460531dad9
Use exit rather than returning from main, for consistency on VMS. Call as_fatal instead of as_bad or as_warn followed by exit.
3236 lines
90 KiB
C
3236 lines
90 KiB
C
/* tc-vax.c - vax-specific -
|
||
Copyright (C) 1987, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "as.h"
|
||
|
||
#include "vax-inst.h"
|
||
#include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
|
||
|
||
/* These chars start a comment anywhere in a source file (except inside
|
||
another comment */
|
||
const char comment_chars[] = "#";
|
||
|
||
/* These chars only start a comment at the beginning of a line. */
|
||
/* Note that for the VAX the are the same as comment_chars above. */
|
||
const char line_comment_chars[] = "#";
|
||
|
||
const char line_separator_chars[] = "";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point nums */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant */
|
||
/* as in 0f123.456 */
|
||
/* or 0H1.234E-12 (see exp chars above) */
|
||
const char FLT_CHARS[] = "dDfFgGhH";
|
||
|
||
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
|
||
changed in read.c . Ideally it shouldn't have to know about it at all,
|
||
but nothing is ideal around here. */
|
||
|
||
/* Hold details of an operand expression */
|
||
static expressionS exp_of_operand[VIT_MAX_OPERANDS];
|
||
static segT seg_of_operand[VIT_MAX_OPERANDS];
|
||
|
||
/* A vax instruction after decoding. */
|
||
static struct vit v;
|
||
|
||
/* Hold details of big operands. */
|
||
LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
|
||
FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
|
||
/* Above is made to point into big_operand_bits by md_begin(). */
|
||
|
||
int flag_hash_long_names; /* -+ */
|
||
int flag_one; /* -1 */
|
||
int flag_show_after_trunc; /* -H */
|
||
int flag_no_hash_mixed_case; /* -h NUM */
|
||
|
||
/*
|
||
* For VAX, relative addresses of "just the right length" are easy.
|
||
* The branch displacement is always the last operand, even in
|
||
* synthetic instructions.
|
||
* For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
|
||
*
|
||
* 4 3 2 1 0 bit number
|
||
* ---/ /--+-------+-------+-------+-------+-------+
|
||
* | what state ? | how long ? |
|
||
* ---/ /--+-------+-------+-------+-------+-------+
|
||
*
|
||
* The "how long" bits are 00=byte, 01=word, 10=long.
|
||
* This is a Un*x convention.
|
||
* Not all lengths are legit for a given value of (what state).
|
||
* The "how long" refers merely to the displacement length.
|
||
* The address usually has some constant bytes in it as well.
|
||
*
|
||
|
||
groups for VAX address relaxing.
|
||
|
||
1. "foo" pc-relative.
|
||
length of byte, word, long
|
||
|
||
2a. J<cond> where <cond> is a simple flag test.
|
||
length of byte, word, long.
|
||
VAX opcodes are: (Hex)
|
||
bneq/bnequ 12
|
||
beql/beqlu 13
|
||
bgtr 14
|
||
bleq 15
|
||
bgeq 18
|
||
blss 19
|
||
bgtru 1a
|
||
blequ 1b
|
||
bvc 1c
|
||
bvs 1d
|
||
bgequ/bcc 1e
|
||
blssu/bcs 1f
|
||
Always, you complement 0th bit to reverse condition.
|
||
Always, 1-byte opcode, then 1-byte displacement.
|
||
|
||
2b. J<cond> where cond tests a memory bit.
|
||
length of byte, word, long.
|
||
Vax opcodes are: (Hex)
|
||
bbs e0
|
||
bbc e1
|
||
bbss e2
|
||
bbcs e3
|
||
bbsc e4
|
||
bbcc e5
|
||
bbssi e6
|
||
bbcci e7
|
||
Always, you complement 0th bit to reverse condition.
|
||
Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
|
||
|
||
2c. J<cond> where cond tests low-order memory bit
|
||
length of byte,word,long.
|
||
Vax opcodes are: (Hex)
|
||
blbs e8
|
||
blbc e9
|
||
Always, you complement 0th bit to reverse condition.
|
||
Always, 1-byte opcode, longword-address, 1-byte displacement.
|
||
|
||
3. Jbs/Jbr.
|
||
length of byte,word,long.
|
||
Vax opcodes are: (Hex)
|
||
bsbb 10
|
||
brb 11
|
||
These are like (2) but there is no condition to reverse.
|
||
Always, 1 byte opcode, then displacement/absolute.
|
||
|
||
4a. JacbX
|
||
length of word, long.
|
||
Vax opcodes are: (Hex)
|
||
acbw 3d
|
||
acbf 4f
|
||
acbd 6f
|
||
abcb 9d
|
||
acbl f1
|
||
acbg 4ffd
|
||
acbh 6ffd
|
||
Always, we cannot reverse the sense of the branch; we have a word
|
||
displacement.
|
||
The double-byte op-codes don't hurt: we never want to modify the
|
||
opcode, so we don't care how many bytes are between the opcode and
|
||
the operand.
|
||
|
||
4b. JXobXXX
|
||
length of long, long, byte.
|
||
Vax opcodes are: (Hex)
|
||
aoblss f2
|
||
aobleq f3
|
||
sobgeq f4
|
||
sobgtr f5
|
||
Always, we cannot reverse the sense of the branch; we have a byte
|
||
displacement.
|
||
|
||
The only time we need to modify the opcode is for class 2 instructions.
|
||
After relax() we may complement the lowest order bit of such instruction
|
||
to reverse sense of branch.
|
||
|
||
For class 2 instructions, we store context of "where is the opcode literal".
|
||
We can change an opcode's lowest order bit without breaking anything else.
|
||
|
||
We sometimes store context in the operand literal. This way we can figure out
|
||
after relax() what the original addressing mode was.
|
||
*/
|
||
|
||
/* These displacements are relative to the start address of the
|
||
displacement. The first letter is Byte, Word. 2nd letter is
|
||
Forward, Backward. */
|
||
#define BF (1+ 127)
|
||
#define BB (1+-128)
|
||
#define WF (2+ 32767)
|
||
#define WB (2+-32768)
|
||
/* Dont need LF, LB because they always reach. [They are coded as 0.] */
|
||
|
||
|
||
#define C(a,b) ENCODE_RELAX(a,b)
|
||
/* This macro has no side-effects. */
|
||
#define ENCODE_RELAX(what,length) (((what) << 2) + (length))
|
||
|
||
const relax_typeS
|
||
md_relax_table[] =
|
||
{
|
||
{1, 1, 0, 0}, /* error sentinel 0,0 */
|
||
{1, 1, 0, 0}, /* unused 0,1 */
|
||
{1, 1, 0, 0}, /* unused 0,2 */
|
||
{1, 1, 0, 0}, /* unused 0,3 */
|
||
{BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */
|
||
{WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */
|
||
{0, 0, 5, 0}, /* L^"foo" 1,2 */
|
||
{1, 1, 0, 0}, /* unused 1,3 */
|
||
{BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */
|
||
{WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */
|
||
{0, 0, 7, 0}, /* br.+? jmp X 2,2 */
|
||
{1, 1, 0, 0}, /* unused 2,3 */
|
||
{BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */
|
||
{WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */
|
||
{0, 0, 5, 0}, /* Jmp L^foo 3,2 */
|
||
{1, 1, 0, 0}, /* unused 3,3 */
|
||
{1, 1, 0, 0}, /* unused 4,0 */
|
||
{WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */
|
||
{0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */
|
||
{1, 1, 0, 0}, /* unused 4,3 */
|
||
{BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */
|
||
{WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */
|
||
{0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */
|
||
};
|
||
|
||
#undef C
|
||
#undef BF
|
||
#undef BB
|
||
#undef WF
|
||
#undef WB
|
||
|
||
void float_cons ();
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
{"dfloat", float_cons, 'd'},
|
||
{"ffloat", float_cons, 'f'},
|
||
{"gfloat", float_cons, 'g'},
|
||
{"hfloat", float_cons, 'h'},
|
||
{0},
|
||
};
|
||
|
||
#define STATE_PC_RELATIVE (1)
|
||
#define STATE_CONDITIONAL_BRANCH (2)
|
||
#define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
|
||
#define STATE_COMPLEX_BRANCH (4)
|
||
#define STATE_COMPLEX_HOP (5)
|
||
|
||
#define STATE_BYTE (0)
|
||
#define STATE_WORD (1)
|
||
#define STATE_LONG (2)
|
||
#define STATE_UNDF (3) /* Symbol undefined in pass1 */
|
||
|
||
|
||
#define min(a, b) ((a) < (b) ? (a) : (b))
|
||
|
||
int flonum_gen2vax PARAMS ((char format_letter, FLONUM_TYPE * f,
|
||
LITTLENUM_TYPE * words));
|
||
static const char *vip_begin PARAMS ((int, char *, char *, char *));
|
||
static void vip_op_defaults PARAMS ((char *immediate, char *indirect,
|
||
char *displen));
|
||
static void vip_op PARAMS ((char *, struct vop *));
|
||
static void vip PARAMS ((struct vit *, char *));
|
||
|
||
void
|
||
md_begin ()
|
||
{
|
||
const char *errtxt;
|
||
FLONUM_TYPE *fP;
|
||
int i;
|
||
|
||
if (errtxt = vip_begin (1, "$", "*", "`"))
|
||
{
|
||
as_fatal ("VIP_BEGIN error:%s", errtxt);
|
||
}
|
||
|
||
for (i = 0, fP = float_operand;
|
||
fP < float_operand + VIT_MAX_OPERANDS;
|
||
i++, fP++)
|
||
{
|
||
fP->low = &big_operand_bits[i][0];
|
||
fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
|
||
}
|
||
}
|
||
|
||
void
|
||
md_number_to_chars (con, value, nbytes)
|
||
char con[];
|
||
valueT value;
|
||
int nbytes;
|
||
{
|
||
number_to_chars_littleendian (con, value, nbytes);
|
||
}
|
||
|
||
/* Fix up some data or instructions after we find out the value of a symbol
|
||
that they reference. */
|
||
|
||
void /* Knows about order of bytes in address. */
|
||
md_apply_fix (fixP, value)
|
||
fixS *fixP;
|
||
long value;
|
||
{
|
||
number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal,
|
||
(valueT) value, fixP->fx_size);
|
||
}
|
||
|
||
long
|
||
md_chars_to_number (con, nbytes)
|
||
unsigned char con[]; /* Low order byte 1st. */
|
||
int nbytes; /* Number of bytes in the input. */
|
||
{
|
||
long retval;
|
||
for (retval = 0, con += nbytes - 1; nbytes--; con--)
|
||
{
|
||
retval <<= BITS_PER_CHAR;
|
||
retval |= *con;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
/* vax:md_assemble() emit frags for 1 instruction */
|
||
|
||
void
|
||
md_assemble (instruction_string)
|
||
char *instruction_string; /* A string: assemble 1 instruction. */
|
||
{
|
||
/* Non-zero if operand expression's segment is not known yet. */
|
||
int is_undefined;
|
||
|
||
int length_code;
|
||
char *p;
|
||
/* An operand. Scans all operands. */
|
||
struct vop *operandP;
|
||
char *save_input_line_pointer;
|
||
/* What used to live after an expression. */
|
||
char c_save;
|
||
/* 1: instruction_string bad for all passes. */
|
||
int goofed;
|
||
/* Points to slot just after last operand. */
|
||
struct vop *end_operandP;
|
||
/* Points to expression values for this operand. */
|
||
expressionS *expP;
|
||
segT *segP;
|
||
|
||
/* These refer to an instruction operand expression. */
|
||
/* Target segment of the address. */
|
||
segT to_seg;
|
||
valueT this_add_number;
|
||
/* Positive (minuend) symbol. */
|
||
struct symbol *this_add_symbol;
|
||
/* As a number. */
|
||
long opcode_as_number;
|
||
/* Least significant byte 1st. */
|
||
char *opcode_as_chars;
|
||
/* As an array of characters. */
|
||
/* Least significant byte 1st */
|
||
char *opcode_low_byteP;
|
||
/* length (bytes) meant by vop_short. */
|
||
int length;
|
||
/* 0, or 1 if '@' is in addressing mode. */
|
||
int at;
|
||
/* From vop_nbytes: vax_operand_width (in bytes) */
|
||
int nbytes;
|
||
FLONUM_TYPE *floatP;
|
||
LITTLENUM_TYPE literal_float[8];
|
||
/* Big enough for any floating point literal. */
|
||
|
||
vip (&v, instruction_string);
|
||
|
||
/*
|
||
* Now we try to find as many as_warn()s as we can. If we do any as_warn()s
|
||
* then goofed=1. Notice that we don't make any frags yet.
|
||
* Should goofed be 1, then this instruction will wedge in any pass,
|
||
* and we can safely flush it, without causing interpass symbol phase
|
||
* errors. That is, without changing label values in different passes.
|
||
*/
|
||
if (goofed = (*v.vit_error))
|
||
{
|
||
as_warn ("Ignoring statement due to \"%s\"", v.vit_error);
|
||
}
|
||
/*
|
||
* We need to use expression() and friends, which require us to diddle
|
||
* input_line_pointer. So we save it and restore it later.
|
||
*/
|
||
save_input_line_pointer = input_line_pointer;
|
||
for (operandP = v.vit_operand,
|
||
expP = exp_of_operand,
|
||
segP = seg_of_operand,
|
||
floatP = float_operand,
|
||
end_operandP = v.vit_operand + v.vit_operands;
|
||
|
||
operandP < end_operandP;
|
||
|
||
operandP++, expP++, segP++, floatP++)
|
||
{ /* for each operand */
|
||
if (operandP->vop_error)
|
||
{
|
||
as_warn ("Ignoring statement because \"%s\"", operandP->vop_error);
|
||
goofed = 1;
|
||
}
|
||
else
|
||
{
|
||
/* statement has no syntax goofs: lets sniff the expression */
|
||
int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
|
||
|
||
input_line_pointer = operandP->vop_expr_begin;
|
||
c_save = operandP->vop_expr_end[1];
|
||
operandP->vop_expr_end[1] = '\0';
|
||
/* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */
|
||
*segP = expression (expP);
|
||
switch (expP->X_op)
|
||
{
|
||
case O_absent:
|
||
/* for BSD4.2 compatibility, missing expression is absolute 0 */
|
||
expP->X_op = O_constant;
|
||
expP->X_add_number = 0;
|
||
/* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol,
|
||
X_add_symbol to any particular value. But, we will program
|
||
defensively. Since this situation occurs rarely so it costs
|
||
us little to do, and stops Dean worrying about the origin of
|
||
random bits in expressionS's. */
|
||
expP->X_add_symbol = NULL;
|
||
expP->X_op_symbol = NULL;
|
||
break;
|
||
|
||
case O_symbol:
|
||
case O_constant:
|
||
break;
|
||
|
||
default:
|
||
/*
|
||
* Major bug. We can't handle the case of a
|
||
* SEG_OP expression in a VIT_OPCODE_SYNTHETIC
|
||
* variable-length instruction.
|
||
* We don't have a frag type that is smart enough to
|
||
* relax a SEG_OP, and so we just force all
|
||
* SEG_OPs to behave like SEG_PASS1s.
|
||
* Clearly, if there is a demand we can invent a new or
|
||
* modified frag type and then coding up a frag for this
|
||
* case will be easy. SEG_OP was invented for the
|
||
* .words after a CASE opcode, and was never intended for
|
||
* instruction operands.
|
||
*/
|
||
need_pass_2 = 1;
|
||
as_warn ("Can't relocate expression");
|
||
break;
|
||
|
||
case O_big:
|
||
/* Preserve the bits. */
|
||
if (expP->X_add_number > 0)
|
||
{
|
||
bignum_copy (generic_bignum, expP->X_add_number,
|
||
floatP->low, SIZE_OF_LARGE_NUMBER);
|
||
}
|
||
else
|
||
{
|
||
know (expP->X_add_number < 0);
|
||
flonum_copy (&generic_floating_point_number,
|
||
floatP);
|
||
if (strchr ("s i", operandP->vop_short))
|
||
{
|
||
/* Could possibly become S^# */
|
||
flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
|
||
switch (-expP->X_add_number)
|
||
{
|
||
case 'f':
|
||
can_be_short =
|
||
(literal_float[0] & 0xFC0F) == 0x4000
|
||
&& literal_float[1] == 0;
|
||
break;
|
||
|
||
case 'd':
|
||
can_be_short =
|
||
(literal_float[0] & 0xFC0F) == 0x4000
|
||
&& literal_float[1] == 0
|
||
&& literal_float[2] == 0
|
||
&& literal_float[3] == 0;
|
||
break;
|
||
|
||
case 'g':
|
||
can_be_short =
|
||
(literal_float[0] & 0xFF81) == 0x4000
|
||
&& literal_float[1] == 0
|
||
&& literal_float[2] == 0
|
||
&& literal_float[3] == 0;
|
||
break;
|
||
|
||
case 'h':
|
||
can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000
|
||
&& (literal_float[1] & 0xE000) == 0
|
||
&& literal_float[2] == 0
|
||
&& literal_float[3] == 0
|
||
&& literal_float[4] == 0
|
||
&& literal_float[5] == 0
|
||
&& literal_float[6] == 0
|
||
&& literal_float[7] == 0);
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (-expP->X_add_number);
|
||
break;
|
||
} /* switch (float type) */
|
||
} /* if (could want to become S^#...) */
|
||
} /* bignum or flonum ? */
|
||
|
||
if (operandP->vop_short == 's'
|
||
|| operandP->vop_short == 'i'
|
||
|| (operandP->vop_short == ' '
|
||
&& operandP->vop_reg == 0xF
|
||
&& (operandP->vop_mode & 0xE) == 0x8))
|
||
{
|
||
/* Saw a '#'. */
|
||
if (operandP->vop_short == ' ')
|
||
{
|
||
/* We must chose S^ or I^. */
|
||
if (expP->X_add_number > 0)
|
||
{
|
||
/* Bignum: Short literal impossible. */
|
||
operandP->vop_short = 'i';
|
||
operandP->vop_mode = 8;
|
||
operandP->vop_reg = 0xF; /* VAX PC. */
|
||
}
|
||
else
|
||
{
|
||
/* Flonum: Try to do it. */
|
||
if (can_be_short)
|
||
{
|
||
operandP->vop_short = 's';
|
||
operandP->vop_mode = 0;
|
||
operandP->vop_ndx = -1;
|
||
operandP->vop_reg = -1;
|
||
expP->X_op = O_constant;
|
||
}
|
||
else
|
||
{
|
||
operandP->vop_short = 'i';
|
||
operandP->vop_mode = 8;
|
||
operandP->vop_reg = 0xF; /* VAX PC */
|
||
}
|
||
} /* bignum or flonum ? */
|
||
} /* if #, but no S^ or I^ seen. */
|
||
/* No more ' ' case: either 's' or 'i'. */
|
||
if (operandP->vop_short == 's')
|
||
{
|
||
/* Wants to be a short literal. */
|
||
if (expP->X_add_number > 0)
|
||
{
|
||
as_warn ("Bignum not permitted in short literal. Immediate mode assumed.");
|
||
operandP->vop_short = 'i';
|
||
operandP->vop_mode = 8;
|
||
operandP->vop_reg = 0xF; /* VAX PC. */
|
||
}
|
||
else
|
||
{
|
||
if (!can_be_short)
|
||
{
|
||
as_warn ("Can't do flonum short literal: immediate mode used.");
|
||
operandP->vop_short = 'i';
|
||
operandP->vop_mode = 8;
|
||
operandP->vop_reg = 0xF; /* VAX PC. */
|
||
}
|
||
else
|
||
{ /* Encode short literal now. */
|
||
int temp = 0;
|
||
|
||
switch (-expP->X_add_number)
|
||
{
|
||
case 'f':
|
||
case 'd':
|
||
temp = literal_float[0] >> 4;
|
||
break;
|
||
|
||
case 'g':
|
||
temp = literal_float[0] >> 1;
|
||
break;
|
||
|
||
case 'h':
|
||
temp = ((literal_float[0] << 3) & 070)
|
||
| ((literal_float[1] >> 13) & 07);
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (-expP->X_add_number);
|
||
break;
|
||
}
|
||
|
||
floatP->low[0] = temp & 077;
|
||
floatP->low[1] = 0;
|
||
} /* if can be short literal float */
|
||
} /* flonum or bignum ? */
|
||
}
|
||
else
|
||
{ /* I^# seen: set it up if float. */
|
||
if (expP->X_add_number < 0)
|
||
{
|
||
memcpy (floatP->low, literal_float, sizeof (literal_float));
|
||
}
|
||
} /* if S^# seen. */
|
||
}
|
||
else
|
||
{
|
||
as_warn ("A bignum/flonum may not be a displacement: 0x%x used",
|
||
expP->X_add_number = 0x80000000);
|
||
/* Chosen so luser gets the most offset bits to patch later. */
|
||
}
|
||
expP->X_add_number = floatP->low[0]
|
||
| ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
|
||
/*
|
||
* For the O_big case we have:
|
||
* If vop_short == 's' then a short floating literal is in the
|
||
* lowest 6 bits of floatP -> low [0], which is
|
||
* big_operand_bits [---] [0].
|
||
* If vop_short == 'i' then the appropriate number of elements
|
||
* of big_operand_bits [---] [...] are set up with the correct
|
||
* bits.
|
||
* Also, just in case width is byte word or long, we copy the lowest
|
||
* 32 bits of the number to X_add_number.
|
||
*/
|
||
break;
|
||
}
|
||
if (input_line_pointer != operandP->vop_expr_end + 1)
|
||
{
|
||
as_warn ("Junk at end of expression \"%s\"", input_line_pointer);
|
||
goofed = 1;
|
||
}
|
||
operandP->vop_expr_end[1] = c_save;
|
||
}
|
||
} /* for(each operand) */
|
||
|
||
input_line_pointer = save_input_line_pointer;
|
||
|
||
if (need_pass_2 || goofed)
|
||
{
|
||
return;
|
||
}
|
||
|
||
|
||
/* Emit op-code. */
|
||
/* Remember where it is, in case we want to modify the op-code later. */
|
||
opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
|
||
memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes);
|
||
opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
|
||
for (operandP = v.vit_operand,
|
||
expP = exp_of_operand,
|
||
segP = seg_of_operand,
|
||
floatP = float_operand,
|
||
end_operandP = v.vit_operand + v.vit_operands;
|
||
|
||
operandP < end_operandP;
|
||
|
||
operandP++,
|
||
floatP++,
|
||
segP++,
|
||
expP++)
|
||
{
|
||
if (operandP->vop_ndx >= 0)
|
||
{
|
||
/* indexed addressing byte */
|
||
/* Legality of indexed mode already checked: it is OK */
|
||
FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
|
||
} /* if(vop_ndx>=0) */
|
||
|
||
/* Here to make main operand frag(s). */
|
||
this_add_number = expP->X_add_number;
|
||
this_add_symbol = expP->X_add_symbol;
|
||
to_seg = *segP;
|
||
is_undefined = (to_seg == SEG_UNKNOWN);
|
||
at = operandP->vop_mode & 1;
|
||
length = (operandP->vop_short == 'b'
|
||
? 1 : (operandP->vop_short == 'w'
|
||
? 2 : (operandP->vop_short == 'l'
|
||
? 4 : 0)));
|
||
nbytes = operandP->vop_nbytes;
|
||
if (operandP->vop_access == 'b')
|
||
{
|
||
if (to_seg == now_seg || is_undefined)
|
||
{
|
||
/* If is_undefined, then it might BECOME now_seg. */
|
||
if (nbytes)
|
||
{
|
||
p = frag_more (nbytes);
|
||
fix_new (frag_now, p - frag_now->fr_literal, nbytes,
|
||
this_add_symbol, this_add_number, 1, NO_RELOC);
|
||
}
|
||
else
|
||
{ /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
|
||
/* nbytes==0 */
|
||
length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
|
||
if (opcode_as_number & VIT_OPCODE_SPECIAL)
|
||
{
|
||
if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
|
||
{
|
||
/* br or jsb */
|
||
frag_var (rs_machine_dependent, 5, 1,
|
||
ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
|
||
this_add_symbol, this_add_number,
|
||
opcode_low_byteP);
|
||
}
|
||
else
|
||
{
|
||
if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
|
||
{
|
||
length_code = STATE_WORD;
|
||
/* JF: There is no state_byte for this one! */
|
||
frag_var (rs_machine_dependent, 10, 2,
|
||
ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
|
||
this_add_symbol, this_add_number,
|
||
opcode_low_byteP);
|
||
}
|
||
else
|
||
{
|
||
know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
|
||
frag_var (rs_machine_dependent, 9, 1,
|
||
ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
|
||
this_add_symbol, this_add_number,
|
||
opcode_low_byteP);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
|
||
frag_var (rs_machine_dependent, 7, 1,
|
||
ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
|
||
this_add_symbol, this_add_number,
|
||
opcode_low_byteP);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* to_seg != now_seg && to_seg != SEG_UNKNOWN */
|
||
/*
|
||
* --- SEG FLOAT MAY APPEAR HERE ----
|
||
*/
|
||
if (to_seg == SEG_ABSOLUTE)
|
||
{
|
||
if (nbytes)
|
||
{
|
||
know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
|
||
p = frag_more (nbytes);
|
||
/* Conventional relocation. */
|
||
fix_new (frag_now, p - frag_now->fr_literal,
|
||
nbytes, &abs_symbol, this_add_number,
|
||
1, NO_RELOC);
|
||
}
|
||
else
|
||
{
|
||
know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
|
||
if (opcode_as_number & VIT_OPCODE_SPECIAL)
|
||
{
|
||
if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
|
||
{
|
||
/* br or jsb */
|
||
*opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
|
||
know (opcode_as_chars[1] == 0);
|
||
p = frag_more (5);
|
||
p[0] = VAX_ABSOLUTE_MODE; /* @#... */
|
||
md_number_to_chars (p + 1, this_add_number, 4);
|
||
/* Now (eg) JMP @#foo or JSB @#foo. */
|
||
}
|
||
else
|
||
{
|
||
if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
|
||
{
|
||
p = frag_more (10);
|
||
p[0] = 2;
|
||
p[1] = 0;
|
||
p[2] = VAX_BRB;
|
||
p[3] = 6;
|
||
p[4] = VAX_JMP;
|
||
p[5] = VAX_ABSOLUTE_MODE; /* @#... */
|
||
md_number_to_chars (p + 6, this_add_number, 4);
|
||
/*
|
||
* Now (eg) ACBx 1f
|
||
* BRB 2f
|
||
* 1: JMP @#foo
|
||
* 2:
|
||
*/
|
||
}
|
||
else
|
||
{
|
||
know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
|
||
p = frag_more (9);
|
||
p[0] = 2;
|
||
p[1] = VAX_BRB;
|
||
p[2] = 6;
|
||
p[3] = VAX_JMP;
|
||
p[4] = VAX_PC_RELATIVE_MODE + 1; /* @#... */
|
||
md_number_to_chars (p + 5, this_add_number, 4);
|
||
/*
|
||
* Now (eg) xOBxxx 1f
|
||
* BRB 2f
|
||
* 1: JMP @#foo
|
||
* 2:
|
||
*/
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* b<cond> */
|
||
*opcode_low_byteP ^= 1;
|
||
/* To reverse the condition in a VAX branch,
|
||
complement the lowest order bit. */
|
||
p = frag_more (7);
|
||
p[0] = 6;
|
||
p[1] = VAX_JMP;
|
||
p[2] = VAX_ABSOLUTE_MODE; /* @#... */
|
||
md_number_to_chars (p + 3, this_add_number, 4);
|
||
/*
|
||
* Now (eg) BLEQ 1f
|
||
* JMP @#foo
|
||
* 1:
|
||
*/
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* to_seg != now_seg && to_seg != SEG_UNKNOWN && to_Seg != SEG_ABSOLUTE */
|
||
if (nbytes > 0)
|
||
{
|
||
/* Pc-relative. Conventional relocation. */
|
||
know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
|
||
p = frag_more (nbytes);
|
||
fix_new (frag_now, p - frag_now->fr_literal,
|
||
nbytes, &abs_symbol, this_add_number,
|
||
1, NO_RELOC);
|
||
}
|
||
else
|
||
{
|
||
know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
|
||
if (opcode_as_number & VIT_OPCODE_SPECIAL)
|
||
{
|
||
if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
|
||
{
|
||
/* br or jsb */
|
||
know (opcode_as_chars[1] == 0);
|
||
*opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
|
||
p = frag_more (5);
|
||
p[0] = VAX_PC_RELATIVE_MODE;
|
||
fix_new (frag_now,
|
||
p + 1 - frag_now->fr_literal, 4,
|
||
this_add_symbol,
|
||
this_add_number, 1, NO_RELOC);
|
||
/* Now eg JMP foo or JSB foo. */
|
||
}
|
||
else
|
||
{
|
||
if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
|
||
{
|
||
p = frag_more (10);
|
||
p[0] = 0;
|
||
p[1] = 2;
|
||
p[2] = VAX_BRB;
|
||
p[3] = 6;
|
||
p[4] = VAX_JMP;
|
||
p[5] = VAX_PC_RELATIVE_MODE;
|
||
fix_new (frag_now,
|
||
p + 6 - frag_now->fr_literal, 4,
|
||
this_add_symbol,
|
||
this_add_number, 1, NO_RELOC);
|
||
/*
|
||
* Now (eg) ACBx 1f
|
||
* BRB 2f
|
||
* 1: JMP foo
|
||
* 2:
|
||
*/
|
||
}
|
||
else
|
||
{
|
||
know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
|
||
p = frag_more (10);
|
||
p[0] = 2;
|
||
p[1] = VAX_BRB;
|
||
p[2] = 6;
|
||
p[3] = VAX_JMP;
|
||
p[4] = VAX_PC_RELATIVE_MODE;
|
||
fix_new (frag_now,
|
||
p + 5 - frag_now->fr_literal,
|
||
4, this_add_symbol,
|
||
this_add_number, 1, NO_RELOC);
|
||
/*
|
||
* Now (eg) xOBxxx 1f
|
||
* BRB 2f
|
||
* 1: JMP foo
|
||
* 2:
|
||
*/
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
|
||
*opcode_low_byteP ^= 1; /* Reverse branch condition. */
|
||
p = frag_more (7);
|
||
p[0] = 6;
|
||
p[1] = VAX_JMP;
|
||
p[2] = VAX_PC_RELATIVE_MODE;
|
||
fix_new (frag_now, p + 3 - frag_now->fr_literal,
|
||
4, this_add_symbol,
|
||
this_add_number, 1, NO_RELOC);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
|
||
know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
|
||
know (operandP->vop_access == 'a'
|
||
|| operandP->vop_access == 'm'
|
||
|| operandP->vop_access == 'r'
|
||
|| operandP->vop_access == 'v'
|
||
|| operandP->vop_access == 'w');
|
||
if (operandP->vop_short == 's')
|
||
{
|
||
if (to_seg == SEG_ABSOLUTE)
|
||
{
|
||
if (this_add_number < 0 || this_add_number >= 64)
|
||
{
|
||
as_warn ("Short literal overflow(%d.), immediate mode assumed.", this_add_number);
|
||
operandP->vop_short = 'i';
|
||
operandP->vop_mode = 8;
|
||
operandP->vop_reg = 0xF;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
as_warn ("Forced short literal to immediate mode. now_seg=%s to_seg=%s",
|
||
segment_name (now_seg), segment_name (to_seg));
|
||
operandP->vop_short = 'i';
|
||
operandP->vop_mode = 8;
|
||
operandP->vop_reg = 0xF;
|
||
}
|
||
}
|
||
if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8
|
||
|| (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
|
||
{
|
||
/* One byte operand. */
|
||
know (operandP->vop_mode > 3);
|
||
FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
|
||
/* All 1-bytes except S^# happen here. */
|
||
}
|
||
else
|
||
{
|
||
/* {@}{q^}foo{(Rn)} or S^#foo */
|
||
if (operandP->vop_reg == -1 && operandP->vop_short != 's')
|
||
{
|
||
/* "{@}{q^}foo" */
|
||
if (to_seg == now_seg)
|
||
{
|
||
if (length == 0)
|
||
{
|
||
know (operandP->vop_short == ' ');
|
||
p = frag_var (rs_machine_dependent, 10, 2,
|
||
ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE),
|
||
this_add_symbol, this_add_number,
|
||
opcode_low_byteP);
|
||
know (operandP->vop_mode == 10 + at);
|
||
*p = at << 4;
|
||
/* At is the only context we need to carry
|
||
to other side of relax() process. Must
|
||
be in the correct bit position of VAX
|
||
operand spec. byte. */
|
||
}
|
||
else
|
||
{
|
||
know (length);
|
||
know (operandP->vop_short != ' ');
|
||
p = frag_more (length + 1);
|
||
p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
|
||
fix_new (frag_now, p + 1 - frag_now->fr_literal,
|
||
length, this_add_symbol,
|
||
this_add_number, 1, NO_RELOC);
|
||
}
|
||
}
|
||
else
|
||
{ /* to_seg != now_seg */
|
||
if (this_add_symbol == NULL)
|
||
{
|
||
know (to_seg == SEG_ABSOLUTE);
|
||
/* Do @#foo: simpler relocation than foo-.(pc) anyway. */
|
||
p = frag_more (5);
|
||
p[0] = VAX_ABSOLUTE_MODE; /* @#... */
|
||
md_number_to_chars (p + 1, this_add_number, 4);
|
||
if (length && length != 4)
|
||
{
|
||
as_warn ("Length specification ignored. Address mode 9F used");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* {@}{q^}other_seg */
|
||
know ((length == 0 && operandP->vop_short == ' ')
|
||
|| (length > 0 && operandP->vop_short != ' '));
|
||
if (is_undefined)
|
||
{
|
||
/*
|
||
* We have a SEG_UNKNOWN symbol. It might
|
||
* turn out to be in the same segment as
|
||
* the instruction, permitting relaxation.
|
||
*/
|
||
p = frag_var (rs_machine_dependent, 5, 2,
|
||
ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
|
||
this_add_symbol, this_add_number,
|
||
0);
|
||
p[0] = at << 4;
|
||
}
|
||
else
|
||
{
|
||
if (length == 0)
|
||
{
|
||
know (operandP->vop_short == ' ');
|
||
length = 4; /* Longest possible. */
|
||
}
|
||
p = frag_more (length + 1);
|
||
p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
|
||
md_number_to_chars (p + 1, this_add_number, length);
|
||
fix_new (frag_now,
|
||
p + 1 - frag_now->fr_literal,
|
||
length, this_add_symbol,
|
||
this_add_number, 1, NO_RELOC);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* {@}{q^}foo(Rn) or S^# or I^# or # */
|
||
if (operandP->vop_mode < 0xA)
|
||
{
|
||
/* # or S^# or I^# */
|
||
if (length == 0
|
||
&& to_seg == SEG_ABSOLUTE
|
||
&& operandP->vop_mode == 8 /* No '@'. */
|
||
&& this_add_number < 64
|
||
&& this_add_number >= 0)
|
||
{
|
||
operandP->vop_short = 's';
|
||
}
|
||
if (operandP->vop_short == 's')
|
||
{
|
||
FRAG_APPEND_1_CHAR (this_add_number);
|
||
}
|
||
else
|
||
{
|
||
/* I^#... */
|
||
know (nbytes);
|
||
p = frag_more (nbytes + 1);
|
||
know (operandP->vop_reg == 0xF);
|
||
p[0] = (operandP->vop_mode << 4) | 0xF;
|
||
if (to_seg == SEG_ABSOLUTE)
|
||
{
|
||
/*
|
||
* If nbytes > 4, then we are scrod. We
|
||
* don't know if the high order bytes
|
||
* are to be 0xFF or 0x00. BSD4.2 & RMS
|
||
* say use 0x00. OK --- but this
|
||
* assembler needs ANOTHER rewrite to
|
||
* cope properly with this bug. */
|
||
md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
|
||
if (nbytes > 4)
|
||
{
|
||
memset (p + 5, '\0', nbytes - 4);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (expP->X_op == O_big)
|
||
{
|
||
/*
|
||
* Problem here is to get the bytes
|
||
* in the right order. We stored
|
||
* our constant as LITTLENUMs, not
|
||
* bytes. */
|
||
LITTLENUM_TYPE *lP;
|
||
|
||
lP = floatP->low;
|
||
if (nbytes & 1)
|
||
{
|
||
know (nbytes == 1);
|
||
p[1] = *lP;
|
||
}
|
||
else
|
||
{
|
||
for (p++; nbytes; nbytes -= 2, p += 2, lP++)
|
||
{
|
||
md_number_to_chars (p, *lP, 2);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
fix_new (frag_now, p + 1 - frag_now->fr_literal,
|
||
nbytes, this_add_symbol,
|
||
this_add_number, 0, NO_RELOC);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{ /* {@}{q^}foo(Rn) */
|
||
know ((length == 0 && operandP->vop_short == ' ')
|
||
|| (length > 0 && operandP->vop_short != ' '));
|
||
if (length == 0)
|
||
{
|
||
if (to_seg == SEG_ABSOLUTE)
|
||
{
|
||
long test;
|
||
|
||
test = this_add_number;
|
||
|
||
if (test < 0)
|
||
test = ~test;
|
||
|
||
length = test & 0xffff8000 ? 4
|
||
: test & 0xffffff80 ? 2
|
||
: 1;
|
||
}
|
||
else
|
||
{
|
||
length = 4;
|
||
}
|
||
}
|
||
p = frag_more (1 + length);
|
||
know (operandP->vop_reg >= 0);
|
||
p[0] = operandP->vop_reg
|
||
| ((at | "?\12\14?\16"[length]) << 4);
|
||
if (to_seg == SEG_ABSOLUTE)
|
||
{
|
||
md_number_to_chars (p + 1, this_add_number, length);
|
||
}
|
||
else
|
||
{
|
||
fix_new (frag_now, p + 1 - frag_now->fr_literal,
|
||
length, this_add_symbol,
|
||
this_add_number, 0, NO_RELOC);
|
||
}
|
||
}
|
||
}
|
||
} /* if(single-byte-operand) */
|
||
}
|
||
} /* for(operandP) */
|
||
} /* vax_assemble() */
|
||
|
||
/*
|
||
* md_estimate_size_before_relax()
|
||
*
|
||
* Called just before relax().
|
||
* Any symbol that is now undefined will not become defined.
|
||
* Return the correct fr_subtype in the frag.
|
||
* Return the initial "guess for fr_var" to caller.
|
||
* The guess for fr_var is ACTUALLY the growth beyond fr_fix.
|
||
* Whatever we do to grow fr_fix or fr_var contributes to our returned value.
|
||
* Although it may not be explicit in the frag, pretend fr_var starts with a
|
||
* 0 value.
|
||
*/
|
||
int
|
||
md_estimate_size_before_relax (fragP, segment)
|
||
fragS *fragP;
|
||
segT segment;
|
||
{
|
||
char *p;
|
||
int old_fr_fix;
|
||
|
||
old_fr_fix = fragP->fr_fix;
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
|
||
{ /* A relaxable case. */
|
||
fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
|
||
}
|
||
else
|
||
{
|
||
p = fragP->fr_literal + old_fr_fix;
|
||
p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
|
||
fragP->fr_fix += 1 + 4;
|
||
fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
|
||
fragP->fr_offset, 1, NO_RELOC);
|
||
frag_wane (fragP);
|
||
}
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
|
||
{
|
||
fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
|
||
}
|
||
else
|
||
{
|
||
p = fragP->fr_literal + old_fr_fix;
|
||
*fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
|
||
p[0] = 6;
|
||
p[1] = VAX_JMP;
|
||
p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
|
||
fragP->fr_fix += 1 + 1 + 1 + 4;
|
||
fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol,
|
||
fragP->fr_offset, 1, NO_RELOC);
|
||
frag_wane (fragP);
|
||
}
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_UNDF):
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
|
||
{
|
||
fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
|
||
}
|
||
else
|
||
{
|
||
p = fragP->fr_literal + old_fr_fix;
|
||
p[0] = 2;
|
||
p[1] = 0;
|
||
p[2] = VAX_BRB;
|
||
p[3] = 6;
|
||
p[4] = VAX_JMP;
|
||
p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
|
||
fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
|
||
fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol,
|
||
fragP->fr_offset, 1, NO_RELOC);
|
||
frag_wane (fragP);
|
||
}
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_UNDF):
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
|
||
{
|
||
fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
|
||
}
|
||
else
|
||
{
|
||
p = fragP->fr_literal + old_fr_fix;
|
||
p[0] = 2;
|
||
p[1] = VAX_BRB;
|
||
p[2] = 6;
|
||
p[3] = VAX_JMP;
|
||
p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
|
||
fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
|
||
fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol,
|
||
fragP->fr_offset, 1, NO_RELOC);
|
||
frag_wane (fragP);
|
||
}
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
|
||
{
|
||
fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
|
||
}
|
||
else
|
||
{
|
||
p = fragP->fr_literal + old_fr_fix;
|
||
*fragP->fr_opcode += VAX_WIDEN_LONG;
|
||
p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
|
||
fragP->fr_fix += 1 + 4;
|
||
fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
|
||
fragP->fr_offset, 1, NO_RELOC);
|
||
frag_wane (fragP);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
|
||
} /* md_estimate_size_before_relax() */
|
||
|
||
/*
|
||
* md_convert_frag();
|
||
*
|
||
* Called after relax() is finished.
|
||
* In: Address of frag.
|
||
* fr_type == rs_machine_dependent.
|
||
* fr_subtype is what the address relaxed to.
|
||
*
|
||
* Out: Any fixSs and constants are set up.
|
||
* Caller will turn frag into a ".space 0".
|
||
*/
|
||
void
|
||
md_convert_frag (headers, fragP)
|
||
object_headers *headers;
|
||
fragS *fragP;
|
||
{
|
||
char *addressP; /* -> _var to change. */
|
||
char *opcodeP; /* -> opcode char(s) to change. */
|
||
short int length_code; /* 2=long 1=word 0=byte */
|
||
short int extension = 0; /* Size of relaxed address. */
|
||
/* Added to fr_fix: incl. ALL var chars. */
|
||
symbolS *symbolP;
|
||
long where;
|
||
long address_of_var;
|
||
/* Where, in file space, is _var of *fragP? */
|
||
long target_address = 0;
|
||
/* Where, in file space, does addr point? */
|
||
|
||
know (fragP->fr_type == rs_machine_dependent);
|
||
length_code = fragP->fr_subtype & 3; /* depends on ENCODE_RELAX() */
|
||
know (length_code >= 0 && length_code < 3);
|
||
where = fragP->fr_fix;
|
||
addressP = fragP->fr_literal + where;
|
||
opcodeP = fragP->fr_opcode;
|
||
symbolP = fragP->fr_symbol;
|
||
know (symbolP);
|
||
target_address = S_GET_VALUE (symbolP) + fragP->fr_offset;
|
||
address_of_var = fragP->fr_address + where;
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
|
||
case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
|
||
know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
|
||
addressP[0] |= 0xAF; /* Byte displacement. */
|
||
addressP[1] = target_address - (address_of_var + 2);
|
||
extension = 2;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
|
||
know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
|
||
addressP[0] |= 0xCF; /* Word displacement. */
|
||
md_number_to_chars (addressP + 1, target_address - (address_of_var + 3), 2);
|
||
extension = 3;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
|
||
know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
|
||
addressP[0] |= 0xEF; /* Long word displacement. */
|
||
md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
|
||
extension = 5;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
|
||
addressP[0] = target_address - (address_of_var + 1);
|
||
extension = 1;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
|
||
opcodeP[0] ^= 1; /* Reverse sense of test. */
|
||
addressP[0] = 3;
|
||
addressP[1] = VAX_BRB + VAX_WIDEN_WORD;
|
||
md_number_to_chars (addressP + 2, target_address - (address_of_var + 4), 2);
|
||
extension = 4;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
|
||
opcodeP[0] ^= 1; /* Reverse sense of test. */
|
||
addressP[0] = 6;
|
||
addressP[1] = VAX_JMP;
|
||
addressP[2] = VAX_PC_RELATIVE_MODE;
|
||
md_number_to_chars (addressP + 3, target_address, 4);
|
||
extension = 7;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
|
||
addressP[0] = target_address - (address_of_var + 1);
|
||
extension = 1;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
|
||
opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
|
||
md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
|
||
extension = 2;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
|
||
opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
|
||
addressP[0] = VAX_PC_RELATIVE_MODE;
|
||
md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
|
||
extension = 5;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
|
||
md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
|
||
extension = 2;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
|
||
addressP[0] = 2;
|
||
addressP[1] = 0;
|
||
addressP[2] = VAX_BRB;
|
||
addressP[3] = 6;
|
||
addressP[4] = VAX_JMP;
|
||
addressP[5] = VAX_PC_RELATIVE_MODE;
|
||
md_number_to_chars (addressP + 6, target_address, 4);
|
||
extension = 10;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
|
||
addressP[0] = target_address - (address_of_var + 1);
|
||
extension = 1;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
|
||
addressP[0] = 2;
|
||
addressP[1] = VAX_BRB;
|
||
addressP[2] = 3;
|
||
addressP[3] = VAX_BRW;
|
||
md_number_to_chars (addressP + 4, target_address - (address_of_var + 6), 2);
|
||
extension = 6;
|
||
break;
|
||
|
||
case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
|
||
addressP[0] = 2;
|
||
addressP[1] = VAX_BRB;
|
||
addressP[2] = 6;
|
||
addressP[3] = VAX_JMP;
|
||
addressP[4] = VAX_PC_RELATIVE_MODE;
|
||
md_number_to_chars (addressP + 5, target_address, 4);
|
||
extension = 9;
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
fragP->fr_fix += extension;
|
||
} /* md_convert_frag() */
|
||
|
||
/* Translate internal format of relocation info into target format.
|
||
|
||
On vax: first 4 bytes are normal unsigned long, next three bytes
|
||
are symbolnum, least sig. byte first. Last byte is broken up with
|
||
the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
|
||
bit 0 as pcrel. */
|
||
#ifdef comment
|
||
void
|
||
md_ri_to_chars (the_bytes, ri)
|
||
char *the_bytes;
|
||
struct reloc_info_generic ri;
|
||
{
|
||
/* this is easy */
|
||
md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
|
||
/* now the fun stuff */
|
||
the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
|
||
the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
|
||
the_bytes[4] = ri.r_symbolnum & 0x0ff;
|
||
the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
|
||
((ri.r_pcrel << 0) & 0x01)) & 0x0F;
|
||
}
|
||
|
||
#endif /* comment */
|
||
|
||
void
|
||
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
|
||
char *where;
|
||
fixS *fixP;
|
||
relax_addressT segment_address_in_file;
|
||
{
|
||
/*
|
||
* In: length of relocation (or of address) in chars: 1, 2 or 4.
|
||
* Out: GNU LD relocation length code: 0, 1, or 2.
|
||
*/
|
||
|
||
static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
|
||
long r_symbolnum;
|
||
|
||
know (fixP->fx_addsy != NULL);
|
||
|
||
md_number_to_chars (where,
|
||
fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
|
||
4);
|
||
|
||
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
|
||
? S_GET_TYPE (fixP->fx_addsy)
|
||
: fixP->fx_addsy->sy_number);
|
||
|
||
where[6] = (r_symbolnum >> 16) & 0x0ff;
|
||
where[5] = (r_symbolnum >> 8) & 0x0ff;
|
||
where[4] = r_symbolnum & 0x0ff;
|
||
where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
|
||
| ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
|
||
| (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
|
||
}
|
||
|
||
/*
|
||
* BUGS, GRIPES, APOLOGIA, etc.
|
||
*
|
||
* The opcode table 'votstrs' needs to be sorted on opcode frequency.
|
||
* That is, AFTER we hash it with hash_...(), we want most-used opcodes
|
||
* to come out of the hash table faster.
|
||
*
|
||
* I am sorry to inflict yet another VAX assembler on the world, but
|
||
* RMS says we must do everything from scratch, to prevent pin-heads
|
||
* restricting this software.
|
||
*/
|
||
|
||
/*
|
||
* This is a vaguely modular set of routines in C to parse VAX
|
||
* assembly code using DEC mnemonics. It is NOT un*x specific.
|
||
*
|
||
* The idea here is that the assembler has taken care of all:
|
||
* labels
|
||
* macros
|
||
* listing
|
||
* pseudo-ops
|
||
* line continuation
|
||
* comments
|
||
* condensing any whitespace down to exactly one space
|
||
* and all we have to do is parse 1 line into a vax instruction
|
||
* partially formed. We will accept a line, and deliver:
|
||
* an error message (hopefully empty)
|
||
* a skeleton VAX instruction (tree structure)
|
||
* textual pointers to all the operand expressions
|
||
* a warning message that notes a silly operand (hopefully empty)
|
||
*/
|
||
|
||
/*
|
||
* E D I T H I S T O R Y
|
||
*
|
||
* 17may86 Dean Elsner. Bug if line ends immediately after opcode.
|
||
* 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
|
||
* 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
|
||
* 2jan86 Dean Elsner. Invent synthetic opcodes.
|
||
* Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
|
||
* which means this is not a real opcode, it is like a macro; it will
|
||
* be relax()ed into 1 or more instructions.
|
||
* Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
|
||
* like a regular branch instruction. Option added to vip_begin():
|
||
* exclude synthetic opcodes. Invent synthetic_votstrs[].
|
||
* 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
|
||
* Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
|
||
* so caller's don't have to know the difference between a 1-byte & a
|
||
* 2-byte op-code. Still need vax_opcodeT concept, so we know how
|
||
* big an object must be to hold an op.code.
|
||
* 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
|
||
* because vax opcodes may be 16 bits. Our crufty C compiler was
|
||
* happily initialising 8-bit vot_codes with 16-bit numbers!
|
||
* (Wouldn't the 'phone company like to compress data so easily!)
|
||
* 29dec85 Dean Elsner. New static table vax_operand_width_size[].
|
||
* Invented so we know hw many bytes a "I^#42" needs in its immediate
|
||
* operand. Revised struct vop in "vax-inst.h": explicitly include
|
||
* byte length of each operand, and it's letter-code datum type.
|
||
* 17nov85 Dean Elsner. Name Change.
|
||
* Due to ar(1) truncating names, we learned the hard way that
|
||
* "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
|
||
* the archived object name. SO... we shortened the name of this
|
||
* source file, and changed the makefile.
|
||
*/
|
||
|
||
/* handle of the OPCODE hash table */
|
||
static struct hash_control *op_hash;
|
||
|
||
/*
|
||
* In: 1 character, from "bdfghloqpw" being the data-type of an operand
|
||
* of a vax instruction.
|
||
*
|
||
* Out: the length of an operand of that type, in bytes.
|
||
* Special branch operands types "-?!" have length 0.
|
||
*/
|
||
|
||
static const short int vax_operand_width_size[256] =
|
||
{
|
||
|
||
#define _ 0
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
|
||
_, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
|
||
_, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
|
||
_, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
|
||
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _};
|
||
#undef _
|
||
|
||
/*
|
||
* This perversion encodes all the vax opcodes as a bunch of strings.
|
||
* RMS says we should build our hash-table at run-time. Hmm.
|
||
* Please would someone arrange these in decreasing frequency of opcode?
|
||
* Because of the way hash_...() works, the most frequently used opcode
|
||
* should be textually first and so on.
|
||
*
|
||
* Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
|
||
* So change 'vax.opcodes', then re-generate this table.
|
||
*/
|
||
|
||
#include "opcode/vax.h"
|
||
|
||
/*
|
||
* This is a table of optional op-codes. All of them represent
|
||
* 'synthetic' instructions that seem popular.
|
||
*
|
||
* Here we make some pseudo op-codes. Every code has a bit set to say
|
||
* it is synthetic. This lets you catch them if you want to
|
||
* ban these opcodes. They are mnemonics for "elastic" instructions
|
||
* that are supposed to assemble into the fewest bytes needed to do a
|
||
* branch, or to do a conditional branch, or whatever.
|
||
*
|
||
* The opcode is in the usual place [low-order n*8 bits]. This means
|
||
* that if you mask off the bucky bits, the usual rules apply about
|
||
* how long the opcode is.
|
||
*
|
||
* All VAX branch displacements come at the end of the instruction.
|
||
* For simple branches (1-byte opcode + 1-byte displacement) the last
|
||
* operand is coded 'b?' where the "data type" '?' is a clue that we
|
||
* may reverse the sense of the branch (complement lowest order bit)
|
||
* and branch around a jump. This is by far the most common case.
|
||
* That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
|
||
* a 0-byte op-code followed by 2 or more bytes of operand address.
|
||
*
|
||
* If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
|
||
* case.
|
||
*
|
||
* For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
|
||
* option before (2) we can directly JSB/JMP because there is no condition.
|
||
* These operands have 'b-' as their access/data type.
|
||
*
|
||
* That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
|
||
* cases, we do the same idea. JACBxxx are all marked with a 'b!'
|
||
* JAOBxxx & JSOBxxx are marked with a 'b:'.
|
||
*
|
||
*/
|
||
#if (VIT_OPCODE_SYNTHETIC != 0x80000000)
|
||
You have just broken the encoding below, which assumes the sign bit
|
||
means 'I am an imaginary instruction'.
|
||
#endif
|
||
|
||
#if (VIT_OPCODE_SPECIAL != 0x40000000)
|
||
You have just broken the encoding below, which assumes the 0x40 M bit means
|
||
'I am not to be "optimised" the way normal branches are'.
|
||
#endif
|
||
|
||
static const struct vot
|
||
synthetic_votstrs[] =
|
||
{
|
||
{"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */
|
||
/* jsb used already */
|
||
{"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */
|
||
{"jr", {"b-", 0xC0000011}}, /* consistent */
|
||
{"jneq", {"b?", 0x80000012}},
|
||
{"jnequ", {"b?", 0x80000012}},
|
||
{"jeql", {"b?", 0x80000013}},
|
||
{"jeqlu", {"b?", 0x80000013}},
|
||
{"jgtr", {"b?", 0x80000014}},
|
||
{"jleq", {"b?", 0x80000015}},
|
||
/* un-used opcodes here */
|
||
{"jgeq", {"b?", 0x80000018}},
|
||
{"jlss", {"b?", 0x80000019}},
|
||
{"jgtru", {"b?", 0x8000001a}},
|
||
{"jlequ", {"b?", 0x8000001b}},
|
||
{"jvc", {"b?", 0x8000001c}},
|
||
{"jvs", {"b?", 0x8000001d}},
|
||
{"jgequ", {"b?", 0x8000001e}},
|
||
{"jcc", {"b?", 0x8000001e}},
|
||
{"jlssu", {"b?", 0x8000001f}},
|
||
{"jcs", {"b?", 0x8000001f}},
|
||
|
||
{"jacbw", {"rwrwmwb!", 0xC000003d}},
|
||
{"jacbf", {"rfrfmfb!", 0xC000004f}},
|
||
{"jacbd", {"rdrdmdb!", 0xC000006f}},
|
||
{"jacbb", {"rbrbmbb!", 0xC000009d}},
|
||
{"jacbl", {"rlrlmlb!", 0xC00000f1}},
|
||
{"jacbg", {"rgrgmgb!", 0xC0004ffd}},
|
||
{"jacbh", {"rhrhmhb!", 0xC0006ffd}},
|
||
|
||
{"jbs", {"rlvbb?", 0x800000e0}},
|
||
{"jbc", {"rlvbb?", 0x800000e1}},
|
||
{"jbss", {"rlvbb?", 0x800000e2}},
|
||
{"jbcs", {"rlvbb?", 0x800000e3}},
|
||
{"jbsc", {"rlvbb?", 0x800000e4}},
|
||
{"jbcc", {"rlvbb?", 0x800000e5}},
|
||
{"jbssi", {"rlvbb?", 0x800000e6}},
|
||
{"jbcci", {"rlvbb?", 0x800000e7}},
|
||
{"jlbs", {"rlb?", 0x800000e8}},
|
||
{"jlbc", {"rlb?", 0x800000e9}},
|
||
|
||
{"jaoblss", {"rlmlb:", 0xC00000f2}},
|
||
{"jaobleq", {"rlmlb:", 0xC00000f3}},
|
||
{"jsobgeq", {"mlb:", 0xC00000f4}},
|
||
{"jsobgtr", {"mlb:", 0xC00000f5}},
|
||
|
||
/* CASEx has no branch addresses in our conception of it. */
|
||
/* You should use ".word ..." statements after the "case ...". */
|
||
|
||
{"", ""} /* empty is end sentinel */
|
||
|
||
}; /* synthetic_votstrs */
|
||
|
||
/*
|
||
* v i p _ b e g i n ( )
|
||
*
|
||
* Call me once before you decode any lines.
|
||
* I decode votstrs into a hash table at op_hash (which I create).
|
||
* I return an error text or null.
|
||
* If you want, I will include the 'synthetic' jXXX instructions in the
|
||
* instruction table.
|
||
* You must nominate metacharacters for eg DEC's "#", "@", "^".
|
||
*/
|
||
|
||
static const char *
|
||
vip_begin (synthetic_too, immediate, indirect, displen)
|
||
int synthetic_too; /* 1 means include jXXX op-codes. */
|
||
char *immediate, *indirect, *displen;
|
||
{
|
||
const struct vot *vP; /* scan votstrs */
|
||
const char *retval = 0; /* error text */
|
||
|
||
op_hash = hash_new ();
|
||
|
||
for (vP = votstrs; *vP->vot_name && !retval; vP++)
|
||
retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
|
||
|
||
if (synthetic_too)
|
||
for (vP = synthetic_votstrs; *vP->vot_name && !retval; vP++)
|
||
retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
|
||
|
||
#ifndef CONST_TABLE
|
||
vip_op_defaults (immediate, indirect, displen);
|
||
#endif
|
||
|
||
return retval;
|
||
}
|
||
|
||
|
||
/*
|
||
* v i p ( )
|
||
*
|
||
* This converts a string into a vax instruction.
|
||
* The string must be a bare single instruction in dec-vax (with BSD4 frobs)
|
||
* format.
|
||
* It provides some error messages: at most one fatal error message (which
|
||
* stops the scan) and at most one warning message for each operand.
|
||
* The vax instruction is returned in exploded form, since we have no
|
||
* knowledge of how you parse (or evaluate) your expressions.
|
||
* We do however strip off and decode addressing modes and operation
|
||
* mnemonic.
|
||
*
|
||
* The exploded instruction is returned to a struct vit of your choice.
|
||
* #include "vax-inst.h" to know what a struct vit is.
|
||
*
|
||
* This function's value is a string. If it is not "" then an internal
|
||
* logic error was found: read this code to assign meaning to the string.
|
||
* No argument string should generate such an error string:
|
||
* it means a bug in our code, not in the user's text.
|
||
*
|
||
* You MUST have called vip_begin() once before using this function.
|
||
*/
|
||
|
||
static void
|
||
vip (vitP, instring)
|
||
struct vit *vitP; /* We build an exploded instruction here. */
|
||
char *instring; /* Text of a vax instruction: we modify. */
|
||
{
|
||
/* How to bit-encode this opcode. */
|
||
struct vot_wot *vwP;
|
||
/* 1/skip whitespace.2/scan vot_how */
|
||
char *p;
|
||
char *q;
|
||
/* counts number of operands seen */
|
||
unsigned char count;
|
||
/* scan operands in struct vit */
|
||
struct vop *operandp;
|
||
/* error over all operands */
|
||
char *alloperr;
|
||
/* Remember char, (we clobber it with '\0' temporarily). */
|
||
char c;
|
||
/* Op-code of this instruction. */
|
||
vax_opcodeT oc;
|
||
|
||
if (*instring == ' ')
|
||
++instring; /* Skip leading whitespace. */
|
||
for (p = instring; *p && *p != ' '; p++);; /* MUST end in end-of-string or exactly 1 space. */
|
||
/* Scanned up to end of operation-code. */
|
||
/* Operation-code is ended with whitespace. */
|
||
if (p - instring == 0)
|
||
{
|
||
vitP->vit_error = "No operator";
|
||
count = 0;
|
||
memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
|
||
}
|
||
else
|
||
{
|
||
c = *p;
|
||
*p = '\0';
|
||
/*
|
||
* Here with instring pointing to what better be an op-name, and p
|
||
* pointing to character just past that.
|
||
* We trust instring points to an op-name, with no whitespace.
|
||
*/
|
||
vwP = (struct vot_wot *) hash_find (op_hash, instring);
|
||
*p = c; /* Restore char after op-code. */
|
||
if (vwP == 0)
|
||
{
|
||
vitP->vit_error = "Unknown operator";
|
||
count = 0;
|
||
memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
|
||
}
|
||
else
|
||
{
|
||
/*
|
||
* We found a match! So lets pick up as many operands as the
|
||
* instruction wants, and even gripe if there are too many.
|
||
* We expect comma to seperate each operand.
|
||
* We let instring track the text, while p tracks a part of the
|
||
* struct vot.
|
||
*/
|
||
/*
|
||
* The lines below know about 2-byte opcodes starting FD,FE or FF.
|
||
* They also understand synthetic opcodes. Note:
|
||
* we return 32 bits of opcode, including bucky bits, BUT
|
||
* an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
|
||
*/
|
||
oc = vwP->vot_code; /* The op-code. */
|
||
vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
|
||
md_number_to_chars (vitP->vit_opcode, oc, 4);
|
||
count = 0; /* no operands seen yet */
|
||
instring = p; /* point just past operation code */
|
||
alloperr = "";
|
||
for (p = vwP->vot_how, operandp = vitP->vit_operand;
|
||
!(alloperr && *alloperr) && *p;
|
||
operandp++, p += 2)
|
||
{
|
||
/*
|
||
* Here to parse one operand. Leave instring pointing just
|
||
* past any one ',' that marks the end of this operand.
|
||
*/
|
||
if (!p[1])
|
||
as_fatal ("odd number of bytes in operand description");
|
||
else if (*instring)
|
||
{
|
||
for (q = instring; (c = *q) && c != ','; q++)
|
||
;
|
||
/*
|
||
* Q points to ',' or '\0' that ends argument. C is that
|
||
* character.
|
||
*/
|
||
*q = 0;
|
||
operandp->vop_width = p[1];
|
||
operandp->vop_nbytes = vax_operand_width_size[p[1]];
|
||
operandp->vop_access = p[0];
|
||
vip_op (instring, operandp);
|
||
*q = c; /* Restore input text. */
|
||
if (operandp->vop_error)
|
||
alloperr = "Bad operand";
|
||
instring = q + (c ? 1 : 0); /* next operand (if any) */
|
||
count++; /* won another argument, may have an operr */
|
||
}
|
||
else
|
||
alloperr = "Not enough operands";
|
||
}
|
||
if (!*alloperr)
|
||
{
|
||
if (*instring == ' ')
|
||
instring++; /* Skip whitespace. */
|
||
if (*instring)
|
||
alloperr = "Too many operands";
|
||
}
|
||
vitP->vit_error = alloperr;
|
||
}
|
||
}
|
||
vitP->vit_operands = count;
|
||
}
|
||
|
||
#ifdef test
|
||
|
||
/*
|
||
* Test program for above.
|
||
*/
|
||
|
||
struct vit myvit; /* build an exploded vax instruction here */
|
||
char answer[100]; /* human types a line of vax assembler here */
|
||
char *mybug; /* "" or an internal logic diagnostic */
|
||
int mycount; /* number of operands */
|
||
struct vop *myvop; /* scan operands from myvit */
|
||
int mysynth; /* 1 means want synthetic opcodes. */
|
||
char my_immediate[200];
|
||
char my_indirect[200];
|
||
char my_displen[200];
|
||
|
||
main ()
|
||
{
|
||
char *p;
|
||
|
||
printf ("0 means no synthetic instructions. ");
|
||
printf ("Value for vip_begin? ");
|
||
gets (answer);
|
||
sscanf (answer, "%d", &mysynth);
|
||
printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
|
||
printf ("enter immediate symbols eg enter # ");
|
||
gets (my_immediate);
|
||
printf ("enter indirect symbols eg enter @ ");
|
||
gets (my_indirect);
|
||
printf ("enter displen symbols eg enter ^ ");
|
||
gets (my_displen);
|
||
if (p = vip_begin (mysynth, my_immediate, my_indirect, my_displen))
|
||
{
|
||
error ("vip_begin=%s", p);
|
||
}
|
||
printf ("An empty input line will quit you from the vax instruction parser\n");
|
||
for (;;)
|
||
{
|
||
printf ("vax instruction: ");
|
||
fflush (stdout);
|
||
gets (answer);
|
||
if (!*answer)
|
||
{
|
||
break; /* out of for each input text loop */
|
||
}
|
||
vip (&myvit, answer);
|
||
if (*myvit.vit_error)
|
||
{
|
||
printf ("ERR:\"%s\"\n", myvit.vit_error);
|
||
}
|
||
printf ("opcode=");
|
||
for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
|
||
mycount;
|
||
mycount--, p++
|
||
)
|
||
{
|
||
printf ("%02x ", *p & 0xFF);
|
||
}
|
||
printf (" operand count=%d.\n", mycount = myvit.vit_operands);
|
||
for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
|
||
{
|
||
printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
|
||
myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
|
||
myvop->vop_short, myvop->vop_access, myvop->vop_width,
|
||
myvop->vop_nbytes);
|
||
for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
|
||
{
|
||
putchar (*p);
|
||
}
|
||
printf ("\"\n");
|
||
if (myvop->vop_error)
|
||
{
|
||
printf (" err:\"%s\"\n", myvop->vop_error);
|
||
}
|
||
if (myvop->vop_warn)
|
||
{
|
||
printf (" wrn:\"%s\"\n", myvop->vop_warn);
|
||
}
|
||
}
|
||
}
|
||
vip_end ();
|
||
exit (EXIT_SUCCESS);
|
||
}
|
||
|
||
#endif /* #ifdef test */
|
||
|
||
/* end of vax_ins_parse.c */
|
||
|
||
/* vax_reg_parse.c - convert a VAX register name to a number */
|
||
|
||
/* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
|
||
|
||
/*
|
||
* v a x _ r e g _ p a r s e ( )
|
||
*
|
||
* Take 3 char.s, the last of which may be `\0` (non-existent)
|
||
* and return the VAX register number that they represent.
|
||
*
|
||
* Return -1 if they don't form a register name. Good names return
|
||
* a number from 0:15 inclusive.
|
||
*
|
||
* Case is not important in a name.
|
||
*
|
||
* Register names understood are:
|
||
*
|
||
* R0
|
||
* R1
|
||
* R2
|
||
* R3
|
||
* R4
|
||
* R5
|
||
* R6
|
||
* R7
|
||
* R8
|
||
* R9
|
||
* R10
|
||
* R11
|
||
* R12 AP
|
||
* R13 FP
|
||
* R14 SP
|
||
* R15 PC
|
||
*
|
||
*/
|
||
|
||
#include <ctype.h>
|
||
#define AP (12)
|
||
#define FP (13)
|
||
#define SP (14)
|
||
#define PC (15)
|
||
|
||
int /* return -1 or 0:15 */
|
||
vax_reg_parse (c1, c2, c3) /* 3 chars of register name */
|
||
char c1, c2, c3; /* c3 == 0 if 2-character reg name */
|
||
{
|
||
int retval; /* return -1:15 */
|
||
|
||
retval = -1;
|
||
|
||
if (isupper (c1))
|
||
c1 = tolower (c1);
|
||
if (isupper (c2))
|
||
c2 = tolower (c2);
|
||
if (isdigit (c2) && c1 == 'r')
|
||
{
|
||
retval = c2 - '0';
|
||
if (isdigit (c3))
|
||
{
|
||
retval = retval * 10 + c3 - '0';
|
||
retval = (retval > 15) ? -1 : retval;
|
||
/* clamp the register value to 1 hex digit */
|
||
}
|
||
else if (c3)
|
||
retval = -1; /* c3 must be '\0' or a digit */
|
||
}
|
||
else if (c3) /* There are no three letter regs */
|
||
retval = -1;
|
||
else if (c2 == 'p')
|
||
{
|
||
switch (c1)
|
||
{
|
||
case 's':
|
||
retval = SP;
|
||
break;
|
||
case 'f':
|
||
retval = FP;
|
||
break;
|
||
case 'a':
|
||
retval = AP;
|
||
break;
|
||
default:
|
||
retval = -1;
|
||
}
|
||
}
|
||
else if (c1 == 'p' && c2 == 'c')
|
||
retval = PC;
|
||
else
|
||
retval = -1;
|
||
return (retval);
|
||
}
|
||
|
||
/*
|
||
* v i p _ o p ( )
|
||
*
|
||
* Parse a vax operand in DEC assembler notation.
|
||
* For speed, expect a string of whitespace to be reduced to a single ' '.
|
||
* This is the case for GNU AS, and is easy for other DEC-compatible
|
||
* assemblers.
|
||
*
|
||
* Knowledge about DEC VAX assembler operand notation lives here.
|
||
* This doesn't even know what a register name is, except it believes
|
||
* all register names are 2 or 3 characters, and lets vax_reg_parse() say
|
||
* what number each name represents.
|
||
* It does, however, know that PC, SP etc are special registers so it can
|
||
* detect addressing modes that are silly for those registers.
|
||
*
|
||
* Where possible, it delivers 1 fatal or 1 warning message if the operand
|
||
* is suspect. Exactly what we test for is still evolving.
|
||
*/
|
||
|
||
/*
|
||
* B u g s
|
||
*
|
||
* Arg block.
|
||
*
|
||
* There were a number of 'mismatched argument type' bugs to vip_op.
|
||
* The most general solution is to typedef each (of many) arguments.
|
||
* We used instead a typedef'd argument block. This is less modular
|
||
* than using seperate return pointers for each result, but runs faster
|
||
* on most engines, and seems to keep programmers happy. It will have
|
||
* to be done properly if we ever want to use vip_op as a general-purpose
|
||
* module (it was designed to be).
|
||
*
|
||
* G^
|
||
*
|
||
* Doesn't support DEC "G^" format operands. These always take 5 bytes
|
||
* to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
|
||
* optimising to (say) a "B^" if you are lucky in the way you link.
|
||
* When someone builds a linker smart enough to convert "G^" to "B^", "W^"
|
||
* whenever possible, then we should implement it.
|
||
* If there is some other use for "G^", feel free to code it in!
|
||
*
|
||
*
|
||
* speed
|
||
*
|
||
* If I nested if()s more, I could avoid testing (*err) which would save
|
||
* time, space and page faults. I didn't nest all those if()s for clarity
|
||
* and because I think the mode testing can be re-arranged 1st to test the
|
||
* commoner constructs 1st. Does anybody have statistics on this?
|
||
*
|
||
*
|
||
*
|
||
* error messages
|
||
*
|
||
* In future, we should be able to 'compose' error messages in a scratch area
|
||
* and give the user MUCH more informative error messages. Although this takes
|
||
* a little more code at run-time, it will make this module much more self-
|
||
* documenting. As an example of what sucks now: most error messages have
|
||
* hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
|
||
* the Un*x characters "$`*", that most users will expect from this AS.
|
||
*/
|
||
|
||
/*
|
||
* The input is a string, ending with '\0'.
|
||
*
|
||
* We also require a 'hint' of what kind of operand is expected: so
|
||
* we can remind caller not to write into literals for instance.
|
||
*
|
||
* The output is a skeletal instruction.
|
||
*
|
||
* The algorithm has two parts.
|
||
* 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
|
||
* 2. express the @^#-()+[] as some parameters suited to further analysis.
|
||
*
|
||
* 2nd step is where we detect the googles of possible invalid combinations
|
||
* a human (or compiler) might write. Note that if we do a half-way
|
||
* decent assembler, we don't know how long to make (eg) displacement
|
||
* fields when we first meet them (because they may not have defined values).
|
||
* So we must wait until we know how many bits are needed for each address,
|
||
* then we can know both length and opcodes of instructions.
|
||
* For reason(s) above, we will pass to our caller a 'broken' instruction
|
||
* of these major components, from which our caller can generate instructions:
|
||
* - displacement length I^ S^ L^ B^ W^ unspecified
|
||
* - mode (many)
|
||
* - register R0-R15 or absent
|
||
* - index register R0-R15 or absent
|
||
* - expression text what we don't parse
|
||
* - error text(s) why we couldn't understand the operand
|
||
*/
|
||
|
||
/*
|
||
* To decode output of this, test errtxt. If errtxt[0] == '\0', then
|
||
* we had no errors that prevented parsing. Also, if we ever report
|
||
* an internal bug, errtxt[0] is set non-zero. So one test tells you
|
||
* if the other outputs are to be taken seriously.
|
||
*/
|
||
|
||
|
||
/*
|
||
* Because this module is useful for both VMS and UN*X style assemblers
|
||
* and because of the variety of UN*X assemblers we must recognise
|
||
* the different conventions for assembler operand notation. For example
|
||
* VMS says "#42" for immediate mode, while most UN*X say "$42".
|
||
* We permit arbitrary sets of (single) characters to represent the
|
||
* 3 concepts that DEC writes '#', '@', '^'.
|
||
*/
|
||
|
||
/* character tests */
|
||
#define VIP_IMMEDIATE 01 /* Character is like DEC # */
|
||
#define VIP_INDIRECT 02 /* Char is like DEC @ */
|
||
#define VIP_DISPLEN 04 /* Char is like DEC ^ */
|
||
|
||
#define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
|
||
#define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
|
||
#define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
|
||
|
||
/* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
|
||
* are ever called.
|
||
*/
|
||
|
||
#if defined(CONST_TABLE)
|
||
#define _ 0,
|
||
#define I VIP_IMMEDIATE,
|
||
#define S VIP_INDIRECT,
|
||
#define D VIP_DISPLEN,
|
||
static const char
|
||
vip_metacharacters[256] =
|
||
{
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
|
||
_ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/
|
||
D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/
|
||
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||
};
|
||
#undef _
|
||
#undef I
|
||
#undef S
|
||
#undef D
|
||
#else
|
||
static char vip_metacharacters[256];
|
||
|
||
static void
|
||
vip_op_1 (bit, syms)
|
||
int bit;
|
||
char *syms;
|
||
{
|
||
unsigned char t;
|
||
|
||
while (t = *syms++)
|
||
vip_metacharacters[t] |= bit;
|
||
}
|
||
|
||
/* Can be called any time. More arguments may appear in future. */
|
||
static void
|
||
vip_op_defaults (immediate, indirect, displen)
|
||
char *immediate;
|
||
char *indirect;
|
||
char *displen;
|
||
{
|
||
vip_op_1 (VIP_IMMEDIATE, immediate);
|
||
vip_op_1 (VIP_INDIRECT, indirect);
|
||
vip_op_1 (VIP_DISPLEN, displen);
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
/*
|
||
* Dec defines the semantics of address modes (and values)
|
||
* by a two-letter code, explained here.
|
||
*
|
||
* letter 1: access type
|
||
*
|
||
* a address calculation - no data access, registers forbidden
|
||
* b branch displacement
|
||
* m read - let go of bus - write back "modify"
|
||
* r read
|
||
* v bit field address: like 'a' but registers are OK
|
||
* w write
|
||
* space no operator (eg ".long foo") [our convention]
|
||
*
|
||
* letter 2: data type (i.e. width, alignment)
|
||
*
|
||
* b byte
|
||
* d double precision floating point (D format)
|
||
* f single precision floating point (F format)
|
||
* g G format floating
|
||
* h H format floating
|
||
* l longword
|
||
* o octaword
|
||
* q quadword
|
||
* w word
|
||
* ? simple synthetic branch operand
|
||
* - unconditional synthetic JSB/JSR operand
|
||
* ! complex synthetic branch operand
|
||
*
|
||
* The '-?!' letter 2's are not for external consumption. They are used
|
||
* for various assemblers. Generally, all unknown widths are assumed 0.
|
||
* We don't limit your choice of width character.
|
||
*
|
||
* DEC operands are hard work to parse. For example, '@' as the first
|
||
* character means indirect (deferred) mode but elswhere it is a shift
|
||
* operator.
|
||
* The long-winded explanation of how this is supposed to work is
|
||
* cancelled. Read a DEC vax manual.
|
||
* We try hard not to parse anything that MIGHT be part of the expression
|
||
* buried in that syntax. For example if we see @...(Rn) we don't check
|
||
* for '-' before the '(' because mode @-(Rn) does not exist.
|
||
*
|
||
* After parsing we have:
|
||
*
|
||
* at 1 if leading '@' (or Un*x '*')
|
||
* len takes one value from " bilsw". eg B^ -> 'b'.
|
||
* hash 1 if leading '#' (or Un*x '$')
|
||
* expr_begin, expr_end the expression we did not parse
|
||
* even though we don't interpret it, we make use
|
||
* of its presence or absence.
|
||
* sign -1: -(Rn) 0: absent +1: (Rn)+
|
||
* paren 1 if () are around register
|
||
* reg major register number 0:15 -1 means absent
|
||
* ndx index register number 0:15 -1 means absent
|
||
*
|
||
* Again, I dare not explain it: just trace ALL the code!
|
||
*/
|
||
|
||
static void
|
||
vip_op (optext, vopP)
|
||
/* user's input string e.g.: "@B^foo@bar(AP)[FP]:" */
|
||
char *optext;
|
||
/* Input fields: vop_access, vop_width.
|
||
Output fields: _ndx, _reg, _mode, _short, _warn,
|
||
_error _expr_begin, _expr_end, _nbytes.
|
||
vop_nbytes : number of bytes in a datum. */
|
||
struct vop *vopP;
|
||
{
|
||
/* track operand text forward */
|
||
char *p;
|
||
/* track operand text backward */
|
||
char *q;
|
||
/* 1 if leading '@' ('*') seen */
|
||
int at;
|
||
/* one of " bilsw" */
|
||
char len;
|
||
/* 1 if leading '#' ('$') seen */
|
||
int hash;
|
||
/* -1, 0 or +1 */
|
||
int sign = 0;
|
||
/* 1 if () surround register */
|
||
int paren = 0;
|
||
/* register number, -1:absent */
|
||
int reg = 0;
|
||
/* index register number -1:absent */
|
||
int ndx = 0;
|
||
/* report illegal operand, ""==OK */
|
||
/* " " is a FAKE error: means we won */
|
||
/* ANY err that begins with ' ' is a fake. */
|
||
/* " " is converted to "" before return */
|
||
char *err;
|
||
/* warn about weird modes pf address */
|
||
char *wrn;
|
||
/* preserve q in case we backup */
|
||
char *oldq = NULL;
|
||
/* build up 4-bit operand mode here */
|
||
/* note: index mode is in ndx, this is */
|
||
/* the major mode of operand address */
|
||
int mode = 0;
|
||
/*
|
||
* Notice how we move wrong-arg-type bugs INSIDE this module: if we
|
||
* get the types wrong below, we lose at compile time rather than at
|
||
* lint or run time.
|
||
*/
|
||
char access; /* vop_access. */
|
||
char width; /* vop_width. */
|
||
|
||
access = vopP->vop_access;
|
||
width = vopP->vop_width;
|
||
/* None of our code bugs (yet), no user text errors, no warnings
|
||
even. */
|
||
err = wrn = 0;
|
||
|
||
p = optext;
|
||
|
||
if (*p == ' ') /* Expect all whitespace reduced to ' '. */
|
||
p++; /* skip over whitespace */
|
||
|
||
if (at = INDIRECTP (*p))
|
||
{ /* 1 if *p=='@'(or '*' for Un*x) */
|
||
p++; /* at is determined */
|
||
if (*p == ' ') /* Expect all whitespace reduced to ' '. */
|
||
p++; /* skip over whitespace */
|
||
}
|
||
|
||
/*
|
||
* This code is subtle. It tries to detect all legal (letter)'^'
|
||
* but it doesn't waste time explicitly testing for premature '\0' because
|
||
* this case is rejected as a mismatch against either (letter) or '^'.
|
||
*/
|
||
{
|
||
char c;
|
||
|
||
c = *p;
|
||
if (isupper (c))
|
||
c = tolower (c);
|
||
if (DISPLENP (p[1]) && strchr ("bilws", len = c))
|
||
p += 2; /* skip (letter) '^' */
|
||
else /* no (letter) '^' seen */
|
||
len = ' '; /* len is determined */
|
||
}
|
||
|
||
if (*p == ' ') /* Expect all whitespace reduced to ' '. */
|
||
p++; /* skip over whitespace */
|
||
|
||
if (hash = IMMEDIATEP (*p)) /* 1 if *p=='#' ('$' for Un*x) */
|
||
p++; /* hash is determined */
|
||
|
||
/*
|
||
* p points to what may be the beginning of an expression.
|
||
* We have peeled off the front all that is peelable.
|
||
* We know at, len, hash.
|
||
*
|
||
* Lets point q at the end of the text and parse that (backwards).
|
||
*/
|
||
|
||
for (q = p; *q; q++)
|
||
;
|
||
q--; /* now q points at last char of text */
|
||
|
||
if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
|
||
q--;
|
||
/* reverse over whitespace, but don't */
|
||
/* run back over *p */
|
||
|
||
/*
|
||
* As a matter of policy here, we look for [Rn], although both Rn and S^#
|
||
* forbid [Rn]. This is because it is easy, and because only a sick
|
||
* cyborg would have [...] trailing an expression in a VAX-like assembler.
|
||
* A meticulous parser would first check for Rn followed by '(' or '['
|
||
* and not parse a trailing ']' if it found another. We just ban expressions
|
||
* ending in ']'.
|
||
*/
|
||
if (*q == ']')
|
||
{
|
||
while (q >= p && *q != '[')
|
||
q--;
|
||
/* either q<p or we got matching '[' */
|
||
if (q < p)
|
||
err = "no '[' to match ']'";
|
||
else
|
||
{
|
||
/*
|
||
* Confusers like "[]" will eventually lose with a bad register
|
||
* name error. So again we don't need to check for early '\0'.
|
||
*/
|
||
if (q[3] == ']')
|
||
ndx = vax_reg_parse (q[1], q[2], 0);
|
||
else if (q[4] == ']')
|
||
ndx = vax_reg_parse (q[1], q[2], q[3]);
|
||
else
|
||
ndx = -1;
|
||
/*
|
||
* Since we saw a ']' we will demand a register name in the [].
|
||
* If luser hasn't given us one: be rude.
|
||
*/
|
||
if (ndx < 0)
|
||
err = "bad register in []";
|
||
else if (ndx == PC)
|
||
err = "[PC] index banned";
|
||
else
|
||
q--; /* point q just before "[...]" */
|
||
}
|
||
}
|
||
else
|
||
ndx = -1; /* no ']', so no iNDeX register */
|
||
|
||
/*
|
||
* If err = "..." then we lost: run away.
|
||
* Otherwise ndx == -1 if there was no "[...]".
|
||
* Otherwise, ndx is index register number, and q points before "[...]".
|
||
*/
|
||
|
||
if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
|
||
q--;
|
||
/* reverse over whitespace, but don't */
|
||
/* run back over *p */
|
||
if (!err || !*err)
|
||
{
|
||
sign = 0; /* no ()+ or -() seen yet */
|
||
|
||
if (q > p + 3 && *q == '+' && q[-1] == ')')
|
||
{
|
||
sign = 1; /* we saw a ")+" */
|
||
q--; /* q points to ')' */
|
||
}
|
||
|
||
if (*q == ')' && q > p + 2)
|
||
{
|
||
paren = 1; /* assume we have "(...)" */
|
||
while (q >= p && *q != '(')
|
||
q--;
|
||
/* either q<p or we got matching '(' */
|
||
if (q < p)
|
||
err = "no '(' to match ')'";
|
||
else
|
||
{
|
||
/*
|
||
* Confusers like "()" will eventually lose with a bad register
|
||
* name error. So again we don't need to check for early '\0'.
|
||
*/
|
||
if (q[3] == ')')
|
||
reg = vax_reg_parse (q[1], q[2], 0);
|
||
else if (q[4] == ')')
|
||
reg = vax_reg_parse (q[1], q[2], q[3]);
|
||
else
|
||
reg = -1;
|
||
/*
|
||
* Since we saw a ')' we will demand a register name in the ')'.
|
||
* This is nasty: why can't our hypothetical assembler permit
|
||
* parenthesised expressions? BECAUSE I AM LAZY! That is why.
|
||
* Abuse luser if we didn't spy a register name.
|
||
*/
|
||
if (reg < 0)
|
||
{
|
||
/* JF allow parenthasized expressions. I hope this works */
|
||
paren = 0;
|
||
while (*q != ')')
|
||
q++;
|
||
/* err = "unknown register in ()"; */
|
||
}
|
||
else
|
||
q--; /* point just before '(' of "(...)" */
|
||
/*
|
||
* If err == "..." then we lost. Run away.
|
||
* Otherwise if reg >= 0 then we saw (Rn).
|
||
*/
|
||
}
|
||
/*
|
||
* If err == "..." then we lost.
|
||
* Otherwise paren==1 and reg = register in "()".
|
||
*/
|
||
}
|
||
else
|
||
paren = 0;
|
||
/*
|
||
* If err == "..." then we lost.
|
||
* Otherwise, q points just before "(Rn)", if any.
|
||
* If there was a "(...)" then paren==1, and reg is the register.
|
||
*/
|
||
|
||
/*
|
||
* We should only seek '-' of "-(...)" if:
|
||
* we saw "(...)" paren == 1
|
||
* we have no errors so far ! *err
|
||
* we did not see '+' of "(...)+" sign < 1
|
||
* We don't check len. We want a specific error message later if
|
||
* user tries "x^...-(Rn)". This is a feature not a bug.
|
||
*/
|
||
if (!err || !*err)
|
||
{
|
||
if (paren && sign < 1)/* !sign is adequate test */
|
||
{
|
||
if (*q == '-')
|
||
{
|
||
sign = -1;
|
||
q--;
|
||
}
|
||
}
|
||
/*
|
||
* We have back-tracked over most
|
||
* of the crud at the end of an operand.
|
||
* Unless err, we know: sign, paren. If paren, we know reg.
|
||
* The last case is of an expression "Rn".
|
||
* This is worth hunting for if !err, !paren.
|
||
* We wouldn't be here if err.
|
||
* We remember to save q, in case we didn't want "Rn" anyway.
|
||
*/
|
||
if (!paren)
|
||
{
|
||
if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
|
||
q--;
|
||
/* reverse over whitespace, but don't */
|
||
/* run back over *p */
|
||
if (q > p && q < p + 3) /* room for Rn or Rnn exactly? */
|
||
reg = vax_reg_parse (p[0], p[1], q < p + 2 ? 0 : p[2]);
|
||
else
|
||
reg = -1; /* always comes here if no register at all */
|
||
/*
|
||
* Here with a definitive reg value.
|
||
*/
|
||
if (reg >= 0)
|
||
{
|
||
oldq = q;
|
||
q = p - 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
* have reg. -1:absent; else 0:15
|
||
*/
|
||
|
||
/*
|
||
* We have: err, at, len, hash, ndx, sign, paren, reg.
|
||
* Also, any remaining expression is from *p through *q inclusive.
|
||
* Should there be no expression, q==p-1. So expression length = q-p+1.
|
||
* This completes the first part: parsing the operand text.
|
||
*/
|
||
|
||
/*
|
||
* We now want to boil the data down, checking consistency on the way.
|
||
* We want: len, mode, reg, ndx, err, p, q, wrn, bug.
|
||
* We will deliver a 4-bit reg, and a 4-bit mode.
|
||
*/
|
||
|
||
/*
|
||
* Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
|
||
*
|
||
* in: at ?
|
||
* len ?
|
||
* hash ?
|
||
* p:q ?
|
||
* sign ?
|
||
* paren ?
|
||
* reg ?
|
||
* ndx ?
|
||
*
|
||
* out: mode 0
|
||
* reg -1
|
||
* len ' '
|
||
* p:q whatever was input
|
||
* ndx -1
|
||
* err " " or error message, and other outputs trashed
|
||
*/
|
||
/* branch operands have restricted forms */
|
||
if ((!err || !*err) && access == 'b')
|
||
{
|
||
if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
|
||
err = "invalid branch operand";
|
||
else
|
||
err = " ";
|
||
}
|
||
|
||
/* Since nobody seems to use it: comment this 'feature'(?) out for now. */
|
||
#ifdef NEVER
|
||
/*
|
||
* Case of stand-alone operand. e.g. ".long foo"
|
||
*
|
||
* in: at ?
|
||
* len ?
|
||
* hash ?
|
||
* p:q ?
|
||
* sign ?
|
||
* paren ?
|
||
* reg ?
|
||
* ndx ?
|
||
*
|
||
* out: mode 0
|
||
* reg -1
|
||
* len ' '
|
||
* p:q whatever was input
|
||
* ndx -1
|
||
* err " " or error message, and other outputs trashed
|
||
*/
|
||
if ((!err || !*err) && access == ' ')
|
||
{
|
||
if (at)
|
||
err = "address prohibits @";
|
||
else if (hash)
|
||
err = "address prohibits #";
|
||
else if (sign)
|
||
{
|
||
if (sign < 0)
|
||
err = "address prohibits -()";
|
||
else
|
||
err = "address prohibits ()+";
|
||
}
|
||
else if (paren)
|
||
err = "address prohibits ()";
|
||
else if (ndx >= 0)
|
||
err = "address prohibits []";
|
||
else if (reg >= 0)
|
||
err = "address prohibits register";
|
||
else if (len != ' ')
|
||
err = "address prohibits displacement length specifier";
|
||
else
|
||
{
|
||
err = " "; /* succeed */
|
||
mode = 0;
|
||
}
|
||
}
|
||
#endif /*#Ifdef NEVER*/
|
||
|
||
/*
|
||
* Case of S^#.
|
||
*
|
||
* in: at 0
|
||
* len 's' definition
|
||
* hash 1 demand
|
||
* p:q demand not empty
|
||
* sign 0 by paren==0
|
||
* paren 0 by "()" scan logic because "S^" seen
|
||
* reg -1 or nn by mistake
|
||
* ndx -1
|
||
*
|
||
* out: mode 0
|
||
* reg -1
|
||
* len 's'
|
||
* exp
|
||
* ndx -1
|
||
*/
|
||
if ((!err || !*err) && len == 's')
|
||
{
|
||
if (!hash || paren || at || ndx >= 0)
|
||
err = "invalid operand of S^#";
|
||
else
|
||
{
|
||
if (reg >= 0)
|
||
{
|
||
/*
|
||
* SHIT! we saw S^#Rnn ! put the Rnn back in
|
||
* expression. KLUDGE! Use oldq so we don't
|
||
* need to know exact length of reg name.
|
||
*/
|
||
q = oldq;
|
||
reg = 0;
|
||
}
|
||
/*
|
||
* We have all the expression we will ever get.
|
||
*/
|
||
if (p > q)
|
||
err = "S^# needs expression";
|
||
else if (access == 'r')
|
||
{
|
||
err = " "; /* WIN! */
|
||
mode = 0;
|
||
}
|
||
else
|
||
err = "S^# may only read-access";
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Case of -(Rn), which is weird case.
|
||
*
|
||
* in: at 0
|
||
* len '
|
||
* hash 0
|
||
* p:q q<p
|
||
* sign -1 by definition
|
||
* paren 1 by definition
|
||
* reg present by definition
|
||
* ndx optional
|
||
*
|
||
* out: mode 7
|
||
* reg present
|
||
* len ' '
|
||
* exp "" enforce empty expression
|
||
* ndx optional warn if same as reg
|
||
*/
|
||
if ((!err || !*err) && sign < 0)
|
||
{
|
||
if (len != ' ' || hash || at || p <= q)
|
||
err = "invalid operand of -()";
|
||
else
|
||
{
|
||
err = " "; /* win */
|
||
mode = 7;
|
||
if (reg == PC)
|
||
wrn = "-(PC) unpredictable";
|
||
else if (reg == ndx)
|
||
wrn = "[]index same as -()register: unpredictable";
|
||
}
|
||
}
|
||
|
||
/*
|
||
* We convert "(Rn)" to "@Rn" for our convenience.
|
||
* (I hope this is convenient: has someone got a better way to parse this?)
|
||
* A side-effect of this is that "@Rn" is a valid operand.
|
||
*/
|
||
if (paren && !sign && !hash && !at && len == ' ' && p > q)
|
||
{
|
||
at = 1;
|
||
paren = 0;
|
||
}
|
||
|
||
/*
|
||
* Case of (Rn)+, which is slightly different.
|
||
*
|
||
* in: at
|
||
* len ' '
|
||
* hash 0
|
||
* p:q q<p
|
||
* sign +1 by definition
|
||
* paren 1 by definition
|
||
* reg present by definition
|
||
* ndx optional
|
||
*
|
||
* out: mode 8+@
|
||
* reg present
|
||
* len ' '
|
||
* exp "" enforce empty expression
|
||
* ndx optional warn if same as reg
|
||
*/
|
||
if ((!err || !*err) && sign > 0)
|
||
{
|
||
if (len != ' ' || hash || p <= q)
|
||
err = "invalid operand of ()+";
|
||
else
|
||
{
|
||
err = " "; /* win */
|
||
mode = 8 + (at ? 1 : 0);
|
||
if (reg == PC)
|
||
wrn = "(PC)+ unpredictable";
|
||
else if (reg == ndx)
|
||
wrn = "[]index same as ()+register: unpredictable";
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Case of #, without S^.
|
||
*
|
||
* in: at
|
||
* len ' ' or 'i'
|
||
* hash 1 by definition
|
||
* p:q
|
||
* sign 0
|
||
* paren 0
|
||
* reg absent
|
||
* ndx optional
|
||
*
|
||
* out: mode 8+@
|
||
* reg PC
|
||
* len ' ' or 'i'
|
||
* exp
|
||
* ndx optional
|
||
*/
|
||
if ((!err || !*err) && hash)
|
||
{
|
||
if (len != 'i' && len != ' ')
|
||
err = "# conflicts length";
|
||
else if (paren)
|
||
err = "# bars register";
|
||
else
|
||
{
|
||
if (reg >= 0)
|
||
{
|
||
/*
|
||
* SHIT! we saw #Rnn! Put the Rnn back into the expression.
|
||
* By using oldq, we don't need to know how long Rnn was.
|
||
* KLUDGE!
|
||
*/
|
||
q = oldq;
|
||
reg = -1; /* no register any more */
|
||
}
|
||
err = " "; /* win */
|
||
|
||
/* JF a bugfix, I think! */
|
||
if (at && access == 'a')
|
||
vopP->vop_nbytes = 4;
|
||
|
||
mode = (at ? 9 : 8);
|
||
reg = PC;
|
||
if ((access == 'm' || access == 'w') && !at)
|
||
wrn = "writing or modifying # is unpredictable";
|
||
}
|
||
}
|
||
/*
|
||
* If !*err, then sign == 0
|
||
* hash == 0
|
||
*/
|
||
|
||
/*
|
||
* Case of Rn. We seperate this one because it has a few special
|
||
* errors the remaining modes lack.
|
||
*
|
||
* in: at optional
|
||
* len ' '
|
||
* hash 0 by program logic
|
||
* p:q empty
|
||
* sign 0 by program logic
|
||
* paren 0 by definition
|
||
* reg present by definition
|
||
* ndx optional
|
||
*
|
||
* out: mode 5+@
|
||
* reg present
|
||
* len ' ' enforce no length
|
||
* exp "" enforce empty expression
|
||
* ndx optional warn if same as reg
|
||
*/
|
||
if ((!err || !*err) && !paren && reg >= 0)
|
||
{
|
||
if (len != ' ')
|
||
err = "length not needed";
|
||
else if (at)
|
||
{
|
||
err = " "; /* win */
|
||
mode = 6; /* @Rn */
|
||
}
|
||
else if (ndx >= 0)
|
||
err = "can't []index a register, because it has no address";
|
||
else if (access == 'a')
|
||
err = "a register has no address";
|
||
else
|
||
{
|
||
/*
|
||
* Idea here is to detect from length of datum
|
||
* and from register number if we will touch PC.
|
||
* Warn if we do.
|
||
* vop_nbytes is number of bytes in operand.
|
||
* Compute highest byte affected, compare to PC0.
|
||
*/
|
||
if ((vopP->vop_nbytes + reg * 4) > 60)
|
||
wrn = "PC part of operand unpredictable";
|
||
err = " "; /* win */
|
||
mode = 5; /* Rn */
|
||
}
|
||
}
|
||
/*
|
||
* If !*err, sign == 0
|
||
* hash == 0
|
||
* paren == 1 OR reg==-1
|
||
*/
|
||
|
||
/*
|
||
* Rest of cases fit into one bunch.
|
||
*
|
||
* in: at optional
|
||
* len ' ' or 'b' or 'w' or 'l'
|
||
* hash 0 by program logic
|
||
* p:q expected (empty is not an error)
|
||
* sign 0 by program logic
|
||
* paren optional
|
||
* reg optional
|
||
* ndx optional
|
||
*
|
||
* out: mode 10 + @ + len
|
||
* reg optional
|
||
* len ' ' or 'b' or 'w' or 'l'
|
||
* exp maybe empty
|
||
* ndx optional warn if same as reg
|
||
*/
|
||
if (!err || !*err)
|
||
{
|
||
err = " "; /* win (always) */
|
||
mode = 10 + (at ? 1 : 0);
|
||
switch (len)
|
||
{
|
||
case 'l':
|
||
mode += 2;
|
||
case 'w':
|
||
mode += 2;
|
||
case ' ': /* assumed B^ until our caller changes it */
|
||
case 'b':
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* here with completely specified mode
|
||
* len
|
||
* reg
|
||
* expression p,q
|
||
* ndx
|
||
*/
|
||
|
||
if (*err == ' ')
|
||
err = 0; /* " " is no longer an error */
|
||
|
||
vopP->vop_mode = mode;
|
||
vopP->vop_reg = reg;
|
||
vopP->vop_short = len;
|
||
vopP->vop_expr_begin = p;
|
||
vopP->vop_expr_end = q;
|
||
vopP->vop_ndx = ndx;
|
||
vopP->vop_error = err;
|
||
vopP->vop_warn = wrn;
|
||
}
|
||
|
||
/*
|
||
|
||
Summary of vip_op outputs.
|
||
|
||
mode reg len ndx
|
||
(Rn) => @Rn
|
||
{@}Rn 5+@ n ' ' optional
|
||
branch operand 0 -1 ' ' -1
|
||
S^#foo 0 -1 's' -1
|
||
-(Rn) 7 n ' ' optional
|
||
{@}(Rn)+ 8+@ n ' ' optional
|
||
{@}#foo, no S^ 8+@ PC " i" optional
|
||
{@}{q^}{(Rn)} 10+@+q option " bwl" optional
|
||
|
||
*/
|
||
|
||
#ifdef TEST /* #Define to use this testbed. */
|
||
|
||
/*
|
||
* Follows a test program for this function.
|
||
* We declare arrays non-local in case some of our tiny-minded machines
|
||
* default to small stacks. Also, helps with some debuggers.
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
|
||
char answer[100]; /* human types into here */
|
||
char *p; /* */
|
||
char *myerr;
|
||
char *mywrn;
|
||
char *mybug;
|
||
char myaccess;
|
||
char mywidth;
|
||
char mymode;
|
||
char myreg;
|
||
char mylen;
|
||
char *myleft;
|
||
char *myright;
|
||
char myndx;
|
||
int my_operand_length;
|
||
char my_immediate[200];
|
||
char my_indirect[200];
|
||
char my_displen[200];
|
||
|
||
main ()
|
||
{
|
||
printf ("enter immediate symbols eg enter # ");
|
||
gets (my_immediate);
|
||
printf ("enter indirect symbols eg enter @ ");
|
||
gets (my_indirect);
|
||
printf ("enter displen symbols eg enter ^ ");
|
||
gets (my_displen);
|
||
vip_op_defaults (my_immediate, my_indirect, my_displen);
|
||
for (;;)
|
||
{
|
||
printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
|
||
fflush (stdout);
|
||
gets (answer);
|
||
if (!answer[0])
|
||
exit (EXIT_SUCCESS);
|
||
myaccess = answer[0];
|
||
mywidth = answer[1];
|
||
switch (mywidth)
|
||
{
|
||
case 'b':
|
||
my_operand_length = 1;
|
||
break;
|
||
case 'd':
|
||
my_operand_length = 8;
|
||
break;
|
||
case 'f':
|
||
my_operand_length = 4;
|
||
break;
|
||
case 'g':
|
||
my_operand_length = 16;
|
||
break;
|
||
case 'h':
|
||
my_operand_length = 32;
|
||
break;
|
||
case 'l':
|
||
my_operand_length = 4;
|
||
break;
|
||
case 'o':
|
||
my_operand_length = 16;
|
||
break;
|
||
case 'q':
|
||
my_operand_length = 8;
|
||
break;
|
||
case 'w':
|
||
my_operand_length = 2;
|
||
break;
|
||
case '!':
|
||
case '?':
|
||
case '-':
|
||
my_operand_length = 0;
|
||
break;
|
||
|
||
default:
|
||
my_operand_length = 2;
|
||
printf ("I dn't understand access width %c\n", mywidth);
|
||
break;
|
||
}
|
||
printf ("VAX assembler instruction operand: ");
|
||
fflush (stdout);
|
||
gets (answer);
|
||
mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
|
||
&mymode, &myreg, &mylen, &myleft, &myright, &myndx,
|
||
&myerr, &mywrn);
|
||
if (*myerr)
|
||
{
|
||
printf ("error: \"%s\"\n", myerr);
|
||
if (*mybug)
|
||
printf (" bug: \"%s\"\n", mybug);
|
||
}
|
||
else
|
||
{
|
||
if (*mywrn)
|
||
printf ("warning: \"%s\"\n", mywrn);
|
||
mumble ("mode", mymode);
|
||
mumble ("register", myreg);
|
||
mumble ("index", myndx);
|
||
printf ("width:'%c' ", mylen);
|
||
printf ("expression: \"");
|
||
while (myleft <= myright)
|
||
putchar (*myleft++);
|
||
printf ("\"\n");
|
||
}
|
||
}
|
||
}
|
||
|
||
mumble (text, value)
|
||
char *text;
|
||
int value;
|
||
{
|
||
printf ("%s:", text);
|
||
if (value >= 0)
|
||
printf ("%xx", value);
|
||
else
|
||
printf ("ABSENT");
|
||
printf (" ");
|
||
}
|
||
|
||
#endif /* ifdef TEST */
|
||
|
||
/* end: vip_op.c */
|
||
|
||
const int md_short_jump_size = 3;
|
||
const int md_long_jump_size = 6;
|
||
const int md_reloc_size = 8; /* Size of relocation record */
|
||
|
||
void
|
||
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
valueT offset;
|
||
|
||
offset = to_addr - (from_addr + 1);
|
||
*ptr++ = 0x31;
|
||
md_number_to_chars (ptr, offset, 2);
|
||
}
|
||
|
||
void
|
||
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
valueT offset;
|
||
|
||
offset = to_addr - S_GET_VALUE (to_symbol);
|
||
*ptr++ = 0x17;
|
||
*ptr++ = 0x9F;
|
||
md_number_to_chars (ptr, offset, 4);
|
||
fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC);
|
||
}
|
||
|
||
#ifdef OBJ_VMS
|
||
CONST char *md_shortopts = "d:STt:V+1h:Hv:";
|
||
#else
|
||
CONST char *md_shortopts = "d:STt:V";
|
||
#endif
|
||
struct option md_longopts[] = {
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof(md_longopts);
|
||
|
||
int
|
||
md_parse_option (c, arg)
|
||
int c;
|
||
char *arg;
|
||
{
|
||
switch (c)
|
||
{
|
||
case 'S':
|
||
as_warn ("SYMBOL TABLE not implemented");
|
||
break;
|
||
|
||
case 'T':
|
||
as_warn ("TOKEN TRACE not implemented");
|
||
break;
|
||
|
||
case 'd':
|
||
as_warn ("Displacement length %s ignored!", arg);
|
||
break;
|
||
|
||
case 't':
|
||
as_warn ("I don't need or use temp. file \"%s\".", arg);
|
||
break;
|
||
|
||
case 'V':
|
||
as_warn ("I don't use an interpass file! -V ignored");
|
||
break;
|
||
|
||
#ifdef OBJ_VMS
|
||
case '+': /* For g++. Hash any name > 31 chars long. */
|
||
flag_hash_long_names = 1;
|
||
break;
|
||
|
||
case '1': /* For backward compatibility */
|
||
flag_one = 1;
|
||
break;
|
||
|
||
case 'H': /* Show new symbol after hash truncation */
|
||
flag_show_after_trunc = 1;
|
||
break;
|
||
|
||
case 'h': /* No hashing of mixed-case names */
|
||
{
|
||
extern char vms_name_mapping;
|
||
vms_name_mapping = atoi (arg);
|
||
flag_no_hash_mixed_case = 1;
|
||
}
|
||
break;
|
||
|
||
case 'v':
|
||
{
|
||
extern char *compiler_version_string;
|
||
compiler_version_string = arg;
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (stream)
|
||
FILE *stream;
|
||
{
|
||
fprintf(stream, "\
|
||
VAX options:\n\
|
||
-d LENGTH ignored\n\
|
||
-J ignored\n\
|
||
-S ignored\n\
|
||
-t FILE ignored\n\
|
||
-T ignored\n\
|
||
-V ignored\n");
|
||
#ifdef OBJ_VMS
|
||
fprintf (stream, "\
|
||
-+ hash names longer than 31 characters\n\
|
||
-1 don't do const thing\n\
|
||
-H show new symbol after hash truncation\n\
|
||
-h NUM don't hash mixed-case names, and adjust case:\n\
|
||
0 = upper, 2 = lower, 3 = preserve case\n\
|
||
-vVERSION compiler version is VERSION\n");
|
||
#endif
|
||
}
|
||
|
||
/* We have no need to default values of symbols. */
|
||
|
||
/* ARGSUSED */
|
||
symbolS *
|
||
md_undefined_symbol (name)
|
||
char *name;
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Parse an operand that is machine-specific.
|
||
We just return without modifying the expression if we have nothing
|
||
to do. */
|
||
|
||
/* ARGSUSED */
|
||
void
|
||
md_operand (expressionP)
|
||
expressionS *expressionP;
|
||
{
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
valueT
|
||
md_section_align (segment, size)
|
||
segT segment;
|
||
valueT size;
|
||
{
|
||
return size; /* Byte alignment is fine */
|
||
}
|
||
|
||
/* Exactly what point is a PC-relative offset relative TO?
|
||
On the vax, they're relative to the address of the offset, plus
|
||
its size. (??? Is this right? FIXME-SOON) */
|
||
long
|
||
md_pcrel_from (fixP)
|
||
fixS *fixP;
|
||
{
|
||
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
/* end of tc-vax.c */
|