/* This piece's address, for DWARF_VALUE_MEMORY pieces. */
CORE_ADDR addr;
/* Non-zero if the piece is known to be in memory and on
the program's stack. */
int in_stack_memory;
} mem;
/* The piece's register number, for DWARF_VALUE_REGISTER pieces. */
int regno;
/* The piece's literal value, for DWARF_VALUE_STACK pieces. */
struct value *value;
struct
{
/* A pointer to the data making up this piece,
for DWARF_VALUE_LITERAL pieces. */
const gdb_byte *data;
/* The length of the available data. */
ULONGEST length;
} literal;
/* Used for DWARF_VALUE_IMPLICIT_POINTER. */
struct
{
/* The referent DIE from DW_OP_GNU_implicit_pointer. */
sect_offset die;
/* The byte offset into the resulting data. */
LONGEST offset;
} ptr;
} v;
/* The length of the piece, in bits. */
ULONGEST size;
/* The piece offset, in bits. */
ULONGEST offset;
};
struct dwarf_expr_context *new_dwarf_expr_context (void);
void free_dwarf_expr_context (struct dwarf_expr_context *ctx);
struct cleanup *
make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx);
void dwarf_expr_push_address (struct dwarf_expr_context *ctx,
CORE_ADDR value,
int in_stack_memory);
void dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
size_t len);
struct value *dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n);
CORE_ADDR dwarf_expr_fetch_address (struct dwarf_expr_context *ctx, int n);
int dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n);
void dwarf_expr_require_composition (const gdb_byte *, const gdb_byte *,
const char *);
/* Stub dwarf_expr_context_funcs implementations. */
void ctx_no_get_frame_base (void *baton, const gdb_byte **start,
size_t *length);
CORE_ADDR ctx_no_get_frame_cfa (void *baton);
CORE_ADDR ctx_no_get_frame_pc (void *baton);
CORE_ADDR ctx_no_get_tls_address (void *baton, CORE_ADDR offset);
void ctx_no_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset);
struct type *ctx_no_get_base_type (struct dwarf_expr_context *ctx,
cu_offset die);
void ctx_no_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
enum call_site_parameter_kind kind,
union call_site_parameter_u kind_u,
int deref_size);
CORE_ADDR ctx_no_get_addr_index (void *baton, unsigned int index);
int dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end);
int dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf,
const gdb_byte *buf_end,
CORE_ADDR *deref_size_return);
int dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end,
CORE_ADDR *fb_offset_return);
int dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf,
const gdb_byte *buf_end,
CORE_ADDR *sp_offset_return);
/* Wrappers around the leb128 reader routines to simplify them for our
purposes. */
static inline const gdb_byte *
gdb_read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
uint64_t *r)
{
size_t bytes_read = read_uleb128_to_uint64 (buf, buf_end, r);
if (bytes_read == 0)
return NULL;
return buf + bytes_read;
}
static inline const gdb_byte *
gdb_read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
int64_t *r)
{
size_t bytes_read = read_sleb128_to_int64 (buf, buf_end, r);
if (bytes_read == 0)
return NULL;
return buf + bytes_read;
}
static inline const gdb_byte *
gdb_skip_leb128 (const gdb_byte *buf, const gdb_byte *buf_end)
{
size_t bytes_read = skip_leb128 (buf, buf_end);
if (bytes_read == 0)
return NULL;
return buf + bytes_read;
}
extern const gdb_byte *safe_read_uleb128 (const gdb_byte *buf,
const gdb_byte *buf_end,
uint64_t *r);
extern const gdb_byte *safe_read_sleb128 (const gdb_byte *buf,
const gdb_byte *buf_end,
int64_t *r);
extern const gdb_byte *safe_skip_leb128 (const gdb_byte *buf,
const gdb_byte *buf_end);
#endif /* dwarf2expr.h */