old-cross-binutils/gas/config/tc-sh.c
2000-07-08 18:13:58 +00:00

3106 lines
73 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-sh.c -- Assemble code for the Hitachi Super-H
Copyright (C) 1993, 94, 95, 96, 97, 98, 99, 2000 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Written By Steve Chamberlain <sac@cygnus.com> */
#include <stdio.h>
#include "as.h"
#include "bfd.h"
#include "subsegs.h"
#define DEFINE_TABLE
#include "opcodes/sh-opc.h"
#include <ctype.h>
#include "struc-symbol.h"
#ifdef OBJ_ELF
#include "elf/sh.h"
#endif
const char comment_chars[] = "!";
const char line_separator_chars[] = ";";
const char line_comment_chars[] = "!#";
static void s_uses PARAMS ((int));
static void sh_count_relocs PARAMS ((bfd *, segT, PTR));
static void sh_frob_section PARAMS ((bfd *, segT, PTR));
void cons ();
void s_align_bytes ();
static void s_uacons PARAMS ((int));
static sh_opcode_info *find_cooked_opcode PARAMS ((char **));
static void assemble_ppi PARAMS ((char *, sh_opcode_info *));
int shl = 0;
static void
little (ignore)
int ignore ATTRIBUTE_UNUSED;
{
shl = 1;
target_big_endian = 0;
}
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function. */
const pseudo_typeS md_pseudo_table[] =
{
{"int", cons, 4},
{"word", cons, 2},
{"form", listing_psize, 0},
{"little", little, 0},
{"heading", listing_title, 0},
{"import", s_ignore, 0},
{"page", listing_eject, 0},
{"program", s_ignore, 0},
{"uses", s_uses, 0},
{"uaword", s_uacons, 2},
{"ualong", s_uacons, 4},
{0, 0, 0}
};
/*int md_reloc_size; */
int sh_relax; /* set if -relax seen */
/* Whether -small was seen. */
int sh_small;
/* Whether -dsp was seen. */
static int sh_dsp;
/* The bit mask of architectures that could
accomodate the insns seen so far. */
static int valid_arch;
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant. */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
#define C(a,b) ENCODE_RELAX(a,b)
#define JREG 14 /* Register used as a temp when relaxing */
#define ENCODE_RELAX(what,length) (((what) << 4) + (length))
#define GET_WHAT(x) ((x>>4))
/* These are the three types of relaxable instrction. */
#define COND_JUMP 1
#define COND_JUMP_DELAY 2
#define UNCOND_JUMP 3
#define END 4
#define UNDEF_DISP 0
#define COND8 1
#define COND12 2
#define COND32 3
#define UNCOND12 1
#define UNCOND32 2
#define UNDEF_WORD_DISP 4
#define UNCOND12 1
#define UNCOND32 2
/* Branch displacements are from the address of the branch plus
four, thus all minimum and maximum values have 4 added to them. */
#define COND8_F 258
#define COND8_M -252
#define COND8_LENGTH 2
/* There is one extra instruction before the branch, so we must add
two more bytes to account for it. */
#define COND12_F 4100
#define COND12_M -4090
#define COND12_LENGTH 6
#define COND12_DELAY_LENGTH 4
/* ??? The minimum and maximum values are wrong, but this does not matter
since this relocation type is not supported yet. */
#define COND32_F (1<<30)
#define COND32_M -(1<<30)
#define COND32_LENGTH 14
#define UNCOND12_F 4098
#define UNCOND12_M -4092
#define UNCOND12_LENGTH 2
/* ??? The minimum and maximum values are wrong, but this does not matter
since this relocation type is not supported yet. */
#define UNCOND32_F (1<<30)
#define UNCOND32_M -(1<<30)
#define UNCOND32_LENGTH 14
#define EMPTY { 0, 0, 0, 0 }
const relax_typeS md_relax_table[C (END, 0)] = {
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY,
/* C (COND_JUMP, COND8) */
{ COND8_F, COND8_M, COND8_LENGTH, C (COND_JUMP, COND12) },
/* C (COND_JUMP, COND12) */
{ COND12_F, COND12_M, COND12_LENGTH, C (COND_JUMP, COND32), },
/* C (COND_JUMP, COND32) */
{ COND32_F, COND32_M, COND32_LENGTH, 0, },
EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY,
/* C (COND_JUMP_DELAY, COND8) */
{ COND8_F, COND8_M, COND8_LENGTH, C (COND_JUMP_DELAY, COND12) },
/* C (COND_JUMP_DELAY, COND12) */
{ COND12_F, COND12_M, COND12_DELAY_LENGTH, C (COND_JUMP_DELAY, COND32), },
/* C (COND_JUMP_DELAY, COND32) */
{ COND32_F, COND32_M, COND32_LENGTH, 0, },
EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY,
/* C (UNCOND_JUMP, UNCOND12) */
{ UNCOND12_F, UNCOND12_M, UNCOND12_LENGTH, C (UNCOND_JUMP, UNCOND32), },
/* C (UNCOND_JUMP, UNCOND32) */
{ UNCOND32_F, UNCOND32_M, UNCOND32_LENGTH, 0, },
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY,
};
#undef EMPTY
static struct hash_control *opcode_hash_control; /* Opcode mnemonics */
/* This function is called once, at assembler startup time. This should
set up all the tables, etc that the MD part of the assembler needs. */
void
md_begin ()
{
sh_opcode_info *opcode;
char *prev_name = "";
int target_arch;
#ifdef TE_PE
/* The WinCE OS only supports little endian executables. */
target_big_endian = 0;
#else
if (! shl)
target_big_endian = 1;
#endif
target_arch = arch_sh1_up & ~(sh_dsp ? arch_sh3e_up : arch_sh_dsp_up);
valid_arch = target_arch;
opcode_hash_control = hash_new ();
/* Insert unique names into hash table. */
for (opcode = sh_table; opcode->name; opcode++)
{
if (strcmp (prev_name, opcode->name))
{
if (! (opcode->arch & target_arch))
continue;
prev_name = opcode->name;
hash_insert (opcode_hash_control, opcode->name, (char *) opcode);
}
else
{
/* Make all the opcodes with the same name point to the same
string. */
opcode->name = prev_name;
}
}
}
static int reg_m;
static int reg_n;
static int reg_x, reg_y;
static int reg_efg;
static int reg_b;
typedef struct
{
sh_arg_type type;
int reg;
expressionS immediate;
}
sh_operand_info;
#define IDENT_CHAR(c) (isalnum (c) || (c) == '_')
/* Try to parse a reg name. Return the number of chars consumed. */
static int
parse_reg (src, mode, reg)
char *src;
int *mode;
int *reg;
{
/* We use ! IDENT_CHAR for the next character after the register name, to
make sure that we won't accidentally recognize a symbol name such as
'sram' or sr_ram as being a reference to the register 'sr'. */
if (src[0] == 'r')
{
if (src[1] == '1')
{
if (src[2] >= '0' && src[2] <= '5'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_REG_N;
*reg = 10 + src[2] - '0';
return 3;
}
}
if (src[1] >= '0' && src[1] <= '9'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_REG_N;
*reg = (src[1] - '0');
return 2;
}
if (src[1] >= '0' && src[1] <= '7' && strncmp (&src[2], "_bank", 5) == 0
&& ! IDENT_CHAR ((unsigned char) src[7]))
{
*mode = A_REG_B;
*reg = (src[1] - '0');
return 7;
}
if (src[1] == 'e' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_RE;
return 2;
}
if (src[1] == 's' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_RS;
return 2;
}
}
if (src[0] == 'a')
{
if (src[1] == '0')
{
if (! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_A0_NUM;
return 2;
}
if (src[2] == 'g' && ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = DSP_REG_N;
*reg = A_A0G_NUM;
return 3;
}
}
if (src[1] == '1')
{
if (! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_A1_NUM;
return 2;
}
if (src[2] == 'g' && ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = DSP_REG_N;
*reg = A_A1G_NUM;
return 3;
}
}
if (src[1] == 'x' && src[2] >= '0' && src[2] <= '1'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_REG_N;
*reg = 4 + (src[1] - '0');
return 3;
}
if (src[1] == 'y' && src[2] >= '0' && src[2] <= '1'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_REG_N;
*reg = 6 + (src[1] - '0');
return 3;
}
if (src[1] == 's' && src[2] >= '0' && src[2] <= '3'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
int n = src[1] - '0';
*mode = A_REG_N;
*reg = n | ((~n & 2) << 1);
return 3;
}
}
if (src[0] == 'i' && src[1] && ! IDENT_CHAR ((unsigned char) src[3]))
{
if (src[1] == 's')
{
*mode = A_REG_N;
*reg = 8;
return 2;
}
if (src[1] == 'x')
{
*mode = A_REG_N;
*reg = 8;
return 2;
}
if (src[1] == 'y')
{
*mode = A_REG_N;
*reg = 9;
return 2;
}
}
if (src[0] == 'x' && src[1] >= '0' && src[1] <= '1'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_X0_NUM + src[1] - '0';
return 2;
}
if (src[0] == 'y' && src[1] >= '0' && src[1] <= '1'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = A_Y0_NUM + src[1] - '0';
return 2;
}
if (src[0] == 'm' && src[1] >= '0' && src[1] <= '1'
&& ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = DSP_REG_N;
*reg = src[1] == '0' ? A_M0_NUM : A_M1_NUM;
return 2;
}
if (src[0] == 's'
&& src[1] == 's'
&& src[2] == 'r' && ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_SSR;
return 3;
}
if (src[0] == 's' && src[1] == 'p' && src[2] == 'c'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_SPC;
return 3;
}
if (src[0] == 's' && src[1] == 'g' && src[2] == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_SGR;
return 3;
}
if (src[0] == 'd' && src[1] == 's' && src[2] == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_DSR;
return 3;
}
if (src[0] == 'd' && src[1] == 'b' && src[2] == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_DBR;
return 3;
}
if (src[0] == 's' && src[1] == 'r' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_SR;
return 2;
}
if (src[0] == 's' && src[1] == 'p' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_REG_N;
*reg = 15;
return 2;
}
if (src[0] == 'p' && src[1] == 'r' && ! IDENT_CHAR ((unsigned char) src[2]))
{
*mode = A_PR;
return 2;
}
if (src[0] == 'p' && src[1] == 'c' && ! IDENT_CHAR ((unsigned char) src[2]))
{
/* Don't use A_DISP_PC here - that would accept stuff like 'mova pc,r0'
and use an uninitialized immediate. */
*mode = A_PC;
return 2;
}
if (src[0] == 'g' && src[1] == 'b' && src[2] == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_GBR;
return 3;
}
if (src[0] == 'v' && src[1] == 'b' && src[2] == 'r'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = A_VBR;
return 3;
}
if (src[0] == 'm' && src[1] == 'a' && src[2] == 'c'
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
if (src[3] == 'l')
{
*mode = A_MACL;
return 4;
}
if (src[3] == 'h')
{
*mode = A_MACH;
return 4;
}
}
if (src[0] == 'm' && src[1] == 'o' && src[2] == 'd'
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = A_MOD;
return 3;
}
if (src[0] == 'f' && src[1] == 'r')
{
if (src[2] == '1')
{
if (src[3] >= '0' && src[3] <= '5'
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = F_REG_N;
*reg = 10 + src[3] - '0';
return 4;
}
}
if (src[2] >= '0' && src[2] <= '9'
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = F_REG_N;
*reg = (src[2] - '0');
return 3;
}
}
if (src[0] == 'd' && src[1] == 'r')
{
if (src[2] == '1')
{
if (src[3] >= '0' && src[3] <= '4' && ! ((src[3] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = D_REG_N;
*reg = 10 + src[3] - '0';
return 4;
}
}
if (src[2] >= '0' && src[2] <= '8' && ! ((src[2] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = D_REG_N;
*reg = (src[2] - '0');
return 3;
}
}
if (src[0] == 'x' && src[1] == 'd')
{
if (src[2] == '1')
{
if (src[3] >= '0' && src[3] <= '4' && ! ((src[3] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = X_REG_N;
*reg = 11 + src[3] - '0';
return 4;
}
}
if (src[2] >= '0' && src[2] <= '8' && ! ((src[2] - '0') & 1)
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = X_REG_N;
*reg = (src[2] - '0') + 1;
return 3;
}
}
if (src[0] == 'f' && src[1] == 'v')
{
if (src[2] == '1'&& src[3] == '2' && ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = V_REG_N;
*reg = 12;
return 4;
}
if ((src[2] == '0' || src[2] == '4' || src[2] == '8')
&& ! IDENT_CHAR ((unsigned char) src[3]))
{
*mode = V_REG_N;
*reg = (src[2] - '0');
return 3;
}
}
if (src[0] == 'f' && src[1] == 'p' && src[2] == 'u' && src[3] == 'l'
&& ! IDENT_CHAR ((unsigned char) src[4]))
{
*mode = FPUL_N;
return 4;
}
if (src[0] == 'f' && src[1] == 'p' && src[2] == 's' && src[3] == 'c'
&& src[4] == 'r' && ! IDENT_CHAR ((unsigned char) src[5]))
{
*mode = FPSCR_N;
return 5;
}
if (src[0] == 'x' && src[1] == 'm' && src[2] == 't' && src[3] == 'r'
&& src[4] == 'x' && ! IDENT_CHAR ((unsigned char) src[5]))
{
*mode = XMTRX_M4;
return 5;
}
return 0;
}
static symbolS *
dot ()
{
const char *fake;
/* JF: '.' is pseudo symbol with value of current location
in current segment. */
fake = FAKE_LABEL_NAME;
return symbol_new (fake,
now_seg,
(valueT) frag_now_fix (),
frag_now);
}
static char *
parse_exp (s, op)
char *s;
sh_operand_info *op;
{
char *save;
char *new;
save = input_line_pointer;
input_line_pointer = s;
expression (&op->immediate);
if (op->immediate.X_op == O_absent)
as_bad (_("missing operand"));
new = input_line_pointer;
input_line_pointer = save;
return new;
}
/* The many forms of operand:
Rn Register direct
@Rn Register indirect
@Rn+ Autoincrement
@-Rn Autodecrement
@(disp:4,Rn)
@(disp:8,GBR)
@(disp:8,PC)
@(R0,Rn)
@(R0,GBR)
disp:8
disp:12
#imm8
pr, gbr, vbr, macl, mach
*/
static char *
parse_at (src, op)
char *src;
sh_operand_info *op;
{
int len;
int mode;
src++;
if (src[0] == '-')
{
/* Must be predecrement. */
src++;
len = parse_reg (src, &mode, &(op->reg));
if (mode != A_REG_N)
as_bad (_("illegal register after @-"));
op->type = A_DEC_N;
src += len;
}
else if (src[0] == '(')
{
/* Could be @(disp, rn), @(disp, gbr), @(disp, pc), @(r0, gbr) or
@(r0, rn) */
src++;
len = parse_reg (src, &mode, &(op->reg));
if (len && mode == A_REG_N)
{
src += len;
if (op->reg != 0)
{
as_bad (_("must be @(r0,...)"));
}
if (src[0] == ',')
src++;
/* Now can be rn or gbr */
len = parse_reg (src, &mode, &(op->reg));
if (mode == A_GBR)
{
op->type = A_R0_GBR;
}
else if (mode == A_REG_N)
{
op->type = A_IND_R0_REG_N;
}
else
{
as_bad (_("syntax error in @(r0,...)"));
}
}
else
{
/* Must be an @(disp,.. thing) */
src = parse_exp (src, op);
if (src[0] == ',')
src++;
/* Now can be rn, gbr or pc */
len = parse_reg (src, &mode, &op->reg);
if (len)
{
if (mode == A_REG_N)
{
op->type = A_DISP_REG_N;
}
else if (mode == A_GBR)
{
op->type = A_DISP_GBR;
}
else if (mode == A_PC)
{
/* Turn a plain @(4,pc) into @(.+4,pc). */
if (op->immediate.X_op == O_constant)
{
op->immediate.X_add_symbol = dot();
op->immediate.X_op = O_symbol;
}
op->type = A_DISP_PC;
}
else
{
as_bad (_("syntax error in @(disp,[Rn, gbr, pc])"));
}
}
else
{
as_bad (_("syntax error in @(disp,[Rn, gbr, pc])"));
}
}
src += len;
if (src[0] != ')')
as_bad (_("expecting )"));
else
src++;
}
else
{
src += parse_reg (src, &mode, &(op->reg));
if (mode != A_REG_N)
{
as_bad (_("illegal register after @"));
}
if (src[0] == '+')
{
src++;
if ((src[0] == 'r' && src[1] == '8')
|| (src[0] == 'i' && (src[1] == 'x' || src[1] == 's')))
{
src += 2;
op->type = A_PMOD_N;
}
if ((src[0] == 'r' && src[1] == '9')
|| (src[0] == 'i' && src[1] == 'y'))
{
src += 2;
op->type = A_PMODY_N;
}
else
op->type = A_INC_N;
}
else
{
op->type = A_IND_N;
}
}
return src;
}
static void
get_operand (ptr, op)
char **ptr;
sh_operand_info *op;
{
char *src = *ptr;
int mode = -1;
unsigned int len;
if (src[0] == '#')
{
src++;
*ptr = parse_exp (src, op);
op->type = A_IMM;
return;
}
else if (src[0] == '@')
{
*ptr = parse_at (src, op);
return;
}
len = parse_reg (src, &mode, &(op->reg));
if (len)
{
*ptr = src + len;
op->type = mode;
return;
}
else
{
/* Not a reg, the only thing left is a displacement. */
*ptr = parse_exp (src, op);
op->type = A_DISP_PC;
return;
}
}
static char *
get_operands (info, args, operand)
sh_opcode_info *info;
char *args;
sh_operand_info *operand;
{
char *ptr = args;
if (info->arg[0])
{
/* The pre-processor will eliminate whitespace in front of '@'
after the first argument; we may be called multiple times
from assemble_ppi, so don't insist on finding whitespace here. */
if (*ptr == ' ')
ptr++;
get_operand (&ptr, operand + 0);
if (info->arg[1])
{
if (*ptr == ',')
{
ptr++;
}
get_operand (&ptr, operand + 1);
/* ??? Hack: psha/pshl have a varying operand number depending on
the type of the first operand. We handle this by having the
three-operand version first and reducing the number of operands
parsed to two if we see that the first operand is an immediate.
This works because no insn with three operands has an immediate
as first operand. */
if (info->arg[2] && operand[0].type != A_IMM)
{
if (*ptr == ',')
{
ptr++;
}
get_operand (&ptr, operand + 2);
}
else
{
operand[2].type = 0;
}
}
else
{
operand[1].type = 0;
operand[2].type = 0;
}
}
else
{
operand[0].type = 0;
operand[1].type = 0;
operand[2].type = 0;
}
return ptr;
}
/* Passed a pointer to a list of opcodes which use different
addressing modes, return the opcode which matches the opcodes
provided. */
static sh_opcode_info *
get_specific (opcode, operands)
sh_opcode_info *opcode;
sh_operand_info *operands;
{
sh_opcode_info *this_try = opcode;
char *name = opcode->name;
int n = 0;
while (opcode->name)
{
this_try = opcode++;
if (this_try->name != name)
{
/* We've looked so far down the table that we've run out of
opcodes with the same name. */
return 0;
}
/* Look at both operands needed by the opcodes and provided by
the user - since an arg test will often fail on the same arg
again and again, we'll try and test the last failing arg the
first on each opcode try. */
for (n = 0; this_try->arg[n]; n++)
{
sh_operand_info *user = operands + n;
sh_arg_type arg = this_try->arg[n];
switch (arg)
{
case A_IMM:
case A_BDISP12:
case A_BDISP8:
case A_DISP_GBR:
case A_DISP_PC:
case A_MACH:
case A_PR:
case A_MACL:
if (user->type != arg)
goto fail;
break;
case A_R0:
/* opcode needs r0 */
if (user->type != A_REG_N || user->reg != 0)
goto fail;
break;
case A_R0_GBR:
if (user->type != A_R0_GBR || user->reg != 0)
goto fail;
break;
case F_FR0:
if (user->type != F_REG_N || user->reg != 0)
goto fail;
break;
case A_REG_N:
case A_INC_N:
case A_DEC_N:
case A_IND_N:
case A_IND_R0_REG_N:
case A_DISP_REG_N:
case F_REG_N:
case D_REG_N:
case X_REG_N:
case V_REG_N:
case FPUL_N:
case FPSCR_N:
case A_PMOD_N:
case A_PMODY_N:
case DSP_REG_N:
/* Opcode needs rn */
if (user->type != arg)
goto fail;
reg_n = user->reg;
break;
case DX_REG_N:
if (user->type != D_REG_N && user->type != X_REG_N)
goto fail;
reg_n = user->reg;
break;
case A_GBR:
case A_SR:
case A_VBR:
case A_DSR:
case A_MOD:
case A_RE:
case A_RS:
case A_SSR:
case A_SPC:
case A_SGR:
case A_DBR:
if (user->type != arg)
goto fail;
break;
case A_REG_B:
if (user->type != arg)
goto fail;
reg_b = user->reg;
break;
case A_REG_M:
case A_INC_M:
case A_DEC_M:
case A_IND_M:
case A_IND_R0_REG_M:
case A_DISP_REG_M:
case DSP_REG_M:
/* Opcode needs rn */
if (user->type != arg - A_REG_M + A_REG_N)
goto fail;
reg_m = user->reg;
break;
case DSP_REG_X:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_X0_NUM:
reg_x = 0;
break;
case A_X1_NUM:
reg_x = 1;
break;
case A_A0_NUM:
reg_x = 2;
break;
case A_A1_NUM:
reg_x = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_Y:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_Y0_NUM:
reg_y = 0;
break;
case A_Y1_NUM:
reg_y = 1;
break;
case A_M0_NUM:
reg_y = 2;
break;
case A_M1_NUM:
reg_y = 3;
break;
default:
goto fail;
}
break;
case DSP_REG_E:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_X0_NUM:
reg_efg = 0 << 10;
break;
case A_X1_NUM:
reg_efg = 1 << 10;
break;
case A_Y0_NUM:
reg_efg = 2 << 10;
break;
case A_A1_NUM:
reg_efg = 3 << 10;
break;
default:
goto fail;
}
break;
case DSP_REG_F:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_Y0_NUM:
reg_efg |= 0 << 8;
break;
case A_Y1_NUM:
reg_efg |= 1 << 8;
break;
case A_X0_NUM:
reg_efg |= 2 << 8;
break;
case A_A1_NUM:
reg_efg |= 3 << 8;
break;
default:
goto fail;
}
break;
case DSP_REG_G:
if (user->type != DSP_REG_N)
goto fail;
switch (user->reg)
{
case A_M0_NUM:
reg_efg |= 0 << 2;
break;
case A_M1_NUM:
reg_efg |= 1 << 2;
break;
case A_A0_NUM:
reg_efg |= 2 << 2;
break;
case A_A1_NUM:
reg_efg |= 3 << 2;
break;
default:
goto fail;
}
break;
case A_A0:
if (user->type != DSP_REG_N || user->reg != A_A0_NUM)
goto fail;
break;
case A_X0:
if (user->type != DSP_REG_N || user->reg != A_X0_NUM)
goto fail;
break;
case A_X1:
if (user->type != DSP_REG_N || user->reg != A_X1_NUM)
goto fail;
break;
case A_Y0:
if (user->type != DSP_REG_N || user->reg != A_Y0_NUM)
goto fail;
break;
case A_Y1:
if (user->type != DSP_REG_N || user->reg != A_Y1_NUM)
goto fail;
break;
case F_REG_M:
case D_REG_M:
case X_REG_M:
case V_REG_M:
case FPUL_M:
case FPSCR_M:
/* Opcode needs rn */
if (user->type != arg - F_REG_M + F_REG_N)
goto fail;
reg_m = user->reg;
break;
case DX_REG_M:
if (user->type != D_REG_N && user->type != X_REG_N)
goto fail;
reg_m = user->reg;
break;
case XMTRX_M4:
if (user->type != XMTRX_M4)
goto fail;
reg_m = 4;
break;
default:
printf (_("unhandled %d\n"), arg);
goto fail;
}
}
if ( !(valid_arch & this_try->arch))
goto fail;
valid_arch &= this_try->arch;
return this_try;
fail:
;
}
return 0;
}
int
check (operand, low, high)
expressionS *operand;
int low;
int high;
{
if (operand->X_op != O_constant
|| operand->X_add_number < low
|| operand->X_add_number > high)
{
as_bad (_("operand must be absolute in range %d..%d"), low, high);
}
return operand->X_add_number;
}
static void
insert (where, how, pcrel, op)
char *where;
int how;
int pcrel;
sh_operand_info *op;
{
fix_new_exp (frag_now,
where - frag_now->fr_literal,
2,
&op->immediate,
pcrel,
how);
}
static void
build_relax (opcode, op)
sh_opcode_info *opcode;
sh_operand_info *op;
{
int high_byte = target_big_endian ? 0 : 1;
char *p;
if (opcode->arg[0] == A_BDISP8)
{
int what = (opcode->nibbles[1] & 4) ? COND_JUMP_DELAY : COND_JUMP;
p = frag_var (rs_machine_dependent,
md_relax_table[C (what, COND32)].rlx_length,
md_relax_table[C (what, COND8)].rlx_length,
C (what, 0),
op->immediate.X_add_symbol,
op->immediate.X_add_number,
0);
p[high_byte] = (opcode->nibbles[0] << 4) | (opcode->nibbles[1]);
}
else if (opcode->arg[0] == A_BDISP12)
{
p = frag_var (rs_machine_dependent,
md_relax_table[C (UNCOND_JUMP, UNCOND32)].rlx_length,
md_relax_table[C (UNCOND_JUMP, UNCOND12)].rlx_length,
C (UNCOND_JUMP, 0),
op->immediate.X_add_symbol,
op->immediate.X_add_number,
0);
p[high_byte] = (opcode->nibbles[0] << 4);
}
}
/* Insert ldrs & ldre with fancy relocations that relaxation can recognize. */
static char *
insert_loop_bounds (output, operand)
char *output;
sh_operand_info *operand;
{
char *name;
symbolS *end_sym;
/* Since the low byte of the opcode will be overwritten by the reloc, we
can just stash the high byte into both bytes and ignore endianness. */
output[0] = 0x8c;
output[1] = 0x8c;
insert (output, BFD_RELOC_SH_LOOP_START, 1, operand);
insert (output, BFD_RELOC_SH_LOOP_END, 1, operand + 1);
if (sh_relax)
{
static int count = 0;
/* If the last loop insn is a two-byte-insn, it is in danger of being
swapped with the insn after it. To prevent this, create a new
symbol - complete with SH_LABEL reloc - after the last loop insn.
If the last loop insn is four bytes long, the symbol will be
right in the middle, but four byte insns are not swapped anyways. */
/* A REPEAT takes 6 bytes. The SH has a 32 bit address space.
Hence a 9 digit number should be enough to count all REPEATs. */
name = alloca (11);
sprintf (name, "_R%x", count++ & 0x3fffffff);
end_sym = symbol_new (name, undefined_section, 0, &zero_address_frag);
/* Make this a local symbol. */
#ifdef OBJ_COFF
SF_SET_LOCAL (end_sym);
#endif /* OBJ_COFF */
symbol_table_insert (end_sym);
end_sym->sy_value = operand[1].immediate;
end_sym->sy_value.X_add_number += 2;
fix_new (frag_now, frag_now_fix (), 2, end_sym, 0, 1, BFD_RELOC_SH_LABEL);
}
output = frag_more (2);
output[0] = 0x8e;
output[1] = 0x8e;
insert (output, BFD_RELOC_SH_LOOP_START, 1, operand);
insert (output, BFD_RELOC_SH_LOOP_END, 1, operand + 1);
return frag_more (2);
}
/* Now we know what sort of opcodes it is, let's build the bytes. */
static void
build_Mytes (opcode, operand)
sh_opcode_info *opcode;
sh_operand_info *operand;
{
int index;
char nbuf[4];
char *output = frag_more (2);
int low_byte = target_big_endian ? 1 : 0;
nbuf[0] = 0;
nbuf[1] = 0;
nbuf[2] = 0;
nbuf[3] = 0;
for (index = 0; index < 4; index++)
{
sh_nibble_type i = opcode->nibbles[index];
if (i < 16)
{
nbuf[index] = i;
}
else
{
switch (i)
{
case REG_N:
nbuf[index] = reg_n;
break;
case REG_M:
nbuf[index] = reg_m;
break;
case SDT_REG_N:
if (reg_n < 2 || reg_n > 5)
as_bad (_("Invalid register: 'r%d'"), reg_n);
nbuf[index] = (reg_n & 3) | 4;
break;
case REG_NM:
nbuf[index] = reg_n | (reg_m >> 2);
break;
case REG_B:
nbuf[index] = reg_b | 0x08;
break;
case IMM0_4BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY4, 0, operand);
break;
case IMM0_4BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY2, 0, operand);
break;
case IMM0_4:
insert (output + low_byte, BFD_RELOC_SH_IMM4, 0, operand);
break;
case IMM1_4BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY4, 0, operand + 1);
break;
case IMM1_4BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM4BY2, 0, operand + 1);
break;
case IMM1_4:
insert (output + low_byte, BFD_RELOC_SH_IMM4, 0, operand + 1);
break;
case IMM0_8BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY4, 0, operand);
break;
case IMM0_8BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY2, 0, operand);
break;
case IMM0_8:
insert (output + low_byte, BFD_RELOC_SH_IMM8, 0, operand);
break;
case IMM1_8BY4:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY4, 0, operand + 1);
break;
case IMM1_8BY2:
insert (output + low_byte, BFD_RELOC_SH_IMM8BY2, 0, operand + 1);
break;
case IMM1_8:
insert (output + low_byte, BFD_RELOC_SH_IMM8, 0, operand + 1);
break;
case PCRELIMM_8BY4:
insert (output, BFD_RELOC_SH_PCRELIMM8BY4, 1, operand);
break;
case PCRELIMM_8BY2:
insert (output, BFD_RELOC_SH_PCRELIMM8BY2, 1, operand);
break;
case REPEAT:
output = insert_loop_bounds (output, operand);
nbuf[index] = opcode->nibbles[3];
operand += 2;
break;
default:
printf (_("failed for %d\n"), i);
}
}
}
if (!target_big_endian)
{
output[1] = (nbuf[0] << 4) | (nbuf[1]);
output[0] = (nbuf[2] << 4) | (nbuf[3]);
}
else
{
output[0] = (nbuf[0] << 4) | (nbuf[1]);
output[1] = (nbuf[2] << 4) | (nbuf[3]);
}
}
/* Find an opcode at the start of *STR_P in the hash table, and set
*STR_P to the first character after the last one read. */
static sh_opcode_info *
find_cooked_opcode (str_p)
char **str_p;
{
char *str = *str_p;
unsigned char *op_start;
unsigned char *op_end;
char name[20];
int nlen = 0;
/* Drop leading whitespace. */
while (*str == ' ')
str++;
/* Find the op code end.
The pre-processor will eliminate whitespace in front of
any '@' after the first argument; we may be called from
assemble_ppi, so the opcode might be terminated by an '@'. */
for (op_start = op_end = (unsigned char *) (str);
*op_end
&& nlen < 20
&& !is_end_of_line[*op_end] && *op_end != ' ' && *op_end != '@';
op_end++)
{
unsigned char c = op_start[nlen];
/* The machine independent code will convert CMP/EQ into cmp/EQ
because it thinks the '/' is the end of the symbol. Moreover,
all but the first sub-insn is a parallel processing insn won't
be capitailzed. Instead of hacking up the machine independent
code, we just deal with it here. */
c = isupper (c) ? tolower (c) : c;
name[nlen] = c;
nlen++;
}
name[nlen] = 0;
*str_p = op_end;
if (nlen == 0)
as_bad (_("can't find opcode "));
return (sh_opcode_info *) hash_find (opcode_hash_control, name);
}
/* Assemble a parallel processing insn. */
#define DDT_BASE 0xf000 /* Base value for double data transfer insns */
static void
assemble_ppi (op_end, opcode)
char *op_end;
sh_opcode_info *opcode;
{
int movx = 0;
int movy = 0;
int cond = 0;
int field_b = 0;
char *output;
int move_code;
/* Some insn ignore one or more register fields, e.g. psts machl,a0.
Make sure we encode a defined insn pattern. */
reg_x = 0;
reg_y = 0;
for (;;)
{
sh_operand_info operand[3];
if (opcode->arg[0] != A_END)
op_end = get_operands (opcode, op_end, operand);
opcode = get_specific (opcode, operand);
if (opcode == 0)
{
/* Couldn't find an opcode which matched the operands. */
char *where = frag_more (2);
where[0] = 0x0;
where[1] = 0x0;
as_bad (_("invalid operands for opcode"));
return;
}
if (opcode->nibbles[0] != PPI)
as_bad (_("insn can't be combined with parallel processing insn"));
switch (opcode->nibbles[1])
{
case NOPX:
if (movx)
as_bad (_("multiple movx specifications"));
movx = DDT_BASE;
break;
case NOPY:
if (movy)
as_bad (_("multiple movy specifications"));
movy = DDT_BASE;
break;
case MOVX:
if (movx)
as_bad (_("multiple movx specifications"));
if (reg_n < 4 || reg_n > 5)
as_bad (_("invalid movx address register"));
if (opcode->nibbles[2] & 8)
{
if (reg_m == A_A1_NUM)
movx = 1 << 7;
else if (reg_m != A_A0_NUM)
as_bad (_("invalid movx dsp register"));
}
else
{
if (reg_x > 1)
as_bad (_("invalid movx dsp register"));
movx = reg_x << 7;
}
movx += ((reg_n - 4) << 9) + (opcode->nibbles[2] << 2) + DDT_BASE;
break;
case MOVY:
if (movy)
as_bad (_("multiple movy specifications"));
if (opcode->nibbles[2] & 8)
{
/* Bit 3 in nibbles[2] is intended for bit 4 of the opcode,
so add 8 more. */
movy = 8;
if (reg_m == A_A1_NUM)
movy += 1 << 6;
else if (reg_m != A_A0_NUM)
as_bad (_("invalid movy dsp register"));
}
else
{
if (reg_y > 1)
as_bad (_("invalid movy dsp register"));
movy = reg_y << 6;
}
if (reg_n < 6 || reg_n > 7)
as_bad (_("invalid movy address register"));
movy += ((reg_n - 6) << 8) + opcode->nibbles[2] + DDT_BASE;
break;
case PSH:
if (operand[0].immediate.X_op != O_constant)
as_bad (_("dsp immediate shift value not constant"));
field_b = ((opcode->nibbles[2] << 12)
| (operand[0].immediate.X_add_number & 127) << 4
| reg_n);
break;
case PPI3:
if (field_b)
as_bad (_("multiple parallel processing specifications"));
field_b = ((opcode->nibbles[2] << 12) + (opcode->nibbles[3] << 8)
+ (reg_x << 6) + (reg_y << 4) + reg_n);
break;
case PDC:
if (cond)
as_bad (_("multiple condition specifications"));
cond = opcode->nibbles[2] << 8;
if (*op_end)
goto skip_cond_check;
break;
case PPIC:
if (field_b)
as_bad (_("multiple parallel processing specifications"));
field_b = ((opcode->nibbles[2] << 12) + (opcode->nibbles[3] << 8)
+ cond + (reg_x << 6) + (reg_y << 4) + reg_n);
cond = 0;
break;
case PMUL:
if (field_b)
{
if ((field_b & 0xef00) != 0xa100)
as_bad (_("insn cannot be combined with pmuls"));
field_b -= 0x8100;
switch (field_b & 0xf)
{
case A_X0_NUM:
field_b += 0 - A_X0_NUM;
break;
case A_Y0_NUM:
field_b += 1 - A_Y0_NUM;
break;
case A_A0_NUM:
field_b += 2 - A_A0_NUM;
break;
case A_A1_NUM:
field_b += 3 - A_A1_NUM;
break;
default:
as_bad (_("bad padd / psub pmuls output operand"));
}
}
field_b += 0x4000 + reg_efg;
break;
default:
abort ();
}
if (cond)
{
as_bad (_("condition not followed by conditionalizable insn"));
cond = 0;
}
if (! *op_end)
break;
skip_cond_check:
opcode = find_cooked_opcode (&op_end);
if (opcode == NULL)
{
(as_bad
(_("unrecognized characters at end of parallel processing insn")));
break;
}
}
move_code = movx | movy;
if (field_b)
{
/* Parallel processing insn. */
unsigned long ppi_code = (movx | movy | 0xf800) << 16 | field_b;
output = frag_more (4);
if (! target_big_endian)
{
output[3] = ppi_code >> 8;
output[2] = ppi_code;
}
else
{
output[2] = ppi_code >> 8;
output[3] = ppi_code;
}
move_code |= 0xf800;
}
else
/* Just a double data transfer. */
output = frag_more (2);
if (! target_big_endian)
{
output[1] = move_code >> 8;
output[0] = move_code;
}
else
{
output[0] = move_code >> 8;
output[1] = move_code;
}
}
/* This is the guts of the machine-dependent assembler. STR points to a
machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles to. */
void
md_assemble (str)
char *str;
{
unsigned char *op_end;
sh_operand_info operand[3];
sh_opcode_info *opcode;
opcode = find_cooked_opcode (&str);
op_end = str;
if (opcode == NULL)
{
as_bad (_("unknown opcode"));
return;
}
if (sh_relax
&& ! seg_info (now_seg)->tc_segment_info_data.in_code)
{
/* Output a CODE reloc to tell the linker that the following
bytes are instructions, not data. */
fix_new (frag_now, frag_now_fix (), 2, &abs_symbol, 0, 0,
BFD_RELOC_SH_CODE);
seg_info (now_seg)->tc_segment_info_data.in_code = 1;
}
if (opcode->nibbles[0] == PPI)
{
assemble_ppi (op_end, opcode);
return;
}
if (opcode->arg[0] == A_BDISP12
|| opcode->arg[0] == A_BDISP8)
{
parse_exp (op_end + 1, &operand[0]);
build_relax (opcode, &operand[0]);
}
else
{
if (opcode->arg[0] == A_END)
{
/* Ignore trailing whitespace. If there is any, it has already
been compressed to a single space. */
if (*op_end == ' ')
op_end++;
}
else
{
op_end = get_operands (opcode, op_end, operand);
}
opcode = get_specific (opcode, operand);
if (opcode == 0)
{
/* Couldn't find an opcode which matched the operands. */
char *where = frag_more (2);
where[0] = 0x0;
where[1] = 0x0;
as_bad (_("invalid operands for opcode"));
return;
}
if (*op_end)
as_bad (_("excess operands: '%s'"), op_end);
build_Mytes (opcode, operand);
}
}
/* This routine is called each time a label definition is seen. It
emits a BFD_RELOC_SH_LABEL reloc if necessary. */
void
sh_frob_label ()
{
static fragS *last_label_frag;
static int last_label_offset;
if (sh_relax
&& seg_info (now_seg)->tc_segment_info_data.in_code)
{
int offset;
offset = frag_now_fix ();
if (frag_now != last_label_frag
|| offset != last_label_offset)
{
fix_new (frag_now, offset, 2, &abs_symbol, 0, 0, BFD_RELOC_SH_LABEL);
last_label_frag = frag_now;
last_label_offset = offset;
}
}
}
/* This routine is called when the assembler is about to output some
data. It emits a BFD_RELOC_SH_DATA reloc if necessary. */
void
sh_flush_pending_output ()
{
if (sh_relax
&& seg_info (now_seg)->tc_segment_info_data.in_code)
{
fix_new (frag_now, frag_now_fix (), 2, &abs_symbol, 0, 0,
BFD_RELOC_SH_DATA);
seg_info (now_seg)->tc_segment_info_data.in_code = 0;
}
}
symbolS *
md_undefined_symbol (name)
char *name;
{
return 0;
}
#ifdef OBJ_COFF
#ifndef BFD_ASSEMBLER
void
tc_crawl_symbol_chain (headers)
object_headers *headers;
{
printf (_("call to tc_crawl_symbol_chain \n"));
}
void
tc_headers_hook (headers)
object_headers *headers;
{
printf (_("call to tc_headers_hook \n"));
}
#endif
#endif
/* Various routines to kill one day. */
/* Equal to MAX_PRECISION in atof-ieee.c. */
#define MAX_LITTLENUMS 6
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *LITP. The number
of LITTLENUMS emitted is stored in *SIZEP . An error message is
returned, or NULL on OK. */
char *
md_atof (type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return _("bad call to md_atof");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
if (! target_big_endian)
{
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
else
{
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
return NULL;
}
/* Handle the .uses pseudo-op. This pseudo-op is used just before a
call instruction. It refers to a label of the instruction which
loads the register which the call uses. We use it to generate a
special reloc for the linker. */
static void
s_uses (ignore)
int ignore ATTRIBUTE_UNUSED;
{
expressionS ex;
if (! sh_relax)
as_warn (_(".uses pseudo-op seen when not relaxing"));
expression (&ex);
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("bad .uses format"));
ignore_rest_of_line ();
return;
}
fix_new_exp (frag_now, frag_now_fix (), 2, &ex, 1, BFD_RELOC_SH_USES);
demand_empty_rest_of_line ();
}
CONST char *md_shortopts = "";
struct option md_longopts[] =
{
#define OPTION_RELAX (OPTION_MD_BASE)
#define OPTION_LITTLE (OPTION_MD_BASE + 1)
#define OPTION_SMALL (OPTION_LITTLE + 1)
#define OPTION_DSP (OPTION_SMALL + 1)
{"relax", no_argument, NULL, OPTION_RELAX},
{"little", no_argument, NULL, OPTION_LITTLE},
{"small", no_argument, NULL, OPTION_SMALL},
{"dsp", no_argument, NULL, OPTION_DSP},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (c, arg)
int c;
char *arg ATTRIBUTE_UNUSED;
{
switch (c)
{
case OPTION_RELAX:
sh_relax = 1;
break;
case OPTION_LITTLE:
shl = 1;
target_big_endian = 0;
break;
case OPTION_SMALL:
sh_small = 1;
break;
case OPTION_DSP:
sh_dsp = 1;
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (stream)
FILE *stream;
{
fprintf (stream, _("\
SH options:\n\
-little generate little endian code\n\
-relax alter jump instructions for long displacements\n\
-small align sections to 4 byte boundaries, not 16\n\
-dsp enable sh-dsp insns, and disable sh3e / sh4 insns.\n"));
}
void
tc_Nout_fix_to_chars ()
{
printf (_("call to tc_Nout_fix_to_chars \n"));
abort ();
}
/* This struct is used to pass arguments to sh_count_relocs through
bfd_map_over_sections. */
struct sh_count_relocs
{
/* Symbol we are looking for. */
symbolS *sym;
/* Count of relocs found. */
int count;
};
/* Count the number of fixups in a section which refer to a particular
symbol. When using BFD_ASSEMBLER, this is called via
bfd_map_over_sections. */
static void
sh_count_relocs (abfd, sec, data)
bfd *abfd ATTRIBUTE_UNUSED;
segT sec;
PTR data;
{
struct sh_count_relocs *info = (struct sh_count_relocs *) data;
segment_info_type *seginfo;
symbolS *sym;
fixS *fix;
seginfo = seg_info (sec);
if (seginfo == NULL)
return;
sym = info->sym;
for (fix = seginfo->fix_root; fix != NULL; fix = fix->fx_next)
{
if (fix->fx_addsy == sym)
{
++info->count;
fix->fx_tcbit = 1;
}
}
}
/* Handle the count relocs for a particular section. When using
BFD_ASSEMBLER, this is called via bfd_map_over_sections. */
static void
sh_frob_section (abfd, sec, ignore)
bfd *abfd ATTRIBUTE_UNUSED;
segT sec;
PTR ignore ATTRIBUTE_UNUSED;
{
segment_info_type *seginfo;
fixS *fix;
seginfo = seg_info (sec);
if (seginfo == NULL)
return;
for (fix = seginfo->fix_root; fix != NULL; fix = fix->fx_next)
{
symbolS *sym;
bfd_vma val;
fixS *fscan;
struct sh_count_relocs info;
if (fix->fx_r_type != BFD_RELOC_SH_USES)
continue;
/* The BFD_RELOC_SH_USES reloc should refer to a defined local
symbol in the same section. */
sym = fix->fx_addsy;
if (sym == NULL
|| fix->fx_subsy != NULL
|| fix->fx_addnumber != 0
|| S_GET_SEGMENT (sym) != sec
#if ! defined (BFD_ASSEMBLER) && defined (OBJ_COFF)
|| S_GET_STORAGE_CLASS (sym) == C_EXT
#endif
|| S_IS_EXTERNAL (sym))
{
as_warn_where (fix->fx_file, fix->fx_line,
_(".uses does not refer to a local symbol in the same section"));
continue;
}
/* Look through the fixups again, this time looking for one
at the same location as sym. */
val = S_GET_VALUE (sym);
for (fscan = seginfo->fix_root;
fscan != NULL;
fscan = fscan->fx_next)
if (val == fscan->fx_frag->fr_address + fscan->fx_where
&& fscan->fx_r_type != BFD_RELOC_SH_ALIGN
&& fscan->fx_r_type != BFD_RELOC_SH_CODE
&& fscan->fx_r_type != BFD_RELOC_SH_DATA
&& fscan->fx_r_type != BFD_RELOC_SH_LABEL)
break;
if (fscan == NULL)
{
as_warn_where (fix->fx_file, fix->fx_line,
_("can't find fixup pointed to by .uses"));
continue;
}
if (fscan->fx_tcbit)
{
/* We've already done this one. */
continue;
}
/* The variable fscan should also be a fixup to a local symbol
in the same section. */
sym = fscan->fx_addsy;
if (sym == NULL
|| fscan->fx_subsy != NULL
|| fscan->fx_addnumber != 0
|| S_GET_SEGMENT (sym) != sec
#if ! defined (BFD_ASSEMBLER) && defined (OBJ_COFF)
|| S_GET_STORAGE_CLASS (sym) == C_EXT
#endif
|| S_IS_EXTERNAL (sym))
{
as_warn_where (fix->fx_file, fix->fx_line,
_(".uses target does not refer to a local symbol in the same section"));
continue;
}
/* Now we look through all the fixups of all the sections,
counting the number of times we find a reference to sym. */
info.sym = sym;
info.count = 0;
#ifdef BFD_ASSEMBLER
bfd_map_over_sections (stdoutput, sh_count_relocs, (PTR) &info);
#else
{
int iscan;
for (iscan = SEG_E0; iscan < SEG_UNKNOWN; iscan++)
sh_count_relocs ((bfd *) NULL, iscan, (PTR) &info);
}
#endif
if (info.count < 1)
abort ();
/* Generate a BFD_RELOC_SH_COUNT fixup at the location of sym.
We have already adjusted the value of sym to include the
fragment address, so we undo that adjustment here. */
subseg_change (sec, 0);
fix_new (symbol_get_frag (sym),
S_GET_VALUE (sym) - symbol_get_frag (sym)->fr_address,
4, &abs_symbol, info.count, 0, BFD_RELOC_SH_COUNT);
}
}
/* This function is called after the symbol table has been completed,
but before the relocs or section contents have been written out.
If we have seen any .uses pseudo-ops, they point to an instruction
which loads a register with the address of a function. We look
through the fixups to find where the function address is being
loaded from. We then generate a COUNT reloc giving the number of
times that function address is referred to. The linker uses this
information when doing relaxing, to decide when it can eliminate
the stored function address entirely. */
void
sh_frob_file ()
{
if (! sh_relax)
return;
#ifdef BFD_ASSEMBLER
bfd_map_over_sections (stdoutput, sh_frob_section, (PTR) NULL);
#else
{
int iseg;
for (iseg = SEG_E0; iseg < SEG_UNKNOWN; iseg++)
sh_frob_section ((bfd *) NULL, iseg, (PTR) NULL);
}
#endif
}
/* Called after relaxing. Set the correct sizes of the fragments, and
create relocs so that md_apply_fix will fill in the correct values. */
void
md_convert_frag (headers, seg, fragP)
#ifdef BFD_ASSEMBLER
bfd *headers ATTRIBUTE_UNUSED;
#else
object_headers *headers;
#endif
segT seg;
fragS *fragP;
{
int donerelax = 0;
switch (fragP->fr_subtype)
{
case C (COND_JUMP, COND8):
case C (COND_JUMP_DELAY, COND8):
subseg_change (seg, 0);
fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
1, BFD_RELOC_SH_PCDISP8BY2);
fragP->fr_fix += 2;
fragP->fr_var = 0;
break;
case C (UNCOND_JUMP, UNCOND12):
subseg_change (seg, 0);
fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
1, BFD_RELOC_SH_PCDISP12BY2);
fragP->fr_fix += 2;
fragP->fr_var = 0;
break;
case C (UNCOND_JUMP, UNCOND32):
case C (UNCOND_JUMP, UNDEF_WORD_DISP):
if (fragP->fr_symbol == NULL)
as_bad (_("at 0x%lx, displacement overflows 12-bit field"),
(unsigned long) fragP->fr_address);
else if (S_IS_DEFINED (fragP->fr_symbol))
as_bad (_("at 0x%lx, displacement to defined symbol %s overflows 12-bit field"),
(unsigned long) fragP->fr_address,
S_GET_NAME (fragP->fr_symbol));
else
as_bad (_("at 0x%lx, displacement to undefined symbol %s overflows 12-bit field"),
(unsigned long) fragP->fr_address,
S_GET_NAME (fragP->fr_symbol));
#if 0
/* This code works, but generates poor code and the compiler
should never produce a sequence that requires it to be used. */
/* A jump wont fit in 12 bits, make code which looks like
bra foo
mov.w @(0, PC), r14
.long disp
foo: bra @r14
*/
int t = buffer[0] & 0x10;
buffer[highbyte ] = 0xa0; /* branch over move and disp */
buffer[lowbyte ] = 3;
buffer[highbyte + 2] = 0xd0 | JREG; /* Build mov insn */
buffer[lowbyte + 2] = 0x00;
buffer[highbyte + 4] = 0; /* space for 32 bit jump disp */
buffer[lowbyte + 4] = 0;
buffer[highbyte + 6] = 0;
buffer[lowbyte + 6] = 0;
buffer[highbyte + 8] = 0x40 | JREG; /* Build jmp @JREG */
buffer[lowbyte + 8] = t ? 0xb : 0x2b;
buffer[highbyte + 10] = 0x20; /* build nop */
buffer[lowbyte + 10] = 0x0b;
/* Make reloc for the long disp. */
fix_new (fragP,
fragP->fr_fix + 4,
4,
fragP->fr_symbol,
fragP->fr_offset,
0,
BFD_RELOC_32);
fragP->fr_fix += UNCOND32_LENGTH;
fragP->fr_var = 0;
donerelax = 1;
#endif
break;
case C (COND_JUMP, COND12):
case C (COND_JUMP_DELAY, COND12):
/* A bcond won't fit, so turn it into a b!cond; bra disp; nop. */
/* I found that a relax failure for gcc.c-torture/execute/930628-1.c
was due to gas incorrectly relaxing an out-of-range conditional
branch with delay slot. It turned:
bf.s L6 (slot mov.l r12,@(44,r0))
into:
2c: 8f 01 a0 8b bf.s 32 <_main+32> (slot bra L6)
30: 00 09 nop
32: 10 cb mov.l r12,@(44,r0)
Therefore, branches with delay slots have to be handled
differently from ones without delay slots. */
{
unsigned char *buffer =
(unsigned char *) (fragP->fr_fix + fragP->fr_literal);
int highbyte = target_big_endian ? 0 : 1;
int lowbyte = target_big_endian ? 1 : 0;
int delay = fragP->fr_subtype == C (COND_JUMP_DELAY, COND12);
/* Toggle the true/false bit of the bcond. */
buffer[highbyte] ^= 0x2;
/* If this is a dalayed branch, we may not put the the bra in the
slot. So we change it to a non-delayed branch, like that:
b! cond slot_label; bra disp; slot_label: slot_insn
??? We should try if swapping the conditional branch and
its delay-slot insn already makes the branch reach. */
/* Build a relocation to six / four bytes farther on. */
subseg_change (seg, 0);
fix_new (fragP, fragP->fr_fix, 2,
#ifdef BFD_ASSEMBLER
section_symbol (seg),
#else
seg_info (seg)->dot,
#endif
fragP->fr_address + fragP->fr_fix + (delay ? 4 : 6),
1, BFD_RELOC_SH_PCDISP8BY2);
/* Set up a jump instruction. */
buffer[highbyte + 2] = 0xa0;
buffer[lowbyte + 2] = 0;
fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_SH_PCDISP12BY2);
if (delay)
{
buffer[highbyte] &= ~0x4; /* Removes delay slot from branch. */
fragP->fr_fix += 4;
}
else
{
/* Fill in a NOP instruction. */
buffer[highbyte + 4] = 0x0;
buffer[lowbyte + 4] = 0x9;
fragP->fr_fix += 6;
}
fragP->fr_var = 0;
donerelax = 1;
}
break;
case C (COND_JUMP, COND32):
case C (COND_JUMP_DELAY, COND32):
case C (COND_JUMP, UNDEF_WORD_DISP):
case C (COND_JUMP_DELAY, UNDEF_WORD_DISP):
if (fragP->fr_symbol == NULL)
as_bad (_("at 0x%lx, displacement overflows 8-bit field"),
(unsigned long) fragP->fr_address);
else if (S_IS_DEFINED (fragP->fr_symbol))
as_bad (_("at 0x%lx, displacement to defined symbol %s overflows 8-bit field "),
(unsigned long) fragP->fr_address,
S_GET_NAME (fragP->fr_symbol));
else
as_bad (_("at 0x%lx, displacement to undefined symbol %s overflows 8-bit field "),
(unsigned long) fragP->fr_address,
S_GET_NAME (fragP->fr_symbol));
#if 0
/* This code works, but generates poor code, and the compiler
should never produce a sequence that requires it to be used. */
/* A bcond won't fit and it won't go into a 12 bit
displacement either, the code sequence looks like:
b!cond foop
mov.w @(n, PC), r14
jmp @r14
nop
.long where
foop:
*/
buffer[0] ^= 0x2; /* Toggle T/F bit */
#define JREG 14
buffer[1] = 5; /* branch over mov, jump, nop and ptr */
buffer[2] = 0xd0 | JREG; /* Build mov insn */
buffer[3] = 0x2;
buffer[4] = 0x40 | JREG; /* Build jmp @JREG */
buffer[5] = 0x0b;
buffer[6] = 0x20; /* build nop */
buffer[7] = 0x0b;
buffer[8] = 0; /* space for 32 bit jump disp */
buffer[9] = 0;
buffer[10] = 0;
buffer[11] = 0;
buffer[12] = 0;
buffer[13] = 0;
/* Make reloc for the long disp */
fix_new (fragP,
fragP->fr_fix + 8,
4,
fragP->fr_symbol,
fragP->fr_offset,
0,
BFD_RELOC_32);
fragP->fr_fix += COND32_LENGTH;
fragP->fr_var = 0;
donerelax = 1;
#endif
break;
default:
abort ();
}
if (donerelax && !sh_relax)
as_warn_where (fragP->fr_file, fragP->fr_line,
_("overflow in branch to %s; converted into longer instruction sequence"),
(fragP->fr_symbol != NULL
? S_GET_NAME (fragP->fr_symbol)
: ""));
}
valueT
md_section_align (seg, size)
segT seg;
valueT size;
{
#ifdef BFD_ASSEMBLER
#ifdef OBJ_ELF
return size;
#else /* ! OBJ_ELF */
return ((size + (1 << bfd_get_section_alignment (stdoutput, seg)) - 1)
& (-1 << bfd_get_section_alignment (stdoutput, seg)));
#endif /* ! OBJ_ELF */
#else /* ! BFD_ASSEMBLER */
return ((size + (1 << section_alignment[(int) seg]) - 1)
& (-1 << section_alignment[(int) seg]));
#endif /* ! BFD_ASSEMBLER */
}
/* This static variable is set by s_uacons to tell sh_cons_align that
the expession does not need to be aligned. */
static int sh_no_align_cons = 0;
/* This handles the unaligned space allocation pseudo-ops, such as
.uaword. .uaword is just like .word, but the value does not need
to be aligned. */
static void
s_uacons (bytes)
int bytes;
{
/* Tell sh_cons_align not to align this value. */
sh_no_align_cons = 1;
cons (bytes);
}
/* If a .word, et. al., pseud-op is seen, warn if the value is not
aligned correctly. Note that this can cause warnings to be issued
when assembling initialized structured which were declared with the
packed attribute. FIXME: Perhaps we should require an option to
enable this warning? */
void
sh_cons_align (nbytes)
int nbytes;
{
int nalign;
char *p;
if (sh_no_align_cons)
{
/* This is an unaligned pseudo-op. */
sh_no_align_cons = 0;
return;
}
nalign = 0;
while ((nbytes & 1) == 0)
{
++nalign;
nbytes >>= 1;
}
if (nalign == 0)
return;
if (now_seg == absolute_section)
{
if ((abs_section_offset & ((1 << nalign) - 1)) != 0)
as_warn (_("misaligned data"));
return;
}
p = frag_var (rs_align_code, 1, 1, (relax_substateT) 0,
(symbolS *) NULL, (offsetT) nalign, (char *) NULL);
record_alignment (now_seg, nalign);
}
/* When relaxing, we need to output a reloc for any .align directive
that requests alignment to a four byte boundary or larger. This is
also where we check for misaligned data. */
void
sh_handle_align (frag)
fragS *frag;
{
if (sh_relax
&& frag->fr_type == rs_align
&& frag->fr_address + frag->fr_fix > 0
&& frag->fr_offset > 1
&& now_seg != bss_section)
fix_new (frag, frag->fr_fix, 2, &abs_symbol, frag->fr_offset, 0,
BFD_RELOC_SH_ALIGN);
if (frag->fr_type == rs_align_code
&& frag->fr_next->fr_address - frag->fr_address - frag->fr_fix != 0)
as_warn_where (frag->fr_file, frag->fr_line, _("misaligned data"));
}
/* This macro decides whether a particular reloc is an entry in a
switch table. It is used when relaxing, because the linker needs
to know about all such entries so that it can adjust them if
necessary. */
#ifdef BFD_ASSEMBLER
#define SWITCH_TABLE_CONS(fix) (0)
#else
#define SWITCH_TABLE_CONS(fix) \
((fix)->fx_r_type == 0 \
&& ((fix)->fx_size == 2 \
|| (fix)->fx_size == 1 \
|| (fix)->fx_size == 4))
#endif
#define SWITCH_TABLE(fix) \
((fix)->fx_addsy != NULL \
&& (fix)->fx_subsy != NULL \
&& S_GET_SEGMENT ((fix)->fx_addsy) == text_section \
&& S_GET_SEGMENT ((fix)->fx_subsy) == text_section \
&& ((fix)->fx_r_type == BFD_RELOC_32 \
|| (fix)->fx_r_type == BFD_RELOC_16 \
|| (fix)->fx_r_type == BFD_RELOC_8 \
|| SWITCH_TABLE_CONS (fix)))
/* See whether we need to force a relocation into the output file.
This is used to force out switch and PC relative relocations when
relaxing. */
int
sh_force_relocation (fix)
fixS *fix;
{
if (fix->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fix->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|| fix->fx_r_type == BFD_RELOC_SH_LOOP_START
|| fix->fx_r_type == BFD_RELOC_SH_LOOP_END)
return 1;
if (! sh_relax)
return 0;
return (fix->fx_pcrel
|| SWITCH_TABLE (fix)
|| fix->fx_r_type == BFD_RELOC_SH_COUNT
|| fix->fx_r_type == BFD_RELOC_SH_ALIGN
|| fix->fx_r_type == BFD_RELOC_SH_CODE
|| fix->fx_r_type == BFD_RELOC_SH_DATA
|| fix->fx_r_type == BFD_RELOC_SH_LABEL);
}
#ifdef OBJ_ELF
boolean
sh_fix_adjustable (fixP)
fixS *fixP;
{
if (fixP->fx_addsy == NULL)
return 1;
/* We need the symbol name for the VTABLE entries */
if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
return 1;
}
void
sh_elf_final_processing ()
{
int val;
/* Set file-specific flags to indicate if this code needs
a processor with the sh-dsp / sh3e ISA to execute. */
if (valid_arch & arch_sh1)
val = EF_SH1;
else if (valid_arch & arch_sh2)
val = EF_SH2;
else if (valid_arch & arch_sh_dsp)
val = EF_SH_DSP;
else if (valid_arch & arch_sh3)
val = EF_SH3;
else if (valid_arch & arch_sh3_dsp)
val = EF_SH_DSP;
else if (valid_arch & arch_sh3e)
val = EF_SH3E;
else if (valid_arch & arch_sh4)
val = EF_SH4;
else
abort ();
elf_elfheader (stdoutput)->e_flags &= ~EF_SH_MACH_MASK;
elf_elfheader (stdoutput)->e_flags |= val;
}
#endif
/* Apply a fixup to the object file. */
#ifdef BFD_ASSEMBLER
int
md_apply_fix (fixP, valp)
fixS *fixP;
valueT *valp;
#else
void
md_apply_fix (fixP, val)
fixS *fixP;
long val;
#endif
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
int lowbyte = target_big_endian ? 1 : 0;
int highbyte = target_big_endian ? 0 : 1;
#ifdef BFD_ASSEMBLER
long val = *valp;
#endif
long max, min;
int shift;
#ifdef BFD_ASSEMBLER
/* The function adjust_reloc_syms won't convert a reloc against a weak
symbol into a reloc against a section, but bfd_install_relocation
will screw up if the symbol is defined, so we have to adjust val here
to avoid the screw up later. */
if (fixP->fx_addsy != NULL
&& S_IS_WEAK (fixP->fx_addsy))
val -= S_GET_VALUE (fixP->fx_addsy);
#endif
#ifndef BFD_ASSEMBLER
if (fixP->fx_r_type == 0)
{
if (fixP->fx_size == 2)
fixP->fx_r_type = BFD_RELOC_16;
else if (fixP->fx_size == 4)
fixP->fx_r_type = BFD_RELOC_32;
else if (fixP->fx_size == 1)
fixP->fx_r_type = BFD_RELOC_8;
else
abort ();
}
#endif
max = min = 0;
shift = 0;
switch (fixP->fx_r_type)
{
case BFD_RELOC_SH_IMM4:
max = 0xf;
*buf = (*buf & 0xf0) | (val & 0xf);
break;
case BFD_RELOC_SH_IMM4BY2:
max = 0xf;
shift = 1;
*buf = (*buf & 0xf0) | ((val >> 1) & 0xf);
break;
case BFD_RELOC_SH_IMM4BY4:
max = 0xf;
shift = 2;
*buf = (*buf & 0xf0) | ((val >> 2) & 0xf);
break;
case BFD_RELOC_SH_IMM8BY2:
max = 0xff;
shift = 1;
*buf = val >> 1;
break;
case BFD_RELOC_SH_IMM8BY4:
max = 0xff;
shift = 2;
*buf = val >> 2;
break;
case BFD_RELOC_8:
case BFD_RELOC_SH_IMM8:
/* Sometimes the 8 bit value is sign extended (e.g., add) and
sometimes it is not (e.g., and). We permit any 8 bit value.
Note that adding further restrictions may invalidate
reasonable looking assembly code, such as ``and -0x1,r0''. */
max = 0xff;
min = -0xff;
*buf++ = val;
break;
case BFD_RELOC_SH_PCRELIMM8BY4:
/* The lower two bits of the PC are cleared before the
displacement is added in. We can assume that the destination
is on a 4 byte bounday. If this instruction is also on a 4
byte boundary, then we want
(target - here) / 4
and target - here is a multiple of 4.
Otherwise, we are on a 2 byte boundary, and we want
(target - (here - 2)) / 4
and target - here is not a multiple of 4. Computing
(target - (here - 2)) / 4 == (target - here + 2) / 4
works for both cases, since in the first case the addition of
2 will be removed by the division. target - here is in the
variable val. */
val = (val + 2) / 4;
if (val & ~0xff)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val;
break;
case BFD_RELOC_SH_PCRELIMM8BY2:
val /= 2;
if (val & ~0xff)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val;
break;
case BFD_RELOC_SH_PCDISP8BY2:
val /= 2;
if (val < -0x80 || val > 0x7f)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val;
break;
case BFD_RELOC_SH_PCDISP12BY2:
val /= 2;
if (val < -0x800 || val >= 0x7ff)
as_bad_where (fixP->fx_file, fixP->fx_line, _("pcrel too far"));
buf[lowbyte] = val & 0xff;
buf[highbyte] |= (val >> 8) & 0xf;
break;
case BFD_RELOC_32:
if (!target_big_endian)
{
*buf++ = val >> 0;
*buf++ = val >> 8;
*buf++ = val >> 16;
*buf++ = val >> 24;
}
else
{
*buf++ = val >> 24;
*buf++ = val >> 16;
*buf++ = val >> 8;
*buf++ = val >> 0;
}
break;
case BFD_RELOC_16:
if (! target_big_endian)
{
*buf++ = val >> 0;
*buf++ = val >> 8;
}
else
{
*buf++ = val >> 8;
*buf++ = val >> 0;
}
break;
case BFD_RELOC_SH_USES:
/* Pass the value into sh_coff_reloc_mangle. */
fixP->fx_addnumber = val;
break;
case BFD_RELOC_SH_COUNT:
case BFD_RELOC_SH_ALIGN:
case BFD_RELOC_SH_CODE:
case BFD_RELOC_SH_DATA:
case BFD_RELOC_SH_LABEL:
/* Nothing to do here. */
break;
case BFD_RELOC_SH_LOOP_START:
case BFD_RELOC_SH_LOOP_END:
case BFD_RELOC_VTABLE_INHERIT:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
#ifdef BFD_ASSEMBLER
return 0;
#else
return;
#endif
default:
abort ();
}
if (shift != 0)
{
if ((val & ((1 << shift) - 1)) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line, _("misaligned offset"));
if (val >= 0)
val >>= shift;
else
val = ((val >> shift)
| ((long) -1 & ~ ((long) -1 >> shift)));
}
if (max != 0 && (val < min || val > max))
as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range"));
#ifdef BFD_ASSEMBLER
return 0;
#endif
}
/* Called just before address relaxation. Return the length
by which a fragment must grow to reach it's destination. */
int
md_estimate_size_before_relax (fragP, segment_type)
register fragS *fragP;
register segT segment_type;
{
switch (fragP->fr_subtype)
{
case C (UNCOND_JUMP, UNDEF_DISP):
/* Used to be a branch to somewhere which was unknown. */
if (!fragP->fr_symbol)
{
fragP->fr_subtype = C (UNCOND_JUMP, UNCOND12);
fragP->fr_var = md_relax_table[C (UNCOND_JUMP, UNCOND12)].rlx_length;
}
else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
{
fragP->fr_subtype = C (UNCOND_JUMP, UNCOND12);
fragP->fr_var = md_relax_table[C (UNCOND_JUMP, UNCOND12)].rlx_length;
}
else
{
fragP->fr_subtype = C (UNCOND_JUMP, UNDEF_WORD_DISP);
fragP->fr_var = md_relax_table[C (UNCOND_JUMP, UNCOND32)].rlx_length;
return md_relax_table[C (UNCOND_JUMP, UNCOND32)].rlx_length;
}
break;
default:
abort ();
case C (COND_JUMP, UNDEF_DISP):
case C (COND_JUMP_DELAY, UNDEF_DISP):
/* Used to be a branch to somewhere which was unknown. */
if (fragP->fr_symbol
&& S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
{
int what = GET_WHAT (fragP->fr_subtype);
/* Got a symbol and it's defined in this segment, become byte
sized - maybe it will fix up. */
fragP->fr_subtype = C (what, COND8);
fragP->fr_var = md_relax_table[C (what, COND8)].rlx_length;
}
else if (fragP->fr_symbol)
{
int what = GET_WHAT (fragP->fr_subtype);
/* Its got a segment, but its not ours, so it will always be long. */
fragP->fr_subtype = C (what, UNDEF_WORD_DISP);
fragP->fr_var = md_relax_table[C (what, COND32)].rlx_length;
return md_relax_table[C (what, COND32)].rlx_length;
}
else
{
int what = GET_WHAT (fragP->fr_subtype);
/* We know the abs value. */
fragP->fr_subtype = C (what, COND8);
fragP->fr_var = md_relax_table[C (what, COND8)].rlx_length;
}
break;
}
return fragP->fr_var;
}
/* Put number into target byte order. */
void
md_number_to_chars (ptr, use, nbytes)
char *ptr;
valueT use;
int nbytes;
{
if (! target_big_endian)
number_to_chars_littleendian (ptr, use, nbytes);
else
number_to_chars_bigendian (ptr, use, nbytes);
}
long
md_pcrel_from (fixP)
fixS *fixP;
{
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address + 2;
}
#ifdef OBJ_COFF
int
tc_coff_sizemachdep (frag)
fragS *frag;
{
return md_relax_table[frag->fr_subtype].rlx_length;
}
#endif /* OBJ_COFF */
/* When we align the .text section, insert the correct NOP pattern. */
int
sh_do_align (n, fill, len, max)
int n;
const char *fill;
int len ATTRIBUTE_UNUSED;
int max;
{
if (fill == NULL
&& subseg_text_p (now_seg)
&& n > 1)
{
static const unsigned char big_nop_pattern[] = { 0x00, 0x09 };
static const unsigned char little_nop_pattern[] = { 0x09, 0x00 };
/* First align to a 2 byte boundary, in case there is an odd
.byte. */
frag_align (1, 0, 0);
if (target_big_endian)
frag_align_pattern (n, big_nop_pattern, sizeof big_nop_pattern, max);
else
frag_align_pattern (n, little_nop_pattern, sizeof little_nop_pattern,
max);
return 1;
}
return 0;
}
#ifndef BFD_ASSEMBLER
#ifdef OBJ_COFF
/* Map BFD relocs to SH COFF relocs. */
struct reloc_map
{
bfd_reloc_code_real_type bfd_reloc;
int sh_reloc;
};
static const struct reloc_map coff_reloc_map[] =
{
{ BFD_RELOC_32, R_SH_IMM32 },
{ BFD_RELOC_16, R_SH_IMM16 },
{ BFD_RELOC_8, R_SH_IMM8 },
{ BFD_RELOC_SH_PCDISP8BY2, R_SH_PCDISP8BY2 },
{ BFD_RELOC_SH_PCDISP12BY2, R_SH_PCDISP },
{ BFD_RELOC_SH_IMM4, R_SH_IMM4 },
{ BFD_RELOC_SH_IMM4BY2, R_SH_IMM4BY2 },
{ BFD_RELOC_SH_IMM4BY4, R_SH_IMM4BY4 },
{ BFD_RELOC_SH_IMM8, R_SH_IMM8 },
{ BFD_RELOC_SH_IMM8BY2, R_SH_IMM8BY2 },
{ BFD_RELOC_SH_IMM8BY4, R_SH_IMM8BY4 },
{ BFD_RELOC_SH_PCRELIMM8BY2, R_SH_PCRELIMM8BY2 },
{ BFD_RELOC_SH_PCRELIMM8BY4, R_SH_PCRELIMM8BY4 },
{ BFD_RELOC_8_PCREL, R_SH_SWITCH8 },
{ BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 },
{ BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 },
{ BFD_RELOC_SH_USES, R_SH_USES },
{ BFD_RELOC_SH_COUNT, R_SH_COUNT },
{ BFD_RELOC_SH_ALIGN, R_SH_ALIGN },
{ BFD_RELOC_SH_CODE, R_SH_CODE },
{ BFD_RELOC_SH_DATA, R_SH_DATA },
{ BFD_RELOC_SH_LABEL, R_SH_LABEL },
{ BFD_RELOC_UNUSED, 0 }
};
/* Adjust a reloc for the SH. This is similar to the generic code,
but does some minor tweaking. */
void
sh_coff_reloc_mangle (seg, fix, intr, paddr)
segment_info_type *seg;
fixS *fix;
struct internal_reloc *intr;
unsigned int paddr;
{
symbolS *symbol_ptr = fix->fx_addsy;
symbolS *dot;
intr->r_vaddr = paddr + fix->fx_frag->fr_address + fix->fx_where;
if (! SWITCH_TABLE (fix))
{
const struct reloc_map *rm;
for (rm = coff_reloc_map; rm->bfd_reloc != BFD_RELOC_UNUSED; rm++)
if (rm->bfd_reloc == (bfd_reloc_code_real_type) fix->fx_r_type)
break;
if (rm->bfd_reloc == BFD_RELOC_UNUSED)
as_bad_where (fix->fx_file, fix->fx_line,
_("Can not represent %s relocation in this object file format"),
bfd_get_reloc_code_name (fix->fx_r_type));
intr->r_type = rm->sh_reloc;
intr->r_offset = 0;
}
else
{
know (sh_relax);
if (fix->fx_r_type == BFD_RELOC_16)
intr->r_type = R_SH_SWITCH16;
else if (fix->fx_r_type == BFD_RELOC_8)
intr->r_type = R_SH_SWITCH8;
else if (fix->fx_r_type == BFD_RELOC_32)
intr->r_type = R_SH_SWITCH32;
else
abort ();
/* For a switch reloc, we set r_offset to the difference between
the reloc address and the subtrahend. When the linker is
doing relaxing, it can use the determine the starting and
ending points of the switch difference expression. */
intr->r_offset = intr->r_vaddr - S_GET_VALUE (fix->fx_subsy);
}
/* PC relative relocs are always against the current section. */
if (symbol_ptr == NULL)
{
switch (fix->fx_r_type)
{
case BFD_RELOC_SH_PCRELIMM8BY2:
case BFD_RELOC_SH_PCRELIMM8BY4:
case BFD_RELOC_SH_PCDISP8BY2:
case BFD_RELOC_SH_PCDISP12BY2:
case BFD_RELOC_SH_USES:
symbol_ptr = seg->dot;
break;
default:
break;
}
}
if (fix->fx_r_type == BFD_RELOC_SH_USES)
{
/* We can't store the offset in the object file, since this
reloc does not take up any space, so we store it in r_offset.
The fx_addnumber field was set in md_apply_fix. */
intr->r_offset = fix->fx_addnumber;
}
else if (fix->fx_r_type == BFD_RELOC_SH_COUNT)
{
/* We can't store the count in the object file, since this reloc
does not take up any space, so we store it in r_offset. The
fx_offset field was set when the fixup was created in
sh_coff_frob_file. */
intr->r_offset = fix->fx_offset;
/* This reloc is always absolute. */
symbol_ptr = NULL;
}
else if (fix->fx_r_type == BFD_RELOC_SH_ALIGN)
{
/* Store the alignment in the r_offset field. */
intr->r_offset = fix->fx_offset;
/* This reloc is always absolute. */
symbol_ptr = NULL;
}
else if (fix->fx_r_type == BFD_RELOC_SH_CODE
|| fix->fx_r_type == BFD_RELOC_SH_DATA
|| fix->fx_r_type == BFD_RELOC_SH_LABEL)
{
/* These relocs are always absolute. */
symbol_ptr = NULL;
}
/* Turn the segment of the symbol into an offset. */
if (symbol_ptr != NULL)
{
dot = segment_info[S_GET_SEGMENT (symbol_ptr)].dot;
if (dot != NULL)
intr->r_symndx = dot->sy_number;
else
intr->r_symndx = symbol_ptr->sy_number;
}
else
intr->r_symndx = -1;
}
#endif /* OBJ_COFF */
#endif /* ! BFD_ASSEMBLER */
#ifdef BFD_ASSEMBLER
/* Create a reloc. */
arelent *
tc_gen_reloc (section, fixp)
asection *section ATTRIBUTE_UNUSED;
fixS *fixp;
{
arelent *rel;
bfd_reloc_code_real_type r_type;
rel = (arelent *) xmalloc (sizeof (arelent));
rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
r_type = fixp->fx_r_type;
if (SWITCH_TABLE (fixp))
{
rel->addend = rel->address - S_GET_VALUE (fixp->fx_subsy);
if (r_type == BFD_RELOC_16)
r_type = BFD_RELOC_SH_SWITCH16;
else if (r_type == BFD_RELOC_8)
r_type = BFD_RELOC_8_PCREL;
else if (r_type == BFD_RELOC_32)
r_type = BFD_RELOC_SH_SWITCH32;
else
abort ();
}
else if (r_type == BFD_RELOC_SH_USES)
rel->addend = fixp->fx_addnumber;
else if (r_type == BFD_RELOC_SH_COUNT)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_SH_ALIGN)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_VTABLE_INHERIT
|| r_type == BFD_RELOC_VTABLE_ENTRY)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_SH_LOOP_START
|| r_type == BFD_RELOC_SH_LOOP_END)
rel->addend = fixp->fx_offset;
else if (r_type == BFD_RELOC_SH_LABEL && fixp->fx_pcrel)
{
rel->addend = 0;
rel->address = rel->addend = fixp->fx_offset;
}
else if (fixp->fx_pcrel)
rel->addend = fixp->fx_addnumber;
else
rel->addend = 0;
rel->howto = bfd_reloc_type_lookup (stdoutput, r_type);
if (rel->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Cannot represent relocation type %s"),
bfd_get_reloc_code_name (r_type));
/* Set howto to a garbage value so that we can keep going. */
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
assert (rel->howto != NULL);
}
return rel;
}
#endif /* BFD_ASSEMBLER */