old-cross-binutils/sim/v850/sim-main.h
Nick Clifton a3976a7c56 Fixes problems building the V850 simulator introduced with the previous delta.
* sim-main.h (reg64_t): New type.
	(v850_regs): Add selID_sregs field.
	(VR, SAT16, SAT32, ABS16, ABS32 ): New macros.
	* v850-dc: Add fields for v850e3v5 instructions.
	* v850.igen (cvtf.dl): Use correctly signed local value.
	(cvtf.dw, cvtf.sw, trncf.dul, trncf.dl, trncf.sul, trncf.sw):
	Likewise.
	* interp.c: Fix old style function declarations.
	* simops.c: Likewise.
2015-02-27 09:53:03 +00:00

768 lines
17 KiB
C

#ifndef SIM_MAIN_H
#define SIM_MAIN_H
/* General config options */
#define WITH_CORE
#define WITH_MODULO_MEMORY 1
#define WITH_WATCHPOINTS 1
/* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
#define WITH_TARGET_WORD_MSB 31
#include "config.h"
#include "sim-basics.h"
#include "sim-signal.h"
#include "sim-fpu.h"
typedef address_word sim_cia;
#include "sim-base.h"
#include "simops.h"
#include "bfd.h"
typedef signed8 int8;
typedef unsigned8 uint8;
typedef signed16 int16;
typedef unsigned16 uint16;
typedef signed32 int32;
typedef unsigned32 uint32;
typedef unsigned32 reg_t;
typedef unsigned64 reg64_t;
/* The current state of the processor; registers, memory, etc. */
typedef struct _v850_regs {
reg_t regs[32]; /* general-purpose registers */
reg_t sregs[32]; /* system registers, including psw */
reg_t pc;
int dummy_mem; /* where invalid accesses go */
reg_t mpu0_sregs[28]; /* mpu0 system registers */
reg_t mpu1_sregs[28]; /* mpu1 system registers */
reg_t fpu_sregs[28]; /* fpu system registers */
reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
reg64_t vregs[32]; /* vector registers. */
} v850_regs;
struct _sim_cpu
{
/* ... simulator specific members ... */
v850_regs reg;
reg_t psw_mask; /* only allow non-reserved bits to be set */
sim_event *pending_nmi;
/* ... base type ... */
sim_cpu_base base;
};
#define CIA_GET(CPU) ((CPU)->reg.pc + 0)
#define CIA_SET(CPU,VAL) ((CPU)->reg.pc = (VAL))
struct sim_state {
sim_cpu cpu[MAX_NR_PROCESSORS];
#if (WITH_SMP)
#define STATE_CPU(sd,n) (&(sd)->cpu[n])
#else
#define STATE_CPU(sd,n) (&(sd)->cpu[0])
#endif
#if 0
SIM_ADDR rom_size;
SIM_ADDR low_end;
SIM_ADDR high_start;
SIM_ADDR high_base;
void *mem;
#endif
sim_state_base base;
};
/* For compatibility, until all functions converted to passing
SIM_DESC as an argument */
extern SIM_DESC simulator;
#define V850_ROM_SIZE 0x8000
#define V850_LOW_END 0x200000
#define V850_HIGH_START 0xffe000
/* Because we are still using the old semantic table, provide compat
macro's that store the instruction where the old simops expects
it. */
extern uint32 OP[4];
#if 0
OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
OP[3] = inst;
#endif
#define SAVE_1 \
PC = cia; \
OP[0] = instruction_0 & 0x1f; \
OP[1] = (instruction_0 >> 11) & 0x1f; \
OP[2] = 0; \
OP[3] = instruction_0
#define COMPAT_1(CALL) \
SAVE_1; \
PC += (CALL); \
nia = PC
#define SAVE_2 \
PC = cia; \
OP[0] = instruction_0 & 0x1f; \
OP[1] = (instruction_0 >> 11) & 0x1f; \
OP[2] = instruction_1; \
OP[3] = (instruction_1 << 16) | instruction_0
#define COMPAT_2(CALL) \
SAVE_2; \
PC += (CALL); \
nia = PC
/* new */
#define GR ((CPU)->reg.regs)
#define SR ((CPU)->reg.sregs)
#define VR ((CPU)->reg.vregs)
#define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
#define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
#define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
/* old */
#define State (STATE_CPU (simulator, 0)->reg)
#define PC (State.pc)
#define SP_REGNO 3
#define SP (State.regs[SP_REGNO])
#define EP (State.regs[30])
#define EIPC (State.sregs[0])
#define EIPSW (State.sregs[1])
#define FEPC (State.sregs[2])
#define FEPSW (State.sregs[3])
#define ECR (State.sregs[4])
#define PSW (State.sregs[5])
#define PSW_REGNO 5
#define EIIC (State.sregs[13])
#define FEIC (State.sregs[14])
#define DBIC (SR[15])
#define CTPC (SR[16])
#define CTPSW (SR[17])
#define DBPC (State.sregs[18])
#define DBPSW (State.sregs[19])
#define CTBP (State.sregs[20])
#define DIR (SR[21])
#define EIWR (SR[28])
#define FEWR (SR[29])
#define DBWR (SR[30])
#define BSEL (SR[31])
#define PSW_US BIT32 (8)
#define PSW_NP 0x80
#define PSW_EP 0x40
#define PSW_ID 0x20
#define PSW_SAT 0x10
#define PSW_CY 0x8
#define PSW_OV 0x4
#define PSW_S 0x2
#define PSW_Z 0x1
#define PSW_NPV (1<<18)
#define PSW_DMP (1<<17)
#define PSW_IMP (1<<16)
#define ECR_EICC 0x0000ffff
#define ECR_FECC 0xffff0000
/* FPU */
#define FPSR (FPU_SR[6])
#define FPSR_REGNO 6
#define FPEPC (FPU_SR[7])
#define FPST (FPU_SR[8])
#define FPST_REGNO 8
#define FPCC (FPU_SR[9])
#define FPCFG (FPU_SR[10])
#define FPCFG_REGNO 10
#define FPSR_DEM 0x00200000
#define FPSR_SEM 0x00100000
#define FPSR_RM 0x000c0000
#define FPSR_RN 0x00000000
#define FPSR_FS 0x00020000
#define FPSR_PR 0x00010000
#define FPSR_XC 0x0000fc00
#define FPSR_XCE 0x00008000
#define FPSR_XCV 0x00004000
#define FPSR_XCZ 0x00002000
#define FPSR_XCO 0x00001000
#define FPSR_XCU 0x00000800
#define FPSR_XCI 0x00000400
#define FPSR_XE 0x000003e0
#define FPSR_XEV 0x00000200
#define FPSR_XEZ 0x00000100
#define FPSR_XEO 0x00000080
#define FPSR_XEU 0x00000040
#define FPSR_XEI 0x00000020
#define FPSR_XP 0x0000001f
#define FPSR_XPV 0x00000010
#define FPSR_XPZ 0x00000008
#define FPSR_XPO 0x00000004
#define FPSR_XPU 0x00000002
#define FPSR_XPI 0x00000001
#define FPST_PR 0x00008000
#define FPST_XCE 0x00002000
#define FPST_XCV 0x00001000
#define FPST_XCZ 0x00000800
#define FPST_XCO 0x00000400
#define FPST_XCU 0x00000200
#define FPST_XCI 0x00000100
#define FPST_XPV 0x00000010
#define FPST_XPZ 0x00000008
#define FPST_XPO 0x00000004
#define FPST_XPU 0x00000002
#define FPST_XPI 0x00000001
#define FPCFG_RM 0x00000180
#define FPCFG_XEV 0x00000010
#define FPCFG_XEZ 0x00000008
#define FPCFG_XEO 0x00000004
#define FPCFG_XEU 0x00000002
#define FPCFG_XEI 0x00000001
#define GET_FPCC()\
((FPSR >> 24) &0xf)
#define CLEAR_FPCC(bbb)\
(FPSR &= ~(1 << (bbb+24)))
#define SET_FPCC(bbb)\
(FPSR |= 1 << (bbb+24))
#define TEST_FPCC(bbb)\
((FPSR & (1 << (bbb+24))) != 0)
#define FPSR_GET_ROUND() \
(((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
: ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
: ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
: sim_fpu_round_zero)
enum FPU_COMPARE {
FPU_CMP_F = 0,
FPU_CMP_UN,
FPU_CMP_EQ,
FPU_CMP_UEQ,
FPU_CMP_OLT,
FPU_CMP_ULT,
FPU_CMP_OLE,
FPU_CMP_ULE,
FPU_CMP_SF,
FPU_CMP_NGLE,
FPU_CMP_SEQ,
FPU_CMP_NGL,
FPU_CMP_LT,
FPU_CMP_NGE,
FPU_CMP_LE,
FPU_CMP_NGT
};
/* MPU */
#define MPM (MPU1_SR[0])
#define MPC (MPU1_SR[1])
#define MPC_REGNO 1
#define TID (MPU1_SR[2])
#define PPA (MPU1_SR[3])
#define PPM (MPU1_SR[4])
#define PPC (MPU1_SR[5])
#define DCC (MPU1_SR[6])
#define DCV0 (MPU1_SR[7])
#define DCV1 (MPU1_SR[8])
#define SPAL (MPU1_SR[10])
#define SPAU (MPU1_SR[11])
#define IPA0L (MPU1_SR[12])
#define IPA0U (MPU1_SR[13])
#define IPA1L (MPU1_SR[14])
#define IPA1U (MPU1_SR[15])
#define IPA2L (MPU1_SR[16])
#define IPA2U (MPU1_SR[17])
#define IPA3L (MPU1_SR[18])
#define IPA3U (MPU1_SR[19])
#define DPA0L (MPU1_SR[20])
#define DPA0U (MPU1_SR[21])
#define DPA1L (MPU1_SR[22])
#define DPA1U (MPU1_SR[23])
#define DPA2L (MPU1_SR[24])
#define DPA2U (MPU1_SR[25])
#define DPA3L (MPU1_SR[26])
#define DPA3U (MPU1_SR[27])
#define PPC_PPE 0x1
#define SPAL_SPE 0x1
#define SPAL_SPS 0x10
#define VIP (MPU0_SR[0])
#define VMECR (MPU0_SR[4])
#define VMTID (MPU0_SR[5])
#define VMADR (MPU0_SR[6])
#define VPECR (MPU0_SR[8])
#define VPTID (MPU0_SR[9])
#define VPADR (MPU0_SR[10])
#define VDECR (MPU0_SR[12])
#define VDTID (MPU0_SR[13])
#define MPM_AUE 0x2
#define MPM_MPE 0x1
#define VMECR_VMX 0x2
#define VMECR_VMR 0x4
#define VMECR_VMW 0x8
#define VMECR_VMS 0x10
#define VMECR_VMRMW 0x20
#define VMECR_VMMS 0x40
#define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
#define IPA_IPE 0x1
#define IPA_IPX 0x2
#define IPA_IPR 0x4
#define IPE0 (IPA0L & IPA_IPE)
#define IPE1 (IPA1L & IPA_IPE)
#define IPE2 (IPA2L & IPA_IPE)
#define IPE3 (IPA3L & IPA_IPE)
#define IPX0 (IPA0L & IPA_IPX)
#define IPX1 (IPA1L & IPA_IPX)
#define IPX2 (IPA2L & IPA_IPX)
#define IPX3 (IPA3L & IPA_IPX)
#define IPR0 (IPA0L & IPA_IPR)
#define IPR1 (IPA1L & IPA_IPR)
#define IPR2 (IPA2L & IPA_IPR)
#define IPR3 (IPA3L & IPA_IPR)
#define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
#define DPA_DPE 0x1
#define DPA_DPR 0x4
#define DPA_DPW 0x8
#define DPE0 (DPA0L & DPA_DPE)
#define DPE1 (DPA1L & DPA_DPE)
#define DPE2 (DPA2L & DPA_DPE)
#define DPE3 (DPA3L & DPA_DPE)
#define DPR0 (DPA0L & DPA_DPR)
#define DPR1 (DPA1L & DPA_DPR)
#define DPR2 (DPA2L & DPA_DPR)
#define DPR3 (DPA3L & DPA_DPR)
#define DPW0 (DPA0L & DPA_DPW)
#define DPW1 (DPA1L & DPA_DPW)
#define DPW2 (DPA2L & DPA_DPW)
#define DPW3 (DPA3L & DPA_DPW)
#define DCC_DCE0 0x1
#define DCC_DCE1 0x10000
#define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
#define PPC_PPC 0xfffffffe
#define PPC_PPE 0x1
#define PPC_PPM 0x0000fff8
#define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
/* sign-extend a 4-bit number */
#define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
/* sign-extend a 5-bit number */
#define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
/* sign-extend a 9-bit number */
#define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
/* sign-extend a 22-bit number */
#define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
/* sign extend a 40 bit number */
#define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
^ (~UNSIGNED64 (0x7fffffffff))) \
+ UNSIGNED64 (0x8000000000))
/* sign extend a 44 bit number */
#define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
^ (~ UNSIGNED64 (0x7ffffffffff))) \
+ UNSIGNED64 (0x80000000000))
/* sign extend a 60 bit number */
#define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
+ UNSIGNED64 (0x800000000000000))
/* No sign extension */
#define NOP(x) (x)
#define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
#define RLW(x) load_mem (x, 4)
/* Function declarations. */
#define IMEM16(EA) \
sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
#define IMEM16_IMMED(EA,N) \
sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
PC, exec_map, (EA) + (N) * 2)
#define load_mem(ADDR,LEN) \
sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
PC, read_map, (ADDR))
#define store_mem(ADDR,LEN,DATA) \
sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
PC, write_map, (ADDR), (DATA))
/* compare cccc field against PSW */
int condition_met (unsigned code);
/* Debug/tracing calls */
enum op_types
{
OP_UNKNOWN,
OP_NONE,
OP_TRAP,
OP_REG,
OP_REG_REG,
OP_REG_REG_CMP,
OP_REG_REG_MOVE,
OP_IMM_REG,
OP_IMM_REG_CMP,
OP_IMM_REG_MOVE,
OP_COND_BR,
OP_LOAD16,
OP_STORE16,
OP_LOAD32,
OP_STORE32,
OP_JUMP,
OP_IMM_REG_REG,
OP_UIMM_REG_REG,
OP_IMM16_REG_REG,
OP_UIMM16_REG_REG,
OP_BIT,
OP_EX1,
OP_EX2,
OP_LDSR,
OP_STSR,
OP_BIT_CHANGE,
OP_REG_REG_REG,
OP_REG_REG3,
OP_IMM_REG_REG_REG,
OP_PUSHPOP1,
OP_PUSHPOP2,
OP_PUSHPOP3,
};
#ifdef DEBUG
void trace_input (char *name, enum op_types type, int size);
void trace_output (enum op_types result);
void trace_result (int has_result, unsigned32 result);
extern int trace_num_values;
extern unsigned32 trace_values[];
extern unsigned32 trace_pc;
extern const char *trace_name;
extern int trace_module;
#define TRACE_BRANCH0() \
do { \
if (TRACE_BRANCH_P (CPU)) { \
trace_module = TRACE_BRANCH_IDX; \
trace_pc = cia; \
trace_name = itable[MY_INDEX].name; \
trace_num_values = 0; \
trace_result (1, (nia)); \
} \
} while (0)
#define TRACE_BRANCH1(IN1) \
do { \
if (TRACE_BRANCH_P (CPU)) { \
trace_module = TRACE_BRANCH_IDX; \
trace_pc = cia; \
trace_name = itable[MY_INDEX].name; \
trace_values[0] = (IN1); \
trace_num_values = 1; \
trace_result (1, (nia)); \
} \
} while (0)
#define TRACE_BRANCH2(IN1, IN2) \
do { \
if (TRACE_BRANCH_P (CPU)) { \
trace_module = TRACE_BRANCH_IDX; \
trace_pc = cia; \
trace_name = itable[MY_INDEX].name; \
trace_values[0] = (IN1); \
trace_values[1] = (IN2); \
trace_num_values = 2; \
trace_result (1, (nia)); \
} \
} while (0)
#define TRACE_BRANCH3(IN1, IN2, IN3) \
do { \
if (TRACE_BRANCH_P (CPU)) { \
trace_module = TRACE_BRANCH_IDX; \
trace_pc = cia; \
trace_name = itable[MY_INDEX].name; \
trace_values[0] = (IN1); \
trace_values[1] = (IN2); \
trace_values[2] = (IN3); \
trace_num_values = 3; \
trace_result (1, (nia)); \
} \
} while (0)
#define TRACE_LD(ADDR,RESULT) \
do { \
if (TRACE_MEMORY_P (CPU)) { \
trace_module = TRACE_MEMORY_IDX; \
trace_pc = cia; \
trace_name = itable[MY_INDEX].name; \
trace_values[0] = (ADDR); \
trace_num_values = 1; \
trace_result (1, (RESULT)); \
} \
} while (0)
#define TRACE_LD_NAME(NAME, ADDR,RESULT) \
do { \
if (TRACE_MEMORY_P (CPU)) { \
trace_module = TRACE_MEMORY_IDX; \
trace_pc = cia; \
trace_name = (NAME); \
trace_values[0] = (ADDR); \
trace_num_values = 1; \
trace_result (1, (RESULT)); \
} \
} while (0)
#define TRACE_ST(ADDR,RESULT) \
do { \
if (TRACE_MEMORY_P (CPU)) { \
trace_module = TRACE_MEMORY_IDX; \
trace_pc = cia; \
trace_name = itable[MY_INDEX].name; \
trace_values[0] = (ADDR); \
trace_num_values = 1; \
trace_result (1, (RESULT)); \
} \
} while (0)
#define TRACE_FP_INPUT_FPU1(V0) \
do { \
if (TRACE_FPU_P (CPU)) \
{ \
unsigned64 f0; \
sim_fpu_to64 (&f0, (V0)); \
trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
} \
} while (0)
#define TRACE_FP_INPUT_FPU2(V0, V1) \
do { \
if (TRACE_FPU_P (CPU)) \
{ \
unsigned64 f0, f1; \
sim_fpu_to64 (&f0, (V0)); \
sim_fpu_to64 (&f1, (V1)); \
trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
} \
} while (0)
#define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
do { \
if (TRACE_FPU_P (CPU)) \
{ \
unsigned64 f0, f1, f2; \
sim_fpu_to64 (&f0, (V0)); \
sim_fpu_to64 (&f1, (V1)); \
sim_fpu_to64 (&f2, (V2)); \
trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
} \
} while (0)
#define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
do { \
if (TRACE_FPU_P (CPU)) \
{ \
int d0 = (V0); \
unsigned64 f1, f2; \
TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
TRACE_IDX (data) = TRACE_FPU_IDX; \
sim_fpu_to64 (&f1, (V1)); \
sim_fpu_to64 (&f2, (V2)); \
save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
} \
} while (0)
#define TRACE_FP_INPUT_WORD2(V0, V1) \
do { \
if (TRACE_FPU_P (CPU)) \
trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
} while (0)
#define TRACE_FP_RESULT_FPU1(R0) \
do { \
if (TRACE_FPU_P (CPU)) \
{ \
unsigned64 f0; \
sim_fpu_to64 (&f0, (R0)); \
trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
} \
} while (0)
#define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
#define TRACE_FP_RESULT_WORD2(R0, R1) \
do { \
if (TRACE_FPU_P (CPU)) \
trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
} while (0)
#else
#define trace_input(NAME, IN1, IN2)
#define trace_output(RESULT)
#define trace_result(HAS_RESULT, RESULT)
#define TRACE_ALU_INPUT0()
#define TRACE_ALU_INPUT1(IN0)
#define TRACE_ALU_INPUT2(IN0, IN1)
#define TRACE_ALU_INPUT2(IN0, IN1)
#define TRACE_ALU_INPUT2(IN0, IN1 INS2)
#define TRACE_ALU_RESULT(RESULT)
#define TRACE_BRANCH0()
#define TRACE_BRANCH1(IN1)
#define TRACE_BRANCH2(IN1, IN2)
#define TRACE_BRANCH2(IN1, IN2, IN3)
#define TRACE_LD(ADDR,RESULT)
#define TRACE_ST(ADDR,RESULT)
#endif
#define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
#define GPR_CLEAR(N) (State.regs[(N)] = 0)
extern void divun ( unsigned int N,
unsigned long int als,
unsigned long int sfi,
unsigned32 /*unsigned long int*/ * quotient_ptr,
unsigned32 /*unsigned long int*/ * remainder_ptr,
int *overflow_ptr
);
extern void divn ( unsigned int N,
unsigned long int als,
unsigned long int sfi,
signed32 /*signed long int*/ * quotient_ptr,
signed32 /*signed long int*/ * remainder_ptr,
int *overflow_ptr
);
extern int type1_regs[];
extern int type2_regs[];
extern int type3_regs[];
#define SESR_OV (1 << 0)
#define SESR_SOV (1 << 1)
#define SESR (State.sregs[12])
#define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
#define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
#define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
#define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
#define SAT16(X) \
do \
{ \
signed64 z = (X); \
if (z > 0x7fff) \
{ \
SESR |= SESR_OV | SESR_SOV; \
z = 0x7fff; \
} \
else if (z < -0x8000) \
{ \
SESR |= SESR_OV | SESR_SOV; \
z = - 0x8000; \
} \
(X) = z; \
} \
while (0)
#define SAT32(X) \
do \
{ \
signed64 z = (X); \
if (z > 0x7fffffff) \
{ \
SESR |= SESR_OV | SESR_SOV; \
z = 0x7fffffff; \
} \
else if (z < -0x80000000) \
{ \
SESR |= SESR_OV | SESR_SOV; \
z = - 0x80000000; \
} \
(X) = z; \
} \
while (0)
#define ABS16(X) \
do \
{ \
signed64 z = (X) & 0xffff; \
if (z == 0x8000) \
{ \
SESR |= SESR_OV | SESR_SOV; \
z = 0x7fff; \
} \
else if (z & 0x8000) \
{ \
z = (- z) & 0xffff; \
} \
(X) = z; \
} \
while (0)
#define ABS32(X) \
do \
{ \
signed64 z = (X) & 0xffffffff; \
if (z == 0x80000000) \
{ \
SESR |= SESR_OV | SESR_SOV; \
z = 0x7fffffff; \
} \
else if (z & 0x80000000) \
{ \
z = (- z) & 0xffffffff; \
} \
(X) = z; \
} \
while (0)
#endif