old-cross-binutils/gdb/gdbtypes.c
Fred Fish 2e4964adfc * defs.h (STRCMP, STREQ, STREQN): New macros.
* defs.h (demangle_and_match):  Remove prototype.
	* dwarfread.c (STREQ, STREQN):  Remove macros, replaced with STREQ
	  and STREQN defined in defs.h.
	* dwarfread.c (set_cu_language):  For completely unknown languages,
	  try to deduce the language from the filename.  Retain behavior
	  that for known languages we don't know how to handle, we use
	  language_unknown.
	* dwarfread.c (enum_type, symthesize_typedef):  Initialize language
	  and demangled name fields in symbol.
	* dwarfread.c, mipsread.c, partial-stab.h:  For all usages of
	  ADD_PSYMBOL_TO_LIST, add language and objfile parameters.
	* dwarfread.c (new_symbol):  Attempt to demangle C++ symbol names
	  and cache the results in SYMBOL_DEMANGLED_NAME for the symbol.
	* elfread.c (STREQ):  Remove macro, use STREQ defined in defs.h.
	  Replace usages throughout.
	* elfread.c (demangle.h):  Include.
	* elfread.c (record_minimal_symbol):  Remove prototype and function.
	* gdbtypes.h, symtab.h (B_SET, B_CLR, B_TST, B_TYPE, B_BYTES,
	  B_CLRALL):  Moved from symtab.h to gdbtypes.h.
	* infcmd.c (jump_command):  Remove code to demangle name and add
	  it to a cleanup list.  Now just use SYMBOL_DEMANGLED_NAME.
	* minsyms.c (demangle.h):  Include.
	* minsyms.c (lookup_minimal_symbol):  Indent comment to match code.
	* minsyms.c (install_minimal_symbols):  Attempt to demangle symbol
	  names as C++ names, and cache them in SYMBOL_DEMANGLED_NAME.
	* mipsread.c (psymtab_language):  Add static variable.
	* stabsread.c (demangle.h):  Include.
	* stabsread.c (define_symbol):  Attempt to demangle C++ symbol
	  names and cache them in the SYMBOL_DEMANGLED_NAME field.
	* stack.c (return_command):  Remove explicit demangling of name
	  and use of cleanups.  Just use SYMBOL_DEMANGLED_NAME.
	* symfile.c (demangle.h):  Include.
	* symfile.c (add_psymbol_to_list, add_psymbol_addr_to_list):  Fix
	  to match macros in symfile.h and allow them to be compiled
	  if INLINE_ADD_PSYMBOL is not true.
	* symfile.h (INLINE_ADD_PSYMBOL):  Default to true if not set.
	* symfile.h (ADD_PSYMBOL_*):  Add language and objfile parameters.
	  Add code to demangle and cache C++ symbol names.  Use macro form
	  if INLINE_ADD_PSYMBOL is true, otherwise use C function form.
	* symmisc.c (add_psymbol_to_list, add_psymbol_addr_to_list):
	  Remove, also defined in symfile.c, which we already fixed.
	* symtab.c (expensive_mangler):  Remove prototype and function.
	* symtab.c (find_methods):  Remove physnames parameter and fix
	  prototype to match.
	* symtab.c (completion_list_add_symbol):  Name changed to
	  completion_list_add_name.
	* symtab.c (COMPLETION_LIST_ADD_SYMBOL):  New macro, adds both
	  the normal symbol name and the cached C++ demangled name.
	* symtab.c (lookup_demangled_partial_symbol,
	  lookup_demangled_block_symbol):  Remove prototypes and functions.
	* symtab.c (lookup_symbol):  Remove use of expensive_mangler,
	  use lookup_block_symbol instead of lookup_demangled_block_symbol.
	  Remove code to try demangling names and matching them.
	* symtab.c (lookup_partial_symbol, lookup_block_symbol):
	  Fix to try matching the cached demangled name if no match is
	  found using the regular symbol name.
	* symtab.c (find_methods):  Remove unused physnames array.
	* symtab.c (name_match, NAME_MATCH):  Remove function and macro,
	  replaced with SYMBOL_MATCHES_REGEXP from symtab.h.
	* symtab.c (completion_list_add_symbol):  Rewrite to use cached
	  C++ demangled symbol names.
	* symtab.h:  Much reformatting of structures and such to add
	  whitespace to make them more readable, and make them more
	  consistent with other gdb structure definitions.
	* symtab.h (general_symbol_info): New struct containing fields
	  common to all symbols.
	* symtab.h (SYMBOL_LANGUAGE, SYMBOL_DEMANGLED_NAME,
	  SYMBOL_SOURCE_NAME, SYMBOL_LINKAGE_NAME, SYMBOL_MATCHES_NAME,
	  SYMBOL_MATCHES_REGEXP, MSYMBOL_INFO, MSYMBOL_TYPE):  New macros.
	* symtab. (struct minimal_symbol, struct partial_symbol, struct
	  symbol): Use general_symbol_info struct.
	* utils.c (demangle_and_match):  Remove, no longer used.
	* valops.c (demangle.h):  Include.
	* xcoffexec.c (eq):  Remove macro, replace usages with STREQ.
	* blockframe.c, breakpoint.c, c-exp.y, c-valprint.c, dbxread.c,
	  infcmd.c, m2-exp.y, minsyms.c, objfiles.h, solib.c, stack.c,
	  symmisc.c, symtab.c, valops.c:  Replace references to minimal
	  symbol fields with appropriate macros.
	* breakpoint.c, buildsym.c, c-exp.y, c-typeprint.c, c-valprint.c,
	  coffread.c, command.c, convex-tdep.c, cp-valprint.c, dbxread.c,
	  demangle.c, elfread.c, energize.c, environ.c, exec.c,
	  gdbtypes.c, i960-tdep.c, infrun.c, infrun-hacked.c, language.c,
	  main.c, minsyms.c, mipsread.c, partial-stab.h, remote-es1800.c,
	  remote-nindy.c, remote-udi.c, rs6000-tdep.c, solib.c, source.c,
	  sparc-pinsn.c, stabsread.c, standalone.c, state.c, stuff.c,
	  symfile.c, symmisc.c, symtab.c, symtab.h, tm-sysv4.h,
	  tm-ultra3.h, values.c, xcoffexec.c, xcoffread.c:  Replace strcmp
	  and strncmp usages with STREQ, STREQN, or STRCMP as appropriate.
	* breakpoint.c, buildsym.c, c-typeprint.c, expprint.c, findvar.c,
	  mipsread.c, printcmd.c, source.c, stabsread.c, stack.c,
	  symmisc.c, tm-29k.h, valops.c, values.c:  Replace SYMBOL_NAME
	  references with SYMBOL_SOURCE_NAME or SYMBOL_LINKAGE_NAME as
	  appropriate.
	* buildsym.c (start_subfile, patch_subfile_names):  Default the
	  source language to what can be deduced from the filename.
	* buildsym.c (end_symtab):  Update the source language in the
	  allocated symtab to match what we have been using.
	* buildsym.h (struct subfile):  Add a language field.
	* c-typeprint.c (c_print_type):  Remove code to do explicit
	  demangling.
	* dbxread.c (psymtab_language):  Add static variable.
	* dbxread.c (start_psymtab):  Initialize psymtab_language using
	  deduce_language_from_filename.
1992-12-23 06:34:57 +00:00

1299 lines
35 KiB
C

/* Support routines for manipulating internal types for GDB.
Copyright (C) 1992 Free Software Foundation, Inc.
Contributed by Cygnus Support, using pieces from other GDB modules.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include <string.h>
#include "bfd.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "expression.h"
#include "language.h"
#include "target.h"
#include "value.h"
#include "demangle.h"
#include "complaints.h"
/* Alloc a new type structure and fill it with some defaults. If
OBJFILE is non-NULL, then allocate the space for the type structure
in that objfile's type_obstack. */
struct type *
alloc_type (objfile)
struct objfile *objfile;
{
register struct type *type;
/* Alloc the structure and start off with all fields zeroed. */
if (objfile == NULL)
{
type = (struct type *) xmalloc (sizeof (struct type));
}
else
{
type = (struct type *) obstack_alloc (&objfile -> type_obstack,
sizeof (struct type));
}
memset ((char *) type, 0, sizeof (struct type));
/* Initialize the fields that might not be zero. */
TYPE_CODE (type) = TYPE_CODE_UNDEF;
TYPE_OBJFILE (type) = objfile;
TYPE_VPTR_FIELDNO (type) = -1;
return (type);
}
/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
to a pointer to memory where the pointer type should be stored.
If *TYPEPTR is zero, update it to point to the pointer type we return.
We allocate new memory if needed. */
struct type *
make_pointer_type (type, typeptr)
struct type *type;
struct type **typeptr;
{
register struct type *ntype; /* New type */
struct objfile *objfile;
ntype = TYPE_POINTER_TYPE (type);
if (ntype)
if (typeptr == 0)
return ntype; /* Don't care about alloc, and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and we have new type. */
return ntype;
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type (TYPE_OBJFILE (type));
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
memset ((char *) ntype, 0, sizeof (struct type));
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_POINTER_TYPE (type) = ntype;
/* FIXME! Assume the machine has only one representation for pointers! */
TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_PTR;
/* pointers are unsigned */
TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
TYPE_POINTER_TYPE (type) = ntype;
return ntype;
}
/* Given a type TYPE, return a type of pointers to that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_pointer_type (type)
struct type *type;
{
return make_pointer_type (type, (struct type **)0);
}
/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
to a pointer to memory where the reference type should be stored.
If *TYPEPTR is zero, update it to point to the reference type we return.
We allocate new memory if needed. */
struct type *
make_reference_type (type, typeptr)
struct type *type;
struct type **typeptr;
{
register struct type *ntype; /* New type */
struct objfile *objfile;
ntype = TYPE_REFERENCE_TYPE (type);
if (ntype)
if (typeptr == 0)
return ntype; /* Don't care about alloc, and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and we have new type. */
return ntype;
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type (TYPE_OBJFILE (type));
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
memset ((char *) ntype, 0, sizeof (struct type));
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_REFERENCE_TYPE (type) = ntype;
/* FIXME! Assume the machine has only one representation for references,
and that it matches the (only) representation for pointers! */
TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_REF;
if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
TYPE_REFERENCE_TYPE (type) = ntype;
return ntype;
}
/* Same as above, but caller doesn't care about memory allocation details. */
struct type *
lookup_reference_type (type)
struct type *type;
{
return make_reference_type (type, (struct type **)0);
}
/* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
to a pointer to memory where the function type should be stored.
If *TYPEPTR is zero, update it to point to the function type we return.
We allocate new memory if needed. */
struct type *
make_function_type (type, typeptr)
struct type *type;
struct type **typeptr;
{
register struct type *ntype; /* New type */
struct objfile *objfile;
ntype = TYPE_FUNCTION_TYPE (type);
if (ntype)
if (typeptr == 0)
return ntype; /* Don't care about alloc, and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and we have new type. */
return ntype;
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type (TYPE_OBJFILE (type));
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
memset ((char *) ntype, 0, sizeof (struct type));
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_FUNCTION_TYPE (type) = ntype;
TYPE_LENGTH (ntype) = 1;
TYPE_CODE (ntype) = TYPE_CODE_FUNC;
if (!TYPE_FUNCTION_TYPE (type)) /* Remember it, if don't have one. */
TYPE_FUNCTION_TYPE (type) = ntype;
return ntype;
}
/* Given a type TYPE, return a type of functions that return that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_function_type (type)
struct type *type;
{
return make_function_type (type, (struct type **)0);
}
/* Implement direct support for MEMBER_TYPE in GNU C++.
May need to construct such a type if this is the first use.
The TYPE is the type of the member. The DOMAIN is the type
of the aggregate that the member belongs to. */
struct type *
lookup_member_type (type, domain)
struct type *type;
struct type *domain;
{
register struct type *mtype;
mtype = alloc_type (TYPE_OBJFILE (type));
smash_to_member_type (mtype, domain, type);
return (mtype);
}
/* Allocate a stub method whose return type is TYPE.
This apparently happens for speed of symbol reading, since parsing
out the arguments to the method is cpu-intensive, the way we are doing
it. So, we will fill in arguments later.
This always returns a fresh type. */
struct type *
allocate_stub_method (type)
struct type *type;
{
struct type *mtype;
mtype = alloc_type (TYPE_OBJFILE (type));
TYPE_TARGET_TYPE (mtype) = type;
/* _DOMAIN_TYPE (mtype) = unknown yet */
/* _ARG_TYPES (mtype) = unknown yet */
TYPE_FLAGS (mtype) = TYPE_FLAG_STUB;
TYPE_CODE (mtype) = TYPE_CODE_METHOD;
TYPE_LENGTH (mtype) = 1;
return (mtype);
}
/* Create a range type using either a blank type supplied in RESULT_TYPE,
or creating a new type. Indices will be of type INDEX_TYPE, and will
range from LOW_BOUND to HIGH_BOUND, inclusive.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
struct type *
create_range_type (result_type, index_type, low_bound, high_bound)
struct type *result_type;
struct type *index_type;
int low_bound;
int high_bound;
{
if (result_type == NULL)
{
result_type = alloc_type (TYPE_OBJFILE (index_type));
}
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
TYPE_TARGET_TYPE (result_type) = index_type;
TYPE_LENGTH (result_type) = TYPE_LENGTH (index_type);
TYPE_NFIELDS (result_type) = 2;
TYPE_FIELDS (result_type) = (struct field *)
TYPE_ALLOC (result_type, 2 * sizeof (struct field));
memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
return (result_type);
}
/* Create an array type using either a blank type supplied in RESULT_TYPE,
or creating a new type. Elements will be of type ELEMENT_TYPE, the
indices will be of type RANGE_TYPE.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
struct type *
create_array_type (result_type, element_type, range_type)
struct type *result_type;
struct type *element_type;
struct type *range_type;
{
int low_bound;
int high_bound;
if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
{
/* FIXME: We only handle range types at the moment. Complain and
create a dummy range type to use. */
warning ("internal error: array index type must be a range type");
range_type = lookup_fundamental_type (TYPE_OBJFILE (range_type),
FT_INTEGER);
range_type = create_range_type ((struct type *) NULL, range_type, 0, 0);
}
if (result_type == NULL)
{
result_type = alloc_type (TYPE_OBJFILE (element_type));
}
TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
TYPE_TARGET_TYPE (result_type) = element_type;
low_bound = TYPE_FIELD_BITPOS (range_type, 0);
high_bound = TYPE_FIELD_BITPOS (range_type, 1);
TYPE_LENGTH (result_type) =
TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
TYPE_NFIELDS (result_type) = 1;
TYPE_FIELDS (result_type) =
(struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
TYPE_FIELD_TYPE (result_type, 0) = range_type;
TYPE_VPTR_FIELDNO (result_type) = -1;
return (result_type);
}
/* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
A MEMBER is a wierd thing -- it amounts to a typed offset into
a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
include the offset (that's the value of the MEMBER itself), but does
include the structure type into which it points (for some reason).
When "smashing" the type, we preserve the objfile that the
old type pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_member_type (type, domain, to_type)
struct type *type;
struct type *domain;
struct type *to_type;
{
struct objfile *objfile;
objfile = TYPE_OBJFILE (type);
memset ((char *) type, 0, sizeof (struct type));
TYPE_OBJFILE (type) = objfile;
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = domain;
TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
TYPE_CODE (type) = TYPE_CODE_MEMBER;
}
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
METHOD just means `function that gets an extra "this" argument'.
When "smashing" the type, we preserve the objfile that the
old type pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_method_type (type, domain, to_type, args)
struct type *type;
struct type *domain;
struct type *to_type;
struct type **args;
{
struct objfile *objfile;
objfile = TYPE_OBJFILE (type);
memset ((char *) type, 0, sizeof (struct type));
TYPE_OBJFILE (type) = objfile;
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = domain;
TYPE_ARG_TYPES (type) = args;
TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
TYPE_CODE (type) = TYPE_CODE_METHOD;
}
/* Return a typename for a struct/union/enum type
without the tag qualifier. If the type has a NULL name,
NULL is returned. */
char *
type_name_no_tag (type)
register const struct type *type;
{
register char *name;
if ((name = TYPE_NAME (type)) != NULL)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT:
if(!strncmp (name, "struct ", 7))
{
name += 7;
}
break;
case TYPE_CODE_UNION:
if(!strncmp (name, "union ", 6))
{
name += 6;
}
break;
case TYPE_CODE_ENUM:
if(!strncmp (name, "enum ", 5))
{
name += 5;
}
break;
default: /* To avoid -Wall warnings */
break;
}
}
return (name);
}
/* Lookup a primitive type named NAME.
Return zero if NAME is not a primitive type.*/
struct type *
lookup_primitive_typename (name)
char *name;
{
struct type ** const *p;
for (p = current_language -> la_builtin_type_vector; *p != NULL; p++)
{
if (STREQ ((**p) -> name, name))
{
return (**p);
}
}
return (NULL);
}
/* Lookup a typedef or primitive type named NAME,
visible in lexical block BLOCK.
If NOERR is nonzero, return zero if NAME is not suitably defined. */
struct type *
lookup_typename (name, block, noerr)
char *name;
struct block *block;
int noerr;
{
register struct symbol *sym;
register struct type *tmp;
sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
{
tmp = lookup_primitive_typename (name);
if (tmp)
{
return (tmp);
}
else if (!tmp && noerr)
{
return (NULL);
}
else
{
error ("No type named %s.", name);
}
}
return (SYMBOL_TYPE (sym));
}
struct type *
lookup_unsigned_typename (name)
char *name;
{
char *uns = alloca (strlen (name) + 10);
strcpy (uns, "unsigned ");
strcpy (uns + 9, name);
return (lookup_typename (uns, (struct block *) NULL, 0));
}
struct type *
lookup_signed_typename (name)
char *name;
{
struct type *t;
char *uns = alloca (strlen (name) + 8);
strcpy (uns, "signed ");
strcpy (uns + 7, name);
t = lookup_typename (uns, (struct block *) NULL, 1);
/* If we don't find "signed FOO" just try again with plain "FOO". */
if (t != NULL)
return t;
return lookup_typename (name, (struct block *) NULL, 0);
}
/* Lookup a structure type named "struct NAME",
visible in lexical block BLOCK. */
struct type *
lookup_struct (name, block)
char *name;
struct block *block;
{
register struct symbol *sym;
sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
(struct symtab **) NULL);
if (sym == NULL)
{
error ("No struct type named %s.", name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
error ("This context has class, union or enum %s, not a struct.", name);
}
return (SYMBOL_TYPE (sym));
}
/* Lookup a union type named "union NAME",
visible in lexical block BLOCK. */
struct type *
lookup_union (name, block)
char *name;
struct block *block;
{
register struct symbol *sym;
sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
(struct symtab **) NULL);
if (sym == NULL)
{
error ("No union type named %s.", name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_UNION)
{
error ("This context has class, struct or enum %s, not a union.", name);
}
return (SYMBOL_TYPE (sym));
}
/* Lookup an enum type named "enum NAME",
visible in lexical block BLOCK. */
struct type *
lookup_enum (name, block)
char *name;
struct block *block;
{
register struct symbol *sym;
sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
(struct symtab **) NULL);
if (sym == NULL)
{
error ("No enum type named %s.", name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
{
error ("This context has class, struct or union %s, not an enum.", name);
}
return (SYMBOL_TYPE (sym));
}
/* Lookup a template type named "template NAME<TYPE>",
visible in lexical block BLOCK. */
struct type *
lookup_template_type (name, type, block)
char *name;
struct type *type;
struct block *block;
{
struct symbol *sym;
char *nam = (char*) alloca(strlen(name) + strlen(type->name) + 4);
strcpy (nam, name);
strcat (nam, "<");
strcat (nam, type->name);
strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **)NULL);
if (sym == NULL)
{
error ("No template type named %s.", name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
error ("This context has class, union or enum %s, not a struct.", name);
}
return (SYMBOL_TYPE (sym));
}
/* Given a type TYPE, lookup the type of the component of type named
NAME.
If NOERR is nonzero, return zero if NAME is not suitably defined. */
struct type *
lookup_struct_elt_type (type, name, noerr)
struct type *type;
char *name;
int noerr;
{
int i;
if (TYPE_CODE (type) == TYPE_CODE_PTR ||
TYPE_CODE (type) == TYPE_CODE_REF)
type = TYPE_TARGET_TYPE (type);
if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
TYPE_CODE (type) != TYPE_CODE_UNION)
{
target_terminal_ours ();
fflush (stdout);
fprintf (stderr, "Type ");
type_print (type, "", stderr, -1);
error (" is not a structure or union type.");
}
check_stub_type (type);
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
{
char *t_field_name = TYPE_FIELD_NAME (type, i);
if (t_field_name && STREQ (t_field_name, name))
{
return TYPE_FIELD_TYPE (type, i);
}
}
/* OK, it's not in this class. Recursively check the baseclasses. */
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
{
struct type *t;
t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 0);
if (t != NULL)
{
return t;
}
}
if (noerr)
{
return NULL;
}
target_terminal_ours ();
fflush (stdout);
fprintf (stderr, "Type ");
type_print (type, "", stderr, -1);
fprintf (stderr, " has no component named ");
fputs_filtered (name, stderr);
error (".");
return (struct type *)-1; /* For lint */
}
/* This function is really horrible, but to avoid it, there would need
to be more filling in of forward references. */
void
fill_in_vptr_fieldno (type)
struct type *type;
{
if (TYPE_VPTR_FIELDNO (type) < 0)
{
int i;
for (i = 1; i < TYPE_N_BASECLASSES (type); i++)
{
fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
{
TYPE_VPTR_FIELDNO (type)
= TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
TYPE_VPTR_BASETYPE (type)
= TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
break;
}
}
}
}
/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
If this is a stubbed struct (i.e. declared as struct foo *), see if
we can find a full definition in some other file. If so, copy this
definition, so we can use it in future. If not, set a flag so we
don't waste too much time in future. (FIXME, this doesn't seem
to be happening...)
This used to be coded as a macro, but I don't think it is called
often enough to merit such treatment.
*/
struct complaint stub_noname_complaint =
{"stub type has NULL name", 0, 0};
void
check_stub_type (type)
struct type *type;
{
if (TYPE_FLAGS(type) & TYPE_FLAG_STUB)
{
char* name = type_name_no_tag (type);
struct symbol *sym;
if (name == NULL)
{
complain (&stub_noname_complaint);
return;
}
sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
(struct symtab **) NULL);
if (sym)
{
memcpy ((char *)type, (char *)SYMBOL_TYPE(sym), sizeof (struct type));
}
}
}
/* Ugly hack to convert method stubs into method types.
He ain't kiddin'. This demangles the name of the method into a string
including argument types, parses out each argument type, generates
a string casting a zero to that type, evaluates the string, and stuffs
the resulting type into an argtype vector!!! Then it knows the type
of the whole function (including argument types for overloading),
which info used to be in the stab's but was removed to hack back
the space required for them. */
void
check_stub_method (type, i, j)
struct type *type;
int i;
int j;
{
struct fn_field *f;
char *mangled_name = gdb_mangle_name (type, i, j);
char *demangled_name = cplus_demangle (mangled_name,
DMGL_PARAMS | DMGL_ANSI);
char *argtypetext, *p;
int depth = 0, argcount = 1;
struct type **argtypes;
struct type *mtype;
if (demangled_name == NULL)
{
error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
}
/* Now, read in the parameters that define this type. */
argtypetext = strchr (demangled_name, '(') + 1;
p = argtypetext;
while (*p)
{
if (*p == '(')
{
depth += 1;
}
else if (*p == ')')
{
depth -= 1;
}
else if (*p == ',' && depth == 0)
{
argcount += 1;
}
p += 1;
}
/* We need two more slots: one for the THIS pointer, and one for the
NULL [...] or void [end of arglist]. */
argtypes = (struct type **)
TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *));
p = argtypetext;
argtypes[0] = lookup_pointer_type (type);
argcount = 1;
if (*p != ')') /* () means no args, skip while */
{
depth = 0;
while (*p)
{
if (depth <= 0 && (*p == ',' || *p == ')'))
{
argtypes[argcount] =
parse_and_eval_type (argtypetext, p - argtypetext);
argcount += 1;
argtypetext = p + 1;
}
if (*p == '(')
{
depth += 1;
}
else if (*p == ')')
{
depth -= 1;
}
p += 1;
}
}
if (p[-2] != '.') /* Not '...' */
{
argtypes[argcount] = builtin_type_void; /* List terminator */
}
else
{
argtypes[argcount] = NULL; /* Ellist terminator */
}
free (demangled_name);
f = TYPE_FN_FIELDLIST1 (type, i);
TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name;
/* Now update the old "stub" type into a real type. */
mtype = TYPE_FN_FIELD_TYPE (f, j);
TYPE_DOMAIN_TYPE (mtype) = type;
TYPE_ARG_TYPES (mtype) = argtypes;
TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
TYPE_FN_FIELD_STUB (f, j) = 0;
}
struct cplus_struct_type cplus_struct_default;
void
allocate_cplus_struct_type (type)
struct type *type;
{
if (!HAVE_CPLUS_STRUCT (type))
{
TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
*(TYPE_CPLUS_SPECIFIC(type)) = cplus_struct_default;
}
}
/* Helper function to initialize the standard scalar types.
If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
of the string pointed to by name in the type_obstack for that objfile,
and initialize the type name to that copy. There are places (mipsread.c
in particular, where init_type is called with a NULL value for NAME). */
struct type *
init_type (code, length, flags, name, objfile)
enum type_code code;
int length;
int flags;
char *name;
struct objfile *objfile;
{
register struct type *type;
type = alloc_type (objfile);
TYPE_CODE (type) = code;
TYPE_LENGTH (type) = length;
TYPE_FLAGS (type) |= flags;
if ((name != NULL) && (objfile != NULL))
{
TYPE_NAME (type) =
obsavestring (name, strlen (name), &objfile -> type_obstack);
}
else
{
TYPE_NAME (type) = name;
}
/* C++ fancies. */
if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
{
INIT_CPLUS_SPECIFIC (type);
}
return (type);
}
/* Look up a fundamental type for the specified objfile.
May need to construct such a type if this is the first use.
Some object file formats (ELF, COFF, etc) do not define fundamental
types such as "int" or "double". Others (stabs for example), do
define fundamental types.
For the formats which don't provide fundamental types, gdb can create
such types, using defaults reasonable for the current language and
the current target machine.
NOTE: This routine is obsolescent. Each debugging format reader
should manage it's own fundamental types, either creating them from
suitable defaults or reading them from the debugging information,
whichever is appropriate. The DWARF reader has already been
fixed to do this. Once the other readers are fixed, this routine
will go away. Also note that fundamental types should be managed
on a compilation unit basis in a multi-language environment, not
on a linkage unit basis as is done here. */
struct type *
lookup_fundamental_type (objfile, typeid)
struct objfile *objfile;
int typeid;
{
register struct type **typep;
register int nbytes;
if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
{
error ("internal error - invalid fundamental type id %d", typeid);
}
/* If this is the first time we need a fundamental type for this objfile
then we need to initialize the vector of type pointers. */
if (objfile -> fundamental_types == NULL)
{
nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
objfile -> fundamental_types = (struct type **)
obstack_alloc (&objfile -> type_obstack, nbytes);
memset ((char *) objfile -> fundamental_types, 0, nbytes);
}
/* Look for this particular type in the fundamental type vector. If one is
not found, create and install one appropriate for the current language. */
typep = objfile -> fundamental_types + typeid;
if (*typep == NULL)
{
*typep = create_fundamental_type (objfile, typeid);
}
return (*typep);
}
#if MAINTENANCE_CMDS
static void
print_bit_vector (bits, nbits)
B_TYPE *bits;
int nbits;
{
int bitno;
for (bitno = 0; bitno < nbits; bitno++)
{
if ((bitno % 8) == 0)
{
puts_filtered (" ");
}
if (B_TST (bits, bitno))
{
printf_filtered ("1");
}
else
{
printf_filtered ("0");
}
}
}
/* The args list is a strange beast. It is either terminated by a NULL
pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID
type for normal fixed argcount functions. (FIXME someday)
Also note the first arg should be the "this" pointer, we may not want to
include it since we may get into a infinitely recursive situation. */
static void
print_arg_types (args, spaces)
struct type **args;
int spaces;
{
if (args != NULL)
{
while (*args != NULL)
{
recursive_dump_type (*args, spaces + 2);
if ((*args++) -> code == TYPE_CODE_VOID)
{
break;
}
}
}
}
static void
dump_fn_fieldlists (type, spaces)
struct type *type;
int spaces;
{
int method_idx;
int overload_idx;
struct fn_field *f;
printfi_filtered (spaces, "fn_fieldlists 0x%x\n",
TYPE_FN_FIELDLISTS (type));
for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
{
f = TYPE_FN_FIELDLIST1 (type, method_idx);
printfi_filtered (spaces + 2, "[%d] name '%s' (0x%x) length %d\n",
method_idx,
TYPE_FN_FIELDLIST_NAME (type, method_idx),
TYPE_FN_FIELDLIST_NAME (type, method_idx),
TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
for (overload_idx = 0;
overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
overload_idx++)
{
printfi_filtered (spaces + 4, "[%d] physname '%s' (0x%x)\n",
overload_idx,
TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
printfi_filtered (spaces + 8, "type 0x%x\n",
TYPE_FN_FIELD_TYPE (f, overload_idx));
recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
spaces + 8 + 2);
printfi_filtered (spaces + 8, "args 0x%x\n",
TYPE_FN_FIELD_ARGS (f, overload_idx));
print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces);
printfi_filtered (spaces + 8, "fcontext 0x%x\n",
TYPE_FN_FIELD_FCONTEXT (f, overload_idx));
printfi_filtered (spaces + 8, "is_const %d\n",
TYPE_FN_FIELD_CONST (f, overload_idx));
printfi_filtered (spaces + 8, "is_volatile %d\n",
TYPE_FN_FIELD_VOLATILE (f, overload_idx));
printfi_filtered (spaces + 8, "is_private %d\n",
TYPE_FN_FIELD_PRIVATE (f, overload_idx));
printfi_filtered (spaces + 8, "is_protected %d\n",
TYPE_FN_FIELD_PROTECTED (f, overload_idx));
printfi_filtered (spaces + 8, "is_stub %d\n",
TYPE_FN_FIELD_STUB (f, overload_idx));
printfi_filtered (spaces + 8, "voffset %u\n",
TYPE_FN_FIELD_VOFFSET (f, overload_idx));
}
}
}
static void
print_cplus_stuff (type, spaces)
struct type *type;
int spaces;
{
printfi_filtered (spaces, "n_baseclasses %d\n",
TYPE_N_BASECLASSES (type));
printfi_filtered (spaces, "nfn_fields %d\n",
TYPE_NFN_FIELDS (type));
printfi_filtered (spaces, "nfn_fields_total %d\n",
TYPE_NFN_FIELDS_TOTAL (type));
if (TYPE_N_BASECLASSES (type) > 0)
{
printfi_filtered (spaces, "virtual_field_bits (%d bits at *0x%x)",
TYPE_N_BASECLASSES (type),
TYPE_FIELD_VIRTUAL_BITS (type));
print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
TYPE_N_BASECLASSES (type));
puts_filtered ("\n");
}
if (TYPE_NFIELDS (type) > 0)
{
if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
{
printfi_filtered (spaces, "private_field_bits (%d bits at *0x%x)",
TYPE_NFIELDS (type),
TYPE_FIELD_PRIVATE_BITS (type));
print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
TYPE_NFIELDS (type));
puts_filtered ("\n");
}
if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
{
printfi_filtered (spaces, "protected_field_bits (%d bits at *0x%x)",
TYPE_NFIELDS (type),
TYPE_FIELD_PROTECTED_BITS (type));
print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
TYPE_NFIELDS (type));
puts_filtered ("\n");
}
}
if (TYPE_NFN_FIELDS (type) > 0)
{
dump_fn_fieldlists (type, spaces);
}
}
void
recursive_dump_type (type, spaces)
struct type *type;
int spaces;
{
int idx;
printfi_filtered (spaces, "type node 0x%x\n", type);
printfi_filtered (spaces, "name '%s' (0x%x)\n", TYPE_NAME (type),
TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
switch (TYPE_CODE (type))
{
case TYPE_CODE_UNDEF:
printf_filtered ("(TYPE_CODE_UNDEF)");
break;
case TYPE_CODE_PTR:
printf_filtered ("(TYPE_CODE_PTR)");
break;
case TYPE_CODE_ARRAY:
printf_filtered ("(TYPE_CODE_ARRAY)");
break;
case TYPE_CODE_STRUCT:
printf_filtered ("(TYPE_CODE_STRUCT)");
break;
case TYPE_CODE_UNION:
printf_filtered ("(TYPE_CODE_UNION)");
break;
case TYPE_CODE_ENUM:
printf_filtered ("(TYPE_CODE_ENUM)");
break;
case TYPE_CODE_FUNC:
printf_filtered ("(TYPE_CODE_FUNC)");
break;
case TYPE_CODE_INT:
printf_filtered ("(TYPE_CODE_INT)");
break;
case TYPE_CODE_FLT:
printf_filtered ("(TYPE_CODE_FLT)");
break;
case TYPE_CODE_VOID:
printf_filtered ("(TYPE_CODE_VOID)");
break;
case TYPE_CODE_SET:
printf_filtered ("(TYPE_CODE_SET)");
break;
case TYPE_CODE_RANGE:
printf_filtered ("(TYPE_CODE_RANGE)");
break;
case TYPE_CODE_PASCAL_ARRAY:
printf_filtered ("(TYPE_CODE_PASCAL_ARRAY)");
break;
case TYPE_CODE_ERROR:
printf_filtered ("(TYPE_CODE_ERROR)");
break;
case TYPE_CODE_MEMBER:
printf_filtered ("(TYPE_CODE_MEMBER)");
break;
case TYPE_CODE_METHOD:
printf_filtered ("(TYPE_CODE_METHOD)");
break;
case TYPE_CODE_REF:
printf_filtered ("(TYPE_CODE_REF)");
break;
case TYPE_CODE_CHAR:
printf_filtered ("(TYPE_CODE_CHAR)");
break;
case TYPE_CODE_BOOL:
printf_filtered ("(TYPE_CODE_BOOL)");
break;
default:
printf_filtered ("(UNKNOWN TYPE CODE)");
break;
}
puts_filtered ("\n");
printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
printfi_filtered (spaces, "objfile 0x%x\n", TYPE_OBJFILE (type));
printfi_filtered (spaces, "target_type 0x%x\n", TYPE_TARGET_TYPE (type));
if (TYPE_TARGET_TYPE (type) != NULL)
{
recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
}
printfi_filtered (spaces, "pointer_type 0x%x\n",
TYPE_POINTER_TYPE (type));
printfi_filtered (spaces, "reference_type 0x%x\n",
TYPE_REFERENCE_TYPE (type));
printfi_filtered (spaces, "function_type 0x%x\n",
TYPE_FUNCTION_TYPE (type));
printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
if (TYPE_FLAGS (type) & TYPE_FLAG_UNSIGNED)
{
puts_filtered (" TYPE_FLAG_UNSIGNED");
}
if (TYPE_FLAGS (type) & TYPE_FLAG_SIGNED)
{
puts_filtered (" TYPE_FLAG_SIGNED");
}
if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
{
puts_filtered (" TYPE_FLAG_STUB");
}
puts_filtered ("\n");
printfi_filtered (spaces, "nfields %d 0x%x\n", TYPE_NFIELDS (type),
TYPE_FIELDS (type));
for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
{
printfi_filtered (spaces + 2,
"[%d] bitpos %d bitsize %d type 0x%x name '%s' (0x%x)\n",
idx, TYPE_FIELD_BITPOS (type, idx),
TYPE_FIELD_BITSIZE (type, idx),
TYPE_FIELD_TYPE (type, idx),
TYPE_FIELD_NAME (type, idx),
TYPE_FIELD_NAME (type, idx) != NULL
? TYPE_FIELD_NAME (type, idx)
: "<NULL>");
if (TYPE_FIELD_TYPE (type, idx) != NULL)
{
recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
}
}
printfi_filtered (spaces, "vptr_basetype 0x%x\n",
TYPE_VPTR_BASETYPE (type));
if (TYPE_VPTR_BASETYPE (type) != NULL)
{
recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
}
printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
switch (TYPE_CODE (type))
{
case TYPE_CODE_METHOD:
case TYPE_CODE_FUNC:
printfi_filtered (spaces, "arg_types 0x%x\n", TYPE_ARG_TYPES (type));
print_arg_types (TYPE_ARG_TYPES (type), spaces);
break;
case TYPE_CODE_STRUCT:
printfi_filtered (spaces, "cplus_stuff 0x%x\n",
TYPE_CPLUS_SPECIFIC (type));
print_cplus_stuff (type, spaces);
break;
default:
/* We have to pick one of the union types to be able print and test
the value. Pick cplus_struct_type, even though we know it isn't
any particular one. */
printfi_filtered (spaces, "type_specific 0x%x",
TYPE_CPLUS_SPECIFIC (type));
if (TYPE_CPLUS_SPECIFIC (type) != NULL)
{
printf_filtered (" (unknown data form)");
}
printf_filtered ("\n");
break;
}
}
#endif /* MAINTENANCE_CMDS */