4ecee2f9f1
application, and it will speak GDB remote protocol! * remote.c (remote_wait): Change 'T' (expedited reply) message to deal with arbitrary registers. Needed for sparc-stub,
892 lines
21 KiB
C
892 lines
21 KiB
C
/****************************************************************************
|
|
|
|
THIS SOFTWARE IS NOT COPYRIGHTED
|
|
|
|
HP offers the following for use in the public domain. HP makes no
|
|
warranty with regard to the software or it's performance and the
|
|
user accepts the software "AS IS" with all faults.
|
|
|
|
HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
|
|
TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
|
|
*
|
|
* Module name: remcom.c $
|
|
* Revision: 1.34 $
|
|
* Date: 91/03/09 12:29:49 $
|
|
* Contributor: Lake Stevens Instrument Division$
|
|
*
|
|
* Description: low level support for gdb debugger. $
|
|
*
|
|
* Considerations: only works on target hardware $
|
|
*
|
|
* Written by: Glenn Engel $
|
|
* ModuleState: Experimental $
|
|
*
|
|
* NOTES: See Below $
|
|
*
|
|
* Modified for SPARC by Stu Grossman, Cygnus Support.
|
|
*
|
|
* To enable debugger support, two things need to happen. One, a
|
|
* call to set_debug_traps() is necessary in order to allow any breakpoints
|
|
* or error conditions to be properly intercepted and reported to gdb.
|
|
* Two, a breakpoint needs to be generated to begin communication. This
|
|
* is most easily accomplished by a call to breakpoint(). Breakpoint()
|
|
* simulates a breakpoint by executing a trap #1.
|
|
*
|
|
*************
|
|
*
|
|
* The following gdb commands are supported:
|
|
*
|
|
* command function Return value
|
|
*
|
|
* g return the value of the CPU registers hex data or ENN
|
|
* G set the value of the CPU registers OK or ENN
|
|
*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
|
|
*
|
|
* c Resume at current address SNN ( signal NN)
|
|
* cAA..AA Continue at address AA..AA SNN
|
|
*
|
|
* s Step one instruction SNN
|
|
* sAA..AA Step one instruction from AA..AA SNN
|
|
*
|
|
* k kill
|
|
*
|
|
* ? What was the last sigval ? SNN (signal NN)
|
|
*
|
|
* All commands and responses are sent with a packet which includes a
|
|
* checksum. A packet consists of
|
|
*
|
|
* $<packet info>#<checksum>.
|
|
*
|
|
* where
|
|
* <packet info> :: <characters representing the command or response>
|
|
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
|
|
*
|
|
* When a packet is received, it is first acknowledged with either '+' or '-'.
|
|
* '+' indicates a successful transfer. '-' indicates a failed transfer.
|
|
*
|
|
* Example:
|
|
*
|
|
* Host: Reply:
|
|
* $m0,10#2a +$00010203040506070809101112131415#42
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
#include <memory.h>
|
|
|
|
/************************************************************************
|
|
*
|
|
* external low-level support routines
|
|
*/
|
|
|
|
extern putDebugChar(); /* write a single character */
|
|
extern getDebugChar(); /* read and return a single char */
|
|
|
|
/************************************************************************/
|
|
/* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
|
|
/* at least NUMREGBYTES*2 are needed for register packets */
|
|
#define BUFMAX 2048
|
|
|
|
static int initialized; /* boolean flag. != 0 means we've been initialized */
|
|
|
|
static void set_mem_fault_trap();
|
|
|
|
int remote_debug;
|
|
/* debug > 0 prints ill-formed commands in valid packets & checksum errors */
|
|
|
|
static const char hexchars[]="0123456789abcdef";
|
|
|
|
#define NUMREGS 72
|
|
|
|
/* Number of bytes of registers. */
|
|
#define NUMREGBYTES (NUMREGS * 4)
|
|
enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
|
|
O0, O1, O2, O3, O4, O5, SP, O7,
|
|
L0, L1, L2, L3, L4, L5, L6, L7,
|
|
I0, I1, I2, I3, I4, I5, FP, I7,
|
|
|
|
F0, F1, F2, F3, F4, F5, F6, F7,
|
|
F8, F9, F10, F11, F12, F13, F14, F15,
|
|
F16, F17, F18, F19, F20, F21, F22, F23,
|
|
F24, F25, F26, F27, F28, F29, F30, F31,
|
|
Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };
|
|
|
|
static unsigned long registers[NUMREGS] __attribute__ ((aligned (8)));
|
|
|
|
/*************************** ASSEMBLY CODE MACROS *************************/
|
|
/* */
|
|
|
|
#define BREAKPOINT() asm(" ta 1");
|
|
|
|
extern unsigned long rdtbr();
|
|
|
|
asm("
|
|
.text
|
|
!
|
|
! FUNCTION
|
|
! _chk4ovflo
|
|
!
|
|
! DESCRIPTION
|
|
! This code is branched to before each trap (except reset,
|
|
! _win_unf, and _win_ovf) handler.
|
|
! It checks to see if we've moved into the invalid window
|
|
! and performs fixup ala _win_ovf.
|
|
!
|
|
! INPUTS
|
|
! - %l1 = pc at trap time.
|
|
! - %l2 = npc at trap time.
|
|
! - %l7 = return address.
|
|
!
|
|
! INTERNAL DESCRIPTION
|
|
!
|
|
! RETURNS
|
|
! - None.
|
|
!
|
|
|
|
.align 4
|
|
|
|
_chk4ovflo:
|
|
mov %psr, %l0 ! get the psr
|
|
and %l0, 0x1F, %l3 ! get the cwp
|
|
mov 1, %l4 ! compare cwp with the wim
|
|
sll %l4, %l3, %l3 ! compare
|
|
mov %wim, %l4 ! read the wim
|
|
btst %l4, %l3
|
|
bz _retsave ! not invalid window, just return
|
|
nop
|
|
! in line version of _win_ovf
|
|
or %l0, 0xf20, %l3 ! enable traps, disable interrupts.
|
|
mov %l3, %psr
|
|
mov %g1, %l0 ! Save %g1.
|
|
srl %l4, 1, %g1 ! Next WIM = %g1 = rol(WIM, 1, NWINDOW)
|
|
sll %l4, 8-1, %l3
|
|
bset %l3, %g1
|
|
save %g0, %g0, %g0 ! Get into window to be saved.
|
|
mov %g1, %wim ! Install new wim.
|
|
nop ! must delay three instructions
|
|
nop ! before using these registers, so
|
|
nop ! put nops in just to be safe
|
|
|
|
std %l0, [%sp + 0 * 4] ! save all local registers
|
|
std %l2, [%sp + 2 * 4]
|
|
std %l4, [%sp + 4 * 4]
|
|
std %l6, [%sp + 6 * 4]
|
|
|
|
std %i0, [%sp + 8 * 4]
|
|
std %i2, [%sp + 10 * 4]
|
|
std %i4, [%sp + 12 * 4]
|
|
std %i6, [%sp + 14 * 4]
|
|
|
|
restore ! Go back to trap window.
|
|
mov %l0, %g1 ! Restore %g1.
|
|
|
|
_retsave:
|
|
! It is safe now to allocate a stack frame for this window
|
|
! because all overflow handling will have been accomplished
|
|
! in the event we trapped into the invalid window.
|
|
! ie. all of this window's %o regs (next window's %i regs)
|
|
! will have been safely stored to the stack before we overwrite %sp.
|
|
|
|
jmpl %l7+8, %g0 ! Window is valid, just return
|
|
sub %fp, (16+1+6+1)*4, %sp ! Make room for input & locals
|
|
! + hidden arg + arg spill
|
|
! + doubleword alignment
|
|
|
|
! Read the TBR.
|
|
|
|
.globl _rdtbr
|
|
_rdtbr:
|
|
retl
|
|
mov %tbr, %o0
|
|
|
|
! This function is called when any SPARC trap (except window overflow or
|
|
! underflow) occurs. It makes sure that the invalid register window is still
|
|
! available before jumping into C code. It will also restore the world if you
|
|
! return from handle_exception.
|
|
|
|
_trap_low:
|
|
set _registers, %l0
|
|
|
|
std %g0, [%l0 + 0 * 4] ! registers[Gx]
|
|
std %g2, [%l0 + 2 * 4]
|
|
std %g4, [%l0 + 4 * 4]
|
|
std %g6, [%l0 + 6 * 4]
|
|
|
|
std %i0, [%l0 + 8 * 4] ! registers[Ox]
|
|
std %i2, [%l0 + 10 * 4]
|
|
std %i4, [%l0 + 12 * 4]
|
|
std %i6, [%l0 + 14 * 4]
|
|
! F0->F31 not implemented
|
|
mov %y, %l4
|
|
mov %psr, %l5
|
|
mov %wim, %l6
|
|
mov %tbr, %l7
|
|
std %l4, [%l0 + 64 * 4] ! Y & PSR
|
|
std %l6, [%l0 + 66 * 4] ! WIM & TBR
|
|
st %l1, [%l0 + 68 * 4] ! PC
|
|
st %l2, [%l0 + 69 * 4] ! NPC
|
|
|
|
! CPSR and FPSR not impl
|
|
|
|
sethi %hi(_chk4ovflo), %l7 ! Must call this routine via %l7
|
|
jmpl %l7+%lo(_chk4ovflo), %l7 ! because o regs may not be available yet
|
|
nop
|
|
mov %psr, %o1
|
|
bset 0xf20, %o1
|
|
mov %o1, %psr ! Turn on traps, disable interrupts
|
|
|
|
call _handle_exception
|
|
nop
|
|
mov %o0, %l7 ! Save return value
|
|
|
|
! Reload all of the registers that aren't on the stack
|
|
|
|
set _registers, %l0 ! Need to use reg immune from save/rest
|
|
|
|
ld [%l0 + 1 * 4], %g1 ! registers[Gx]
|
|
ldd [%l0 + 2 * 4], %g2
|
|
ldd [%l0 + 4 * 4], %g4
|
|
ldd [%l0 + 6 * 4], %g6
|
|
|
|
ldd [%l0 + 8 * 4], %o0 ! registers[Ox]
|
|
ldd [%l0 + 10 * 4], %o2
|
|
ldd [%l0 + 12 * 4], %o4
|
|
ldd [%l0 + 14 * 4], %o6
|
|
|
|
restore ! Ensure that previous window is valid
|
|
save %g0, %g0, %g0 ! by causing a window_underflow trap
|
|
|
|
ld [%l0 + 64 * 4], %l3 ! registers[Y]
|
|
mov %l3, %y
|
|
ld [%l0 + 65 * 4], %l3 ! registers[PSR]
|
|
ld [%l0 + 68 * 4], %l1 ! registers[PC]
|
|
ld [%l0 + 69 * 4], %l2 ! registers[NPC]
|
|
|
|
tst %l7 ! Did handle_exception tell
|
|
bg retskip ! us to skip the next inst?
|
|
nop
|
|
|
|
mov %l3, %psr ! Make sure that traps are disabled
|
|
! for rett
|
|
jmpl %l1, %g0 ! Restore old PC
|
|
rett %l2 ! Restore old nPC
|
|
|
|
mov %l3, %psr ! Make sure that traps are disabled
|
|
! for rett
|
|
retskip: ! Come here to skip the next instruction
|
|
jmpl %l2, %g0 ! Old nPC
|
|
rett %l2+4 ! Old nPC+4
|
|
");
|
|
|
|
/* Convert ch from a hex digit to an int */
|
|
|
|
static int
|
|
hex(ch)
|
|
unsigned char ch;
|
|
{
|
|
if (ch >= 'a' && ch <= 'f')
|
|
return ch-'a'+10;
|
|
if (ch >= '0' && ch <= '9')
|
|
return ch-'0';
|
|
if (ch >= 'A' && ch <= 'F')
|
|
return ch-'A'+10;
|
|
return -1;
|
|
}
|
|
|
|
/* scan for the sequence $<data>#<checksum> */
|
|
|
|
static void
|
|
getpacket(buffer)
|
|
char *buffer;
|
|
{
|
|
unsigned char checksum;
|
|
unsigned char xmitcsum;
|
|
int i;
|
|
int count;
|
|
unsigned char ch;
|
|
|
|
do
|
|
{
|
|
/* wait around for the start character, ignore all other characters */
|
|
while ((ch = getDebugChar()) != '$') ;
|
|
|
|
checksum = 0;
|
|
xmitcsum = -1;
|
|
|
|
count = 0;
|
|
|
|
/* now, read until a # or end of buffer is found */
|
|
while (count < BUFMAX)
|
|
{
|
|
ch = getDebugChar();
|
|
if (ch == '#')
|
|
break;
|
|
checksum = checksum + ch;
|
|
buffer[count] = ch;
|
|
count = count + 1;
|
|
}
|
|
|
|
if (count >= BUFMAX)
|
|
continue;
|
|
|
|
buffer[count] = 0;
|
|
|
|
if (ch == '#')
|
|
{
|
|
xmitcsum = hex(getDebugChar()) << 4;
|
|
xmitcsum |= hex(getDebugChar());
|
|
#ifdef DEBUG
|
|
if (remote_debug && checksum != xmitcsum)
|
|
{
|
|
fprintf(stderr, "bad checksum. My count = 0x%x, sent=0x%x. buf=%s\n",
|
|
checksum,xmitcsum,buffer);
|
|
}
|
|
#endif
|
|
#if 1
|
|
/* Humans shouldn't have to figure out checksums to type to it. */
|
|
putDebugChar ('+');
|
|
return;
|
|
#endif
|
|
if (checksum != xmitcsum)
|
|
putDebugChar('-'); /* failed checksum */
|
|
else
|
|
{
|
|
putDebugChar('+'); /* successful transfer */
|
|
/* if a sequence char is present, reply the sequence ID */
|
|
if (buffer[2] == ':')
|
|
{
|
|
putDebugChar(buffer[0]);
|
|
putDebugChar(buffer[1]);
|
|
/* remove sequence chars from buffer */
|
|
count = strlen(buffer);
|
|
for (i=3; i <= count; i++)
|
|
buffer[i-3] = buffer[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
while (checksum != xmitcsum);
|
|
}
|
|
|
|
/* send the packet in buffer. */
|
|
|
|
static void
|
|
putpacket(buffer)
|
|
unsigned char *buffer;
|
|
{
|
|
unsigned char checksum;
|
|
int count;
|
|
unsigned char ch;
|
|
|
|
/* $<packet info>#<checksum>. */
|
|
do
|
|
{
|
|
putDebugChar('$');
|
|
checksum = 0;
|
|
count = 0;
|
|
|
|
while (ch = buffer[count])
|
|
{
|
|
if (! putDebugChar(ch))
|
|
return;
|
|
checksum += ch;
|
|
count += 1;
|
|
}
|
|
|
|
putDebugChar('#');
|
|
putDebugChar(hexchars[checksum >> 4]);
|
|
putDebugChar(hexchars[checksum & 0xf]);
|
|
|
|
}
|
|
while (getDebugChar() != '+');
|
|
}
|
|
|
|
static unsigned char remcomInBuffer[BUFMAX];
|
|
static unsigned char remcomOutBuffer[BUFMAX];
|
|
static short error;
|
|
|
|
static void
|
|
debug_error(format, parm)
|
|
char *format;
|
|
char *parm;
|
|
{
|
|
#ifdef DEBUG
|
|
if (remote_debug)
|
|
fprintf(stderr,format,parm);
|
|
#endif
|
|
}
|
|
|
|
/* Address of a routine to RTE to if we get a memory fault. */
|
|
static void (*mem_fault_routine)() = NULL;
|
|
|
|
/* Indicate to caller of mem2hex or hex2mem that there has been an
|
|
error. */
|
|
|
|
static volatile int mem_err = 0;
|
|
|
|
/* These are separate functions so that they are so short and sweet
|
|
that the compiler won't save any registers (if there is a fault
|
|
to mem_fault, they won't get restored, so there better not be any
|
|
saved). */
|
|
static int
|
|
get_char (addr)
|
|
char *addr;
|
|
{
|
|
return *addr;
|
|
}
|
|
|
|
static void
|
|
set_char (addr, val)
|
|
char *addr;
|
|
int val;
|
|
{
|
|
*addr = val;
|
|
}
|
|
|
|
/* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
* Return a pointer to the last char put in buf (null), in case of mem fault,
|
|
* return 0.
|
|
* If MAY_FAULT is non-zero, then we will handle memory faults by returning
|
|
* a 0, else treat a fault like any other fault in the stub.
|
|
*/
|
|
|
|
static unsigned char *
|
|
mem2hex(mem, buf, count, may_fault)
|
|
unsigned char *mem;
|
|
unsigned char *buf;
|
|
int count;
|
|
int may_fault;
|
|
{
|
|
unsigned char ch;
|
|
|
|
set_mem_fault_trap(may_fault);
|
|
|
|
while (count-- > 0)
|
|
{
|
|
ch = get_char(mem++);
|
|
if (mem_err)
|
|
return 0;
|
|
*buf++ = hexchars[ch >> 4];
|
|
*buf++ = hexchars[ch & 0xf];
|
|
}
|
|
|
|
*buf = 0;
|
|
|
|
set_mem_fault_trap(0);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/* convert the hex array pointed to by buf into binary to be placed in mem
|
|
* return a pointer to the character AFTER the last byte written */
|
|
|
|
static char *
|
|
hex2mem(buf, mem, count, may_fault)
|
|
unsigned char *buf;
|
|
unsigned char *mem;
|
|
int count;
|
|
int may_fault;
|
|
{
|
|
int i;
|
|
unsigned char ch;
|
|
|
|
set_mem_fault_trap(may_fault);
|
|
|
|
for (i=0; i<count; i++)
|
|
{
|
|
ch = hex(*buf++) << 4;
|
|
ch |= hex(*buf++);
|
|
set_char(mem++, ch);
|
|
if (mem_err)
|
|
return 0;
|
|
}
|
|
|
|
set_mem_fault_trap(0);
|
|
|
|
return mem;
|
|
}
|
|
|
|
/* this function takes the SPARC trap type code and attempts to
|
|
translate this number into a unix compatible signal value */
|
|
|
|
static int
|
|
computeSignal(tt)
|
|
int tt;
|
|
{
|
|
int sigval;
|
|
|
|
switch (tt)
|
|
{
|
|
case 1:
|
|
sigval = SIGSEGV; break; /* instruction access error */
|
|
case 2:
|
|
sigval = SIGILL; break; /* privileged instruction */
|
|
case 3:
|
|
sigval = SIGILL; break; /* illegal instruction */
|
|
case 4:
|
|
sigval = SIGEMT; break; /* fp disabled */
|
|
case 36:
|
|
sigval = SIGEMT; break; /* cp disabled */
|
|
case 7:
|
|
sigval = SIGBUS; break; /* mem address not aligned */
|
|
case 9:
|
|
sigval = SIGSEGV; break; /* data access exception */
|
|
case 10:
|
|
sigval = SIGEMT; break; /* tag overflow */
|
|
case 128+1: /* ta 1 - normal breakpoint instruction */
|
|
case 255: /* breakpoint hardware unique to SPARClite */
|
|
sigval = SIGTRAP; break; /* breakpoint trap */
|
|
default:
|
|
sigval = SIGHUP; /* "software generated"*/
|
|
}
|
|
return (sigval);
|
|
}
|
|
|
|
/*
|
|
* While we find nice hex chars, build an int.
|
|
* Return number of chars processed.
|
|
*/
|
|
|
|
static int
|
|
hexToInt(char **ptr, int *intValue)
|
|
{
|
|
int numChars = 0;
|
|
int hexValue;
|
|
|
|
*intValue = 0;
|
|
|
|
while (**ptr)
|
|
{
|
|
hexValue = hex(**ptr);
|
|
if (hexValue >=0)
|
|
{
|
|
*intValue = (*intValue <<4) | hexValue;
|
|
numChars ++;
|
|
}
|
|
else
|
|
break;
|
|
|
|
(*ptr)++;
|
|
}
|
|
|
|
return (numChars);
|
|
}
|
|
|
|
/*
|
|
* This function does all command procesing for interfacing to gdb. It
|
|
* returns 1 if you should skip the instruction at the trap address, 0
|
|
* otherwise.
|
|
*/
|
|
|
|
static int
|
|
handle_exception ()
|
|
{
|
|
int tt; /* Trap type */
|
|
int sigval;
|
|
int addr;
|
|
int length;
|
|
char *ptr;
|
|
int newPC;
|
|
unsigned char *sp;
|
|
unsigned char *com;
|
|
|
|
/* First, we must force all of the windows to be spilled out */
|
|
|
|
asm(" save %g0, -64, %g0
|
|
save %g0, -64, %g0
|
|
save %g0, -64, %g0
|
|
save %g0, -64, %g0
|
|
save %g0, -64, %g0
|
|
save %g0, -64, %g0
|
|
save %g0, -64, %g0
|
|
save %g0, -64, %g0
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
");
|
|
|
|
#if 0
|
|
writez(1, "Got to handle_exception()\r\n ");
|
|
|
|
writez(1, "psr = 0x");
|
|
numout(registers[PSR], 16);
|
|
writez(1, " tbr = 0x");
|
|
numout(registers[TBR], 16);
|
|
writez(1, " oldpc = 0x");
|
|
numout(registers[PC], 16);
|
|
writez(1, " oldnpc = 0x");
|
|
numout(registers[NPC], 16);
|
|
writez(1, "\r\n");
|
|
#endif
|
|
|
|
sp = (unsigned char *)registers[SP];
|
|
|
|
tt = (registers[TBR] >> 4) & 0xff;
|
|
|
|
#ifdef DEBUG
|
|
if (remote_debug)
|
|
printf("tbr=0x%x, tt=%d, psr=0x%x, pc=0x%x, npc=0x%x\n",
|
|
registers[TBR], (registers[TBR] >> 4) & 0xff, registers[PSR], registers[PC], registers[NPC]);
|
|
#endif
|
|
|
|
/* reply to host that an exception has occurred */
|
|
sigval = computeSignal(tt);
|
|
com = remcomOutBuffer;
|
|
|
|
*com++ = 'T';
|
|
*com++ = hexchars[sigval >> 4];
|
|
*com++ = hexchars[sigval & 0xf];
|
|
|
|
*com++ = hexchars[PC >> 4];
|
|
*com++ = hexchars[PC & 0xf];
|
|
com = mem2hex((char *)®isters[PC], com, 4, 0);
|
|
|
|
*com++ = hexchars[FP >> 4];
|
|
*com++ = hexchars[FP & 0xf];
|
|
com = mem2hex(sp + (8 + 6) * 4, com, 4, 0); /* FP */
|
|
|
|
*com++ = hexchars[SP >> 4];
|
|
*com++ = hexchars[SP & 0xf];
|
|
com = mem2hex((char *)®isters[SP], com, 4, 0);
|
|
|
|
*com++ = hexchars[NPC >> 4];
|
|
*com++ = hexchars[NPC & 0xf];
|
|
com = mem2hex((char *)®isters[NPC], com, 4, 0);
|
|
|
|
*com++ = 0;
|
|
|
|
putpacket(remcomOutBuffer);
|
|
|
|
while (1)
|
|
{
|
|
error = 0;
|
|
remcomOutBuffer[0] = 0;
|
|
|
|
getpacket(remcomInBuffer);
|
|
switch (remcomInBuffer[0])
|
|
{
|
|
case '?':
|
|
remcomOutBuffer[0] = 'S';
|
|
remcomOutBuffer[1] = hexchars[sigval >> 4];
|
|
remcomOutBuffer[2] = hexchars[sigval & 0xf];
|
|
remcomOutBuffer[3] = 0;
|
|
break;
|
|
|
|
case 'd':
|
|
remote_debug = !remote_debug; /* toggle debug flag */
|
|
break;
|
|
|
|
case 'g': /* return the value of the CPU registers */
|
|
{
|
|
com = remcomOutBuffer;
|
|
com = mem2hex((char *)registers, com, 16 * 4, 0); /* G & O regs */
|
|
com = mem2hex(sp + 0 * 4, com, 8 * 4, 0); /* L regs */
|
|
com = mem2hex(sp + 8 * 4, com, 8 * 4, 0); /* I regs */
|
|
memset(com, '0', 32 * 8); /* Floating point */
|
|
mem2hex((char *)®isters[Y],
|
|
com + 32 * 4 * 2,
|
|
8 * 4,
|
|
0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
}
|
|
break;
|
|
|
|
case 'G': /* set the value of the CPU registers - return OK */
|
|
{
|
|
com = &remcomInBuffer[1];
|
|
hex2mem(com, (char *)registers, 16 * 4, 0); /* G & O regs */
|
|
hex2mem(com + 16 * 4 * 2, sp + 0 * 4, 8 * 4, 0); /* L regs */
|
|
hex2mem(com + 24 * 4 * 2, sp + 8 * 4, 8 * 4, 0); /* I regs */
|
|
hex2mem(com + 64 * 4 * 2, (char *)®isters[Y],
|
|
8 * 4, 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
strcpy(remcomOutBuffer,"OK");
|
|
}
|
|
break;
|
|
|
|
case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
|
|
/* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
|
|
|
|
ptr = &remcomInBuffer[1];
|
|
|
|
if (hexToInt(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length))
|
|
{
|
|
if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
|
|
break;
|
|
|
|
strcpy (remcomOutBuffer, "E03");
|
|
debug_error ("memory fault");
|
|
}
|
|
else
|
|
{
|
|
strcpy(remcomOutBuffer,"E01");
|
|
debug_error("malformed read memory command: %s",remcomInBuffer);
|
|
}
|
|
break;
|
|
|
|
case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
|
|
/* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
|
|
|
|
ptr = &remcomInBuffer[1];
|
|
|
|
if (hexToInt(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length)
|
|
&& *ptr++ == ':')
|
|
{
|
|
if (hex2mem(ptr, (char *)addr, length, 1))
|
|
strcpy(remcomOutBuffer, "OK");
|
|
else
|
|
{
|
|
strcpy(remcomOutBuffer, "E03");
|
|
debug_error("memory fault");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
strcpy(remcomOutBuffer, "E02");
|
|
debug_error("malformed write memory command: %s",remcomInBuffer);
|
|
}
|
|
break;
|
|
|
|
case 'c': /* cAA..AA Continue at address AA..AA(optional) */
|
|
case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
|
|
ptr = &remcomInBuffer[1];
|
|
if (hexToInt(&ptr, &addr))
|
|
{
|
|
registers[PC] = addr;
|
|
registers[NPC] = addr + 4;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* kill the program */
|
|
case 'k' : /* do nothing */
|
|
break;
|
|
} /* switch */
|
|
|
|
/* reply to the request */
|
|
putpacket(remcomOutBuffer);
|
|
}
|
|
}
|
|
|
|
/* Each entry in the trap vector occupies four words. */
|
|
|
|
struct trap_entry
|
|
{
|
|
unsigned long ti[4];
|
|
};
|
|
|
|
#define NUMTRAPS 256
|
|
|
|
/* static struct trap_entry oldvec[NUMTRAPS];*/
|
|
|
|
extern struct trap_entry fltr_proto;
|
|
extern struct trap_entry fltr_set_mem_err;
|
|
asm ("
|
|
.data
|
|
.globl _fltr_proto
|
|
.align 4
|
|
_fltr_proto: ! First level trap routine prototype
|
|
sethi %hi(_trap_low), %l0
|
|
jmpl %lo(_trap_low)+%l0, %g0
|
|
nop
|
|
nop
|
|
|
|
! Trap handler for memory errors. This just sets mem_err to be non-zero. It
|
|
! assumes that %l1 is non-zero. This should be safe, as it is doubtful that
|
|
! 0 would ever contain code that could mem fault. This routine will skip
|
|
! past the faulting instruction after setting mem_err.
|
|
|
|
_fltr_set_mem_err:
|
|
sethi %hi(_mem_err), %l0
|
|
st %l1, [%l0 + %lo(_mem_err)]
|
|
jmpl %l2, %g0
|
|
rett %l2+4
|
|
|
|
.text
|
|
");
|
|
|
|
/* this function is used to set up exception handlers for tracing and
|
|
breakpoints */
|
|
|
|
void
|
|
set_debug_traps()
|
|
{
|
|
int exception;
|
|
struct trap_entry *tb; /* Trap vector base address */
|
|
|
|
writez(1, "Got to set_debug_traps\r\n");
|
|
|
|
tb = (struct trap_entry *)(rdtbr() & ~0xfff);
|
|
|
|
writez(1, "tb = 0x");
|
|
numout(tb, 16);
|
|
writez(1, " trap ins = 0x");
|
|
numout(fltr_proto, 16);
|
|
writez(1, "\r\n");
|
|
|
|
tb[1] = fltr_proto; /* instruction access exception */
|
|
tb[2] = fltr_proto; /* privileged instruction */
|
|
tb[3] = fltr_proto; /* illegal instruction */
|
|
tb[4] = fltr_proto; /* fp disabled */
|
|
tb[36] = fltr_proto; /* cp disabled */
|
|
tb[7] = fltr_proto; /* mem address not aligned */
|
|
tb[9] = fltr_proto; /* data access exception */
|
|
tb[10] = fltr_proto; /* tag overflow */
|
|
tb[128+1] = fltr_proto; /* breakpoint instruction (ta 1) */
|
|
tb[255] = fltr_proto; /* hardware breakpoint trap */
|
|
|
|
/* In case GDB is started before us, ack any packets (presumably
|
|
"$?#xx") sitting there. */
|
|
|
|
putDebugChar ('+');
|
|
|
|
initialized = 1;
|
|
}
|
|
|
|
static void
|
|
set_mem_fault_trap(enable)
|
|
int enable;
|
|
{
|
|
struct trap_entry *tb; /* Trap vector base address */
|
|
|
|
mem_err = 0;
|
|
|
|
tb = (struct trap_entry *)(rdtbr() & ~0xfff);
|
|
|
|
if (enable)
|
|
tb[9] = fltr_set_mem_err;
|
|
else
|
|
tb[9] = fltr_proto;
|
|
}
|
|
|
|
/* This function will generate a breakpoint exception. It is used at the
|
|
beginning of a program to sync up with a debugger and can be used
|
|
otherwise as a quick means to stop program execution and "break" into
|
|
the debugger. */
|
|
|
|
void
|
|
breakpoint()
|
|
{
|
|
writez(1, "About to do a breakpoint\r\n\n");
|
|
if (initialized)
|
|
BREAKPOINT();
|
|
}
|