1188 lines
28 KiB
C
1188 lines
28 KiB
C
/* tc-a29k.c -- Assemble for the AMD 29000.
|
|
Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
|
|
|
|
This file is part of GAS, the GNU Assembler.
|
|
|
|
GAS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GAS is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GAS; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/* John Gilmore has reorganized this module somewhat, to make it easier
|
|
to convert it to new machines' assemblers as desired. There was too
|
|
much bloody rewriting required before. There still probably is. */
|
|
|
|
#include "ctype.h"
|
|
#include "as.h"
|
|
|
|
#include "opcode/a29k.h"
|
|
|
|
/* Make it easier to clone this machine desc into another one. */
|
|
#define machine_opcode a29k_opcode
|
|
#define machine_opcodes a29k_opcodes
|
|
#define machine_ip a29k_ip
|
|
#define machine_it a29k_it
|
|
|
|
const relax_typeS md_relax_table[] =
|
|
{0};
|
|
|
|
#define IMMEDIATE_BIT 0x01000000 /* Turns RB into Immediate */
|
|
#define ABSOLUTE_BIT 0x01000000 /* Turns PC-relative to Absolute */
|
|
#define CE_BIT 0x00800000 /* Coprocessor enable in LOAD */
|
|
#define UI_BIT 0x00000080 /* Unsigned integer in CONVERT */
|
|
|
|
/* handle of the OPCODE hash table */
|
|
static struct hash_control *op_hash = NULL;
|
|
|
|
struct machine_it
|
|
{
|
|
char *error;
|
|
unsigned long opcode;
|
|
struct nlist *nlistp;
|
|
expressionS exp;
|
|
int pcrel;
|
|
int reloc_offset; /* Offset of reloc within insn */
|
|
|
|
int reloc;
|
|
|
|
|
|
}
|
|
|
|
the_insn;
|
|
|
|
#if __STDC__ == 1
|
|
|
|
/* static int getExpression(char *str); */
|
|
static void machine_ip (char *str);
|
|
/* static void print_insn(struct machine_it *insn); */
|
|
static void s_data1 (void);
|
|
static void s_use (void);
|
|
|
|
#else /* not __STDC__ */
|
|
|
|
/* static int getExpression(); */
|
|
static void machine_ip ();
|
|
/* static void print_insn(); */
|
|
static void s_data1 ();
|
|
static void s_use ();
|
|
|
|
#endif /* not __STDC__ */
|
|
|
|
const pseudo_typeS
|
|
md_pseudo_table[] =
|
|
{
|
|
{"align", s_align_bytes, 4},
|
|
{"block", s_space, 0},
|
|
{"cputype", s_ignore, 0}, /* CPU as 29000 or 29050 */
|
|
{"reg", s_lsym, 0}, /* Register equate, same as equ */
|
|
{"space", s_ignore, 0}, /* Listing control */
|
|
{"sect", s_ignore, 0}, /* Creation of coff sections */
|
|
#ifndef OBJ_COFF
|
|
/* We can do this right with coff */
|
|
{"use", s_use, 0},
|
|
#endif
|
|
{"word", cons, 4},
|
|
{NULL, 0, 0},
|
|
};
|
|
|
|
int md_short_jump_size = 4;
|
|
int md_long_jump_size = 4;
|
|
#if defined(BFD_HEADERS)
|
|
#ifdef RELSZ
|
|
const int md_reloc_size = RELSZ; /* Coff headers */
|
|
#else
|
|
const int md_reloc_size = 12; /* something else headers */
|
|
#endif
|
|
#else
|
|
const int md_reloc_size = 12; /* Not bfdized*/
|
|
#endif
|
|
|
|
/* This array holds the chars that always start a comment. If the
|
|
pre-processor is disabled, these aren't very useful */
|
|
const char comment_chars[] = ";";
|
|
|
|
/* This array holds the chars that only start a comment at the beginning of
|
|
a line. If the line seems to have the form '# 123 filename'
|
|
.line and .file directives will appear in the pre-processed output */
|
|
/* Note that input_file.c hand checks for '#' at the beginning of the
|
|
first line of the input file. This is because the compiler outputs
|
|
#NO_APP at the beginning of its output. */
|
|
/* Also note that comments like this one will always work */
|
|
const char line_comment_chars[] = "#";
|
|
|
|
/* We needed an unused char for line separation to work around the
|
|
lack of macros, using sed and such. */
|
|
const char line_separator_chars[] = "@";
|
|
|
|
/* Chars that can be used to separate mant from exp in floating point nums */
|
|
const char EXP_CHARS[] = "eE";
|
|
|
|
/* Chars that mean this number is a floating point constant */
|
|
/* As in 0f12.456 */
|
|
/* or 0d1.2345e12 */
|
|
const char FLT_CHARS[] = "rRsSfFdDxXpP";
|
|
|
|
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
|
|
changed in read.c . Ideally it shouldn't have to know about it at all,
|
|
but nothing is ideal around here.
|
|
*/
|
|
|
|
static unsigned char octal[256];
|
|
#define isoctal(c) octal[c]
|
|
static unsigned char toHex[256];
|
|
|
|
/*
|
|
* anull bit - causes the branch delay slot instructions to not be executed
|
|
*/
|
|
#define ANNUL (1 << 29)
|
|
|
|
static void
|
|
s_use ()
|
|
{
|
|
|
|
if (strncmp (input_line_pointer, ".text", 5) == 0)
|
|
{
|
|
input_line_pointer += 5;
|
|
s_text ();
|
|
return;
|
|
}
|
|
if (strncmp (input_line_pointer, ".data", 5) == 0)
|
|
{
|
|
input_line_pointer += 5;
|
|
s_data ();
|
|
return;
|
|
}
|
|
if (strncmp (input_line_pointer, ".data1", 6) == 0)
|
|
{
|
|
input_line_pointer += 6;
|
|
s_data1 ();
|
|
return;
|
|
}
|
|
/* Literals can't go in the text segment because you can't read
|
|
from instruction memory on some 29k's. So, into initialized data. */
|
|
if (strncmp (input_line_pointer, ".lit", 4) == 0)
|
|
{
|
|
input_line_pointer += 4;
|
|
subseg_new (SEG_DATA, 200);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
as_bad ("Unknown segment type");
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
static void
|
|
s_data1 ()
|
|
{
|
|
subseg_new (SEG_DATA, 1);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Install symbol definition that maps REGNAME to REGNO.
|
|
FIXME-SOON: These are not recognized in mixed case. */
|
|
|
|
static void
|
|
insert_sreg (regname, regnum)
|
|
char *regname;
|
|
int regnum;
|
|
{
|
|
/* FIXME-SOON, put something in these syms so they won't be output to the symbol
|
|
table of the resulting object file. */
|
|
|
|
/* Must be large enough to hold the names of the special registers. */
|
|
char buf[80];
|
|
int i;
|
|
|
|
symbol_table_insert (symbol_new (regname, SEG_REGISTER, regnum, &zero_address_frag));
|
|
for (i = 0; regname[i]; i++)
|
|
buf[i] = islower (regname[i]) ? toupper (regname[i]) : regname[i];
|
|
buf[i] = '\0';
|
|
|
|
symbol_table_insert (symbol_new (buf, SEG_REGISTER, regnum, &zero_address_frag));
|
|
} /* insert_sreg() */
|
|
|
|
/* Install symbol definitions for assorted special registers.
|
|
See ASM29K Ref page 2-9. */
|
|
|
|
void
|
|
define_some_regs ()
|
|
{
|
|
#define SREG 256
|
|
|
|
/* Protected special-purpose register names */
|
|
insert_sreg ("vab", SREG + 0);
|
|
insert_sreg ("ops", SREG + 1);
|
|
insert_sreg ("cps", SREG + 2);
|
|
insert_sreg ("cfg", SREG + 3);
|
|
insert_sreg ("cha", SREG + 4);
|
|
insert_sreg ("chd", SREG + 5);
|
|
insert_sreg ("chc", SREG + 6);
|
|
insert_sreg ("rbp", SREG + 7);
|
|
insert_sreg ("tmc", SREG + 8);
|
|
insert_sreg ("tmr", SREG + 9);
|
|
insert_sreg ("pc0", SREG + 10);
|
|
insert_sreg ("pc1", SREG + 11);
|
|
insert_sreg ("pc2", SREG + 12);
|
|
insert_sreg ("mmu", SREG + 13);
|
|
insert_sreg ("lru", SREG + 14);
|
|
|
|
/* Additional protected special-purpose registers for the 29050 */
|
|
insert_sreg ("rsn", SREG + 15);
|
|
insert_sreg ("rma0", SREG + 16);
|
|
insert_sreg ("rmc0", SREG + 17);
|
|
insert_sreg ("rma1", SREG + 18);
|
|
insert_sreg ("rmc1", SREG + 19);
|
|
insert_sreg ("spc0", SREG + 20);
|
|
insert_sreg ("spc1", SREG + 21);
|
|
insert_sreg ("spc2", SREG + 22);
|
|
insert_sreg ("iba0", SREG + 23);
|
|
insert_sreg ("ibc0", SREG + 24);
|
|
insert_sreg ("iba1", SREG + 25);
|
|
insert_sreg ("ibc1", SREG + 26);
|
|
|
|
/* Unprotected special-purpose register names */
|
|
insert_sreg ("ipc", SREG + 128);
|
|
insert_sreg ("ipa", SREG + 129);
|
|
insert_sreg ("ipb", SREG + 130);
|
|
insert_sreg ("q", SREG + 131);
|
|
insert_sreg ("alu", SREG + 132);
|
|
insert_sreg ("bp", SREG + 133);
|
|
insert_sreg ("fc", SREG + 134);
|
|
insert_sreg ("cr", SREG + 135);
|
|
insert_sreg ("fpe", SREG + 160);
|
|
insert_sreg ("inte", SREG + 161);
|
|
insert_sreg ("fps", SREG + 162);
|
|
/* "", SREG+163); Reserved */
|
|
insert_sreg ("exop", SREG + 164);
|
|
} /* define_some_regs() */
|
|
|
|
/* This function is called once, at assembler startup time. It should
|
|
set up all the tables, etc. that the MD part of the assembler will need. */
|
|
void
|
|
md_begin ()
|
|
{
|
|
register char *retval = NULL;
|
|
int lose = 0;
|
|
register int skipnext = 0;
|
|
register unsigned int i;
|
|
register char *strend, *strend2;
|
|
|
|
/* Hash up all the opcodes for fast use later. */
|
|
|
|
op_hash = hash_new ();
|
|
|
|
for (i = 0; i < num_opcodes; i++)
|
|
{
|
|
const char *name = machine_opcodes[i].name;
|
|
|
|
if (skipnext)
|
|
{
|
|
skipnext = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Hack to avoid multiple opcode entries. We pre-locate all the
|
|
variations (b/i field and P/A field) and handle them. */
|
|
|
|
if (!strcmp (name, machine_opcodes[i + 1].name))
|
|
{
|
|
if ((machine_opcodes[i].opcode ^ machine_opcodes[i + 1].opcode)
|
|
!= 0x01000000)
|
|
goto bad_table;
|
|
strend = machine_opcodes[i].args + strlen (machine_opcodes[i].args) - 1;
|
|
strend2 = machine_opcodes[i + 1].args + strlen (machine_opcodes[i + 1].args) - 1;
|
|
switch (*strend)
|
|
{
|
|
case 'b':
|
|
if (*strend2 != 'i')
|
|
goto bad_table;
|
|
break;
|
|
case 'i':
|
|
if (*strend2 != 'b')
|
|
goto bad_table;
|
|
break;
|
|
case 'P':
|
|
if (*strend2 != 'A')
|
|
goto bad_table;
|
|
break;
|
|
case 'A':
|
|
if (*strend2 != 'P')
|
|
goto bad_table;
|
|
break;
|
|
default:
|
|
bad_table:
|
|
fprintf (stderr, "internal error: can't handle opcode %s\n", name);
|
|
lose = 1;
|
|
}
|
|
|
|
/* OK, this is an i/b or A/P pair. We skip the higher-valued one,
|
|
and let the code for operand checking handle OR-ing in the bit. */
|
|
if (machine_opcodes[i].opcode & 1)
|
|
continue;
|
|
else
|
|
skipnext = 1;
|
|
}
|
|
|
|
retval = hash_insert (op_hash, name, &machine_opcodes[i]);
|
|
if (retval != NULL && *retval != '\0')
|
|
{
|
|
fprintf (stderr, "internal error: can't hash `%s': %s\n",
|
|
machine_opcodes[i].name, retval);
|
|
lose = 1;
|
|
}
|
|
}
|
|
|
|
if (lose)
|
|
as_fatal ("Broken assembler. No assembly attempted.");
|
|
|
|
for (i = '0'; i < '8'; ++i)
|
|
octal[i] = 1;
|
|
for (i = '0'; i <= '9'; ++i)
|
|
toHex[i] = i - '0';
|
|
for (i = 'a'; i <= 'f'; ++i)
|
|
toHex[i] = i + 10 - 'a';
|
|
for (i = 'A'; i <= 'F'; ++i)
|
|
toHex[i] = i + 10 - 'A';
|
|
|
|
define_some_regs ();
|
|
}
|
|
|
|
void
|
|
md_end ()
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* Assemble a single instruction. Its label has already been handled
|
|
by the generic front end. We just parse opcode and operands, and
|
|
produce the bytes of data and relocation. */
|
|
|
|
void
|
|
md_assemble (str)
|
|
char *str;
|
|
{
|
|
char *toP;
|
|
/* !!!! int rsd; */
|
|
|
|
know (str);
|
|
machine_ip (str);
|
|
toP = frag_more (4);
|
|
/* put out the opcode */
|
|
md_number_to_chars (toP, the_insn.opcode, 4);
|
|
|
|
/* put out the symbol-dependent stuff */
|
|
if (the_insn.reloc != NO_RELOC)
|
|
{
|
|
fix_new (
|
|
frag_now, /* which frag */
|
|
(toP - frag_now->fr_literal + the_insn.reloc_offset), /* where */
|
|
4, /* size */
|
|
the_insn.exp.X_add_symbol,
|
|
the_insn.exp.X_subtract_symbol,
|
|
the_insn.exp.X_add_number,
|
|
the_insn.pcrel,
|
|
the_insn.reloc
|
|
);
|
|
}
|
|
}
|
|
|
|
char *
|
|
parse_operand (s, operandp)
|
|
char *s;
|
|
expressionS *operandp;
|
|
{
|
|
char *save = input_line_pointer;
|
|
char *new;
|
|
segT seg;
|
|
|
|
input_line_pointer = s;
|
|
seg = expr (0, operandp);
|
|
new = input_line_pointer;
|
|
input_line_pointer = save;
|
|
|
|
if (seg == SEG_ABSENT)
|
|
as_bad ("Missing operand");
|
|
return new;
|
|
}
|
|
|
|
/* Instruction parsing. Takes a string containing the opcode.
|
|
Operands are at input_line_pointer. Output is in the_insn.
|
|
Warnings or errors are generated. */
|
|
|
|
static void
|
|
machine_ip (str)
|
|
char *str;
|
|
{
|
|
char *s;
|
|
const char *args;
|
|
/* !!!! char c; */
|
|
/* !!!! unsigned long i; */
|
|
struct machine_opcode *insn;
|
|
char *argsStart;
|
|
unsigned long opcode;
|
|
/* !!!! unsigned int mask; */
|
|
expressionS the_operand;
|
|
expressionS *operand = &the_operand;
|
|
unsigned int reg;
|
|
|
|
/* Must handle `div0' opcode. */
|
|
s = str;
|
|
if (isalpha (*s))
|
|
for (; isalnum (*s); ++s)
|
|
if (isupper (*s))
|
|
*s = tolower (*s);
|
|
|
|
switch (*s)
|
|
{
|
|
case '\0':
|
|
break;
|
|
|
|
case ' ': /* FIXME-SOMEDAY more whitespace */
|
|
*s++ = '\0';
|
|
break;
|
|
|
|
default:
|
|
as_bad ("Unknown opcode: `%s'", str);
|
|
return;
|
|
}
|
|
if ((insn = (struct machine_opcode *) hash_find (op_hash, str)) == NULL)
|
|
{
|
|
as_bad ("Unknown opcode `%s'.", str);
|
|
return;
|
|
}
|
|
argsStart = s;
|
|
opcode = insn->opcode;
|
|
memset (&the_insn, '\0', sizeof (the_insn));
|
|
the_insn.reloc = NO_RELOC;
|
|
|
|
/*
|
|
* Build the opcode, checking as we go to make
|
|
* sure that the operands match.
|
|
*
|
|
* If an operand matches, we modify the_insn or opcode appropriately,
|
|
* and do a "continue". If an operand fails to match, we "break".
|
|
*/
|
|
if (insn->args[0] != '\0')
|
|
s = parse_operand (s, operand); /* Prime the pump */
|
|
|
|
for (args = insn->args;; ++args)
|
|
{
|
|
switch (*args)
|
|
{
|
|
|
|
case '\0': /* end of args */
|
|
if (*s == '\0')
|
|
{
|
|
/* We are truly done. */
|
|
the_insn.opcode = opcode;
|
|
return;
|
|
}
|
|
as_bad ("Too many operands: %s", s);
|
|
break;
|
|
|
|
case ',': /* Must match a comma */
|
|
if (*s++ == ',')
|
|
{
|
|
s = parse_operand (s, operand); /* Parse next opnd */
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case 'v': /* Trap numbers (immediate field) */
|
|
if (operand->X_seg == SEG_ABSOLUTE)
|
|
{
|
|
if (operand->X_add_number < 256)
|
|
{
|
|
opcode |= (operand->X_add_number << 16);
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Immediate value of %d is too large",
|
|
operand->X_add_number);
|
|
continue;
|
|
}
|
|
}
|
|
the_insn.reloc = RELOC_8;
|
|
the_insn.reloc_offset = 1; /* BIG-ENDIAN Byte 1 of insn */
|
|
the_insn.exp = *operand;
|
|
continue;
|
|
|
|
case 'b': /* A general register or 8-bit immediate */
|
|
case 'i':
|
|
/* We treat the two cases identically since we mashed
|
|
them together in the opcode table. */
|
|
if (operand->X_seg == SEG_REGISTER)
|
|
goto general_reg;
|
|
|
|
opcode |= IMMEDIATE_BIT;
|
|
if (operand->X_seg == SEG_ABSOLUTE)
|
|
{
|
|
if (operand->X_add_number < 256)
|
|
{
|
|
opcode |= operand->X_add_number;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Immediate value of %d is too large",
|
|
operand->X_add_number);
|
|
continue;
|
|
}
|
|
}
|
|
the_insn.reloc = RELOC_8;
|
|
the_insn.reloc_offset = 3; /* BIG-ENDIAN Byte 3 of insn */
|
|
the_insn.exp = *operand;
|
|
continue;
|
|
|
|
case 'a': /* next operand must be a register */
|
|
case 'c':
|
|
general_reg:
|
|
/* lrNNN or grNNN or %%expr or a user-def register name */
|
|
if (operand->X_seg != SEG_REGISTER)
|
|
break; /* Only registers */
|
|
know (operand->X_add_symbol == 0);
|
|
know (operand->X_subtract_symbol == 0);
|
|
reg = operand->X_add_number;
|
|
if (reg >= SREG)
|
|
break; /* No special registers */
|
|
|
|
/*
|
|
* Got the register, now figure out where
|
|
* it goes in the opcode.
|
|
*/
|
|
switch (*args)
|
|
{
|
|
case 'a':
|
|
opcode |= reg << 8;
|
|
continue;
|
|
|
|
case 'b':
|
|
case 'i':
|
|
opcode |= reg;
|
|
continue;
|
|
|
|
case 'c':
|
|
opcode |= reg << 16;
|
|
continue;
|
|
}
|
|
as_fatal ("failed sanity check.");
|
|
break;
|
|
|
|
case 'x': /* 16 bit constant, zero-extended */
|
|
case 'X': /* 16 bit constant, one-extended */
|
|
if (operand->X_seg == SEG_ABSOLUTE)
|
|
{
|
|
opcode |= (operand->X_add_number & 0xFF) << 0 |
|
|
((operand->X_add_number & 0xFF00) << 8);
|
|
continue;
|
|
}
|
|
the_insn.reloc = RELOC_CONST;
|
|
the_insn.exp = *operand;
|
|
continue;
|
|
|
|
case 'h':
|
|
if (operand->X_seg == SEG_ABSOLUTE)
|
|
{
|
|
opcode |= (operand->X_add_number & 0x00FF0000) >> 16 |
|
|
(((unsigned long) operand->X_add_number
|
|
/* avoid sign ext */ & 0xFF000000) >> 8);
|
|
continue;
|
|
}
|
|
the_insn.reloc = RELOC_CONSTH;
|
|
the_insn.exp = *operand;
|
|
continue;
|
|
|
|
case 'P': /* PC-relative jump address */
|
|
case 'A': /* Absolute jump address */
|
|
/* These two are treated together since we folded the
|
|
opcode table entries together. */
|
|
if (operand->X_seg == SEG_ABSOLUTE)
|
|
{
|
|
opcode |= ABSOLUTE_BIT |
|
|
(operand->X_add_number & 0x0003FC00) << 6 |
|
|
((operand->X_add_number & 0x000003FC) >> 2);
|
|
continue;
|
|
}
|
|
the_insn.reloc = RELOC_JUMPTARG;
|
|
the_insn.exp = *operand;
|
|
the_insn.pcrel = 1; /* Assume PC-relative jump */
|
|
/* FIXME-SOON, Do we figure out whether abs later, after know sym val? */
|
|
continue;
|
|
|
|
case 'e': /* Coprocessor enable bit for LOAD/STORE insn */
|
|
if (operand->X_seg == SEG_ABSOLUTE)
|
|
{
|
|
if (operand->X_add_number == 0)
|
|
continue;
|
|
if (operand->X_add_number == 1)
|
|
{
|
|
opcode |= CE_BIT;
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 'n': /* Control bits for LOAD/STORE instructions */
|
|
if (operand->X_seg == SEG_ABSOLUTE &&
|
|
operand->X_add_number < 128)
|
|
{
|
|
opcode |= (operand->X_add_number << 16);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case 's': /* Special register number */
|
|
if (operand->X_seg != SEG_REGISTER)
|
|
break; /* Only registers */
|
|
if (operand->X_add_number < SREG)
|
|
break; /* Not a special register */
|
|
opcode |= (operand->X_add_number & 0xFF) << 8;
|
|
continue;
|
|
|
|
case 'u': /* UI bit of CONVERT */
|
|
if (operand->X_seg == SEG_ABSOLUTE)
|
|
{
|
|
if (operand->X_add_number == 0)
|
|
continue;
|
|
if (operand->X_add_number == 1)
|
|
{
|
|
opcode |= UI_BIT;
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 'r': /* RND bits of CONVERT */
|
|
if (operand->X_seg == SEG_ABSOLUTE &&
|
|
operand->X_add_number < 8)
|
|
{
|
|
opcode |= operand->X_add_number << 4;
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case 'd': /* FD bits of CONVERT */
|
|
if (operand->X_seg == SEG_ABSOLUTE &&
|
|
operand->X_add_number < 4)
|
|
{
|
|
opcode |= operand->X_add_number << 2;
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
|
|
case 'f': /* FS bits of CONVERT */
|
|
if (operand->X_seg == SEG_ABSOLUTE &&
|
|
operand->X_add_number < 4)
|
|
{
|
|
opcode |= operand->X_add_number << 0;
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case 'C':
|
|
if (operand->X_seg == SEG_ABSOLUTE &&
|
|
operand->X_add_number < 4)
|
|
{
|
|
opcode |= operand->X_add_number << 16;
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case 'F':
|
|
if (operand->X_seg == SEG_ABSOLUTE &&
|
|
operand->X_add_number < 16)
|
|
{
|
|
opcode |= operand->X_add_number << 18;
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (*args);
|
|
}
|
|
/* Types or values of args don't match. */
|
|
as_bad ("Invalid operands");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
This is identical to the md_atof in m68k.c. I think this is right,
|
|
but I'm not sure.
|
|
|
|
Turn a string in input_line_pointer into a floating point constant of type
|
|
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
|
|
emitted is stored in *sizeP . An error message is returned, or NULL on OK.
|
|
*/
|
|
|
|
/* Equal to MAX_PRECISION in atof-ieee.c */
|
|
#define MAX_LITTLENUMS 6
|
|
|
|
char *
|
|
md_atof (type, litP, sizeP)
|
|
char type;
|
|
char *litP;
|
|
int *sizeP;
|
|
{
|
|
int prec;
|
|
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
|
LITTLENUM_TYPE *wordP;
|
|
char *t;
|
|
|
|
switch (type)
|
|
{
|
|
|
|
case 'f':
|
|
case 'F':
|
|
case 's':
|
|
case 'S':
|
|
prec = 2;
|
|
break;
|
|
|
|
case 'd':
|
|
case 'D':
|
|
case 'r':
|
|
case 'R':
|
|
prec = 4;
|
|
break;
|
|
|
|
case 'x':
|
|
case 'X':
|
|
prec = 6;
|
|
break;
|
|
|
|
case 'p':
|
|
case 'P':
|
|
prec = 6;
|
|
break;
|
|
|
|
default:
|
|
*sizeP = 0;
|
|
return "Bad call to MD_ATOF()";
|
|
}
|
|
t = atof_ieee (input_line_pointer, type, words);
|
|
if (t)
|
|
input_line_pointer = t;
|
|
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
|
for (wordP = words; prec--;)
|
|
{
|
|
md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
|
|
litP += sizeof (LITTLENUM_TYPE);
|
|
}
|
|
return ""; /* Someone should teach Dean about null pointers */
|
|
}
|
|
|
|
/*
|
|
* Write out big-endian.
|
|
*/
|
|
void
|
|
md_number_to_chars (buf, val, n)
|
|
char *buf;
|
|
long val;
|
|
int n;
|
|
{
|
|
|
|
switch (n)
|
|
{
|
|
|
|
case 4:
|
|
*buf++ = val >> 24;
|
|
*buf++ = val >> 16;
|
|
case 2:
|
|
*buf++ = val >> 8;
|
|
case 1:
|
|
*buf = val;
|
|
break;
|
|
|
|
default:
|
|
as_fatal ("failed sanity check.");
|
|
}
|
|
return;
|
|
}
|
|
|
|
void
|
|
md_apply_fix (fixP, val)
|
|
fixS *fixP;
|
|
long val;
|
|
{
|
|
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
|
|
|
|
fixP->fx_addnumber = val; /* Remember value for emit_reloc */
|
|
|
|
|
|
know (fixP->fx_size == 4);
|
|
know (fixP->fx_r_type < NO_RELOC);
|
|
|
|
/*
|
|
* This is a hack. There should be a better way to
|
|
* handle this.
|
|
*/
|
|
if (fixP->fx_r_type == RELOC_WDISP30 && fixP->fx_addsy)
|
|
{
|
|
val += fixP->fx_where + fixP->fx_frag->fr_address;
|
|
}
|
|
|
|
switch (fixP->fx_r_type)
|
|
{
|
|
|
|
case RELOC_32:
|
|
buf[0] = val >> 24;
|
|
buf[1] = val >> 16;
|
|
buf[2] = val >> 8;
|
|
buf[3] = val;
|
|
break;
|
|
|
|
case RELOC_8:
|
|
buf[0] = val;
|
|
break;
|
|
|
|
case RELOC_WDISP30:
|
|
val = (val >>= 2) + 1;
|
|
buf[0] |= (val >> 24) & 0x3f;
|
|
buf[1] = (val >> 16);
|
|
buf[2] = val >> 8;
|
|
buf[3] = val;
|
|
break;
|
|
|
|
case RELOC_HI22:
|
|
buf[1] |= (val >> 26) & 0x3f;
|
|
buf[2] = val >> 18;
|
|
buf[3] = val >> 10;
|
|
break;
|
|
|
|
case RELOC_LO10:
|
|
buf[2] |= (val >> 8) & 0x03;
|
|
buf[3] = val;
|
|
break;
|
|
|
|
case RELOC_BASE13:
|
|
buf[2] |= (val >> 8) & 0x1f;
|
|
buf[3] = val;
|
|
break;
|
|
|
|
case RELOC_WDISP22:
|
|
val = (val >>= 2) + 1;
|
|
/* FALLTHROUGH */
|
|
case RELOC_BASE22:
|
|
buf[1] |= (val >> 16) & 0x3f;
|
|
buf[2] = val >> 8;
|
|
buf[3] = val;
|
|
break;
|
|
|
|
#if 0
|
|
case RELOC_PC10:
|
|
case RELOC_PC22:
|
|
case RELOC_JMP_TBL:
|
|
case RELOC_SEGOFF16:
|
|
case RELOC_GLOB_DAT:
|
|
case RELOC_JMP_SLOT:
|
|
case RELOC_RELATIVE:
|
|
#endif
|
|
case RELOC_JUMPTARG: /* 00XX00XX pattern in a word */
|
|
buf[1] = val >> 10; /* Holds bits 0003FFFC of address */
|
|
buf[3] = val >> 2;
|
|
break;
|
|
|
|
case RELOC_CONST: /* 00XX00XX pattern in a word */
|
|
buf[1] = val >> 8; /* Holds bits 0000XXXX */
|
|
buf[3] = val;
|
|
break;
|
|
|
|
case RELOC_CONSTH: /* 00XX00XX pattern in a word */
|
|
buf[1] = val >> 24; /* Holds bits XXXX0000 */
|
|
buf[3] = val >> 16;
|
|
break;
|
|
|
|
case NO_RELOC:
|
|
default:
|
|
as_bad ("bad relocation type: 0x%02x", fixP->fx_r_type);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
#ifdef OBJ_COFF
|
|
short
|
|
tc_coff_fix2rtype (fixP)
|
|
fixS *fixP;
|
|
{
|
|
|
|
switch (fixP->fx_r_type)
|
|
{
|
|
case RELOC_32:
|
|
return (R_WORD);
|
|
case RELOC_8:
|
|
return (R_BYTE);
|
|
case RELOC_CONST:
|
|
return (R_ILOHALF);
|
|
case RELOC_CONSTH:
|
|
return (R_IHIHALF);
|
|
case RELOC_JUMPTARG:
|
|
return (R_IREL);
|
|
default:
|
|
printf ("need %o3\n", fixP->fx_r_type);
|
|
abort ();
|
|
} /* switch on type */
|
|
|
|
return (0);
|
|
} /* tc_coff_fix2rtype() */
|
|
|
|
#endif /* OBJ_COFF */
|
|
|
|
/* should never be called for sparc */
|
|
void
|
|
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
|
char *ptr;
|
|
long from_addr, to_addr;
|
|
fragS *frag;
|
|
symbolS *to_symbol;
|
|
{
|
|
as_fatal ("a29k_create_short_jmp\n");
|
|
}
|
|
|
|
/* should never be called for 29k */
|
|
void
|
|
md_convert_frag (headers, fragP)
|
|
object_headers *headers;
|
|
register fragS *fragP;
|
|
{
|
|
as_fatal ("sparc_convert_frag\n");
|
|
}
|
|
|
|
/* should never be called for 29k */
|
|
void
|
|
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
|
char *ptr;
|
|
long from_addr;
|
|
long to_addr;
|
|
fragS *frag;
|
|
symbolS *to_symbol;
|
|
{
|
|
as_fatal ("sparc_create_long_jump\n");
|
|
}
|
|
|
|
/* should never be called for a29k */
|
|
int
|
|
md_estimate_size_before_relax (fragP, segtype)
|
|
register fragS *fragP;
|
|
segT segtype;
|
|
{
|
|
as_fatal ("sparc_estimate_size_before_relax\n");
|
|
return (0);
|
|
}
|
|
|
|
#if 0
|
|
/* for debugging only */
|
|
static void
|
|
print_insn (insn)
|
|
struct machine_it *insn;
|
|
{
|
|
char *Reloc[] =
|
|
{
|
|
"RELOC_8",
|
|
"RELOC_16",
|
|
"RELOC_32",
|
|
"RELOC_DISP8",
|
|
"RELOC_DISP16",
|
|
"RELOC_DISP32",
|
|
"RELOC_WDISP30",
|
|
"RELOC_WDISP22",
|
|
"RELOC_HI22",
|
|
"RELOC_22",
|
|
"RELOC_13",
|
|
"RELOC_LO10",
|
|
"RELOC_SFA_BASE",
|
|
"RELOC_SFA_OFF13",
|
|
"RELOC_BASE10",
|
|
"RELOC_BASE13",
|
|
"RELOC_BASE22",
|
|
"RELOC_PC10",
|
|
"RELOC_PC22",
|
|
"RELOC_JMP_TBL",
|
|
"RELOC_SEGOFF16",
|
|
"RELOC_GLOB_DAT",
|
|
"RELOC_JMP_SLOT",
|
|
"RELOC_RELATIVE",
|
|
"NO_RELOC"
|
|
};
|
|
|
|
if (insn->error)
|
|
{
|
|
fprintf (stderr, "ERROR: %s\n");
|
|
}
|
|
fprintf (stderr, "opcode=0x%08x\n", insn->opcode);
|
|
fprintf (stderr, "reloc = %s\n", Reloc[insn->reloc]);
|
|
fprintf (stderr, "exp = {\n");
|
|
fprintf (stderr, "\t\tX_add_symbol = %s\n",
|
|
insn->exp.X_add_symbol ?
|
|
(S_GET_NAME (insn->exp.X_add_symbol) ?
|
|
S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0");
|
|
fprintf (stderr, "\t\tX_sub_symbol = %s\n",
|
|
insn->exp.X_subtract_symbol ?
|
|
(S_GET_NAME (insn->exp.X_subtract_symbol) ?
|
|
S_GET_NAME (insn->exp.X_subtract_symbol) : "???") : "0");
|
|
fprintf (stderr, "\t\tX_add_number = %d\n",
|
|
insn->exp.X_add_number);
|
|
fprintf (stderr, "}\n");
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Translate internal representation of relocation info to target format.
|
|
|
|
On sparc/29k: first 4 bytes are normal unsigned long address, next three
|
|
bytes are index, most sig. byte first. Byte 7 is broken up with
|
|
bit 7 as external, bits 6 & 5 unused, and the lower
|
|
five bits as relocation type. Next 4 bytes are long addend. */
|
|
/* Thanx and a tip of the hat to Michael Bloom, mb@ttidca.tti.com */
|
|
|
|
#ifdef OBJ_AOUT
|
|
|
|
void
|
|
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
|
|
char *where;
|
|
fixS *fixP;
|
|
relax_addressT segment_address_in_file;
|
|
{
|
|
long r_symbolnum;
|
|
|
|
know (fixP->fx_r_type < NO_RELOC);
|
|
know (fixP->fx_addsy != NULL);
|
|
|
|
md_number_to_chars (where,
|
|
fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
|
|
4);
|
|
|
|
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
|
|
? S_GET_TYPE (fixP->fx_addsy)
|
|
: fixP->fx_addsy->sy_number);
|
|
|
|
where[4] = (r_symbolnum >> 16) & 0x0ff;
|
|
where[5] = (r_symbolnum >> 8) & 0x0ff;
|
|
where[6] = r_symbolnum & 0x0ff;
|
|
where[7] = (((!S_IS_DEFINED (fixP->fx_addsy)) << 7) & 0x80) | (0 & 0x60) | (fixP->fx_r_type & 0x1F);
|
|
/* Also easy */
|
|
md_number_to_chars (&where[8], fixP->fx_addnumber, 4);
|
|
|
|
return;
|
|
} /* tc_aout_fix_to_chars() */
|
|
|
|
#endif /* OBJ_AOUT */
|
|
|
|
int
|
|
md_parse_option (argP, cntP, vecP)
|
|
char **argP;
|
|
int *cntP;
|
|
char ***vecP;
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
|
|
/* Default the values of symbols known that should be "predefined". We
|
|
don't bother to predefine them unless you actually use one, since there
|
|
are a lot of them. */
|
|
|
|
symbolS *
|
|
md_undefined_symbol (name)
|
|
char *name;
|
|
{
|
|
long regnum;
|
|
char testbuf[5 + /*SLOP*/ 5];
|
|
|
|
if (name[0] == 'g' || name[0] == 'G' || name[0] == 'l' || name[0] == 'L')
|
|
{
|
|
/* Perhaps a global or local register name */
|
|
if (name[1] == 'r' || name[1] == 'R')
|
|
{
|
|
/* Parse the number, make sure it has no extra zeroes or trailing
|
|
chars */
|
|
regnum = atol (&name[2]);
|
|
if (regnum > 127)
|
|
return 0;
|
|
sprintf (testbuf, "%ld", regnum);
|
|
if (strcmp (testbuf, &name[2]) != 0)
|
|
return 0; /* gr007 or lr7foo or whatever */
|
|
|
|
/* We have a wiener! Define and return a new symbol for it. */
|
|
if (name[0] == 'l' || name[0] == 'L')
|
|
regnum += 128;
|
|
return (symbol_new (name, SEG_REGISTER, regnum, &zero_address_frag));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Parse an operand that is machine-specific. */
|
|
|
|
void
|
|
md_operand (expressionP)
|
|
expressionS *expressionP;
|
|
{
|
|
|
|
if (input_line_pointer[0] == '%' && input_line_pointer[1] == '%')
|
|
{
|
|
/* We have a numeric register expression. No biggy. */
|
|
input_line_pointer += 2; /* Skip %% */
|
|
(void) expression (expressionP);
|
|
if (expressionP->X_seg != SEG_ABSOLUTE
|
|
|| expressionP->X_add_number > 255)
|
|
as_bad ("Invalid expression after %%%%\n");
|
|
expressionP->X_seg = SEG_REGISTER;
|
|
}
|
|
else if (input_line_pointer[0] == '&')
|
|
{
|
|
/* We are taking the 'address' of a register...this one is not
|
|
in the manual, but it *is* in traps/fpsymbol.h! What they
|
|
seem to want is the register number, as an absolute number. */
|
|
input_line_pointer++; /* Skip & */
|
|
(void) expression (expressionP);
|
|
if (expressionP->X_seg != SEG_REGISTER)
|
|
as_bad ("Invalid register in & expression");
|
|
else
|
|
expressionP->X_seg = SEG_ABSOLUTE;
|
|
}
|
|
}
|
|
|
|
/* Round up a section size to the appropriate boundary. */
|
|
long
|
|
md_section_align (segment, size)
|
|
segT segment;
|
|
long size;
|
|
{
|
|
return size; /* Byte alignment is fine */
|
|
}
|
|
|
|
/* Exactly what point is a PC-relative offset relative TO?
|
|
On the 29000, they're relative to the address of the instruction,
|
|
which we have set up as the address of the fixup too. */
|
|
long
|
|
md_pcrel_from (fixP)
|
|
fixS *fixP;
|
|
{
|
|
return fixP->fx_where + fixP->fx_frag->fr_address;
|
|
}
|
|
|
|
/*
|
|
* Local Variables:
|
|
* comment-column: 0
|
|
* End:
|
|
*/
|
|
|
|
/* end of tc-a29k.c */
|