5140562f37
* tm-hppabsd.h, tm-hppahpux.h: Shrink to deltas from tm-hppa.h. * am29k-pinsn.c, am29k-tdep.c, copying.awk, copying.c, hppa-coredep.c, hppa-pinsn.c, hppabsd-core.c, hppabsd-tdep.c, hppabsd-xdep.c, hppahpux-tdep.c, hppahpux-xdep.c, remote-udi.c, ser-go32.c, xcoffsolib.c: Remove <stdio.h> which is already in "defs.h". * hppa-coredep.c, hppa-pinsn.c, hppabsd-core.c, hppabsd-tdep.c, hppabsd-xdep.c, hppahpux-tdep.c, hppahpux-xdep.c, xcoffsolib.c, xcoffsolib.h, xm-go32.h, xm-hppabsd.h, xm-hppahpux.h: Copyrights.
555 lines
20 KiB
C
555 lines
20 KiB
C
/* Parameters for execution on a Hewlett-Packard PA-RISC machine.
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* Target system byte order. */
|
||
|
||
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
||
|
||
/* Get at various relevent fields of an instruction word. */
|
||
|
||
#define MASK_5 0x1f
|
||
#define MASK_11 0x7ff
|
||
#define MASK_14 0x3fff
|
||
#define MASK_21 0x1fffff
|
||
|
||
/* This macro gets bit fields using HP's numbering (MSB = 0) */
|
||
|
||
#define GET_FIELD(X, FROM, TO) \
|
||
((X) >> 31 - (TO) & (1 << ((TO) - (FROM) + 1)) - 1)
|
||
|
||
/* Watch out for NaNs */
|
||
|
||
#define IEEE_FLOAT
|
||
|
||
/* Groan */
|
||
|
||
#define ARGS_GROW_DOWN
|
||
|
||
/* Define this if the C compiler puts an underscore at the front
|
||
of external names before giving them to the linker. */
|
||
|
||
/* #define NAMES_HAVE_UNDERSCORE */
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. */
|
||
|
||
/* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
|
||
for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
|
||
|
||
#define SKIP_PROLOGUE(pc) \
|
||
{ if (read_memory_integer ((pc), 4) == 0x6BC23FD9) \
|
||
{ if (read_memory_integer ((pc) + 4, 4) == 0x8040241) \
|
||
(pc) += 16; \
|
||
else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) \
|
||
(pc) += 8;} \
|
||
else if (read_memory_integer ((pc), 4) == 0x8040241) \
|
||
(pc) += 12; \
|
||
else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) \
|
||
(pc) += 4;}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
#define SAVED_PC_AFTER_CALL(frame) (read_register (RP_REGNUM) & ~3)
|
||
|
||
/* Address of end of stack space. Who knows. */
|
||
|
||
#define STACK_END_ADDR 0x80000000
|
||
|
||
/* Stack grows upward */
|
||
|
||
#define INNER_THAN >
|
||
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
/*#define BREAKPOINT {0x00, 0x00, 0x00, 0x00}*/
|
||
#ifdef KERNELDEBUG /* XXX */
|
||
#define BREAKPOINT {0x00, 0x00, 0xa0, 0x00}
|
||
#else
|
||
#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
|
||
#endif
|
||
|
||
/* Amount PC must be decremented by after a breakpoint.
|
||
This is often the number of bytes in BREAKPOINT
|
||
but not always.
|
||
|
||
Not on the PA-RISC */
|
||
|
||
#define DECR_PC_AFTER_BREAK 0
|
||
|
||
/* return instruction is bv r0(rp) */
|
||
|
||
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0xE840C000)
|
||
|
||
/* Return 1 if P points to an invalid floating point value. */
|
||
|
||
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
|
||
|
||
/* Largest integer type */
|
||
#define LONGEST long
|
||
|
||
/* Name of the builtin type for the LONGEST type above. */
|
||
#define BUILTIN_TYPE_LONGEST builtin_type_long
|
||
|
||
/* Say how long (ordinary) registers are. */
|
||
|
||
#define REGISTER_TYPE long
|
||
|
||
/* Number of machine registers */
|
||
|
||
#define NUM_REGS 100
|
||
|
||
/* Initializer for an array of names of registers.
|
||
There should be NUM_REGS strings in this initializer. */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
|
||
"r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
|
||
"r20", "r21", "r22", "arg3", "arg2", "arg1", "arg0", "dp", "ret0", "ret1", \
|
||
"sp", "r31", "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", \
|
||
"eiem", "iir", "isr", "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", \
|
||
"sr3", "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", "cr13", \
|
||
"cr24", "cr25", "cr26", "mpsfu_high", "mpsfu_low", "mpsfu_ovflo", "pad", \
|
||
"fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
|
||
"fp4", "fp5", "fp6", "fp7", "fp8", \
|
||
"fp9", "fp10", "fp11", "fp12", "fp13", "fp14", "fp15", \
|
||
"fp16", "fp17", "fp18", "fp19", "fp20", "fp21", "fp22", "fp23", \
|
||
"fp24", "fp25", "fp26", "fp27", "fp28", "fp29", "fp30", "fp31"}
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define RP_REGNUM 2 /* return pointer */
|
||
#define FP_REGNUM 4 /* Contains address of executing stack */
|
||
/* frame */
|
||
#define SP_REGNUM 30 /* Contains address of top of stack */
|
||
#define SAR_REGNUM 32 /* shift amount register */
|
||
#define IPSW_REGNUM 41 /* processor status word. ? */
|
||
#define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
|
||
#define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
|
||
#define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
|
||
#define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
|
||
#define FP0_REGNUM 64 /* floating point reg. 0 */
|
||
#define FP4_REGNUM 72
|
||
|
||
/* compatibility with the rest of gdb. */
|
||
#define PC_REGNUM PCOQ_HEAD_REGNUM
|
||
#define NPC_REGNUM PCOQ_TAIL_REGNUM
|
||
|
||
/* Define DO_REGISTERS_INFO() to do machine-specific formatting
|
||
of register dumps. */
|
||
|
||
#define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
|
||
|
||
/* PA specific macro to see if the current instruction is nullified. */
|
||
#define INSTRUCTION_NULLIFIED ((int)read_register (IPSW_REGNUM) & 0x00200000)
|
||
|
||
/* Total amount of space needed to store our copies of the machine's
|
||
register state, the array `registers'. */
|
||
#define REGISTER_BYTES (32 * 4 + 11 * 4 + 8 * 4 + 12 * 4 + 4 + 32 * 8)
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#define REGISTER_BYTE(N) \
|
||
((N) >= FP4_REGNUM ? ((N) - FP4_REGNUM) * 8 + 288 : (N) * 4)
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On the PA-RISC, all regs are 4 bytes
|
||
except the floating point regs which are 8 bytes. */
|
||
|
||
#define REGISTER_RAW_SIZE(N) ((N) < FP4_REGNUM ? 4 : 8)
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 8
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
|
||
#define REGISTER_CONVERTIBLE(N) 0
|
||
|
||
/* Convert data from raw format for register REGNUM
|
||
to virtual format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||
{ bcopy ((FROM), (TO), (REGNUM) < FP4_REGNUM ? 4 : 8); }
|
||
|
||
/* Convert data from virtual format for register REGNUM
|
||
to raw format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||
{ bcopy ((FROM), (TO), (REGNUM) < FP4_REGNUM ? 4 : 8); }
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
((N) < FP4_REGNUM ? builtin_type_int : builtin_type_double)
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
bcopy ((REGBUF) + REGISTER_BYTE(TYPE_LENGTH(TYPE) > 4 ? \
|
||
FP4_REGNUM :28), VALBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
write_register_bytes (TYPE_LENGTH(TYPE) > 4 ? FP4_REGNUM :28, \
|
||
VALBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)((REGBUF) + 28))
|
||
|
||
/* This is a piece of magic that is given a register number REGNO
|
||
and as BLOCKEND the address in the system of the end of the user structure
|
||
and stores in ADDR the address in the kernel or core dump
|
||
of that register. */
|
||
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address
|
||
and produces the frame's chain-pointer.
|
||
|
||
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
||
and produces the nominal address of the caller frame.
|
||
|
||
However, if FRAME_CHAIN_VALID returns zero,
|
||
it means the given frame is the outermost one and has no caller.
|
||
In that case, FRAME_CHAIN_COMBINE is not used. */
|
||
|
||
/* In the case of the PA-RISC, the frame's nominal address
|
||
is the address of a 4-byte word containing the calling frame's
|
||
address (previous FP). */
|
||
|
||
#define FRAME_CHAIN(thisframe) \
|
||
(inside_entry_file ((thisframe)->pc) ? \
|
||
read_memory_integer ((thisframe)->frame, 4) :\
|
||
0)
|
||
|
||
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
||
frame_chain_valid (chain, thisframe)
|
||
|
||
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0. */
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
||
(FRAMELESS) = frameless_look_for_prologue(FI)
|
||
|
||
#define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
||
/* Set VAL to the number of args passed to frame described by FI.
|
||
Can set VAL to -1, meaning no way to tell. */
|
||
|
||
/* We can't tell how many args there are
|
||
now that the C compiler delays popping them. */
|
||
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 0
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
/* Deal with dummy functions later. */
|
||
|
||
#define STW_P(INSN) (((INSN) & 0xfc000000) == 0x68000000)
|
||
#define ADDIL_P(INSN) (((INSN) & 0xfc000000) == 0x28000000)
|
||
#define LDO_P(INSN) (((INSN) & 0xfc00c000) == 0x34000000)
|
||
|
||
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
{ register int regnum; \
|
||
register CORE_ADDR next_addr; \
|
||
register CORE_ADDR pc; \
|
||
unsigned this_insn; \
|
||
unsigned address; \
|
||
\
|
||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||
if ((frame_info)->pc <= ((frame_info)->frame - CALL_DUMMY_LENGTH - \
|
||
FP_REGNUM * 4 - 16 * 8) \
|
||
&& (frame_info)->pc > (frame_info)->frame) \
|
||
find_dummy_frame_regs ((frame_info), &(frame_saved_regs)); \
|
||
else \
|
||
{ pc = get_pc_function_start ((frame_info)->pc); \
|
||
if (read_memory_integer (pc, 4) == 0x6BC23FD9) \
|
||
{ (frame_saved_regs).regs[RP_REGNUM] = (frame_info)->frame - 20;\
|
||
pc = pc + 4; \
|
||
} \
|
||
if (read_memory_integer (pc, 4) != 0x8040241) goto lose; \
|
||
pc += 8; /* skip "copy 4,1; copy 30, 4" */ \
|
||
/* skip either "stw 1,0(4);addil L'fsize,30;ldo R'fsize(1),30" \
|
||
or "stwm 1,fsize(30)" */ \
|
||
if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) \
|
||
pc += 12; \
|
||
else \
|
||
pc += 4; \
|
||
while (1) \
|
||
{ this_insn = read_memory_integer(pc, 4); \
|
||
if (STW_P (this_insn)) /* stw */ \
|
||
{ regnum = GET_FIELD (this_insn, 11, 15); \
|
||
if (!regnum) goto lose; \
|
||
(frame_saved_regs).regs[regnum] = (frame_info)->frame + \
|
||
extract_14 (this_insn); \
|
||
pc += 4; \
|
||
} \
|
||
else if (ADDIL_P (this_insn)) /* addil */ \
|
||
{ int next_insn; \
|
||
next_insn = read_memory_integer(pc + 4, 4); \
|
||
if (STW_P (next_insn)) /* stw */ \
|
||
{ regnum = GET_FIELD (this_insn, 6, 10); \
|
||
if (!regnum) goto lose; \
|
||
(frame_saved_regs).regs[regnum] = (frame_info)->frame +\
|
||
(extract_21 (this_insn) << 11) + extract_14 (next_insn);\
|
||
pc += 8; \
|
||
} \
|
||
else \
|
||
break; \
|
||
} \
|
||
else \
|
||
{ pc += 4; \
|
||
break; \
|
||
} \
|
||
} \
|
||
this_insn = read_memory_integer (pc, 4); \
|
||
if (LDO_P (this_insn)) \
|
||
{ next_addr = (frame_info)->frame + extract_14 (this_insn); \
|
||
pc += 4; \
|
||
} \
|
||
else if (ADDIL_P (this_insn)) \
|
||
{ next_addr = (frame_info)->frame + (extract_21 (this_insn) << 11)\
|
||
+ extract_14 (read_memory_integer (pc + 4, 4)); \
|
||
pc += 8; \
|
||
} \
|
||
while (1) \
|
||
{ this_insn = read_memory_integer (pc, 4); \
|
||
if ((this_insn & 0xfc001fe0) == 0x2c001220) /* fstds,ma */ \
|
||
{ regnum = GET_FIELD (this_insn, 27, 31); \
|
||
(frame_saved_regs).regs[regnum + FP0_REGNUM] = next_addr; \
|
||
next_addr += 8; \
|
||
} \
|
||
else \
|
||
break; \
|
||
} \
|
||
lose: \
|
||
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
|
||
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame -4; \
|
||
}}
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME \
|
||
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
||
register int regnum; \
|
||
int int_buffer; \
|
||
double freg_buffer; \
|
||
/* Space for "arguments"; the RP goes in here. */ \
|
||
sp += 48; \
|
||
int_buffer = read_register (RP_REGNUM) | 0x3; \
|
||
write_memory (sp - 20, &int_buffer, 4); \
|
||
int_buffer = read_register (FP_REGNUM); \
|
||
write_memory (sp, &int_buffer, 4); \
|
||
write_register (FP_REGNUM, sp); \
|
||
sp += 4; \
|
||
for (regnum = 1; regnum < 31; regnum++) \
|
||
if (regnum != RP_REGNUM && regnum != FP_REGNUM) \
|
||
sp = push_word (sp, read_register (regnum)); \
|
||
for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) \
|
||
{ read_register_bytes (REGISTER_BYTE (regnum), &freg_buffer, 8); \
|
||
sp = push_bytes (sp, &freg_buffer, 8);} \
|
||
sp = push_word (sp, read_register (IPSW_REGNUM)); \
|
||
sp = push_word (sp, read_register (SAR_REGNUM)); \
|
||
sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); \
|
||
sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); \
|
||
write_register (SP_REGNUM, sp);}
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
#define POP_FRAME \
|
||
{ register FRAME frame = get_current_frame (); \
|
||
register CORE_ADDR fp; \
|
||
register int regnum; \
|
||
struct frame_saved_regs fsr; \
|
||
struct frame_info *fi; \
|
||
double freg_buffer; \
|
||
fi = get_frame_info (frame); \
|
||
fp = fi->frame; \
|
||
get_frame_saved_regs (fi, &fsr); \
|
||
for (regnum = 31; regnum > 0; regnum--) \
|
||
if (fsr.regs[regnum]) \
|
||
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
|
||
for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) \
|
||
if (fsr.regs[regnum]) \
|
||
{ read_memory (fsr.regs[regnum], &freg_buffer, 8); \
|
||
write_register_bytes (REGISTER_BYTE (regnum), &freg_buffer, 8); }\
|
||
if (fsr.regs[IPSW_REGNUM]) \
|
||
write_register (IPSW_REGNUM, \
|
||
read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); \
|
||
if (fsr.regs[SAR_REGNUM]) \
|
||
write_register (SAR_REGNUM, \
|
||
read_memory_integer (fsr.regs[SAR_REGNUM], 4)); \
|
||
if (fsr.regs[PCOQ_TAIL_REGNUM]) \
|
||
write_register (PCOQ_TAIL_REGNUM, \
|
||
read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));\
|
||
if (fsr.regs[PCSQ_TAIL_REGNUM]) \
|
||
write_register (PCSQ_TAIL_REGNUM, \
|
||
read_memory_integer (fsr.regs[PCSQ_TAIL_REGNUM], 4));\
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
||
write_register (SP_REGNUM, fp + 8); \
|
||
flush_cached_frames (); \
|
||
set_current_frame (create_new_frame (read_register (FP_REGNUM),\
|
||
read_pc ())); }
|
||
|
||
/* This sequence of words is the instructions
|
||
|
||
; Call stack frame has already been built by gdb. Since we could be calling
|
||
; a varargs function, and we do not have the benefit of a stub to put things in
|
||
; the right place, we load the first 4 word of arguments into both the general
|
||
; and fp registers.
|
||
call_dummy
|
||
ldw -36(sp), arg0
|
||
ldw -40(sp), arg1
|
||
ldw -44(sp), arg2
|
||
ldw -48(sp), arg3
|
||
ldo -36(sp), r1
|
||
fldws 0(0, r1), fr4
|
||
fldds -4(0, r1), fr5
|
||
fldws -8(0, r1), fr6
|
||
fldds -12(0, r1), fr7
|
||
ldil 0, r22 ; target will be placed here.
|
||
ldo 0(r22), r22
|
||
ldsid (0,r22), r3
|
||
ldil 0, r1 ; _sr4export will be placed here.
|
||
ldo 0(r1), r1
|
||
ldsid (0,r1), r4
|
||
combt,=,n r3, r4, text_space ; If target is in data space, do a
|
||
ble 0(sr5, r22) ; "normal" procedure call
|
||
copy r31, r2
|
||
break 4, 8
|
||
text_space ; Otherwise, go through _sr4export,
|
||
ble (sr4, r1) ; which will return back here.
|
||
stw 31,-24(r30)
|
||
break 4, 8
|
||
|
||
The dummy decides if the target is in text space or data space. If
|
||
it's in data space, there's no problem because the target can
|
||
return back to the dummy. However, if the target is in text space,
|
||
the dummy calls the secret, undocumented routine _sr4export, which
|
||
calls a function in text space and can return to any space. Instead
|
||
of including fake instructions to represent saved registers, we
|
||
know that the frame is associated with the call dummy and treat it
|
||
specially. */
|
||
|
||
#define CALL_DUMMY { 0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1, \
|
||
0x37c13fb9, 0x24201004, 0x2c391005, 0x24311006, \
|
||
0x2c291007, 0x22c00000, 0x36d60000, 0x02c010a3, \
|
||
0x20200000, 0x34210000, 0x002010a4, 0x80832012, \
|
||
0xe6c06000, 0x081f0242, 0x00010004, 0xe4202000, \
|
||
0x6bdf3fd1, 0x00010004}
|
||
|
||
#define CALL_DUMMY_LENGTH 88
|
||
#define CALL_DUMMY_START_OFFSET 0
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME. */
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
||
{ static CORE_ADDR sr4export_address = 0; \
|
||
\
|
||
if (!sr4export_address) \
|
||
{ \
|
||
struct minimal_symbol *msymbol; \
|
||
msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);\
|
||
if (msymbol = NULL) \
|
||
error ("Can't find an address for _sr4export trampoline"); \
|
||
else \
|
||
sr4export_address = msymbol -> address; \
|
||
} \
|
||
dummyname[9] = deposit_21 (fun >> 11, dummyname[9]); \
|
||
dummyname[10] = deposit_14 (fun & MASK_11, dummyname[10]); \
|
||
dummyname[12] = deposit_21 (sr4export_address >> 11, dummyname[12]); \
|
||
dummyname[13] = deposit_14 (sr4export_address & MASK_11, dummyname[13]);\
|
||
}
|
||
|
||
/* Write the PC to a random value.
|
||
On PA-RISC, we need to be sure that the PC space queue is correct. */
|
||
|
||
#define WRITE_PC(addr) \
|
||
{ int space_reg, space = ((addr) >> 30); \
|
||
int space_val; \
|
||
if (space == 0) \
|
||
space_reg = 43; /* Space reg sr4 */ \
|
||
else if (space == 1) \
|
||
space_reg = 48; /* Space reg sr5*/ \
|
||
else \
|
||
error ("pc = %x is in illegal space.", addr); \
|
||
space_val = read_register (space_reg); \
|
||
write_register (PCOQ_HEAD_REGNUM, addr); \
|
||
write_register (PCSQ_HEAD_REGNUM, space_val); \
|
||
write_register (PCOQ_TAIL_REGNUM, addr); \
|
||
write_register (PCSQ_TAIL_REGNUM, space_val);}
|