old-cross-binutils/gdb/dbxread.c
Per Bothner 7e258d18e0 Oodles of changes. The most important is adding support for stabs
encapsulated in mips ecoff.  See ChangeLog for the gory details.
1991-12-23 23:16:58 +00:00

1674 lines
50 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Read dbx symbol tables and convert to internal format, for GDB.
Copyright (C) 1986-1991 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* This module provides three functions: dbx_symfile_init,
which initializes to read a symbol file; dbx_new_init, which
discards existing cached information when all symbols are being
discarded; and dbx_symfile_read, which reads a symbol table
from a file.
dbx_symfile_read only does the minimum work necessary for letting the
user "name" things symbolically; it does not read the entire symtab.
Instead, it reads the external and static symbols and puts them in partial
symbol tables. When more extensive information is requested of a
file, the corresponding partial symbol table is mutated into a full
fledged symbol table by going back and reading the symbols
for real. dbx_psymtab_to_symtab() is the function that does this */
#include <stdio.h>
#include <string.h>
#include "defs.h"
#ifdef USG
#include <sys/types.h>
#include <fcntl.h>
#define L_SET 0
#define L_INCR 1
#endif
#include <obstack.h>
#include <sys/param.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <ctype.h>
#include "symtab.h"
#include "breakpoint.h"
#include "command.h"
#include "target.h"
#include "gdbcore.h" /* for bfd stuff */
#include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */
#include "symfile.h"
#include "buildsym.h"
#include "aout/aout64.h"
#include "aout/stab_gnu.h" /* We always use GNU stabs, not native, now */
/* Information is passed among various dbxread routines for accessing
symbol files. A pointer to this structure is kept in the sym_private
field of the struct sym_fns passed in by symfile.h. */
struct dbx_symfile_info {
asection *text_sect; /* Text section accessor */
int symcount; /* How many symbols are there in the file */
char *stringtab; /* The actual string table */
int stringtab_size; /* Its size */
off_t symtab_offset; /* Offset in file to symbol table */
};
/* Each partial symbol table entry contains a pointer to private data for the
read_symtab() function to use when expanding a partial symbol table entry
to a full symbol table entry.
For dbxread this structure contains the offset within the file symbol table
of first local symbol for this file, and length (in bytes) of the section
of the symbol table devoted to this file's symbols (actually, the section
bracketed may contain more than just this file's symbols). If ldsymlen is
0, the only reason for this thing's existence is the dependency list.
Nothing else will happen when it is read in. */
#define LDSYMOFF(p) (((struct symloc *)((p)->read_symtab_private))->ldsymoff)
#define LDSYMLEN(p) (((struct symloc *)((p)->read_symtab_private))->ldsymlen)
struct symloc {
int ldsymoff;
int ldsymlen;
};
extern void qsort ();
extern double atof ();
/* Forward declarations */
static void read_dbx_symtab ();
static void init_psymbol_list ();
extern void process_one_symbol ();
void start_subfile ();
int hashname ();
static struct pending *copy_pending ();
static struct symtab *read_ofile_symtab ();
static void dbx_psymtab_to_symtab ();
/* Macro to determine which symbols to ignore when reading the first symbol
of a file. Some machines override this definition. */
#ifndef IGNORE_SYMBOL
/* This code is used on Ultrix systems. Ignore it */
#define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
#endif
/* Macro for name of symbol to indicate a file compiled with gcc. */
#ifndef GCC_COMPILED_FLAG_SYMBOL
#define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
#endif
/* Define this as 1 if a pcc declaration of a char or short argument
gives the correct address. Otherwise assume pcc gives the
address of the corresponding int, which is not the same on a
big-endian machine. */
#ifndef BELIEVE_PCC_PROMOTION
#define BELIEVE_PCC_PROMOTION 0
#endif
/* Nonzero means give verbose info on gdb action. From main.c. */
extern int info_verbose;
/* The BFD for this file -- implicit parameter to next_symbol_text. */
static bfd *symfile_bfd;
/* The objfile for this file -- only good in process_one_symbol(). */
static struct objfile *our_objfile;
/* String table for the main symbol file. It is kept in memory
permanently, to speed up symbol reading. Other files' symbol tables
are read in on demand. FIXME, this should be cleaner. */
static char *symfile_string_table;
static int symfile_string_table_size;
/* The size of each symbol in the symbol file (in external form).
This is set by dbx_symfile_read when building psymtabs, and by
dbx_psymtab_to_symtab when building symtabs. */
static unsigned symbol_size;
/* Complaints about the symbols we have encountered. */
struct complaint lbrac_complaint =
{"bad block start address patched", 0, 0};
struct complaint string_table_offset_complaint =
{"bad string table offset in symbol %d", 0, 0};
struct complaint unknown_symtype_complaint =
{"unknown symbol type %s", 0, 0};
struct complaint lbrac_rbrac_complaint =
{"block start larger than block end", 0, 0};
struct complaint lbrac_unmatched_complaint =
{"unmatched N_LBRAC before symtab pos %d", 0, 0};
struct complaint lbrac_mismatch_complaint =
{"N_LBRAC/N_RBRAC symbol mismatch at symtab pos %d", 0, 0};
/* During initial symbol readin, we need to have a structure to keep
track of which psymtabs have which bincls in them. This structure
is used during readin to setup the list of dependencies within each
partial symbol table. */
struct header_file_location
{
char *name; /* Name of header file */
int instance; /* See above */
struct partial_symtab *pst; /* Partial symtab that has the
BINCL/EINCL defs for this file */
};
/* The actual list and controling variables */
static struct header_file_location *bincl_list, *next_bincl;
static int bincls_allocated;
/* Free up old header file tables, and allocate new ones.
We're reading a new symbol file now. */
void
free_and_init_header_files ()
{
register int i;
for (i = 0; i < n_header_files; i++)
free (header_files[i].name);
if (header_files) /* First time null */
free (header_files);
if (this_object_header_files) /* First time null */
free (this_object_header_files);
n_allocated_header_files = 10;
header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
n_header_files = 0;
n_allocated_this_object_header_files = 10;
this_object_header_files = (int *) xmalloc (10 * sizeof (int));
}
/* Called at the start of each object file's symbols.
Clear out the mapping of header file numbers to header files. */
void
new_object_header_files ()
{
/* Leave FILENUM of 0 free for builtin types and this file's types. */
n_this_object_header_files = 1;
header_file_prev_index = -1;
}
/* Add header file number I for this object file
at the next successive FILENUM. */
static void
add_this_object_header_file (i)
int i;
{
if (n_this_object_header_files == n_allocated_this_object_header_files)
{
n_allocated_this_object_header_files *= 2;
this_object_header_files
= (int *) xrealloc (this_object_header_files,
n_allocated_this_object_header_files * sizeof (int));
}
this_object_header_files[n_this_object_header_files++] = i;
}
/* Add to this file an "old" header file, one already seen in
a previous object file. NAME is the header file's name.
INSTANCE is its instance code, to select among multiple
symbol tables for the same header file. */
static void
add_old_header_file (name, instance)
char *name;
int instance;
{
register struct header_file *p = header_files;
register int i;
for (i = 0; i < n_header_files; i++)
if (!strcmp (p[i].name, name) && instance == p[i].instance)
{
add_this_object_header_file (i);
return;
}
error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
symnum);
}
/* Add to this file a "new" header file: definitions for its types follow.
NAME is the header file's name.
Most often this happens only once for each distinct header file,
but not necessarily. If it happens more than once, INSTANCE has
a different value each time, and references to the header file
use INSTANCE values to select among them.
dbx output contains "begin" and "end" markers for each new header file,
but at this level we just need to know which files there have been;
so we record the file when its "begin" is seen and ignore the "end". */
static void
add_new_header_file (name, instance)
char *name;
int instance;
{
register int i;
header_file_prev_index = -1;
/* Make sure there is room for one more header file. */
if (n_header_files == n_allocated_header_files)
{
n_allocated_header_files *= 2;
header_files = (struct header_file *)
xrealloc (header_files,
(n_allocated_header_files
* sizeof (struct header_file)));
}
/* Create an entry for this header file. */
i = n_header_files++;
header_files[i].name = savestring (name, strlen(name));
header_files[i].instance = instance;
header_files[i].length = 10;
header_files[i].vector
= (struct type **) xmalloc (10 * sizeof (struct type *));
bzero (header_files[i].vector, 10 * sizeof (struct type *));
add_this_object_header_file (i);
}
#if 0
static struct type **
explicit_lookup_type (real_filenum, index)
int real_filenum, index;
{
register struct header_file *f = &header_files[real_filenum];
if (index >= f->length)
{
f->length *= 2;
f->vector = (struct type **)
xrealloc (f->vector, f->length * sizeof (struct type *));
bzero (&f->vector[f->length / 2],
f->length * sizeof (struct type *) / 2);
}
return &f->vector[index];
}
#endif
static void
record_misc_function (name, address, type)
char *name;
CORE_ADDR address;
int type;
{
enum misc_function_type misc_type;
switch (type &~ N_EXT) {
case N_TEXT: misc_type = mf_text; break;
case N_DATA: misc_type = mf_data; break;
case N_BSS: misc_type = mf_bss; break;
case N_ABS: misc_type = mf_abs; break;
#ifdef N_SETV
case N_SETV: misc_type = mf_data; break;
#endif
default: misc_type = mf_unknown; break;
}
prim_record_misc_function (obsavestring (name, strlen (name)),
address, misc_type);
}
/* Scan and build partial symbols for a symbol file.
We have been initialized by a call to dbx_symfile_init, which
put all the relevant info into a "struct dbx_symfile_info"
hung off the struct sym_fns SF.
ADDR is the address relative to which the symbols in it are (e.g.
the base address of the text segment).
MAINLINE is true if we are reading the main symbol
table (as opposed to a shared lib or dynamically loaded file). */
static void
dbx_symfile_read (sf, addr, mainline)
struct sym_fns *sf;
CORE_ADDR addr;
int mainline; /* FIXME comments above */
{
struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
bfd *sym_bfd = sf->objfile->obfd;
int val;
val = bfd_seek (sf->objfile->obfd, info->symtab_offset, L_SET);
if (val < 0)
perror_with_name (sf->objfile->name);
/* If mainline, set global string table pointers, and reinitialize global
partial symbol list. */
if (mainline) {
symfile_string_table = info->stringtab;
symfile_string_table_size = info->stringtab_size;
}
/* If we are reinitializing, or if we have never loaded syms yet, init */
if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
init_psymbol_list (info->symcount);
/* FIXME POKING INSIDE BFD DATA STRUCTURES */
symbol_size = obj_symbol_entry_size (sym_bfd);
pending_blocks = 0;
make_cleanup (really_free_pendings, 0);
init_misc_bunches ();
make_cleanup (discard_misc_bunches, 0);
/* Now that the symbol table data of the executable file are all in core,
process them and define symbols accordingly. */
read_dbx_symtab (addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
sf->objfile, info->stringtab, info->stringtab_size,
info->symcount,
bfd_section_vma (sym_bfd, info->text_sect),
bfd_section_size (sym_bfd, info->text_sect));
/* Go over the misc symbol bunches and install them in vector. */
condense_misc_bunches (!mainline);
/* Free up any memory we allocated for ourselves. */
if (!mainline) {
free (info->stringtab); /* Stringtab is only saved for mainline */
}
free (info);
sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
if (!partial_symtab_list) {
wrap_here ("");
printf_filtered ("(no debugging symbols found)...");
wrap_here ("");
}
}
/* Initialize anything that needs initializing when a completely new
symbol file is specified (not just adding some symbols from another
file, e.g. a shared library). */
static void
dbx_new_init ()
{
buildsym_new_init ();
/* Don't put these on the cleanup chain; they need to stick around
until the next call to dbx_new_init. *Then* we'll free them. */
if (symfile_string_table)
{
free (symfile_string_table);
symfile_string_table = 0;
symfile_string_table_size = 0;
}
free_and_init_header_files ();
}
/* dbx_symfile_init ()
is the dbx-specific initialization routine for reading symbols.
It is passed a struct sym_fns which contains, among other things,
the BFD for the file whose symbols are being read, and a slot for a pointer
to "private data" which we fill with goodies.
We read the string table into malloc'd space and stash a pointer to it.
Since BFD doesn't know how to read debug symbols in a format-independent
way (and may never do so...), we have to do it ourselves. We will never
be called unless this is an a.out (or very similar) file.
FIXME, there should be a cleaner peephole into the BFD environment here. */
static void
dbx_symfile_init (sf)
struct sym_fns *sf;
{
int val;
bfd *sym_bfd = sf->objfile->obfd;
char *name = bfd_get_filename (sym_bfd);
struct dbx_symfile_info *info;
unsigned char size_temp[4];
/* Allocate struct to keep track of the symfile */
sf->sym_private = xmalloc (sizeof (*info));
info = (struct dbx_symfile_info *)sf->sym_private;
/* FIXME POKING INSIDE BFD DATA STRUCTURES */
#define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
#define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
/* FIXME POKING INSIDE BFD DATA STRUCTURES */
info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
if (!info->text_sect)
abort();
info->symcount = bfd_get_symcount (sym_bfd);
/* Read the string table size and check it for bogosity. */
val = bfd_seek (sym_bfd, STRING_TABLE_OFFSET, L_SET);
if (val < 0)
perror_with_name (name);
val = bfd_read (size_temp, sizeof (long), 1, sym_bfd);
if (val < 0)
perror_with_name (name);
info->stringtab_size = bfd_h_get_32 (sym_bfd, size_temp);
if (info->stringtab_size >= 0)
{
info->stringtab = (char *) xmalloc (info->stringtab_size);
/* Caller is responsible for freeing the string table. No cleanup. */
}
else
info->stringtab = NULL;
if (info->stringtab == NULL && info->stringtab_size != 0)
error ("ridiculous string table size: %d bytes", info->stringtab_size);
/* Now read in the string table in one big gulp. */
val = bfd_seek (sym_bfd, STRING_TABLE_OFFSET, L_SET);
if (val < 0)
perror_with_name (name);
val = bfd_read (info->stringtab, info->stringtab_size, 1, sym_bfd);
if (val != info->stringtab_size)
perror_with_name (name);
/* Record the position of the symbol table for later use. */
info->symtab_offset = SYMBOL_TABLE_OFFSET;
}
/* Buffer for reading the symbol table entries. */
static struct internal_nlist symbuf[4096];
static int symbuf_idx;
static int symbuf_end;
/* The address in memory of the string table of the object file we are
reading (which might not be the "main" object file, but might be a
shared library or some other dynamically loaded thing). This is set
by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
when building symtabs, and is used only by next_symbol_text. */
static char *stringtab_global;
/* Refill the symbol table input buffer
and set the variables that control fetching entries from it.
Reports an error if no data available.
This function can read past the end of the symbol table
(into the string table) but this does no harm. */
static void
fill_symbuf (sym_bfd)
bfd *sym_bfd;
{
int nbytes = bfd_read (symbuf, sizeof (symbuf), 1, sym_bfd);
if (nbytes < 0)
perror_with_name (bfd_get_filename (sym_bfd));
else if (nbytes == 0)
error ("Premature end of file reading symbol table");
symbuf_end = nbytes / symbol_size;
symbuf_idx = 0;
}
#define SWAP_SYMBOL(symp, abfd) \
{ \
(symp)->n_strx = bfd_h_get_32(abfd, \
(unsigned char *)&(symp)->n_strx); \
(symp)->n_desc = bfd_h_get_16 (abfd, \
(unsigned char *)&(symp)->n_desc); \
(symp)->n_value = bfd_h_get_32 (abfd, \
(unsigned char *)&(symp)->n_value); \
}
/* Invariant: The symbol pointed to by symbuf_idx is the first one
that hasn't been swapped. Swap the symbol at the same time
that symbuf_idx is incremented. */
/* dbx allows the text of a symbol name to be continued into the
next symbol name! When such a continuation is encountered
(a \ at the end of the text of a name)
call this function to get the continuation. */
#ifdef READ_MIPS_FORMAT
extern char *next_symbol_text ();
#else
char *
next_symbol_text ()
{
if (symbuf_idx == symbuf_end)
fill_symbuf (symfile_bfd);
symnum++;
SWAP_SYMBOL(&symbuf[symbuf_idx], symfile_bfd);
return symbuf[symbuf_idx++].n_strx + stringtab_global;
}
#endif
/* Initializes storage for all of the partial symbols that will be
created by read_dbx_symtab and subsidiaries. */
static void
init_psymbol_list (total_symbols)
int total_symbols;
{
/* Free any previously allocated psymbol lists. */
if (global_psymbols.list)
free (global_psymbols.list);
if (static_psymbols.list)
free (static_psymbols.list);
/* Current best guess is that there are approximately a twentieth
of the total symbols (in a debugging file) are global or static
oriented symbols */
global_psymbols.size = total_symbols / 10;
static_psymbols.size = total_symbols / 10;
global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
}
/* Initialize the list of bincls to contain none and have some
allocated. */
static void
init_bincl_list (number)
int number;
{
bincls_allocated = number;
next_bincl = bincl_list = (struct header_file_location *)
xmalloc (bincls_allocated * sizeof(struct header_file_location));
}
/* Add a bincl to the list. */
static void
add_bincl_to_list (pst, name, instance)
struct partial_symtab *pst;
char *name;
int instance;
{
if (next_bincl >= bincl_list + bincls_allocated)
{
int offset = next_bincl - bincl_list;
bincls_allocated *= 2;
bincl_list = (struct header_file_location *)
xrealloc ((char *)bincl_list,
bincls_allocated * sizeof (struct header_file_location));
next_bincl = bincl_list + offset;
}
next_bincl->pst = pst;
next_bincl->instance = instance;
next_bincl++->name = name;
}
/* Given a name, value pair, find the corresponding
bincl in the list. Return the partial symtab associated
with that header_file_location. */
static struct partial_symtab *
find_corresponding_bincl_psymtab (name, instance)
char *name;
int instance;
{
struct header_file_location *bincl;
for (bincl = bincl_list; bincl < next_bincl; bincl++)
if (bincl->instance == instance
&& !strcmp (name, bincl->name))
return bincl->pst;
return (struct partial_symtab *) 0;
}
/* Free the storage allocated for the bincl list. */
static void
free_bincl_list ()
{
free (bincl_list);
bincls_allocated = 0;
}
#ifdef DEBUG
/* This is normally a macro defined in read_dbx_symtab, but this
is a lot easier to debug. */
void
add_psymbol_to_plist(name, namelength, namespace, class, plist, value)
char *name;
int namelength;
enum namespace namespace;
enum address_class class;
struct psymbol_allocation_list *plist;
unsigned long value;
{
ADD_PSYMBOL_VT_TO_LIST(name, namelength, namespace,
class, *plist, value, SYMBOL_VALUE);
}
void
add_psymbol_addr_to_plist(name, namelength, namespace, class, plist, value)
char *name;
int namelength;
enum namespace namespace;
enum address_class class;
struct psymbol_allocation_list *plist;
CORE_ADDR value;
{
ADD_PSYMBOL_VT_TO_LIST(name, namelength, namespace,
class, *plist, value, SYMBOL_VALUE_ADDRESS);
}
#endif /* DEBUG */
/* Given pointers to an a.out symbol table in core containing dbx
style data, setup partial_symtab's describing each source file for
which debugging information is available. NLISTLEN is the number
of symbols in the symbol table. All symbol names are given as
offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
and ADDR is its relocated address (if incremental) or 0 (if not). */
static void
read_dbx_symtab (addr, objfile, stringtab, stringtab_size, nlistlen,
text_addr, text_size)
CORE_ADDR addr;
struct objfile *objfile;
register char *stringtab;
register long stringtab_size;
register int nlistlen;
CORE_ADDR text_addr;
int text_size;
{
register struct internal_nlist *bufp;
register char *namestring;
int nsl;
int past_first_source_file = 0;
CORE_ADDR last_o_file_start = 0;
struct cleanup *old_chain;
bfd *abfd;
/* End of the text segment of the executable file. */
CORE_ADDR end_of_text_addr;
/* Current partial symtab */
struct partial_symtab *pst;
/* List of current psymtab's include files */
char **psymtab_include_list;
int includes_allocated;
int includes_used;
/* Index within current psymtab dependency list */
struct partial_symtab **dependency_list;
int dependencies_used, dependencies_allocated;
stringtab_global = stringtab;
pst = (struct partial_symtab *) 0;
includes_allocated = 30;
includes_used = 0;
psymtab_include_list = (char **) alloca (includes_allocated *
sizeof (char *));
dependencies_allocated = 30;
dependencies_used = 0;
dependency_list =
(struct partial_symtab **) alloca (dependencies_allocated *
sizeof (struct partial_symtab *));
old_chain = make_cleanup (free_objfile, objfile);
/* Init bincl list */
init_bincl_list (20);
make_cleanup (free_bincl_list, 0);
last_source_file = 0;
#ifdef END_OF_TEXT_DEFAULT
end_of_text_addr = END_OF_TEXT_DEFAULT;
#else
end_of_text_addr = text_addr + addr + text_size; /* Relocate */
#endif
symfile_bfd = objfile->obfd; /* For next_text_symbol */
abfd = objfile->obfd;
symbuf_end = symbuf_idx = 0;
for (symnum = 0; symnum < nlistlen; symnum++)
{
/* Get the symbol for this run and pull out some info */
QUIT; /* allow this to be interruptable */
if (symbuf_idx == symbuf_end)
fill_symbuf (abfd);
bufp = &symbuf[symbuf_idx++];
/*
* Special case to speed up readin.
*/
if (bufp->n_type == (unsigned char)N_SLINE) continue;
SWAP_SYMBOL (bufp, abfd);
/* Ok. There is a lot of code duplicated in the rest of this
switch statement (for efficiency reasons). Since I don't
like duplicating code, I will do my penance here, and
describe the code which is duplicated:
*) The assignment to namestring.
*) The call to strchr.
*) The addition of a partial symbol the the two partial
symbol lists. This last is a large section of code, so
I've imbedded it in the following macro.
*/
/* Set namestring based on bufp. If the string table index is invalid,
give a fake name, and print a single error message per symbol file read,
rather than abort the symbol reading or flood the user with messages. */
#define SET_NAMESTRING()\
if (((unsigned)bufp->n_strx) >= stringtab_size) { \
complain (&string_table_offset_complaint, symnum); \
namestring = "foo"; \
} else \
namestring = bufp->n_strx + stringtab
#define CUR_SYMBOL_TYPE bufp->n_type
#define CUR_SYMBOL_VALUE bufp->n_value
#define DBXREAD_ONLY
#define CHECK_SECOND_N_SO() \
if (symbuf_idx == symbuf_end) \
fill_symbuf (abfd);\
bufp = &symbuf[symbuf_idx];\
/* n_type is only a char, so swapping swapping is irrelevant. */\
if (CUR_SYMBOL_TYPE == (unsigned char)N_SO)\
{\
SWAP_SYMBOL (bufp, abfd);\
SET_NAMESTRING ();\
valu = CUR_SYMBOL_VALUE;\
symbuf_idx++;\
symnum++;\
}
#define START_PSYMTAB(ofile,addr,fname,low,symoff,global_syms,static_syms)\
start_psymtab(ofile, addr, fname, low, symoff, global_syms, static_syms)
#define END_PSYMTAB(pst,ilist,ninc,c_off,c_text,dep_list,n_deps)\
end_psymtab(pst,ilist,ninc,c_off,c_text,dep_list,n_deps)
#include "partial-stab.h"
}
/* If there's stuff to be cleaned up, clean it up. */
if (nlistlen > 0 /* We have some syms */
&& entry_point < bufp->n_value
&& entry_point >= last_o_file_start)
{
startup_file_start = last_o_file_start;
startup_file_end = bufp->n_value;
}
if (pst)
{
end_psymtab (pst, psymtab_include_list, includes_used,
symnum * symbol_size, end_of_text_addr,
dependency_list, dependencies_used);
}
free_bincl_list ();
discard_cleanups (old_chain);
}
/* Allocate and partially fill a partial symtab. It will be
completely filled at the end of the symbol list.
SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
is the address relative to which its symbols are (incremental) or 0
(normal). */
struct partial_symtab *
start_psymtab (objfile, addr,
filename, textlow, ldsymoff, global_syms, static_syms)
struct objfile *objfile;
CORE_ADDR addr;
char *filename;
CORE_ADDR textlow;
int ldsymoff;
struct partial_symbol *global_syms;
struct partial_symbol *static_syms;
{
struct partial_symtab *result =
(struct partial_symtab *) obstack_alloc (psymbol_obstack,
sizeof (struct partial_symtab));
result->addr = addr;
result->filename =
(char *) obstack_alloc (psymbol_obstack,
strlen (filename) + 1);
strcpy (result->filename, filename);
result->textlow = textlow;
result->read_symtab_private = (char *) obstack_alloc (psymbol_obstack,
sizeof (struct symloc));
if (ldsymoff != -1)
LDSYMOFF(result) = ldsymoff;
result->readin = 0;
result->symtab = 0;
result->read_symtab = dbx_psymtab_to_symtab;
result->globals_offset = global_syms - global_psymbols.list;
result->statics_offset = static_syms - static_psymbols.list;
result->n_global_syms = 0;
result->n_static_syms = 0;
/* Chain it to the list owned by the current object file. */
result->objfile = objfile;
result->objfile_chain = objfile->psymtabs;
objfile->psymtabs = result;
return result;
}
static int
compare_psymbols (s1, s2)
register struct partial_symbol *s1, *s2;
{
register char
*st1 = SYMBOL_NAME (s1),
*st2 = SYMBOL_NAME (s2);
if (st1[0] - st2[0])
return st1[0] - st2[0];
if (st1[1] - st2[1])
return st1[1] - st2[1];
return strcmp (st1 + 2, st2 + 2);
}
/* Close off the current usage of a partial_symbol table entry. This
involves setting the correct number of includes (with a realloc),
setting the high text mark, setting the symbol length in the
executable, and setting the length of the global and static lists
of psymbols.
The global symbols and static symbols are then seperately sorted.
Then the partial symtab is put on the global list.
*** List variables and peculiarities of same. ***
*/
void
end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
capping_text, dependency_list, number_dependencies)
struct partial_symtab *pst;
char **include_list;
int num_includes;
int capping_symbol_offset;
CORE_ADDR capping_text;
struct partial_symtab **dependency_list;
int number_dependencies;
/* struct partial_symbol *capping_global, *capping_static;*/
{
int i;
if (capping_symbol_offset != -1)
LDSYMLEN(pst) = capping_symbol_offset - LDSYMOFF(pst);
pst->texthigh = capping_text;
pst->n_global_syms =
global_psymbols.next - (global_psymbols.list + pst->globals_offset);
pst->n_static_syms =
static_psymbols.next - (static_psymbols.list + pst->statics_offset);
pst->number_of_dependencies = number_dependencies;
if (number_dependencies)
{
pst->dependencies = (struct partial_symtab **)
obstack_alloc (psymbol_obstack,
number_dependencies * sizeof (struct partial_symtab *));
memcpy (pst->dependencies, dependency_list,
number_dependencies * sizeof (struct partial_symtab *));
}
else
pst->dependencies = 0;
for (i = 0; i < num_includes; i++)
{
struct partial_symtab *subpst =
(struct partial_symtab *)
obstack_alloc (psymbol_obstack,
sizeof (struct partial_symtab));
subpst->filename =
(char *) obstack_alloc (psymbol_obstack,
strlen (include_list[i]) + 1);
strcpy (subpst->filename, include_list[i]);
/* Chain it to the list that this object file owns. */
subpst->objfile = pst->objfile;
subpst->objfile_chain = pst->objfile->psymtabs;
pst->objfile->psymtabs = subpst;
subpst->addr = pst->addr;
subpst->read_symtab_private = (char *) obstack_alloc (psymbol_obstack,
sizeof (struct symloc));
LDSYMOFF(subpst) =
LDSYMLEN(subpst) =
subpst->textlow =
subpst->texthigh = 0;
/* We could save slight bits of space by only making one of these,
shared by the entire set of include files. FIXME-someday. */
subpst->dependencies = (struct partial_symtab **)
obstack_alloc (psymbol_obstack,
sizeof (struct partial_symtab *));
subpst->dependencies[0] = pst;
subpst->number_of_dependencies = 1;
subpst->globals_offset =
subpst->n_global_syms =
subpst->statics_offset =
subpst->n_static_syms = 0;
subpst->readin = 0;
subpst->symtab = 0;
subpst->read_symtab = dbx_psymtab_to_symtab;
subpst->next = partial_symtab_list;
partial_symtab_list = subpst;
}
/* Sort the global list; don't sort the static list */
qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
sizeof (struct partial_symbol), compare_psymbols);
/* If there is already a psymtab or symtab for a file of this name, remove it.
(If there is a symtab, more drastic things also happen.)
This happens in VxWorks. */
free_named_symtabs (pst->filename);
if (num_includes == 0
&& number_dependencies == 0
&& pst->n_global_syms == 0
&& pst->n_static_syms == 0) {
/* Throw away this psymtab, it's empty. We can't deallocate it, since
it is on the obstack, but we can forget to chain it on the list. */
;
} else {
/* Put the psymtab on the psymtab list */
pst->next = partial_symtab_list;
partial_symtab_list = pst;
}
}
static void
psymtab_to_symtab_1 (pst, stringtab, stringtab_size, sym_offset)
struct partial_symtab *pst;
char *stringtab;
int stringtab_size;
int sym_offset;
{
struct cleanup *old_chain;
int i;
if (!pst)
return;
if (pst->readin)
{
fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
pst->filename);
return;
}
/* Read in all partial symtabs on which this one is dependent */
for (i = 0; i < pst->number_of_dependencies; i++)
if (!pst->dependencies[i]->readin)
{
/* Inform about additional files that need to be read in. */
if (info_verbose)
{
fputs_filtered (" ", stdout);
wrap_here ("");
fputs_filtered ("and ", stdout);
wrap_here ("");
printf_filtered ("%s...", pst->dependencies[i]->filename);
wrap_here (""); /* Flush output */
fflush (stdout);
}
psymtab_to_symtab_1 (pst->dependencies[i],
stringtab, stringtab_size, sym_offset);
}
if (LDSYMLEN(pst)) /* Otherwise it's a dummy */
{
/* Init stuff necessary for reading in symbols */
buildsym_init ();
old_chain = make_cleanup (really_free_pendings, 0);
/* Read in this files symbols */
bfd_seek (pst->objfile->obfd, sym_offset, L_SET);
pst->symtab =
read_ofile_symtab (pst->objfile, stringtab, stringtab_size,
LDSYMOFF(pst),
LDSYMLEN(pst), pst->textlow,
pst->texthigh - pst->textlow, pst->addr);
sort_symtab_syms (pst->symtab);
do_cleanups (old_chain);
}
pst->readin = 1;
}
/*
* Read in all of the symbols for a given psymtab for real.
* Be verbose about it if the user wants that.
*/
static void
dbx_psymtab_to_symtab (pst)
struct partial_symtab *pst;
{
char *stringtab;
int stsize, val;
bfd *sym_bfd;
long st_temp;
if (!pst)
return;
if (pst->readin)
{
fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
pst->filename);
return;
}
if (LDSYMLEN(pst) || pst->number_of_dependencies)
{
/* Print the message now, before reading the string table,
to avoid disconcerting pauses. */
if (info_verbose)
{
printf_filtered ("Reading in symbols for %s...", pst->filename);
fflush (stdout);
}
sym_bfd = pst->objfile->obfd;
/* We keep the string table for the main symfile resident in memory, but
not the string table for any other symbol files. */
if (symfile_objfile != pst->objfile)
{
/* Read in the string table */
/* FIXME, this uses internal BFD variables. See above in
dbx_symbol_file_open where the macro is defined! */
bfd_seek (sym_bfd, STRING_TABLE_OFFSET, L_SET);
val = bfd_read (&st_temp, sizeof st_temp, 1, sym_bfd);
if (val < 0)
perror_with_name (pst->objfile->name);
stsize = bfd_h_get_32 (sym_bfd, (unsigned char *)&st_temp);
#if 0
/* BFD doesn't provide a way to know the total file size, sigh */
struct stat statbuf;
if (fstat (desc, &statbuf) < 0)
perror_with_name (pst->objfile->name);
if (stsize >= 0 && stsize < statbuf.st_size)
#else
if (stsize >= 0)
#endif
{
#ifdef BROKEN_LARGE_ALLOCA
stringtab = (char *) xmalloc (stsize);
make_cleanup (free, stringtab);
#else
stringtab = (char *) alloca (stsize);
#endif
}
else
stringtab = NULL;
if (stringtab == NULL && stsize != 0)
error ("ridiculous string table size: %d bytes", stsize);
/* FIXME, this uses internal BFD variables. See above in
dbx_symbol_file_open where the macro is defined! */
val = bfd_seek (sym_bfd, STRING_TABLE_OFFSET, L_SET);
if (val < 0)
perror_with_name (pst->objfile->name);
val = bfd_read (stringtab, stsize, 1, sym_bfd);
if (val < 0)
perror_with_name (pst->objfile->name);
}
else
{
stringtab = symfile_string_table;
stsize = symfile_string_table_size;
}
/* FIXME POKING INSIDE BFD DATA STRUCTURES */
symbol_size = obj_symbol_entry_size (sym_bfd);
/* FIXME, this uses internal BFD variables. See above in
dbx_symbol_file_open where the macro is defined! */
psymtab_to_symtab_1 (pst, stringtab, stsize,
SYMBOL_TABLE_OFFSET);
/* Match with global symbols. This only needs to be done once,
after all of the symtabs and dependencies have been read in. */
scan_file_globals ();
/* Finish up the debug error message. */
if (info_verbose)
printf_filtered ("done.\n");
}
}
/*
* Read in a defined section of a specific object file's symbols.
*
* DESC is the file descriptor for the file, positioned at the
* beginning of the symtab
* STRINGTAB is a pointer to the files string
* table, already read in
* SYM_OFFSET is the offset within the file of
* the beginning of the symbols we want to read, NUM_SUMBOLS is the
* number of symbols to read
* TEXT_OFFSET is the beginning of the text segment we are reading symbols for
* TEXT_SIZE is the size of the text segment read in.
* OFFSET is a relocation offset which gets added to each symbol
*/
static struct symtab *
read_ofile_symtab (objfile, stringtab, stringtab_size, sym_offset,
sym_size, text_offset, text_size, offset)
struct objfile *objfile;
register char *stringtab;
unsigned int stringtab_size;
int sym_offset;
int sym_size;
CORE_ADDR text_offset;
int text_size;
int offset;
{
register char *namestring;
register struct internal_nlist *bufp;
unsigned char type;
unsigned max_symnum;
register bfd *abfd;
subfile_stack = 0;
stringtab_global = stringtab;
last_source_file = 0;
abfd = objfile->obfd;
symfile_bfd = objfile->obfd; /* Implicit param to next_text_symbol */
our_objfile = objfile; /* For end_symtab calls in process_one_symbol */
symbuf_end = symbuf_idx = 0;
/* It is necessary to actually read one symbol *before* the start
of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
occurs before the N_SO symbol.
Detecting this in read_dbx_symtab
would slow down initial readin, so we look for it here instead. */
if (sym_offset >= (int)symbol_size)
{
bfd_seek (symfile_bfd, sym_offset - symbol_size, L_INCR);
fill_symbuf (abfd);
bufp = &symbuf[symbuf_idx++];
SWAP_SYMBOL (bufp, abfd);
SET_NAMESTRING ();
processing_gcc_compilation =
(bufp->n_type == N_TEXT
&& !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
/* FIXME!!! Check for gcc2_compiled... */
}
else
{
/* The N_SO starting this symtab is the first symbol, so we
better not check the symbol before it. I'm not this can
happen, but it doesn't hurt to check for it. */
bfd_seek (symfile_bfd, sym_offset, L_INCR);
processing_gcc_compilation = 0;
}
if (symbuf_idx == symbuf_end)
fill_symbuf (abfd);
bufp = &symbuf[symbuf_idx];
if (bufp->n_type != (unsigned char)N_SO)
error("First symbol in segment of executable not a source symbol");
max_symnum = sym_size / symbol_size;
for (symnum = 0;
symnum < max_symnum;
symnum++)
{
QUIT; /* Allow this to be interruptable */
if (symbuf_idx == symbuf_end)
fill_symbuf(abfd);
bufp = &symbuf[symbuf_idx++];
SWAP_SYMBOL (bufp, abfd);
type = bufp->n_type;
if (type == (unsigned char)N_CATCH)
{
/* N_CATCH is not fixed up by the linker, and unfortunately,
there's no other place to put it in the .stab map. */
bufp->n_value += text_offset + offset;
}
else {
type &= ~N_EXT; /* Ignore external-bit */
if (type == N_TEXT || type == N_DATA || type == N_BSS)
bufp->n_value += offset;
type = bufp->n_type;
}
SET_NAMESTRING ();
if (type & N_STAB) {
process_one_symbol (type, bufp->n_desc, bufp->n_value, namestring);
/* our_objfile is an implicit parameter. */
}
/* We skip checking for a new .o or -l file; that should never
happen in this routine. */
else if (type == N_TEXT
&& !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
/* I don't think this code will ever be executed, because
the GCC_COMPILED_FLAG_SYMBOL usually is right before
the N_SO symbol which starts this source file.
However, there is no reason not to accept
the GCC_COMPILED_FLAG_SYMBOL anywhere. */
processing_gcc_compilation = 1;
else if (type & N_EXT || type == (unsigned char)N_TEXT
|| type == (unsigned char)N_NBTEXT
) {
/* Global symbol: see if we came across a dbx defintion for
a corresponding symbol. If so, store the value. Remove
syms from the chain when their values are stored, but
search the whole chain, as there may be several syms from
different files with the same name. */
/* This is probably not true. Since the files will be read
in one at a time, each reference to a global symbol will
be satisfied in each file as it appears. So we skip this
section. */
;
}
}
return end_symtab (text_offset + text_size, 0, 0, objfile);
}
int
hashname (name)
char *name;
{
register char *p = name;
register int total = p[0];
register int c;
c = p[1];
total += c << 2;
if (c)
{
c = p[2];
total += c << 4;
if (c)
total += p[3] << 6;
}
/* Ensure result is positive. */
if (total < 0) total += (1000 << 6);
return total % HASHSIZE;
}
void
process_one_symbol (type, desc, valu, name)
int type, desc;
CORE_ADDR valu;
char *name;
{
#ifndef SUN_FIXED_LBRAC_BUG
/* This records the last pc address we've seen. We depend on their being
an SLINE or FUN or SO before the first LBRAC, since the variable does
not get reset in between reads of different symbol files. */
static CORE_ADDR last_pc_address;
#endif
register struct context_stack *new;
char *colon_pos;
/* Something is wrong if we see real data before
seeing a source file name. */
if (last_source_file == 0 && type != (unsigned char)N_SO)
{
/* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
where that code is defined. */
if (IGNORE_SYMBOL (type))
return;
/* FIXME, this should not be an error, since it precludes extending
the symbol table information in this way... */
error ("Invalid symbol data: does not start by identifying a source file.");
}
switch (type)
{
case N_FUN:
case N_FNAME:
/* Either of these types of symbols indicates the start of
a new function. We must process its "name" normally for dbx,
but also record the start of a new lexical context, and possibly
also the end of the lexical context for the previous function. */
/* This is not always true. This type of symbol may indicate a
text segment variable. */
#ifndef SUN_FIXED_LBRAC_BUG
last_pc_address = valu; /* Save for SunOS bug circumcision */
#endif
colon_pos = strchr (name, ':');
if (!colon_pos++
|| (*colon_pos != 'f' && *colon_pos != 'F'))
{
define_symbol (valu, name, desc, type);
break;
}
within_function = 1;
if (context_stack_depth > 0)
{
new = pop_context ();
/* Make a block for the local symbols within. */
finish_block (new->name, &local_symbols, new->old_blocks,
new->start_addr, valu);
}
/* Stack must be empty now. */
if (context_stack_depth != 0)
complain (lbrac_unmatched_complaint, symnum);
new = push_context (0, valu);
new->name = define_symbol (valu, name, desc, type);
break;
case N_CATCH:
/* Record the address at which this catch takes place. */
define_symbol (valu, name, desc, type);
break;
case N_EHDECL:
/* Don't know what to do with these yet. */
error ("action uncertain for eh extensions");
break;
case N_LBRAC:
/* This "symbol" just indicates the start of an inner lexical
context within a function. */
#if !defined (BLOCK_ADDRESS_ABSOLUTE)
/* On most machines, the block addresses are relative to the
N_SO, the linker did not relocate them (sigh). */
valu += last_source_start_addr;
#endif
#ifndef SUN_FIXED_LBRAC_BUG
if (valu < last_pc_address) {
/* Patch current LBRAC pc value to match last handy pc value */
complain (&lbrac_complaint, 0);
valu = last_pc_address;
}
#endif
new = push_context (desc, valu);
break;
case N_RBRAC:
/* This "symbol" just indicates the end of an inner lexical
context that was started with N_LBRAC. */
#if !defined (BLOCK_ADDRESS_ABSOLUTE)
/* On most machines, the block addresses are relative to the
N_SO, the linker did not relocate them (sigh). */
valu += last_source_start_addr;
#endif
new = pop_context();
if (desc != new->depth)
complain (lbrac_mismatch_complaint, symnum);
/* Some compilers put the variable decls inside of an
LBRAC/RBRAC block. This macro should be nonzero if this
is true. DESC is N_DESC from the N_RBRAC symbol.
GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
#if !defined (VARIABLES_INSIDE_BLOCK)
#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
#endif
/* Can only use new->locals as local symbols here if we're in
gcc or on a machine that puts them before the lbrack. */
if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
local_symbols = new->locals;
/* If this is not the outermost LBRAC...RBRAC pair in the
function, its local symbols preceded it, and are the ones
just recovered from the context stack. Defined the block for them.
If this is the outermost LBRAC...RBRAC pair, there is no
need to do anything; leave the symbols that preceded it
to be attached to the function's own block. However, if
it is so, we need to indicate that we just moved outside
of the function. */
if (local_symbols
&& (context_stack_depth
> !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
{
/* FIXME Muzzle a compiler bug that makes end < start. */
if (new->start_addr > valu)
{
complain(&lbrac_rbrac_complaint, 0);
new->start_addr = valu;
}
/* Make a block for the local symbols within. */
finish_block (0, &local_symbols, new->old_blocks,
new->start_addr, valu);
}
else
{
within_function = 0;
}
if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
/* Now pop locals of block just finished. */
local_symbols = new->locals;
break;
case N_FN:
case N_FN_SEQ:
/* This kind of symbol indicates the start of an object file. */
break;
case N_SO:
/* This type of symbol indicates the start of data
for one source file.
Finish the symbol table of the previous source file
(if any) and start accumulating a new symbol table. */
#ifndef SUN_FIXED_LBRAC_BUG
last_pc_address = valu; /* Save for SunOS bug circumcision */
#endif
#ifdef PCC_SOL_BROKEN
/* pcc bug, occasionally puts out SO for SOL. */
if (context_stack_depth > 0)
{
start_subfile (name, NULL);
break;
}
#endif
if (last_source_file)
{
/* Check if previous symbol was also an N_SO (with some
sanity checks). If so, that one was actually the directory
name, and the current one is the real file name.
Patch things up. */
if (previous_stab_code == N_SO
&& current_subfile && current_subfile->dirname == NULL
&& current_subfile->name != NULL
&& current_subfile->name[strlen(current_subfile->name)-1] == '/')
{
current_subfile->dirname = current_subfile->name;
current_subfile->name = obsavestring (name, strlen (name));
break;
}
(void)end_symtab (valu, 0, 0);
}
start_symtab (name, NULL, valu);
break;
case N_SOL:
/* This type of symbol indicates the start of data for
a sub-source-file, one whose contents were copied or
included in the compilation of the main source file
(whose name was given in the N_SO symbol.) */
start_subfile (name, NULL);
break;
case N_BINCL:
push_subfile ();
add_new_header_file (name, valu);
start_subfile (name, NULL);
break;
case N_EINCL:
start_subfile (pop_subfile (), NULL);
break;
case N_EXCL:
add_old_header_file (name, valu);
break;
case N_SLINE:
/* This type of "symbol" really just records
one line-number -- core-address correspondence.
Enter it in the line list for this symbol table. */
#ifndef SUN_FIXED_LBRAC_BUG
last_pc_address = valu; /* Save for SunOS bug circumcision */
#endif
record_line (current_subfile, desc, valu);
break;
case N_BCOMM:
if (common_block)
error ("Invalid symbol data: common within common at symtab pos %d",
symnum);
common_block = local_symbols;
common_block_i = local_symbols ? local_symbols->nsyms : 0;
break;
case N_ECOMM:
/* Symbols declared since the BCOMM are to have the common block
start address added in when we know it. common_block points to
the first symbol after the BCOMM in the local_symbols list;
copy the list and hang it off the symbol for the common block name
for later fixup. */
{
int i;
struct symbol *sym =
(struct symbol *) xmalloc (sizeof (struct symbol));
bzero (sym, sizeof *sym);
SYMBOL_NAME (sym) = savestring (name, strlen (name));
SYMBOL_CLASS (sym) = LOC_BLOCK;
SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
copy_pending (local_symbols, common_block_i, common_block));
i = hashname (SYMBOL_NAME (sym));
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
global_sym_chain[i] = sym;
common_block = 0;
break;
}
case N_ECOML:
case N_LENG:
case N_DEFD: /* GNU Modula-2 symbol */
break;
default:
if (name)
define_symbol (valu, name, desc, type);
}
previous_stab_code = type;
}
/* Copy a pending list, used to record the contents of a common
block for later fixup. */
static struct pending *
copy_pending (beg, begi, end)
struct pending *beg, *end;
int begi;
{
struct pending *new = 0;
struct pending *next;
for (next = beg; next != 0 && (next != end || begi < end->nsyms);
next = next->next, begi = 0)
{
register int j;
for (j = begi; j < next->nsyms; j++)
add_symbol_to_list (next->symbol[j], &new);
}
return new;
}
/* Register our willingness to decode symbols for SunOS and a.out and
b.out files handled by BFD... */
static struct sym_fns sunos_sym_fns = {"sunOs", 6,
dbx_new_init, dbx_symfile_init, dbx_symfile_read};
static struct sym_fns aout_sym_fns = {"a.out", 5,
dbx_new_init, dbx_symfile_init, dbx_symfile_read};
static struct sym_fns bout_sym_fns = {"b.out", 5,
dbx_new_init, dbx_symfile_init, dbx_symfile_read};
void
_initialize_dbxread ()
{
add_symtab_fns(&sunos_sym_fns);
add_symtab_fns(&aout_sym_fns);
add_symtab_fns(&bout_sym_fns);
}