old-cross-binutils/gold/sparc.cc
2014-03-05 22:16:15 +10:30

4395 lines
130 KiB
C++

// sparc.cc -- sparc target support for gold.
// Copyright (C) 2008-2014 Free Software Foundation, Inc.
// Written by David S. Miller <davem@davemloft.net>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "sparc.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "errors.h"
#include "gc.h"
namespace
{
using namespace gold;
template<int size, bool big_endian>
class Output_data_plt_sparc;
template<int size, bool big_endian>
class Target_sparc : public Sized_target<size, big_endian>
{
public:
typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
Target_sparc()
: Sized_target<size, big_endian>(&sparc_info),
got_(NULL), plt_(NULL), rela_dyn_(NULL), rela_ifunc_(NULL),
copy_relocs_(elfcpp::R_SPARC_COPY),
got_mod_index_offset_(-1U), tls_get_addr_sym_(NULL),
elf_machine_(sparc_info.machine_code), elf_flags_(0),
elf_flags_set_(false)
{
}
// Process the relocations to determine unreferenced sections for
// garbage collection.
void
gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Finalize the sections.
void
do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
// Return the value to use for a dynamic which requires special
// treatment.
uint64_t
do_dynsym_value(const Symbol*) const;
// Relocate a section.
void
relocate_section(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
const Reloc_symbol_changes*);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Emit relocations for a section.
void
relocate_relocs(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off
offset_in_output_section,
const Relocatable_relocs*,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(const Symbol* sym) const
{
// XXX Really need to support this better...
if (sym->type() == elfcpp::STT_SPARC_REGISTER)
return 1;
return strcmp(sym->name(), "___tls_get_addr") == 0;
}
// Return the PLT address to use for a global symbol.
uint64_t
do_plt_address_for_global(const Symbol* gsym) const
{ return this->plt_section()->address_for_global(gsym); }
uint64_t
do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
{ return this->plt_section()->address_for_local(relobj, symndx); }
// Return whether there is a GOT section.
bool
has_got_section() const
{ return this->got_ != NULL; }
// Return the size of the GOT section.
section_size_type
got_size() const
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
// Return the number of entries in the GOT.
unsigned int
got_entry_count() const
{
if (this->got_ == NULL)
return 0;
return this->got_size() / (size / 8);
}
// Return the address of the GOT.
uint64_t
got_address() const
{
if (this->got_ == NULL)
return 0;
return this->got_->address();
}
// Return the number of entries in the PLT.
unsigned int
plt_entry_count() const;
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const;
// Return the size of each PLT entry.
unsigned int
plt_entry_size() const;
protected:
// Make an ELF object.
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<size, big_endian>& ehdr);
void
do_adjust_elf_header(unsigned char* view, int len);
private:
// The class which scans relocations.
class Scan
{
public:
Scan()
: issued_non_pic_error_(false)
{ }
static inline int
get_reference_flags(unsigned int r_type);
inline void
local(Symbol_table* symtab, Layout* layout, Target_sparc* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded);
inline void
global(Symbol_table* symtab, Layout* layout, Target_sparc* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
Symbol* gsym);
inline bool
local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
Target_sparc* ,
Sized_relobj_file<size, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rela<size, big_endian>& ,
unsigned int ,
const elfcpp::Sym<size, big_endian>&)
{ return false; }
inline bool
global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
Target_sparc* ,
Sized_relobj_file<size, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rela<size,
big_endian>& ,
unsigned int , Symbol*)
{ return false; }
private:
static void
unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
unsigned int r_type, Symbol*);
static void
generate_tls_call(Symbol_table* symtab, Layout* layout,
Target_sparc* target);
void
check_non_pic(Relobj*, unsigned int r_type);
bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
unsigned int r_type);
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
// The class which implements relocation.
class Relocate
{
public:
Relocate()
: ignore_gd_add_(false), reloc_adjust_addr_(NULL)
{ }
~Relocate()
{
if (this->ignore_gd_add_)
{
// FIXME: This needs to specify the location somehow.
gold_error(_("missing expected TLS relocation"));
}
}
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<size, big_endian>*, Target_sparc*,
Output_section*, size_t relnum,
const elfcpp::Rela<size, big_endian>&,
unsigned int r_type, const Sized_symbol<size>*,
const Symbol_value<size>*,
unsigned char*,
typename elfcpp::Elf_types<size>::Elf_Addr,
section_size_type);
private:
// Do a TLS relocation.
inline void
relocate_tls(const Relocate_info<size, big_endian>*, Target_sparc* target,
size_t relnum, const elfcpp::Rela<size, big_endian>&,
unsigned int r_type, const Sized_symbol<size>*,
const Symbol_value<size>*,
unsigned char*,
typename elfcpp::Elf_types<size>::Elf_Addr,
section_size_type);
inline void
relax_call(Target_sparc<size, big_endian>* target,
unsigned char* view,
const elfcpp::Rela<size, big_endian>& rela,
section_size_type view_size);
// Ignore the next relocation which should be R_SPARC_TLS_GD_ADD
bool ignore_gd_add_;
// If we hit a reloc at this view address, adjust it back by 4 bytes.
unsigned char *reloc_adjust_addr_;
};
// A class which returns the size required for a relocation type,
// used while scanning relocs during a relocatable link.
class Relocatable_size_for_reloc
{
public:
unsigned int
get_size_for_reloc(unsigned int, Relobj*);
};
// Get the GOT section, creating it if necessary.
Output_data_got<size, big_endian>*
got_section(Symbol_table*, Layout*);
// Create the PLT section.
void
make_plt_section(Symbol_table* symtab, Layout* layout);
// Create a PLT entry for a global symbol.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
// Create a PLT entry for a local STT_GNU_IFUNC symbol.
void
make_local_ifunc_plt_entry(Symbol_table*, Layout*,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index);
// Create a GOT entry for the TLS module index.
unsigned int
got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* object);
// Return the gsym for "__tls_get_addr". Cache if not already
// cached.
Symbol*
tls_get_addr_sym(Symbol_table* symtab)
{
if (!this->tls_get_addr_sym_)
this->tls_get_addr_sym_ = symtab->lookup("__tls_get_addr", NULL);
gold_assert(this->tls_get_addr_sym_);
return this->tls_get_addr_sym_;
}
// Get the PLT section.
Output_data_plt_sparc<size, big_endian>*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rela_dyn_section(Layout*);
// Get the section to use for IFUNC relocations.
Reloc_section*
rela_ifunc_section(Layout*);
// Copy a relocation against a global symbol.
void
copy_reloc(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int shndx, Output_section* output_section,
Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
{
this->copy_relocs_.copy_reloc(symtab, layout,
symtab->get_sized_symbol<size>(sym),
object, shndx, output_section,
reloc, this->rela_dyn_section(layout));
}
// Information about this specific target which we pass to the
// general Target structure.
static Target::Target_info sparc_info;
// The types of GOT entries needed for this platform.
// These values are exposed to the ABI in an incremental link.
// Do not renumber existing values without changing the version
// number of the .gnu_incremental_inputs section.
enum Got_type
{
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
};
// The GOT section.
Output_data_got<size, big_endian>* got_;
// The PLT section.
Output_data_plt_sparc<size, big_endian>* plt_;
// The dynamic reloc section.
Reloc_section* rela_dyn_;
// The section to use for IFUNC relocs.
Reloc_section* rela_ifunc_;
// Relocs saved to avoid a COPY reloc.
Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
// Offset of the GOT entry for the TLS module index;
unsigned int got_mod_index_offset_;
// Cached pointer to __tls_get_addr symbol
Symbol* tls_get_addr_sym_;
// Accumulated elf machine type
elfcpp::Elf_Half elf_machine_;
// Accumulated elf header flags
elfcpp::Elf_Word elf_flags_;
// Whether elf_flags_ has been set for the first time yet
bool elf_flags_set_;
};
template<>
Target::Target_info Target_sparc<32, true>::sparc_info =
{
32, // size
true, // is_big_endian
elfcpp::EM_SPARC, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x00010000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
8 * 1024, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start" // entry_symbol_name
};
template<>
Target::Target_info Target_sparc<64, true>::sparc_info =
{
64, // size
true, // is_big_endian
elfcpp::EM_SPARCV9, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/sparcv9/ld.so.1", // dynamic_linker
0x100000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
8 * 1024, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start" // entry_symbol_name
};
// We have to take care here, even when operating in little-endian
// mode, sparc instructions are still big endian.
template<int size, bool big_endian>
class Sparc_relocate_functions
{
private:
// Do a simple relocation with the addend in the relocation.
template<int valsize>
static inline void
rela(unsigned char* view,
unsigned int right_shift,
typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
typename elfcpp::Swap<size, big_endian>::Valtype value,
typename elfcpp::Swap<size, big_endian>::Valtype addend)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = ((value + addend) >> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
// Do a simple relocation using a symbol value with the addend in
// the relocation.
template<int valsize>
static inline void
rela(unsigned char* view,
unsigned int right_shift,
typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<valsize, big_endian>::Valtype addend)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = (psymval->value(object, addend) >> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
// Do a simple relocation using a symbol value with the addend in
// the relocation, unaligned.
template<int valsize>
static inline void
rela_ua(unsigned char* view,
unsigned int right_shift, elfcpp::Elf_Xword dst_mask,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend)
{
typedef typename elfcpp::Swap_unaligned<valsize,
big_endian>::Valtype Valtype;
unsigned char* wv = view;
Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
Valtype reloc = (psymval->value(object, addend) >> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, val | reloc);
}
// Do a simple PC relative relocation with a Symbol_value with the
// addend in the relocation.
template<int valsize>
static inline void
pcrela(unsigned char* view,
unsigned int right_shift,
typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = ((psymval->value(object, addend) - address)
>> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
template<int valsize>
static inline void
pcrela_unaligned(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
typedef typename elfcpp::Swap_unaligned<valsize,
big_endian>::Valtype Valtype;
unsigned char* wv = view;
Valtype reloc = (psymval->value(object, addend) - address);
elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, reloc);
}
typedef Sparc_relocate_functions<size, big_endian> This;
typedef Sparc_relocate_functions<size, true> This_insn;
public:
// R_SPARC_WDISP30: (Symbol + Addend - Address) >> 2
static inline void
wdisp30(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 2, 0x3fffffff, object,
psymval, addend, address);
}
// R_SPARC_WDISP22: (Symbol + Addend - Address) >> 2
static inline void
wdisp22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 2, 0x003fffff, object,
psymval, addend, address);
}
// R_SPARC_WDISP19: (Symbol + Addend - Address) >> 2
static inline void
wdisp19(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 2, 0x0007ffff, object,
psymval, addend, address);
}
// R_SPARC_WDISP16: (Symbol + Addend - Address) >> 2
static inline void
wdisp16(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = ((psymval->value(object, addend) - address)
>> 2);
// The relocation value is split between the low 14 bits,
// and bits 20-21.
val &= ~((0x3 << 20) | 0x3fff);
reloc = (((reloc & 0xc000) << (20 - 14))
| (reloc & 0x3ffff));
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_WDISP10: (Symbol + Addend - Address) >> 2
static inline void
wdisp10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = ((psymval->value(object, addend) - address)
>> 2);
// The relocation value is split between the low bits 5-12,
// and high bits 19-20.
val &= ~((0x3 << 19) | (0xff << 5));
reloc = (((reloc & 0x300) << (19 - 8))
| ((reloc & 0xff) << (5 - 0)));
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_PC22: (Symbol + Addend - Address) >> 10
static inline void
pc22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 10, 0x003fffff, object,
psymval, addend, address);
}
// R_SPARC_PC10: (Symbol + Addend - Address) & 0x3ff
static inline void
pc10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 0, 0x000003ff, object,
psymval, addend, address);
}
// R_SPARC_HI22: (Symbol + Addend) >> 10
static inline void
hi22(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 10, 0x003fffff, value, addend);
}
// R_SPARC_HI22: (Symbol + Addend) >> 10
static inline void
hi22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 10, 0x003fffff, object, psymval, addend);
}
// R_SPARC_PCPLT22: (Symbol + Addend - Address) >> 10
static inline void
pcplt22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 10, 0x003fffff, object,
psymval, addend, address);
}
// R_SPARC_LO10: (Symbol + Addend) & 0x3ff
static inline void
lo10(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x000003ff, value, addend);
}
// R_SPARC_LO10: (Symbol + Addend) & 0x3ff
static inline void
lo10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend);
}
// R_SPARC_LO10: (Symbol + Addend) & 0x3ff
static inline void
lo10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 0, 0x000003ff, object,
psymval, addend, address);
}
// R_SPARC_OLO10: ((Symbol + Addend) & 0x3ff) + Addend2
static inline void
olo10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr addend2)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = psymval->value(object, addend);
val &= ~0x1fff;
reloc &= 0x3ff;
reloc += addend2;
reloc &= 0x1fff;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_22: (Symbol + Addend)
static inline void
rela32_22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x003fffff, object, psymval, addend);
}
// R_SPARC_13: (Symbol + Addend)
static inline void
rela32_13(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x00001fff, value, addend);
}
// R_SPARC_13: (Symbol + Addend)
static inline void
rela32_13(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x00001fff, object, psymval, addend);
}
// R_SPARC_UA16: (Symbol + Addend)
static inline void
ua16(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela_ua<16>(view, 0, 0xffff, object, psymval, addend);
}
// R_SPARC_UA32: (Symbol + Addend)
static inline void
ua32(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela_ua<32>(view, 0, 0xffffffff, object, psymval, addend);
}
// R_SPARC_UA64: (Symbol + Addend)
static inline void
ua64(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela_ua<64>(view, 0, ~(elfcpp::Elf_Xword) 0,
object, psymval, addend);
}
// R_SPARC_DISP8: (Symbol + Addend - Address)
static inline void
disp8(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela_unaligned<8>(view, object, psymval,
addend, address);
}
// R_SPARC_DISP16: (Symbol + Addend - Address)
static inline void
disp16(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela_unaligned<16>(view, object, psymval,
addend, address);
}
// R_SPARC_DISP32: (Symbol + Addend - Address)
static inline void
disp32(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela_unaligned<32>(view, object, psymval,
addend, address);
}
// R_SPARC_DISP64: (Symbol + Addend - Address)
static inline void
disp64(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
elfcpp::Elf_Xword addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela_unaligned<64>(view, object, psymval,
addend, address);
}
// R_SPARC_H34: (Symbol + Addend) >> 12
static inline void
h34(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 12, 0x003fffff, object, psymval, addend);
}
// R_SPARC_H44: (Symbol + Addend) >> 22
static inline void
h44(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 22, 0x003fffff, object, psymval, addend);
}
// R_SPARC_M44: ((Symbol + Addend) >> 12) & 0x3ff
static inline void
m44(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 12, 0x000003ff, object, psymval, addend);
}
// R_SPARC_L44: (Symbol + Addend) & 0xfff
static inline void
l44(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x00000fff, object, psymval, addend);
}
// R_SPARC_HH22: (Symbol + Addend) >> 42
static inline void
hh22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 42, 0x003fffff, object, psymval, addend);
}
// R_SPARC_PC_HH22: (Symbol + Addend - Address) >> 42
static inline void
pc_hh22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 42, 0x003fffff, object,
psymval, addend, address);
}
// R_SPARC_HM10: ((Symbol + Addend) >> 32) & 0x3ff
static inline void
hm10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 32, 0x000003ff, object, psymval, addend);
}
// R_SPARC_PC_HM10: ((Symbol + Addend - Address) >> 32) & 0x3ff
static inline void
pc_hm10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This_insn::template pcrela<32>(view, 32, 0x000003ff, object,
psymval, addend, address);
}
// R_SPARC_11: (Symbol + Addend)
static inline void
rela32_11(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x000007ff, object, psymval, addend);
}
// R_SPARC_10: (Symbol + Addend)
static inline void
rela32_10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend);
}
// R_SPARC_7: (Symbol + Addend)
static inline void
rela32_7(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x0000007f, object, psymval, addend);
}
// R_SPARC_6: (Symbol + Addend)
static inline void
rela32_6(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x0000003f, object, psymval, addend);
}
// R_SPARC_5: (Symbol + Addend)
static inline void
rela32_5(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::template rela<32>(view, 0, 0x0000001f, object, psymval, addend);
}
// R_SPARC_TLS_LDO_HIX22: @dtpoff(Symbol + Addend) >> 10
static inline void
ldo_hix22(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This_insn::hi22(view, value, addend);
}
// R_SPARC_TLS_LDO_LOX10: @dtpoff(Symbol + Addend) & 0x3ff
static inline void
ldo_lox10(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = (value + addend);
val &= ~0x1fff;
reloc &= 0x3ff;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_TLS_LE_HIX22: (@tpoff(Symbol + Addend) ^ 0xffffffffffffffff) >> 10
static inline void
hix22(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = (value + addend);
val &= ~0x3fffff;
reloc ^= ~(Valtype)0;
reloc >>= 10;
reloc &= 0x3fffff;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_GOTDATA_OP_HIX22: @gdopoff(Symbol + Addend) >> 10
static inline void
gdop_hix22(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
int32_t reloc = static_cast<int32_t>(value + addend);
val &= ~0x3fffff;
if (reloc < 0)
reloc ^= ~static_cast<int32_t>(0);
reloc >>= 10;
reloc &= 0x3fffff;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_HIX22: ((Symbol + Addend) ^ 0xffffffffffffffff) >> 10
static inline void
hix22(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = psymval->value(object, addend);
val &= ~0x3fffff;
reloc ^= ~(Valtype)0;
reloc >>= 10;
reloc &= 0x3fffff;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_TLS_LE_LOX10: (@tpoff(Symbol + Addend) & 0x3ff) | 0x1c00
static inline void
lox10(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = (value + addend);
val &= ~0x1fff;
reloc &= 0x3ff;
reloc |= 0x1c00;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_GOTDATA_OP_LOX10: (@gdopoff(Symbol + Addend) & 0x3ff) | 0x1c00
static inline void
gdop_lox10(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
int32_t reloc = static_cast<int32_t>(value + addend);
if (reloc < 0)
reloc = (reloc & 0x3ff) | 0x1c00;
else
reloc = (reloc & 0x3ff);
val &= ~0x1fff;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
// R_SPARC_LOX10: ((Symbol + Addend) & 0x3ff) | 0x1c00
static inline void
lox10(unsigned char* view,
const Sized_relobj_file<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typedef typename elfcpp::Swap<32, true>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, true>::readval(wv);
Valtype reloc = psymval->value(object, addend);
val &= ~0x1fff;
reloc &= 0x3ff;
reloc |= 0x1c00;
elfcpp::Swap<32, true>::writeval(wv, val | reloc);
}
};
// Get the GOT section, creating it if necessary.
template<int size, bool big_endian>
Output_data_got<size, big_endian>*
Target_sparc<size, big_endian>::got_section(Symbol_table* symtab,
Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
this->got_ = new Output_data_got<size, big_endian>();
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE),
this->got_, ORDER_RELRO, true);
// Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->got_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
return this->got_;
}
// Get the dynamic reloc section, creating it if necessary.
template<int size, bool big_endian>
typename Target_sparc<size, big_endian>::Reloc_section*
Target_sparc<size, big_endian>::rela_dyn_section(Layout* layout)
{
if (this->rela_dyn_ == NULL)
{
gold_assert(layout != NULL);
this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rela_dyn_,
ORDER_DYNAMIC_RELOCS, false);
}
return this->rela_dyn_;
}
// Get the section to use for IFUNC relocs, creating it if
// necessary. These go in .rela.dyn, but only after all other dynamic
// relocations. They need to follow the other dynamic relocations so
// that they can refer to global variables initialized by those
// relocs.
template<int size, bool big_endian>
typename Target_sparc<size, big_endian>::Reloc_section*
Target_sparc<size, big_endian>::rela_ifunc_section(Layout* layout)
{
if (this->rela_ifunc_ == NULL)
{
// Make sure we have already created the dynamic reloc section.
this->rela_dyn_section(layout);
this->rela_ifunc_ = new Reloc_section(false);
layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rela_ifunc_,
ORDER_DYNAMIC_RELOCS, false);
gold_assert(this->rela_dyn_->output_section()
== this->rela_ifunc_->output_section());
}
return this->rela_ifunc_;
}
// A class to handle the PLT data.
template<int size, bool big_endian>
class Output_data_plt_sparc : public Output_section_data
{
public:
typedef Output_data_reloc<elfcpp::SHT_RELA, true,
size, big_endian> Reloc_section;
Output_data_plt_sparc(Layout*);
// Add an entry to the PLT.
void add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
unsigned int
add_local_ifunc_entry(Symbol_table*, Layout*,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index);
// Return the .rela.plt section data.
const Reloc_section* rel_plt() const
{
return this->rel_;
}
// Return where the IFUNC relocations should go.
Reloc_section*
rela_ifunc(Symbol_table*, Layout*);
void
emit_pending_ifunc_relocs();
// Return whether we created a section for IFUNC relocations.
bool
has_ifunc_section() const
{ return this->ifunc_rel_ != NULL; }
// Return the number of PLT entries.
unsigned int
entry_count() const
{ return this->count_ + this->ifunc_count_; }
// Return the offset of the first non-reserved PLT entry.
static unsigned int
first_plt_entry_offset()
{ return 4 * base_plt_entry_size; }
// Return the size of a PLT entry.
static unsigned int
get_plt_entry_size()
{ return base_plt_entry_size; }
// Return the PLT address to use for a global symbol.
uint64_t
address_for_global(const Symbol*);
// Return the PLT address to use for a local symbol.
uint64_t
address_for_local(const Relobj*, unsigned int symndx);
protected:
void do_adjust_output_section(Output_section* os);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** PLT")); }
private:
// The size of an entry in the PLT.
static const int base_plt_entry_size = (size == 32 ? 12 : 32);
static const unsigned int plt_entries_per_block = 160;
static const unsigned int plt_insn_chunk_size = 24;
static const unsigned int plt_pointer_chunk_size = 8;
static const unsigned int plt_block_size =
(plt_entries_per_block
* (plt_insn_chunk_size + plt_pointer_chunk_size));
section_offset_type
plt_index_to_offset(unsigned int index)
{
section_offset_type offset;
if (size == 32 || index < 32768)
offset = index * base_plt_entry_size;
else
{
unsigned int ext_index = index - 32768;
offset = (32768 * base_plt_entry_size)
+ ((ext_index / plt_entries_per_block)
* plt_block_size)
+ ((ext_index % plt_entries_per_block)
* plt_insn_chunk_size);
}
return offset;
}
// Set the final size.
void
set_final_data_size()
{
unsigned int full_count = this->entry_count() + 4;
unsigned int extra = (size == 32 ? 4 : 0);
section_offset_type sz = plt_index_to_offset(full_count) + extra;
return this->set_data_size(sz);
}
// Write out the PLT data.
void
do_write(Output_file*);
struct Global_ifunc
{
Reloc_section* rel;
Symbol* gsym;
unsigned int plt_index;
};
struct Local_ifunc
{
Reloc_section* rel;
Sized_relobj_file<size, big_endian>* object;
unsigned int local_sym_index;
unsigned int plt_index;
};
// The reloc section.
Reloc_section* rel_;
// The IFUNC relocations, if necessary. These must follow the
// regular relocations.
Reloc_section* ifunc_rel_;
// The number of PLT entries.
unsigned int count_;
// The number of PLT entries for IFUNC symbols.
unsigned int ifunc_count_;
// Global STT_GNU_IFUNC symbols.
std::vector<Global_ifunc> global_ifuncs_;
// Local STT_GNU_IFUNC symbols.
std::vector<Local_ifunc> local_ifuncs_;
};
// Define the constants as required by C++ standard.
template<int size, bool big_endian>
const int Output_data_plt_sparc<size, big_endian>::base_plt_entry_size;
template<int size, bool big_endian>
const unsigned int
Output_data_plt_sparc<size, big_endian>::plt_entries_per_block;
template<int size, bool big_endian>
const unsigned int Output_data_plt_sparc<size, big_endian>::plt_insn_chunk_size;
template<int size, bool big_endian>
const unsigned int
Output_data_plt_sparc<size, big_endian>::plt_pointer_chunk_size;
template<int size, bool big_endian>
const unsigned int Output_data_plt_sparc<size, big_endian>::plt_block_size;
// Create the PLT section. The ordinary .got section is an argument,
// since we need to refer to the start.
template<int size, bool big_endian>
Output_data_plt_sparc<size, big_endian>::Output_data_plt_sparc(Layout* layout)
: Output_section_data(size == 32 ? 4 : 8), ifunc_rel_(NULL),
count_(0), ifunc_count_(0), global_ifuncs_(), local_ifuncs_()
{
this->rel_ = new Reloc_section(false);
layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rel_,
ORDER_DYNAMIC_PLT_RELOCS, false);
}
template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::do_adjust_output_section(Output_section* os)
{
os->set_entsize(0);
}
// Add an entry to the PLT.
template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::add_entry(Symbol_table* symtab,
Layout* layout,
Symbol* gsym)
{
gold_assert(!gsym->has_plt_offset());
section_offset_type plt_offset;
unsigned int index;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
index = this->ifunc_count_;
plt_offset = plt_index_to_offset(index);
gsym->set_plt_offset(plt_offset);
++this->ifunc_count_;
Reloc_section* rel = this->rela_ifunc(symtab, layout);
struct Global_ifunc gi;
gi.rel = rel;
gi.gsym = gsym;
gi.plt_index = index;
this->global_ifuncs_.push_back(gi);
}
else
{
plt_offset = plt_index_to_offset(this->count_ + 4);
gsym->set_plt_offset(plt_offset);
++this->count_;
gsym->set_needs_dynsym_entry();
this->rel_->add_global(gsym, elfcpp::R_SPARC_JMP_SLOT, this,
plt_offset, 0);
}
// Note that we don't need to save the symbol. The contents of the
// PLT are independent of which symbols are used. The symbols only
// appear in the relocations.
}
template<int size, bool big_endian>
unsigned int
Output_data_plt_sparc<size, big_endian>::add_local_ifunc_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index)
{
unsigned int index = this->ifunc_count_;
section_offset_type plt_offset;
plt_offset = plt_index_to_offset(index);
++this->ifunc_count_;
Reloc_section* rel = this->rela_ifunc(symtab, layout);
struct Local_ifunc li;
li.rel = rel;
li.object = relobj;
li.local_sym_index = local_sym_index;
li.plt_index = index;
this->local_ifuncs_.push_back(li);
return plt_offset;
}
// Emit any pending IFUNC plt relocations.
template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::emit_pending_ifunc_relocs()
{
// Emit any pending IFUNC relocs.
for (typename std::vector<Global_ifunc>::const_iterator p =
this->global_ifuncs_.begin();
p != this->global_ifuncs_.end();
++p)
{
section_offset_type plt_offset;
unsigned int index;
index = this->count_ + p->plt_index + 4;
plt_offset = this->plt_index_to_offset(index);
p->rel->add_symbolless_global_addend(p->gsym, elfcpp::R_SPARC_JMP_IREL,
this, plt_offset, 0);
}
for (typename std::vector<Local_ifunc>::const_iterator p =
this->local_ifuncs_.begin();
p != this->local_ifuncs_.end();
++p)
{
section_offset_type plt_offset;
unsigned int index;
index = this->count_ + p->plt_index + 4;
plt_offset = this->plt_index_to_offset(index);
p->rel->add_symbolless_local_addend(p->object, p->local_sym_index,
elfcpp::R_SPARC_JMP_IREL,
this, plt_offset, 0);
}
}
// Return where the IFUNC relocations should go in the PLT. These
// follow the non-IFUNC relocations.
template<int size, bool big_endian>
typename Output_data_plt_sparc<size, big_endian>::Reloc_section*
Output_data_plt_sparc<size, big_endian>::rela_ifunc(
Symbol_table* symtab,
Layout* layout)
{
if (this->ifunc_rel_ == NULL)
{
this->ifunc_rel_ = new Reloc_section(false);
layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->ifunc_rel_,
ORDER_DYNAMIC_PLT_RELOCS, false);
gold_assert(this->ifunc_rel_->output_section()
== this->rel_->output_section());
if (parameters->doing_static_link())
{
// A statically linked executable will only have a .rel.plt
// section to hold R_SPARC_IRELATIVE and R_SPARC_JMP_IREL
// relocs for STT_GNU_IFUNC symbols. The library will use
// these symbols to locate the IRELATIVE and JMP_IREL relocs
// at program startup time.
symtab->define_in_output_data("__rela_iplt_start", NULL,
Symbol_table::PREDEFINED,
this->ifunc_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, false, true);
symtab->define_in_output_data("__rela_iplt_end", NULL,
Symbol_table::PREDEFINED,
this->ifunc_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, true, true);
}
}
return this->ifunc_rel_;
}
// Return the PLT address to use for a global symbol.
template<int size, bool big_endian>
uint64_t
Output_data_plt_sparc<size, big_endian>::address_for_global(const Symbol* gsym)
{
uint64_t offset = 0;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
offset = plt_index_to_offset(this->count_ + 4);
return this->address() + offset + gsym->plt_offset();
}
// Return the PLT address to use for a local symbol. These are always
// IRELATIVE relocs.
template<int size, bool big_endian>
uint64_t
Output_data_plt_sparc<size, big_endian>::address_for_local(
const Relobj* object,
unsigned int r_sym)
{
return (this->address()
+ plt_index_to_offset(this->count_ + 4)
+ object->local_plt_offset(r_sym));
}
static const unsigned int sparc_nop = 0x01000000;
static const unsigned int sparc_sethi_g1 = 0x03000000;
static const unsigned int sparc_branch_always = 0x30800000;
static const unsigned int sparc_branch_always_pt = 0x30680000;
static const unsigned int sparc_mov = 0x80100000;
static const unsigned int sparc_mov_g0_o0 = 0x90100000;
static const unsigned int sparc_mov_o7_g5 = 0x8a10000f;
static const unsigned int sparc_call_plus_8 = 0x40000002;
static const unsigned int sparc_ldx_o7_imm_g1 = 0xc25be000;
static const unsigned int sparc_jmpl_o7_g1_g1 = 0x83c3c001;
static const unsigned int sparc_mov_g5_o7 = 0x9e100005;
// Write out the PLT.
template<int size, bool big_endian>
void
Output_data_plt_sparc<size, big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
unsigned char* pov = oview;
memset(pov, 0, base_plt_entry_size * 4);
pov += this->first_plt_entry_offset();
unsigned int plt_offset = base_plt_entry_size * 4;
const unsigned int count = this->entry_count();
if (size == 64)
{
unsigned int limit;
limit = (count > 32768 ? 32768 : count);
for (unsigned int i = 0; i < limit; ++i)
{
elfcpp::Swap<32, true>::writeval(pov + 0x00,
sparc_sethi_g1 + plt_offset);
elfcpp::Swap<32, true>::writeval(pov + 0x04,
sparc_branch_always_pt +
(((base_plt_entry_size -
(plt_offset + 4)) >> 2) &
0x7ffff));
elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop);
elfcpp::Swap<32, true>::writeval(pov + 0x0c, sparc_nop);
elfcpp::Swap<32, true>::writeval(pov + 0x10, sparc_nop);
elfcpp::Swap<32, true>::writeval(pov + 0x14, sparc_nop);
elfcpp::Swap<32, true>::writeval(pov + 0x18, sparc_nop);
elfcpp::Swap<32, true>::writeval(pov + 0x1c, sparc_nop);
pov += base_plt_entry_size;
plt_offset += base_plt_entry_size;
}
if (count > 32768)
{
unsigned int ext_cnt = count - 32768;
unsigned int blks = ext_cnt / plt_entries_per_block;
for (unsigned int i = 0; i < blks; ++i)
{
unsigned int data_off = (plt_entries_per_block
* plt_insn_chunk_size) - 4;
for (unsigned int j = 0; j < plt_entries_per_block; ++j)
{
elfcpp::Swap<32, true>::writeval(pov + 0x00,
sparc_mov_o7_g5);
elfcpp::Swap<32, true>::writeval(pov + 0x04,
sparc_call_plus_8);
elfcpp::Swap<32, true>::writeval(pov + 0x08,
sparc_nop);
elfcpp::Swap<32, true>::writeval(pov + 0x0c,
sparc_ldx_o7_imm_g1 +
(data_off & 0x1fff));
elfcpp::Swap<32, true>::writeval(pov + 0x10,
sparc_jmpl_o7_g1_g1);
elfcpp::Swap<32, true>::writeval(pov + 0x14,
sparc_mov_g5_o7);
elfcpp::Swap<64, big_endian>::writeval(
pov + 0x4 + data_off,
(elfcpp::Elf_Xword) (oview - (pov + 0x04)));
pov += plt_insn_chunk_size;
data_off -= 16;
}
}
unsigned int sub_blk_cnt = ext_cnt % plt_entries_per_block;
for (unsigned int i = 0; i < sub_blk_cnt; ++i)
{
unsigned int data_off = (sub_blk_cnt
* plt_insn_chunk_size) - 4;
for (unsigned int j = 0; j < plt_entries_per_block; ++j)
{
elfcpp::Swap<32, true>::writeval(pov + 0x00,
sparc_mov_o7_g5);
elfcpp::Swap<32, true>::writeval(pov + 0x04,
sparc_call_plus_8);
elfcpp::Swap<32, true>::writeval(pov + 0x08,
sparc_nop);
elfcpp::Swap<32, true>::writeval(pov + 0x0c,
sparc_ldx_o7_imm_g1 +
(data_off & 0x1fff));
elfcpp::Swap<32, true>::writeval(pov + 0x10,
sparc_jmpl_o7_g1_g1);
elfcpp::Swap<32, true>::writeval(pov + 0x14,
sparc_mov_g5_o7);
elfcpp::Swap<64, big_endian>::writeval(
pov + 0x4 + data_off,
(elfcpp::Elf_Xword) (oview - (pov + 0x04)));
pov += plt_insn_chunk_size;
data_off -= 16;
}
}
}
}
else
{
for (unsigned int i = 0; i < count; ++i)
{
elfcpp::Swap<32, true>::writeval(pov + 0x00,
sparc_sethi_g1 + plt_offset);
elfcpp::Swap<32, true>::writeval(pov + 0x04,
sparc_branch_always +
(((- (plt_offset + 4)) >> 2) &
0x003fffff));
elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop);
pov += base_plt_entry_size;
plt_offset += base_plt_entry_size;
}
elfcpp::Swap<32, true>::writeval(pov, sparc_nop);
pov += 4;
}
gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
of->write_output_view(offset, oview_size, oview);
}
// Create the PLT section.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::make_plt_section(Symbol_table* symtab,
Layout* layout)
{
// Create the GOT sections first.
this->got_section(symtab, layout);
// Ensure that .rela.dyn always appears before .rela.plt This is
// necessary due to how, on Sparc and some other targets, .rela.dyn
// needs to include .rela.plt in it's range.
this->rela_dyn_section(layout);
this->plt_ = new Output_data_plt_sparc<size, big_endian>(layout);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
| elfcpp::SHF_WRITE),
this->plt_, ORDER_NON_RELRO_FIRST, false);
// Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->plt_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
// Create a PLT entry for a global symbol.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
Layout* layout,
Symbol* gsym)
{
if (gsym->has_plt_offset())
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
this->plt_->add_entry(symtab, layout, gsym);
}
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::make_local_ifunc_plt_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index)
{
if (relobj->local_has_plt_offset(local_sym_index))
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
relobj,
local_sym_index);
relobj->set_local_plt_offset(local_sym_index, plt_offset);
}
// Return the number of entries in the PLT.
template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::plt_entry_count() const
{
if (this->plt_ == NULL)
return 0;
return this->plt_->entry_count();
}
// Return the offset of the first non-reserved PLT entry.
template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::first_plt_entry_offset() const
{
return Output_data_plt_sparc<size, big_endian>::first_plt_entry_offset();
}
// Return the size of each PLT entry.
template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::plt_entry_size() const
{
return Output_data_plt_sparc<size, big_endian>::get_plt_entry_size();
}
// Create a GOT entry for the TLS module index.
template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::got_mod_index_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object)
{
if (this->got_mod_index_offset_ == -1U)
{
gold_assert(symtab != NULL && layout != NULL && object != NULL);
Reloc_section* rela_dyn = this->rela_dyn_section(layout);
Output_data_got<size, big_endian>* got;
unsigned int got_offset;
got = this->got_section(symtab, layout);
got_offset = got->add_constant(0);
rela_dyn->add_local(object, 0,
(size == 64 ?
elfcpp::R_SPARC_TLS_DTPMOD64 :
elfcpp::R_SPARC_TLS_DTPMOD32), got,
got_offset, 0);
got->add_constant(0);
this->got_mod_index_offset_ = got_offset;
}
return this->got_mod_index_offset_;
}
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type)
{
// If we are generating a shared library, then we can't do anything
// in the linker.
if (parameters->options().shared())
return tls::TLSOPT_NONE;
switch (r_type)
{
case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
// These are General-Dynamic which permits fully general TLS
// access. Since we know that we are generating an executable,
// we can convert this to Initial-Exec. If we also know that
// this is a local symbol, we can further switch to Local-Exec.
if (is_final)
return tls::TLSOPT_TO_LE;
return tls::TLSOPT_TO_IE;
case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
// This is Local-Dynamic, which refers to a local symbol in the
// dynamic TLS block. Since we know that we generating an
// executable, we can switch to Local-Exec.
return tls::TLSOPT_TO_LE;
case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
case elfcpp::R_SPARC_TLS_LDO_LOX10:
case elfcpp::R_SPARC_TLS_LDO_ADD:
// Another type of Local-Dynamic relocation.
return tls::TLSOPT_TO_LE;
case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec
case elfcpp::R_SPARC_TLS_IE_LO10:
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
case elfcpp::R_SPARC_TLS_IE_ADD:
// These are Initial-Exec relocs which get the thread offset
// from the GOT. If we know that we are linking against the
// local symbol, we can switch to Local-Exec, which links the
// thread offset into the instruction.
if (is_final)
return tls::TLSOPT_TO_LE;
return tls::TLSOPT_NONE;
case elfcpp::R_SPARC_TLS_LE_HIX22: // Local-exec
case elfcpp::R_SPARC_TLS_LE_LOX10:
// When we already have Local-Exec, there is nothing further we
// can do.
return tls::TLSOPT_NONE;
default:
gold_unreachable();
}
}
// Get the Reference_flags for a particular relocation.
template<int size, bool big_endian>
int
Target_sparc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
{
r_type &= 0xff;
switch (r_type)
{
case elfcpp::R_SPARC_NONE:
case elfcpp::R_SPARC_REGISTER:
case elfcpp::R_SPARC_GNU_VTINHERIT:
case elfcpp::R_SPARC_GNU_VTENTRY:
// No symbol reference.
return 0;
case elfcpp::R_SPARC_UA64:
case elfcpp::R_SPARC_64:
case elfcpp::R_SPARC_HIX22:
case elfcpp::R_SPARC_LOX10:
case elfcpp::R_SPARC_H34:
case elfcpp::R_SPARC_H44:
case elfcpp::R_SPARC_M44:
case elfcpp::R_SPARC_L44:
case elfcpp::R_SPARC_HH22:
case elfcpp::R_SPARC_HM10:
case elfcpp::R_SPARC_LM22:
case elfcpp::R_SPARC_HI22:
case elfcpp::R_SPARC_LO10:
case elfcpp::R_SPARC_OLO10:
case elfcpp::R_SPARC_UA32:
case elfcpp::R_SPARC_32:
case elfcpp::R_SPARC_UA16:
case elfcpp::R_SPARC_16:
case elfcpp::R_SPARC_11:
case elfcpp::R_SPARC_10:
case elfcpp::R_SPARC_8:
case elfcpp::R_SPARC_7:
case elfcpp::R_SPARC_6:
case elfcpp::R_SPARC_5:
return Symbol::ABSOLUTE_REF;
case elfcpp::R_SPARC_DISP8:
case elfcpp::R_SPARC_DISP16:
case elfcpp::R_SPARC_DISP32:
case elfcpp::R_SPARC_DISP64:
case elfcpp::R_SPARC_PC_HH22:
case elfcpp::R_SPARC_PC_HM10:
case elfcpp::R_SPARC_PC_LM22:
case elfcpp::R_SPARC_PC10:
case elfcpp::R_SPARC_PC22:
case elfcpp::R_SPARC_WDISP30:
case elfcpp::R_SPARC_WDISP22:
case elfcpp::R_SPARC_WDISP19:
case elfcpp::R_SPARC_WDISP16:
case elfcpp::R_SPARC_WDISP10:
return Symbol::RELATIVE_REF;
case elfcpp::R_SPARC_PLT64:
case elfcpp::R_SPARC_PLT32:
case elfcpp::R_SPARC_HIPLT22:
case elfcpp::R_SPARC_LOPLT10:
case elfcpp::R_SPARC_PCPLT10:
return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
case elfcpp::R_SPARC_PCPLT32:
case elfcpp::R_SPARC_PCPLT22:
case elfcpp::R_SPARC_WPLT30:
return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
case elfcpp::R_SPARC_GOTDATA_OP:
case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
case elfcpp::R_SPARC_GOT10:
case elfcpp::R_SPARC_GOT13:
case elfcpp::R_SPARC_GOT22:
// Absolute in GOT.
return Symbol::ABSOLUTE_REF;
case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
case elfcpp::R_SPARC_TLS_LDO_LOX10:
case elfcpp::R_SPARC_TLS_LDO_ADD:
case elfcpp::R_SPARC_TLS_LE_HIX22:
case elfcpp::R_SPARC_TLS_LE_LOX10:
case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec
case elfcpp::R_SPARC_TLS_IE_LO10:
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
case elfcpp::R_SPARC_TLS_IE_ADD:
return Symbol::TLS_REF;
case elfcpp::R_SPARC_COPY:
case elfcpp::R_SPARC_GLOB_DAT:
case elfcpp::R_SPARC_JMP_SLOT:
case elfcpp::R_SPARC_JMP_IREL:
case elfcpp::R_SPARC_RELATIVE:
case elfcpp::R_SPARC_IRELATIVE:
case elfcpp::R_SPARC_TLS_DTPMOD64:
case elfcpp::R_SPARC_TLS_DTPMOD32:
case elfcpp::R_SPARC_TLS_DTPOFF64:
case elfcpp::R_SPARC_TLS_DTPOFF32:
case elfcpp::R_SPARC_TLS_TPOFF64:
case elfcpp::R_SPARC_TLS_TPOFF32:
default:
// Not expected. We will give an error later.
return 0;
}
}
// Generate a PLT entry slot for a call to __tls_get_addr
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::generate_tls_call(Symbol_table* symtab,
Layout* layout,
Target_sparc<size, big_endian>* target)
{
Symbol* gsym = target->tls_get_addr_sym(symtab);
target->make_plt_entry(symtab, layout, gsym);
}
// Report an unsupported relocation against a local symbol.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::unsupported_reloc_local(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// We are about to emit a dynamic relocation of type R_TYPE. If the
// dynamic linker does not support it, issue an error.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
{
gold_assert(r_type != elfcpp::R_SPARC_NONE);
if (size == 64)
{
switch (r_type)
{
// These are the relocation types supported by glibc for sparc 64-bit.
case elfcpp::R_SPARC_RELATIVE:
case elfcpp::R_SPARC_IRELATIVE:
case elfcpp::R_SPARC_COPY:
case elfcpp::R_SPARC_64:
case elfcpp::R_SPARC_GLOB_DAT:
case elfcpp::R_SPARC_JMP_SLOT:
case elfcpp::R_SPARC_JMP_IREL:
case elfcpp::R_SPARC_TLS_DTPMOD64:
case elfcpp::R_SPARC_TLS_DTPOFF64:
case elfcpp::R_SPARC_TLS_TPOFF64:
case elfcpp::R_SPARC_TLS_LE_HIX22:
case elfcpp::R_SPARC_TLS_LE_LOX10:
case elfcpp::R_SPARC_8:
case elfcpp::R_SPARC_16:
case elfcpp::R_SPARC_DISP8:
case elfcpp::R_SPARC_DISP16:
case elfcpp::R_SPARC_DISP32:
case elfcpp::R_SPARC_WDISP30:
case elfcpp::R_SPARC_LO10:
case elfcpp::R_SPARC_HI22:
case elfcpp::R_SPARC_OLO10:
case elfcpp::R_SPARC_H34:
case elfcpp::R_SPARC_H44:
case elfcpp::R_SPARC_M44:
case elfcpp::R_SPARC_L44:
case elfcpp::R_SPARC_HH22:
case elfcpp::R_SPARC_HM10:
case elfcpp::R_SPARC_LM22:
case elfcpp::R_SPARC_UA16:
case elfcpp::R_SPARC_UA32:
case elfcpp::R_SPARC_UA64:
return;
default:
break;
}
}
else
{
switch (r_type)
{
// These are the relocation types supported by glibc for sparc 32-bit.
case elfcpp::R_SPARC_RELATIVE:
case elfcpp::R_SPARC_IRELATIVE:
case elfcpp::R_SPARC_COPY:
case elfcpp::R_SPARC_GLOB_DAT:
case elfcpp::R_SPARC_32:
case elfcpp::R_SPARC_JMP_SLOT:
case elfcpp::R_SPARC_JMP_IREL:
case elfcpp::R_SPARC_TLS_DTPMOD32:
case elfcpp::R_SPARC_TLS_DTPOFF32:
case elfcpp::R_SPARC_TLS_TPOFF32:
case elfcpp::R_SPARC_TLS_LE_HIX22:
case elfcpp::R_SPARC_TLS_LE_LOX10:
case elfcpp::R_SPARC_8:
case elfcpp::R_SPARC_16:
case elfcpp::R_SPARC_DISP8:
case elfcpp::R_SPARC_DISP16:
case elfcpp::R_SPARC_DISP32:
case elfcpp::R_SPARC_LO10:
case elfcpp::R_SPARC_WDISP30:
case elfcpp::R_SPARC_HI22:
case elfcpp::R_SPARC_UA16:
case elfcpp::R_SPARC_UA32:
return;
default:
break;
}
}
// This prevents us from issuing more than one error per reloc
// section. But we can still wind up issuing more than one
// error per object file.
if (this->issued_non_pic_error_)
return;
gold_assert(parameters->options().output_is_position_independent());
object->error(_("requires unsupported dynamic reloc; "
"recompile with -fPIC"));
this->issued_non_pic_error_ = true;
return;
}
// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.
template<int size, bool big_endian>
bool
Target_sparc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type)
{
int flags = Scan::get_reference_flags(r_type);
if (flags & Symbol::TLS_REF)
gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
object->name().c_str(), r_type);
return flags != 0;
}
// Scan a relocation for a local symbol.
template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Scan::local(
Symbol_table* symtab,
Layout* layout,
Target_sparc<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded)
{
if (is_discarded)
return;
bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
unsigned int orig_r_type = r_type;
r_type &= 0xff;
if (is_ifunc
&& this->reloc_needs_plt_for_ifunc(object, r_type))
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
}
switch (r_type)
{
case elfcpp::R_SPARC_NONE:
case elfcpp::R_SPARC_REGISTER:
case elfcpp::R_SPARC_GNU_VTINHERIT:
case elfcpp::R_SPARC_GNU_VTENTRY:
break;
case elfcpp::R_SPARC_64:
case elfcpp::R_SPARC_32:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location. The relocation applied at link time will
// apply the link-time value, so we flag the location with
// an R_SPARC_RELATIVE relocation so the dynamic loader can
// relocate it easily.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
rela_dyn->add_local_relative(object, r_sym, elfcpp::R_SPARC_RELATIVE,
output_section, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend(), is_ifunc);
}
break;
case elfcpp::R_SPARC_HIX22:
case elfcpp::R_SPARC_LOX10:
case elfcpp::R_SPARC_H34:
case elfcpp::R_SPARC_H44:
case elfcpp::R_SPARC_M44:
case elfcpp::R_SPARC_L44:
case elfcpp::R_SPARC_HH22:
case elfcpp::R_SPARC_HM10:
case elfcpp::R_SPARC_LM22:
case elfcpp::R_SPARC_UA64:
case elfcpp::R_SPARC_UA32:
case elfcpp::R_SPARC_UA16:
case elfcpp::R_SPARC_HI22:
case elfcpp::R_SPARC_LO10:
case elfcpp::R_SPARC_OLO10:
case elfcpp::R_SPARC_16:
case elfcpp::R_SPARC_11:
case elfcpp::R_SPARC_10:
case elfcpp::R_SPARC_8:
case elfcpp::R_SPARC_7:
case elfcpp::R_SPARC_6:
case elfcpp::R_SPARC_5:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
check_non_pic(object, r_type);
if (lsym.get_st_type() != elfcpp::STT_SECTION)
{
rela_dyn->add_local(object, r_sym, orig_r_type, output_section,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
else
{
gold_assert(lsym.get_st_value() == 0);
rela_dyn->add_symbolless_local_addend(object, r_sym, orig_r_type,
output_section, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
}
break;
case elfcpp::R_SPARC_WDISP30:
case elfcpp::R_SPARC_WPLT30:
case elfcpp::R_SPARC_WDISP22:
case elfcpp::R_SPARC_WDISP19:
case elfcpp::R_SPARC_WDISP16:
case elfcpp::R_SPARC_WDISP10:
case elfcpp::R_SPARC_DISP8:
case elfcpp::R_SPARC_DISP16:
case elfcpp::R_SPARC_DISP32:
case elfcpp::R_SPARC_DISP64:
case elfcpp::R_SPARC_PC10:
case elfcpp::R_SPARC_PC22:
break;
case elfcpp::R_SPARC_GOTDATA_OP:
case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
// We will optimize this into a GOT relative relocation
// and code transform the GOT load into an addition.
break;
case elfcpp::R_SPARC_GOT10:
case elfcpp::R_SPARC_GOT13:
case elfcpp::R_SPARC_GOT22:
{
// The symbol requires a GOT entry.
Output_data_got<size, big_endian>* got;
unsigned int r_sym;
got = target->got_section(symtab, layout);
r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
// If we are generating a shared object, we need to add a
// dynamic relocation for this symbol's GOT entry.
if (parameters->options().output_is_position_independent())
{
if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
unsigned int off = got->add_constant(0);
object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
rela_dyn->add_local_relative(object, r_sym,
elfcpp::R_SPARC_RELATIVE,
got, off, 0, is_ifunc);
}
}
else
got->add_local(object, r_sym, GOT_TYPE_STANDARD);
}
break;
// These are initial TLS relocs, which are expected when
// linking.
case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
case elfcpp::R_SPARC_TLS_LDM_HI22 : // Local-dynamic
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
case elfcpp::R_SPARC_TLS_LDO_LOX10:
case elfcpp::R_SPARC_TLS_LDO_ADD:
case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec
case elfcpp::R_SPARC_TLS_IE_LO10:
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
case elfcpp::R_SPARC_TLS_IE_ADD:
case elfcpp::R_SPARC_TLS_LE_HIX22: // Local-exec
case elfcpp::R_SPARC_TLS_LE_LOX10:
{
bool output_is_shared = parameters->options().shared();
const tls::Tls_optimization optimized_type
= optimize_tls_reloc(!output_is_shared, r_type);
switch (r_type)
{
case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
unsigned int shndx = lsym.get_st_shndx();
bool is_ordinary;
shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
if (!is_ordinary)
object->error(_("local symbol %u has bad shndx %u"),
r_sym, shndx);
else
got->add_local_pair_with_rel(object, r_sym,
lsym.get_st_shndx(),
GOT_TYPE_TLS_PAIR,
target->rela_dyn_section(layout),
(size == 64
? elfcpp::R_SPARC_TLS_DTPMOD64
: elfcpp::R_SPARC_TLS_DTPMOD32));
if (r_type == elfcpp::R_SPARC_TLS_GD_CALL)
generate_tls_call(symtab, layout, target);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
break;
case elfcpp::R_SPARC_TLS_LDM_HI22 : // Local-dynamic
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL)
generate_tls_call(symtab, layout, target);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
break;
case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
case elfcpp::R_SPARC_TLS_LDO_LOX10:
case elfcpp::R_SPARC_TLS_LDO_ADD:
break;
case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec
case elfcpp::R_SPARC_TLS_IE_LO10:
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
case elfcpp::R_SPARC_TLS_IE_ADD:
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_OFFSET))
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
unsigned int off = got->add_constant(0);
object->set_local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET, off);
rela_dyn->add_symbolless_local_addend(object, r_sym,
(size == 64 ?
elfcpp::R_SPARC_TLS_TPOFF64 :
elfcpp::R_SPARC_TLS_TPOFF32),
got, off, 0);
}
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_local(object, r_type);
break;
case elfcpp::R_SPARC_TLS_LE_HIX22: // Local-exec
case elfcpp::R_SPARC_TLS_LE_LOX10:
layout->set_has_static_tls();
if (output_is_shared)
{
// We need to create a dynamic relocation.
gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
output_section, data_shndx,
reloc.get_r_offset(), 0);
}
break;
}
}
break;
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
case elfcpp::R_SPARC_COPY:
case elfcpp::R_SPARC_GLOB_DAT:
case elfcpp::R_SPARC_JMP_SLOT:
case elfcpp::R_SPARC_JMP_IREL:
case elfcpp::R_SPARC_RELATIVE:
case elfcpp::R_SPARC_IRELATIVE:
case elfcpp::R_SPARC_TLS_DTPMOD64:
case elfcpp::R_SPARC_TLS_DTPMOD32:
case elfcpp::R_SPARC_TLS_DTPOFF64:
case elfcpp::R_SPARC_TLS_DTPOFF32:
case elfcpp::R_SPARC_TLS_TPOFF64:
case elfcpp::R_SPARC_TLS_TPOFF32:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
default:
unsupported_reloc_local(object, r_type);
break;
}
}
// Report an unsupported relocation against a global symbol.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::Scan::unsupported_reloc_global(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
// Scan a relocation for a global symbol.
template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Scan::global(
Symbol_table* symtab,
Layout* layout,
Target_sparc<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
Symbol* gsym)
{
unsigned int orig_r_type = r_type;
bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
// A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
// section. We check here to avoid creating a dynamic reloc against
// _GLOBAL_OFFSET_TABLE_.
if (!target->has_got_section()
&& strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
target->got_section(symtab, layout);
r_type &= 0xff;
// A STT_GNU_IFUNC symbol may require a PLT entry.
if (is_ifunc
&& this->reloc_needs_plt_for_ifunc(object, r_type))
target->make_plt_entry(symtab, layout, gsym);
switch (r_type)
{
case elfcpp::R_SPARC_NONE:
case elfcpp::R_SPARC_REGISTER:
case elfcpp::R_SPARC_GNU_VTINHERIT:
case elfcpp::R_SPARC_GNU_VTENTRY:
break;
case elfcpp::R_SPARC_PLT64:
case elfcpp::R_SPARC_PLT32:
case elfcpp::R_SPARC_HIPLT22:
case elfcpp::R_SPARC_LOPLT10:
case elfcpp::R_SPARC_PCPLT32:
case elfcpp::R_SPARC_PCPLT22:
case elfcpp::R_SPARC_PCPLT10:
case elfcpp::R_SPARC_WPLT30:
// If the symbol is fully resolved, this is just a PC32 reloc.
// Otherwise we need a PLT entry.
if (gsym->final_value_is_known())
break;
// If building a shared library, we can also skip the PLT entry
// if the symbol is defined in the output file and is protected
// or hidden.
if (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible())
break;
target->make_plt_entry(symtab, layout, gsym);
break;
case elfcpp::R_SPARC_DISP8:
case elfcpp::R_SPARC_DISP16:
case elfcpp::R_SPARC_DISP32:
case elfcpp::R_SPARC_DISP64:
case elfcpp::R_SPARC_PC_HH22:
case elfcpp::R_SPARC_PC_HM10:
case elfcpp::R_SPARC_PC_LM22:
case elfcpp::R_SPARC_PC10:
case elfcpp::R_SPARC_PC22:
case elfcpp::R_SPARC_WDISP30:
case elfcpp::R_SPARC_WDISP22:
case elfcpp::R_SPARC_WDISP19:
case elfcpp::R_SPARC_WDISP16:
case elfcpp::R_SPARC_WDISP10:
{
if (gsym->needs_plt_entry())
target->make_plt_entry(symtab, layout, gsym);
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym,
reloc);
}
else
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
check_non_pic(object, r_type);
rela_dyn->add_global(gsym, orig_r_type, output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_SPARC_UA64:
case elfcpp::R_SPARC_64:
case elfcpp::R_SPARC_HIX22:
case elfcpp::R_SPARC_LOX10:
case elfcpp::R_SPARC_H34:
case elfcpp::R_SPARC_H44:
case elfcpp::R_SPARC_M44:
case elfcpp::R_SPARC_L44:
case elfcpp::R_SPARC_HH22:
case elfcpp::R_SPARC_HM10:
case elfcpp::R_SPARC_LM22:
case elfcpp::R_SPARC_HI22:
case elfcpp::R_SPARC_LO10:
case elfcpp::R_SPARC_OLO10:
case elfcpp::R_SPARC_UA32:
case elfcpp::R_SPARC_32:
case elfcpp::R_SPARC_UA16:
case elfcpp::R_SPARC_16:
case elfcpp::R_SPARC_11:
case elfcpp::R_SPARC_10:
case elfcpp::R_SPARC_8:
case elfcpp::R_SPARC_7:
case elfcpp::R_SPARC_6:
case elfcpp::R_SPARC_5:
{
// Make a PLT entry if necessary.
if (gsym->needs_plt_entry())
{
target->make_plt_entry(symtab, layout, gsym);
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT entry.
if (gsym->is_from_dynobj() && !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
unsigned int r_off = reloc.get_r_offset();
// The assembler can sometimes emit unaligned relocations
// for dwarf2 cfi directives.
switch (r_type)
{
case elfcpp::R_SPARC_16:
if (r_off & 0x1)
orig_r_type = r_type = elfcpp::R_SPARC_UA16;
break;
case elfcpp::R_SPARC_32:
if (r_off & 0x3)
orig_r_type = r_type = elfcpp::R_SPARC_UA32;
break;
case elfcpp::R_SPARC_64:
if (r_off & 0x7)
orig_r_type = r_type = elfcpp::R_SPARC_UA64;
break;
case elfcpp::R_SPARC_UA16:
if (!(r_off & 0x1))
orig_r_type = r_type = elfcpp::R_SPARC_16;
break;
case elfcpp::R_SPARC_UA32:
if (!(r_off & 0x3))
orig_r_type = r_type = elfcpp::R_SPARC_32;
break;
case elfcpp::R_SPARC_UA64:
if (!(r_off & 0x7))
orig_r_type = r_type = elfcpp::R_SPARC_64;
break;
}
if (gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else if (((size == 64 && r_type == elfcpp::R_SPARC_64)
|| (size == 32 && r_type == elfcpp::R_SPARC_32))
&& gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false)
&& !gsym->is_from_dynobj()
&& !gsym->is_undefined()
&& !gsym->is_preemptible())
{
// Use an IRELATIVE reloc for a locally defined
// STT_GNU_IFUNC symbol. This makes a function
// address in a PIE executable match the address in a
// shared library that it links against.
Reloc_section* rela_dyn =
target->rela_ifunc_section(layout);
unsigned int r_type = elfcpp::R_SPARC_IRELATIVE;
rela_dyn->add_symbolless_global_addend(gsym, r_type,
output_section, object,
data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
else if ((r_type == elfcpp::R_SPARC_32
|| r_type == elfcpp::R_SPARC_64)
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE,
output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend(), is_ifunc);
}
else
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
check_non_pic(object, r_type);
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible())
rela_dyn->add_global(gsym, orig_r_type, output_section,
object, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
else
rela_dyn->add_symbolless_global_addend(gsym, orig_r_type,
output_section,
object, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_SPARC_GOTDATA_OP:
case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
if (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible()
&& !is_ifunc)
{
// We will optimize this into a GOT relative relocation
// and code transform the GOT load into an addition.
break;
}
case elfcpp::R_SPARC_GOT10:
case elfcpp::R_SPARC_GOT13:
case elfcpp::R_SPARC_GOT22:
{
// The symbol requires a GOT entry.
Output_data_got<size, big_endian>* got;
got = target->got_section(symtab, layout);
if (gsym->final_value_is_known())
{
// For a STT_GNU_IFUNC symbol we want the PLT address.
if (gsym->type() == elfcpp::STT_GNU_IFUNC)
got->add_global_plt(gsym, GOT_TYPE_STANDARD);
else
got->add_global(gsym, GOT_TYPE_STANDARD);
}
else
{
// If this symbol is not fully resolved, we need to add a
// GOT entry with a dynamic relocation.
bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
// Use a GLOB_DAT rather than a RELATIVE reloc if:
//
// 1) The symbol may be defined in some other module.
//
// 2) We are building a shared library and this is a
// protected symbol; using GLOB_DAT means that the dynamic
// linker can use the address of the PLT in the main
// executable when appropriate so that function address
// comparisons work.
//
// 3) This is a STT_GNU_IFUNC symbol in position dependent
// code, again so that function address comparisons work.
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible()
|| (gsym->visibility() == elfcpp::STV_PROTECTED
&& parameters->options().shared())
|| (gsym->type() == elfcpp::STT_GNU_IFUNC
&& parameters->options().output_is_position_independent()
&& !gsym->is_forced_local()))
{
unsigned int r_type = elfcpp::R_SPARC_GLOB_DAT;
// If this symbol is forced local, this relocation will
// not work properly. That's because ld.so on sparc
// (and 32-bit powerpc) expects st_value in the r_addend
// of relocations for STB_LOCAL symbols. Curiously the
// BFD linker does not promote global hidden symbols to be
// STB_LOCAL in the dynamic symbol table like Gold does.
gold_assert(!gsym->is_forced_local());
got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
r_type);
}
else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
{
unsigned int off = got->add_constant(0);
gsym->set_got_offset(GOT_TYPE_STANDARD, off);
if (is_ifunc)
{
// Tell the dynamic linker to use the PLT address
// when resolving relocations.
if (gsym->is_from_dynobj()
&& !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE,
got, off, 0, is_ifunc);
}
}
}
break;
// These are initial tls relocs, which are expected when
// linking.
case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
case elfcpp::R_SPARC_TLS_LDO_LOX10:
case elfcpp::R_SPARC_TLS_LDO_ADD:
case elfcpp::R_SPARC_TLS_LE_HIX22:
case elfcpp::R_SPARC_TLS_LE_LOX10:
case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec
case elfcpp::R_SPARC_TLS_IE_LO10:
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
case elfcpp::R_SPARC_TLS_IE_ADD:
{
const bool is_final = gsym->final_value_is_known();
const tls::Tls_optimization optimized_type
= optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
target->rela_dyn_section(layout),
(size == 64
? elfcpp::R_SPARC_TLS_DTPMOD64
: elfcpp::R_SPARC_TLS_DTPMOD32),
(size == 64
? elfcpp::R_SPARC_TLS_DTPOFF64
: elfcpp::R_SPARC_TLS_DTPOFF32));
// Emit R_SPARC_WPLT30 against "__tls_get_addr"
if (r_type == elfcpp::R_SPARC_TLS_GD_CALL)
generate_tls_call(symtab, layout, target);
}
else if (optimized_type == tls::TLSOPT_TO_IE)
{
// Create a GOT entry for the tp-relative offset.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
(size == 64 ?
elfcpp::R_SPARC_TLS_TPOFF64 :
elfcpp::R_SPARC_TLS_TPOFF32));
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
break;
case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL)
generate_tls_call(symtab, layout, target);
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
break;
case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic
case elfcpp::R_SPARC_TLS_LDO_LOX10:
case elfcpp::R_SPARC_TLS_LDO_ADD:
break;
case elfcpp::R_SPARC_TLS_LE_HIX22:
case elfcpp::R_SPARC_TLS_LE_LOX10:
layout->set_has_static_tls();
if (parameters->options().shared())
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_symbolless_global_addend(gsym, orig_r_type,
output_section, object,
data_shndx, reloc.get_r_offset(),
0);
}
break;
case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec
case elfcpp::R_SPARC_TLS_IE_LO10:
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
case elfcpp::R_SPARC_TLS_IE_ADD:
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Output_data_got<size, big_endian>* got
= target->got_section(symtab, layout);
got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
target->rela_dyn_section(layout),
(size == 64
? elfcpp::R_SPARC_TLS_TPOFF64
: elfcpp::R_SPARC_TLS_TPOFF32));
}
else if (optimized_type != tls::TLSOPT_TO_LE)
unsupported_reloc_global(object, r_type, gsym);
break;
}
}
break;
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
case elfcpp::R_SPARC_COPY:
case elfcpp::R_SPARC_GLOB_DAT:
case elfcpp::R_SPARC_JMP_SLOT:
case elfcpp::R_SPARC_JMP_IREL:
case elfcpp::R_SPARC_RELATIVE:
case elfcpp::R_SPARC_IRELATIVE:
case elfcpp::R_SPARC_TLS_DTPMOD64:
case elfcpp::R_SPARC_TLS_DTPMOD32:
case elfcpp::R_SPARC_TLS_DTPOFF64:
case elfcpp::R_SPARC_TLS_DTPOFF32:
case elfcpp::R_SPARC_TLS_TPOFF64:
case elfcpp::R_SPARC_TLS_TPOFF32:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
default:
unsupported_reloc_global(object, r_type, gsym);
break;
}
}
// Process relocations for gc.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::gc_process_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_sparc<size, big_endian> Sparc;
typedef typename Target_sparc<size, big_endian>::Scan Scan;
gold::gc_process_relocs<size, big_endian, Sparc, elfcpp::SHT_RELA, Scan,
typename Target_sparc::Relocatable_size_for_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Scan relocations for a section.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::scan_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_sparc<size, big_endian> Sparc;
typedef typename Target_sparc<size, big_endian>::Scan Scan;
if (sh_type == elfcpp::SHT_REL)
{
gold_error(_("%s: unsupported REL reloc section"),
object->name().c_str());
return;
}
gold::scan_relocs<size, big_endian, Sparc, elfcpp::SHT_RELA, Scan>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Finalize the sections.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::do_finalize_sections(
Layout* layout,
const Input_objects*,
Symbol_table* symtab)
{
if (this->plt_)
this->plt_->emit_pending_ifunc_relocs();
// Fill in some more dynamic tags.
const Reloc_section* rel_plt = (this->plt_ == NULL
? NULL
: this->plt_->rel_plt());
layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
this->rela_dyn_, true, true);
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_.any_saved_relocs())
this->copy_relocs_.emit(this->rela_dyn_section(layout));
if (parameters->doing_static_link()
&& (this->plt_ == NULL || !this->plt_->has_ifunc_section()))
{
// If linking statically, make sure that the __rela_iplt symbols
// were defined if necessary, even if we didn't create a PLT.
static const Define_symbol_in_segment syms[] =
{
{
"__rela_iplt_start", // name
elfcpp::PT_LOAD, // segment_type
elfcpp::PF_W, // segment_flags_set
elfcpp::PF(0), // segment_flags_clear
0, // value
0, // size
elfcpp::STT_NOTYPE, // type
elfcpp::STB_GLOBAL, // binding
elfcpp::STV_HIDDEN, // visibility
0, // nonvis
Symbol::SEGMENT_START, // offset_from_base
true // only_if_ref
},
{
"__rela_iplt_end", // name
elfcpp::PT_LOAD, // segment_type
elfcpp::PF_W, // segment_flags_set
elfcpp::PF(0), // segment_flags_clear
0, // value
0, // size
elfcpp::STT_NOTYPE, // type
elfcpp::STB_GLOBAL, // binding
elfcpp::STV_HIDDEN, // visibility
0, // nonvis
Symbol::SEGMENT_START, // offset_from_base
true // only_if_ref
}
};
symtab->define_symbols(layout, 2, syms,
layout->script_options()->saw_sections_clause());
}
}
// Perform a relocation.
template<int size, bool big_endian>
inline bool
Target_sparc<size, big_endian>::Relocate::relocate(
const Relocate_info<size, big_endian>* relinfo,
Target_sparc* target,
Output_section*,
size_t relnum,
const elfcpp::Rela<size, big_endian>& rela,
unsigned int r_type,
const Sized_symbol<size>* gsym,
const Symbol_value<size>* psymval,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type view_size)
{
bool orig_is_ifunc = psymval->is_ifunc_symbol();
r_type &= 0xff;
if (this->ignore_gd_add_)
{
if (r_type != elfcpp::R_SPARC_TLS_GD_ADD)
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("missing expected TLS relocation"));
else
{
this->ignore_gd_add_ = false;
return false;
}
}
if (view == NULL)
return true;
if (this->reloc_adjust_addr_ == view)
view -= 4;
typedef Sparc_relocate_functions<size, big_endian> Reloc;
const Sized_relobj_file<size, big_endian>* object = relinfo->object;
// Pick the value to use for symbols defined in shared objects.
Symbol_value<size> symval;
if (gsym != NULL
&& gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
{
elfcpp::Elf_Xword value;
value = target->plt_address_for_global(gsym);
symval.set_output_value(value);
psymval = &symval;
}
else if (gsym == NULL && orig_is_ifunc)
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
if (object->local_has_plt_offset(r_sym))
{
symval.set_output_value(target->plt_address_for_local(object, r_sym));
psymval = &symval;
}
}
const elfcpp::Elf_Xword addend = rela.get_r_addend();
// Get the GOT offset if needed. Unlike i386 and x86_64, our GOT
// pointer points to the beginning, not the end, of the table.
// So we just use the plain offset.
unsigned int got_offset = 0;
bool gdop_valid = false;
switch (r_type)
{
case elfcpp::R_SPARC_GOTDATA_OP:
case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
// If this is local, we did not create a GOT entry because we
// intend to transform this into a GOT relative relocation.
if (gsym == NULL
|| (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible()
&& !orig_is_ifunc))
{
got_offset = psymval->value(object, 0) - target->got_address();
gdop_valid = true;
break;
}
case elfcpp::R_SPARC_GOT10:
case elfcpp::R_SPARC_GOT13:
case elfcpp::R_SPARC_GOT22:
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
}
break;
default:
break;
}
switch (r_type)
{
case elfcpp::R_SPARC_NONE:
case elfcpp::R_SPARC_REGISTER:
case elfcpp::R_SPARC_GNU_VTINHERIT:
case elfcpp::R_SPARC_GNU_VTENTRY:
break;
case elfcpp::R_SPARC_8:
Relocate_functions<size, big_endian>::rela8(view, object,
psymval, addend);
break;
case elfcpp::R_SPARC_16:
if (rela.get_r_offset() & 0x1)
{
// The assembler can sometimes emit unaligned relocations
// for dwarf2 cfi directives.
Reloc::ua16(view, object, psymval, addend);
}
else
Relocate_functions<size, big_endian>::rela16(view, object,
psymval, addend);
break;
case elfcpp::R_SPARC_32:
if (!parameters->options().output_is_position_independent())
{
if (rela.get_r_offset() & 0x3)
{
// The assembler can sometimes emit unaligned relocations
// for dwarf2 cfi directives.
Reloc::ua32(view, object, psymval, addend);
}
else
Relocate_functions<size, big_endian>::rela32(view, object,
psymval, addend);
}
break;
case elfcpp::R_SPARC_DISP8:
Reloc::disp8(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_DISP16:
Reloc::disp16(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_DISP32:
Reloc::disp32(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_DISP64:
Reloc::disp64(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_WDISP30:
case elfcpp::R_SPARC_WPLT30:
Reloc::wdisp30(view, object, psymval, addend, address);
if (target->may_relax())
relax_call(target, view, rela, view_size);
break;
case elfcpp::R_SPARC_WDISP22:
Reloc::wdisp22(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_WDISP19:
Reloc::wdisp19(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_WDISP16:
Reloc::wdisp16(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_WDISP10:
Reloc::wdisp10(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_HI22:
Reloc::hi22(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_22:
Reloc::rela32_22(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_13:
Reloc::rela32_13(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_LO10:
Reloc::lo10(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_GOT10:
Reloc::lo10(view, got_offset, addend);
break;
case elfcpp::R_SPARC_GOTDATA_OP:
if (gdop_valid)
{
typedef typename elfcpp::Swap<32, true>::Valtype Insntype;
Insntype* wv = reinterpret_cast<Insntype*>(view);
Insntype val;
// {ld,ldx} [%rs1 + %rs2], %rd --> add %rs1, %rs2, %rd
val = elfcpp::Swap<32, true>::readval(wv);
val = 0x80000000 | (val & 0x3e07c01f);
elfcpp::Swap<32, true>::writeval(wv, val);
}
break;
case elfcpp::R_SPARC_GOTDATA_OP_LOX10:
if (gdop_valid)
{
Reloc::gdop_lox10(view, got_offset, addend);
break;
}
/* Fall through. */
case elfcpp::R_SPARC_GOT13:
Reloc::rela32_13(view, got_offset, addend);
break;
case elfcpp::R_SPARC_GOTDATA_OP_HIX22:
if (gdop_valid)
{
Reloc::gdop_hix22(view, got_offset, addend);
break;
}
/* Fall through. */
case elfcpp::R_SPARC_GOT22:
Reloc::hi22(view, got_offset, addend);
break;
case elfcpp::R_SPARC_PC10:
Reloc::pc10(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_PC22:
Reloc::pc22(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_TLS_DTPOFF32:
case elfcpp::R_SPARC_UA32:
Reloc::ua32(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_PLT64:
Relocate_functions<size, big_endian>::rela64(view, object,
psymval, addend);
break;
case elfcpp::R_SPARC_PLT32:
Relocate_functions<size, big_endian>::rela32(view, object,
psymval, addend);
break;
case elfcpp::R_SPARC_HIPLT22:
Reloc::hi22(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_LOPLT10:
Reloc::lo10(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_PCPLT32:
Reloc::disp32(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_PCPLT22:
Reloc::pcplt22(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_PCPLT10:
Reloc::lo10(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_64:
if (!parameters->options().output_is_position_independent())
{
if (rela.get_r_offset() & 0x7)
{
// The assembler can sometimes emit unaligned relocations
// for dwarf2 cfi directives.
Reloc::ua64(view, object, psymval, addend);
}
else
Relocate_functions<size, big_endian>::rela64(view, object,
psymval, addend);
}
break;
case elfcpp::R_SPARC_OLO10:
{
unsigned int addend2 = rela.get_r_info() & 0xffffffff;
addend2 = ((addend2 >> 8) ^ 0x800000) - 0x800000;
Reloc::olo10(view, object, psymval, addend, addend2);
}
break;
case elfcpp::R_SPARC_HH22:
Reloc::hh22(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_PC_HH22:
Reloc::pc_hh22(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_HM10:
Reloc::hm10(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_PC_HM10:
Reloc::pc_hm10(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_LM22:
Reloc::hi22(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_PC_LM22:
Reloc::pcplt22(view, object, psymval, addend, address);
break;
case elfcpp::R_SPARC_11:
Reloc::rela32_11(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_10:
Reloc::rela32_10(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_7:
Reloc::rela32_7(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_6:
Reloc::rela32_6(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_5:
Reloc::rela32_5(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_HIX22:
Reloc::hix22(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_LOX10:
Reloc::lox10(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_H34:
Reloc::h34(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_H44:
Reloc::h44(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_M44:
Reloc::m44(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_L44:
Reloc::l44(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_TLS_DTPOFF64:
case elfcpp::R_SPARC_UA64:
Reloc::ua64(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_UA16:
Reloc::ua16(view, object, psymval, addend);
break;
case elfcpp::R_SPARC_TLS_GD_HI22:
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
case elfcpp::R_SPARC_TLS_LDM_HI22:
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
case elfcpp::R_SPARC_TLS_LDO_HIX22:
case elfcpp::R_SPARC_TLS_LDO_LOX10:
case elfcpp::R_SPARC_TLS_LDO_ADD:
case elfcpp::R_SPARC_TLS_IE_HI22:
case elfcpp::R_SPARC_TLS_IE_LO10:
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
case elfcpp::R_SPARC_TLS_IE_ADD:
case elfcpp::R_SPARC_TLS_LE_HIX22:
case elfcpp::R_SPARC_TLS_LE_LOX10:
this->relocate_tls(relinfo, target, relnum, rela,
r_type, gsym, psymval, view,
address, view_size);
break;
case elfcpp::R_SPARC_COPY:
case elfcpp::R_SPARC_GLOB_DAT:
case elfcpp::R_SPARC_JMP_SLOT:
case elfcpp::R_SPARC_JMP_IREL:
case elfcpp::R_SPARC_RELATIVE:
case elfcpp::R_SPARC_IRELATIVE:
// These are outstanding tls relocs, which are unexpected when
// linking.
case elfcpp::R_SPARC_TLS_DTPMOD64:
case elfcpp::R_SPARC_TLS_DTPMOD32:
case elfcpp::R_SPARC_TLS_TPOFF64:
case elfcpp::R_SPARC_TLS_TPOFF32:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unexpected reloc %u in object file"),
r_type);
break;
default:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
}
return true;
}
// Perform a TLS relocation.
template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Relocate::relocate_tls(
const Relocate_info<size, big_endian>* relinfo,
Target_sparc<size, big_endian>* target,
size_t relnum,
const elfcpp::Rela<size, big_endian>& rela,
unsigned int r_type,
const Sized_symbol<size>* gsym,
const Symbol_value<size>* psymval,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type)
{
Output_segment* tls_segment = relinfo->layout->tls_segment();
typedef Sparc_relocate_functions<size, big_endian> Reloc;
const Sized_relobj_file<size, big_endian>* object = relinfo->object;
typedef typename elfcpp::Swap<32, true>::Valtype Insntype;
const elfcpp::Elf_Xword addend = rela.get_r_addend();
typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(object, 0);
const bool is_final =
(gsym == NULL
? !parameters->options().output_is_position_independent()
: gsym->final_value_is_known());
const tls::Tls_optimization optimized_type
= optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_SPARC_TLS_GD_HI22:
case elfcpp::R_SPARC_TLS_GD_LO10:
case elfcpp::R_SPARC_TLS_GD_ADD:
case elfcpp::R_SPARC_TLS_GD_CALL:
if (optimized_type == tls::TLSOPT_TO_LE)
{
Insntype* wv = reinterpret_cast<Insntype*>(view);
Insntype val;
value -= tls_segment->memsz();
switch (r_type)
{
case elfcpp::R_SPARC_TLS_GD_HI22:
// TLS_GD_HI22 --> TLS_LE_HIX22
Reloc::hix22(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_GD_LO10:
// TLS_GD_LO10 --> TLS_LE_LOX10
Reloc::lox10(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_GD_ADD:
// add %reg1, %reg2, %reg3 --> mov %g7, %reg2, %reg3
val = elfcpp::Swap<32, true>::readval(wv);
val = (val & ~0x7c000) | 0x1c000;
elfcpp::Swap<32, true>::writeval(wv, val);
break;
case elfcpp::R_SPARC_TLS_GD_CALL:
// call __tls_get_addr --> nop
elfcpp::Swap<32, true>::writeval(wv, sparc_nop);
break;
}
break;
}
else
{
unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
? GOT_TYPE_TLS_OFFSET
: GOT_TYPE_TLS_PAIR);
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
value = gsym->got_offset(got_type);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
value = object->local_got_offset(r_sym, got_type);
}
if (optimized_type == tls::TLSOPT_TO_IE)
{
Insntype* wv = reinterpret_cast<Insntype*>(view);
Insntype val;
switch (r_type)
{
case elfcpp::R_SPARC_TLS_GD_HI22:
// TLS_GD_HI22 --> TLS_IE_HI22
Reloc::hi22(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_GD_LO10:
// TLS_GD_LO10 --> TLS_IE_LO10
Reloc::lo10(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_GD_ADD:
// add %reg1, %reg2, %reg3 --> ld [%reg1 + %reg2], %reg3
val = elfcpp::Swap<32, true>::readval(wv);
if (size == 64)
val |= 0xc0580000;
else
val |= 0xc0000000;
elfcpp::Swap<32, true>::writeval(wv, val);
break;
case elfcpp::R_SPARC_TLS_GD_CALL:
// The compiler can put the TLS_GD_ADD instruction
// into the delay slot of the call. If so, we need
// to transpose the two instructions so that the
// new sequence works properly.
//
// The test we use is if the instruction in the
// delay slot is an add with destination register
// equal to %o0
val = elfcpp::Swap<32, true>::readval(wv + 1);
if ((val & 0x81f80000) == 0x80000000
&& ((val >> 25) & 0x1f) == 0x8)
{
if (size == 64)
val |= 0xc0580000;
else
val |= 0xc0000000;
elfcpp::Swap<32, true>::writeval(wv, val);
wv += 1;
this->ignore_gd_add_ = true;
}
else
{
// Even if the delay slot isn't the TLS_GD_ADD
// instruction, we still have to handle the case
// where it sets up %o0 in some other way.
elfcpp::Swap<32, true>::writeval(wv, val);
wv += 1;
this->reloc_adjust_addr_ = view + 4;
}
// call __tls_get_addr --> add %g7, %o0, %o0
elfcpp::Swap<32, true>::writeval(wv, 0x9001c008);
break;
}
break;
}
else if (optimized_type == tls::TLSOPT_NONE)
{
switch (r_type)
{
case elfcpp::R_SPARC_TLS_GD_HI22:
Reloc::hi22(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_GD_LO10:
Reloc::lo10(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_GD_ADD:
break;
case elfcpp::R_SPARC_TLS_GD_CALL:
{
Symbol_value<size> symval;
elfcpp::Elf_Xword value;
Symbol* tsym;
tsym = target->tls_get_addr_sym_;
gold_assert(tsym);
value = (target->plt_section()->address() +
tsym->plt_offset());
symval.set_output_value(value);
Reloc::wdisp30(view, object, &symval, addend, address);
}
break;
}
break;
}
}
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
case elfcpp::R_SPARC_TLS_LDM_HI22:
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
case elfcpp::R_SPARC_TLS_LDM_CALL:
if (optimized_type == tls::TLSOPT_TO_LE)
{
Insntype* wv = reinterpret_cast<Insntype*>(view);
switch (r_type)
{
case elfcpp::R_SPARC_TLS_LDM_HI22:
case elfcpp::R_SPARC_TLS_LDM_LO10:
case elfcpp::R_SPARC_TLS_LDM_ADD:
elfcpp::Swap<32, true>::writeval(wv, sparc_nop);
break;
case elfcpp::R_SPARC_TLS_LDM_CALL:
elfcpp::Swap<32, true>::writeval(wv, sparc_mov_g0_o0);
break;
}
break;
}
else if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the module index.
unsigned int got_offset;
got_offset = target->got_mod_index_entry(NULL, NULL, NULL);
switch (r_type)
{
case elfcpp::R_SPARC_TLS_LDM_HI22:
Reloc::hi22(view, got_offset, addend);
break;
case elfcpp::R_SPARC_TLS_LDM_LO10:
Reloc::lo10(view, got_offset, addend);
break;
case elfcpp::R_SPARC_TLS_LDM_ADD:
break;
case elfcpp::R_SPARC_TLS_LDM_CALL:
{
Symbol_value<size> symval;
elfcpp::Elf_Xword value;
Symbol* tsym;
tsym = target->tls_get_addr_sym_;
gold_assert(tsym);
value = (target->plt_section()->address() +
tsym->plt_offset());
symval.set_output_value(value);
Reloc::wdisp30(view, object, &symval, addend, address);
}
break;
}
break;
}
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
// These relocs can appear in debugging sections, in which case
// we won't see the TLS_LDM relocs. The local_dynamic_type
// field tells us this.
case elfcpp::R_SPARC_TLS_LDO_HIX22:
if (optimized_type == tls::TLSOPT_TO_LE)
{
value -= tls_segment->memsz();
Reloc::hix22(view, value, addend);
}
else
Reloc::ldo_hix22(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_LDO_LOX10:
if (optimized_type == tls::TLSOPT_TO_LE)
{
value -= tls_segment->memsz();
Reloc::lox10(view, value, addend);
}
else
Reloc::ldo_lox10(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_LDO_ADD:
if (optimized_type == tls::TLSOPT_TO_LE)
{
Insntype* wv = reinterpret_cast<Insntype*>(view);
Insntype val;
// add %reg1, %reg2, %reg3 --> add %g7, %reg2, %reg3
val = elfcpp::Swap<32, true>::readval(wv);
val = (val & ~0x7c000) | 0x1c000;
elfcpp::Swap<32, true>::writeval(wv, val);
}
break;
// When optimizing IE --> LE, the only relocation that is handled
// differently is R_SPARC_TLS_IE_LD, it is rewritten from
// 'ld{,x} [rs1 + rs2], rd' into 'mov rs2, rd' or simply a NOP is
// rs2 and rd are the same.
case elfcpp::R_SPARC_TLS_IE_LD:
case elfcpp::R_SPARC_TLS_IE_LDX:
if (optimized_type == tls::TLSOPT_TO_LE)
{
Insntype* wv = reinterpret_cast<Insntype*>(view);
Insntype val = elfcpp::Swap<32, true>::readval(wv);
Insntype rs2 = val & 0x1f;
Insntype rd = (val >> 25) & 0x1f;
if (rs2 == rd)
val = sparc_nop;
else
val = sparc_mov | (val & 0x3e00001f);
elfcpp::Swap<32, true>::writeval(wv, val);
}
break;
case elfcpp::R_SPARC_TLS_IE_HI22:
case elfcpp::R_SPARC_TLS_IE_LO10:
if (optimized_type == tls::TLSOPT_TO_LE)
{
value -= tls_segment->memsz();
switch (r_type)
{
case elfcpp::R_SPARC_TLS_IE_HI22:
// IE_HI22 --> LE_HIX22
Reloc::hix22(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_IE_LO10:
// IE_LO10 --> LE_LOX10
Reloc::lox10(view, value, addend);
break;
}
break;
}
else if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the tp-relative offset of the symbol.
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
value = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym,
GOT_TYPE_TLS_OFFSET));
value = object->local_got_offset(r_sym,
GOT_TYPE_TLS_OFFSET);
}
switch (r_type)
{
case elfcpp::R_SPARC_TLS_IE_HI22:
Reloc::hi22(view, value, addend);
break;
case elfcpp::R_SPARC_TLS_IE_LO10:
Reloc::lo10(view, value, addend);
break;
}
break;
}
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
case elfcpp::R_SPARC_TLS_IE_ADD:
// This seems to be mainly so that we can find the addition
// instruction if there is one. There doesn't seem to be any
// actual relocation to apply.
break;
case elfcpp::R_SPARC_TLS_LE_HIX22:
// If we're creating a shared library, a dynamic relocation will
// have been created for this location, so do not apply it now.
if (!parameters->options().shared())
{
value -= tls_segment->memsz();
Reloc::hix22(view, value, addend);
}
break;
case elfcpp::R_SPARC_TLS_LE_LOX10:
// If we're creating a shared library, a dynamic relocation will
// have been created for this location, so do not apply it now.
if (!parameters->options().shared())
{
value -= tls_segment->memsz();
Reloc::lox10(view, value, addend);
}
break;
}
}
// Relax a call instruction.
template<int size, bool big_endian>
inline void
Target_sparc<size, big_endian>::Relocate::relax_call(
Target_sparc<size, big_endian>* target,
unsigned char* view,
const elfcpp::Rela<size, big_endian>& rela,
section_size_type view_size)
{
typedef typename elfcpp::Swap<32, true>::Valtype Insntype;
Insntype *wv = reinterpret_cast<Insntype*>(view);
Insntype call_insn, delay_insn, set_insn;
uint32_t op3, reg, off;
// This code tries to relax call instructions that meet
// certain criteria.
//
// The first criteria is that the call must be such that the return
// address which the call writes into %o7 is unused. Two sequences
// meet this criteria, and are used to implement tail calls.
//
// Leaf function tail call:
//
// or %o7, %g0, %ANY_REG
// call FUNC
// or %ANY_REG, %g0, %o7
//
// Non-leaf function tail call:
//
// call FUNC
// restore
//
// The second criteria is that the call destination is close. If
// the displacement can fit in a signed 22-bit immediate field of a
// pre-V9 branch, we can do it. If we are generating a 64-bit
// object or a 32-bit object with ELF machine type EF_SPARC32PLUS,
// and the displacement fits in a signed 19-bit immediate field,
// then we can use a V9 branch.
// Make sure the delay instruction can be safely accessed.
if (rela.get_r_offset() + 8 > view_size)
return;
call_insn = elfcpp::Swap<32, true>::readval(wv);
delay_insn = elfcpp::Swap<32, true>::readval(wv + 1);
// Make sure it is really a call instruction.
if (((call_insn >> 30) & 0x3) != 1)
return;
if (((delay_insn >> 30) & 0x3) != 2)
return;
// Accept only a restore or an integer arithmetic operation whose
// sole side effect is to write the %o7 register (and perhaps set
// the condition codes, which are considered clobbered across
// function calls).
//
// For example, we don't want to match a tagged addition or
// subtraction. We also don't want to match something like a
// divide.
//
// Specifically we accept add{,cc}, and{,cc}, or{,cc},
// xor{,cc}, sub{,cc}, andn{,cc}, orn{,cc}, and xnor{,cc}.
op3 = (delay_insn >> 19) & 0x3f;
reg = (delay_insn >> 25) & 0x1f;
if (op3 != 0x3d
&& ((op3 & 0x28) != 0 || reg != 15))
return;
// For non-restore instructions, make sure %o7 isn't
// an input.
if (op3 != 0x3d)
{
// First check RS1
reg = (delay_insn >> 14) & 0x15;
if (reg == 15)
return;
// And if non-immediate, check RS2
if (((delay_insn >> 13) & 1) == 0)
{
reg = (delay_insn & 0x1f);
if (reg == 15)
return;
}
}
// Now check the branch distance. We are called after the
// call has been relocated, so we just have to peek at the
// offset contained in the instruction.
off = call_insn & 0x3fffffff;
if ((off & 0x3fe00000) != 0
&& (off & 0x3fe00000) != 0x3fe00000)
return;
if ((size == 64 || target->elf_machine_ == elfcpp::EM_SPARC32PLUS)
&& ((off & 0x3c0000) == 0
|| (off & 0x3c0000) == 0x3c0000))
{
// ba,pt %xcc, FUNC
call_insn = 0x10680000 | (off & 0x07ffff);
}
else
{
// ba FUNC
call_insn = 0x10800000 | (off & 0x3fffff);
}
elfcpp::Swap<32, true>::writeval(wv, call_insn);
// See if we can NOP out the delay slot instruction. We peek
// at the instruction before the call to make sure we're dealing
// with exactly the:
//
// or %o7, %g0, %ANY_REG
// call
// or %ANY_REG, %g0, %o7
//
// case. Otherwise this might be a tricky piece of hand written
// assembler calculating %o7 in some non-trivial way, and therefore
// we can't be sure that NOP'ing out the delay slot is safe.
if (op3 == 0x02
&& rela.get_r_offset() >= 4)
{
if ((delay_insn & ~(0x1f << 14)) != 0x9e100000)
return;
set_insn = elfcpp::Swap<32, true>::readval(wv - 1);
if ((set_insn & ~(0x1f << 25)) != 0x8013c000)
return;
reg = (set_insn >> 25) & 0x1f;
if (reg == 0 || reg == 15)
return;
if (reg != ((delay_insn >> 14) & 0x1f))
return;
// All tests pass, nop it out.
elfcpp::Swap<32, true>::writeval(wv + 1, sparc_nop);
}
}
// Relocate section data.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::relocate_section(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type view_size,
const Reloc_symbol_changes* reloc_symbol_changes)
{
typedef Target_sparc<size, big_endian> Sparc;
typedef typename Target_sparc<size, big_endian>::Relocate Sparc_relocate;
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_section<size, big_endian, Sparc, elfcpp::SHT_RELA,
Sparc_relocate, gold::Default_comdat_behavior>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
// Return the size of a relocation while scanning during a relocatable
// link.
template<int size, bool big_endian>
unsigned int
Target_sparc<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
unsigned int,
Relobj*)
{
// We are always SHT_RELA, so we should never get here.
gold_unreachable();
return 0;
}
// Scan the relocs during a relocatable link.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::scan_relocatable_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
Relocatable_size_for_reloc> Scan_relocatable_relocs;
gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
Scan_relocatable_relocs>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
// Emit relocations for a section.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::relocate_relocs(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
const Relocatable_relocs* rr,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
rr,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
// Return the value to use for a dynamic which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
template<int size, bool big_endian>
uint64_t
Target_sparc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
return this->plt_section()->address() + gsym->plt_offset();
}
// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of
// Sized_relobj_file<size, big_endian> to process SPARC specific bits
// of the ELF headers. Hence we need to have our own ELF object creation.
template<int size, bool big_endian>
Object*
Target_sparc<size, big_endian>::do_make_elf_object(
const std::string& name,
Input_file* input_file,
off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
elfcpp::Elf_Half machine = ehdr.get_e_machine();
elfcpp::Elf_Word flags = ehdr.get_e_flags();
elfcpp::Elf_Word omm, mm;
switch (machine)
{
case elfcpp::EM_SPARC32PLUS:
this->elf_machine_ = elfcpp::EM_SPARC32PLUS;
break;
case elfcpp::EM_SPARC:
case elfcpp::EM_SPARCV9:
break;
default:
break;
}
if (!this->elf_flags_set_)
{
this->elf_flags_ = flags;
this->elf_flags_set_ = true;
}
else
{
// Accumulate cpu feature bits.
this->elf_flags_ |= (flags & (elfcpp::EF_SPARC_32PLUS
| elfcpp::EF_SPARC_SUN_US1
| elfcpp::EF_SPARC_HAL_R1
| elfcpp::EF_SPARC_SUN_US3));
// Bump the memory model setting to the most restrictive
// one we encounter.
omm = (this->elf_flags_ & elfcpp::EF_SPARCV9_MM);
mm = (flags & elfcpp::EF_SPARCV9_MM);
if (omm != mm)
{
if (mm == elfcpp::EF_SPARCV9_TSO)
{
this->elf_flags_ &= ~elfcpp::EF_SPARCV9_MM;
this->elf_flags_ |= elfcpp::EF_SPARCV9_TSO;
}
else if (mm == elfcpp::EF_SPARCV9_PSO
&& omm == elfcpp::EF_SPARCV9_RMO)
{
this->elf_flags_ &= ~elfcpp::EF_SPARCV9_MM;
this->elf_flags_ |= elfcpp::EF_SPARCV9_PSO;
}
}
}
// Validate that the little-endian flag matches how we've
// been instantiated.
if (!(flags & elfcpp::EF_SPARC_LEDATA) != big_endian)
{
if (big_endian)
gold_error(_("%s: little endian elf flag set on BE object"),
name.c_str());
else
gold_error(_("%s: little endian elf flag clear on LE object"),
name.c_str());
}
return Target::do_make_elf_object(name, input_file, offset, ehdr);
}
// Adjust ELF file header.
template<int size, bool big_endian>
void
Target_sparc<size, big_endian>::do_adjust_elf_header(
unsigned char* view,
int len)
{
elfcpp::Ehdr_write<size, big_endian> oehdr(view);
oehdr.put_e_machine(this->elf_machine_);
oehdr.put_e_flags(this->elf_flags_);
Sized_target<size, big_endian>::do_adjust_elf_header(view, len);
}
// The selector for sparc object files.
template<int size, bool big_endian>
class Target_selector_sparc : public Target_selector
{
public:
Target_selector_sparc()
: Target_selector(elfcpp::EM_NONE, size, big_endian,
(size == 64 ? "elf64-sparc" : "elf32-sparc"),
(size == 64 ? "elf64_sparc" : "elf32_sparc"))
{ }
virtual Target*
do_recognize(Input_file*, off_t, int machine, int, int)
{
switch (size)
{
case 64:
if (machine != elfcpp::EM_SPARCV9)
return NULL;
break;
case 32:
if (machine != elfcpp::EM_SPARC
&& machine != elfcpp::EM_SPARC32PLUS)
return NULL;
break;
default:
return NULL;
}
return this->instantiate_target();
}
virtual Target*
do_instantiate_target()
{ return new Target_sparc<size, big_endian>(); }
};
Target_selector_sparc<32, true> target_selector_sparc32;
Target_selector_sparc<64, true> target_selector_sparc64;
} // End anonymous namespace.