old-cross-binutils/sim/d10v/interp.c

614 lines
13 KiB
C

#include <signal.h>
#include "sysdep.h"
#include "bfd.h"
#include "remote-sim.h"
#include "d10v_sim.h"
#define IMEM_SIZE 18 /* D10V instruction memory size is 18 bits */
#define DMEM_SIZE 16 /* Data memory */
enum _leftright { LEFT_FIRST, RIGHT_FIRST };
int d10v_debug;
host_callback *d10v_callback;
long ins_type_counters[ (int)INS_MAX ];
long left_nops, right_nops;
uint16 OP[4];
static struct hash_entry *lookup_hash PARAMS ((uint32 ins, int size));
#define MAX_HASH 63
struct hash_entry
{
struct hash_entry *next;
long opcode;
long mask;
struct simops *ops;
};
struct hash_entry hash_table[MAX_HASH+1];
static long
hash(insn, format)
long insn;
int format;
{
if (format & LONG_OPCODE)
return ((insn & 0x3F000000) >> 24);
else
return((insn & 0x7E00) >> 9);
}
static struct hash_entry *
lookup_hash (ins, size)
uint32 ins;
int size;
{
struct hash_entry *h;
if (size)
h = &hash_table[(ins & 0x3F000000) >> 24];
else
h = &hash_table[(ins & 0x7E00) >> 9];
while ( (ins & h->mask) != h->opcode)
{
if (h->next == NULL)
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR looking up hash for %x at PC %x\n",ins, PC);
exit(1);
}
h = h->next;
}
return (h);
}
uint32
get_longword (x)
uint8 *x;
{
uint8 *a = x;
return (a[0]<<24) + (a[1]<<16) + (a[2]<<8) + (a[3]);
}
int64
get_longlong (x)
uint8 *x;
{
uint8 *a = x;
return ((int64)a[0]<<56) + ((int64)a[1]<<48) + ((int64)a[2]<<40) + ((int64)a[3]<<32) +
((int64)a[4]<< 24) + ((int64)a[5]<<16) + ((int64)a[6]<<8) + (int64)a[7];
}
uint16
get_word (x)
uint8 *x;
{
uint8 *a = x;
return ((uint16)a[0]<<8) + a[1];
}
void
write_word (addr, data)
uint8 *addr;
uint16 data;
{
uint8 *a = addr;
a[0] = data >> 8;
a[1] = data & 0xff;
}
void
write_longword (addr, data)
uint8 *addr;
uint32 data;
{
addr[0] = (data >> 24) & 0xff;
addr[1] = (data >> 16) & 0xff;
addr[2] = (data >> 8) & 0xff;
addr[3] = data & 0xff;
}
void
write_longlong (addr, data)
uint8 *addr;
int64 data;
{
uint8 *a = addr;
a[0] = data >> 56;
a[1] = (data >> 48) & 0xff;
a[2] = (data >> 40) & 0xff;
a[3] = (data >> 32) & 0xff;
a[4] = (data >> 24) & 0xff;
a[5] = (data >> 16) & 0xff;
a[6] = (data >> 8) & 0xff;
a[7] = data & 0xff;
}
static void
get_operands (struct simops *s, uint32 ins)
{
int i, shift, bits, flags;
uint32 mask;
for (i=0; i < s->numops; i++)
{
shift = s->operands[3*i];
bits = s->operands[3*i+1];
flags = s->operands[3*i+2];
mask = 0x7FFFFFFF >> (31 - bits);
OP[i] = (ins >> shift) & mask;
}
}
static void
do_long (ins)
uint32 ins;
{
struct hash_entry *h;
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
(*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins);
#endif
h = lookup_hash (ins, 1);
get_operands (h->ops, ins);
State.ins_type = INS_LONG;
ins_type_counters[ (int)State.ins_type ]++;
(h->ops->func)();
}
static void
do_2_short (ins1, ins2, leftright)
uint16 ins1, ins2;
enum _leftright leftright;
{
struct hash_entry *h;
reg_t orig_pc = PC;
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
(*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n",
ins1, (leftright) ? "left" : "right", ins2);
#endif
/* printf ("do_2_short %x -> %x\n",ins1,ins2); */
h = lookup_hash (ins1, 0);
get_operands (h->ops, ins1);
State.ins_type = (leftright == LEFT_FIRST) ? INS_LEFT : INS_RIGHT;
ins_type_counters[ (int)State.ins_type ]++;
(h->ops->func)();
/* If the PC has changed (ie, a jump), don't do the second instruction */
if (orig_pc == PC && !State.exception)
{
h = lookup_hash (ins2, 0);
get_operands (h->ops, ins2);
State.ins_type = (leftright == LEFT_FIRST) ? INS_RIGHT : INS_LEFT;
ins_type_counters[ (int)State.ins_type ]++;
(h->ops->func)();
}
}
static void
do_parallel (ins1, ins2)
uint16 ins1, ins2;
{
struct hash_entry *h1, *h2;
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
(*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2);
#endif
h1 = lookup_hash (ins1, 0);
h2 = lookup_hash (ins2, 0);
if (h1->ops->exec_type == PARONLY)
{
get_operands (h1->ops, ins1);
State.ins_type = INS_LEFT;
ins_type_counters[ (int)State.ins_type ]++;
(h1->ops->func)();
if (State.exe)
{
get_operands (h2->ops, ins2);
State.ins_type = INS_RIGHT;
(h2->ops->func)();
}
}
else if (h2->ops->exec_type == PARONLY)
{
get_operands (h2->ops, ins2);
State.ins_type = INS_RIGHT;
ins_type_counters[ (int)State.ins_type ]++;
(h2->ops->func)();
if (State.exe)
{
get_operands (h1->ops, ins1);
State.ins_type = INS_LEFT;
(h1->ops->func)();
}
}
else
{
get_operands (h1->ops, ins1);
State.ins_type = INS_LEFT_PARALLEL;
ins_type_counters[ (int)State.ins_type ]++;
(h1->ops->func)();
if (!State.exception)
{
get_operands (h2->ops, ins2);
State.ins_type = INS_RIGHT_PARALLEL;
ins_type_counters[ (int)State.ins_type ]++;
(h2->ops->func)();
}
}
}
void
sim_size (power)
int power;
{
if (State.imem)
{
free (State.imem);
free (State.dmem);
}
State.imem = (uint8 *)calloc(1,1<<IMEM_SIZE);
State.dmem = (uint8 *)calloc(1,1<<DMEM_SIZE);
if (!State.imem || !State.dmem )
{
(*d10v_callback->printf_filtered) (d10v_callback, "Memory allocation failed.\n");
exit(1);
}
State.mem_min = 1<<IMEM_SIZE;
State.mem_max = 0;
#ifdef DEBUG
if ((d10v_debug & DEBUG_MEMSIZE) != 0)
{
(*d10v_callback->printf_filtered) (d10v_callback, "Allocated %d bytes instruction memory and\n",1<<IMEM_SIZE);
(*d10v_callback->printf_filtered) (d10v_callback, " %d bytes data memory.\n", 1<<DMEM_SIZE);
}
#endif
}
static void
init_system ()
{
if (!State.imem)
sim_size(1);
}
int
sim_write (addr, buffer, size)
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
init_system ();
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
(*d10v_callback->printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%x, min = 0x%x, max = 0x%x\n",
size, addr, State.mem_min, State.mem_max);
#endif
if (State.mem_min > addr)
State.mem_min = addr;
if (State.mem_max < addr+size-1)
State.mem_max = addr+size-1;
memcpy (State.imem+addr, buffer, size);
return size;
}
void
sim_open (args)
char *args;
{
struct simops *s;
struct hash_entry *h, *prev;
static int init_p = 0;
if (args != NULL)
{
#ifdef DEBUG
if (strcmp (args, "-t") == 0)
d10v_debug = DEBUG;
else
#endif
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: unsupported option(s): %s\n",args);
}
/* put all the opcodes in the hash table */
if (!init_p++)
{
for (s = Simops; s->func; s++)
{
h = &hash_table[hash(s->opcode,s->format)];
/* go to the last entry in the chain */
while (h->next)
h = h->next;
if (h->ops)
{
h->next = calloc(1,sizeof(struct hash_entry));
h = h->next;
}
h->ops = s;
h->mask = s->mask;
h->opcode = s->opcode;
}
}
}
void
sim_close (quitting)
int quitting;
{
/* nothing to do */
}
void
sim_set_profile (n)
int n;
{
(*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile %d\n",n);
}
void
sim_set_profile_size (n)
int n;
{
(*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile_size %d\n",n);
}
void
sim_resume (step, siggnal)
int step, siggnal;
{
uint32 inst;
int i;
reg_t oldpc;
/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */
if (step)
State.exception = SIGTRAP;
else
State.exception = 0;
do
{
uint32 byte_pc = ((uint32)PC) << 2;
if ((byte_pc < State.mem_min) || (byte_pc > State.mem_max))
{
(*d10v_callback->printf_filtered) (d10v_callback,
"PC (0x%lx) out of range, oldpc = 0x%lx, min = 0x%lx, max = 0x%lx\n",
(long)byte_pc, (long)oldpc, (long)State.mem_min, (long)State.mem_max);
State.exception = SIGILL;
}
else
{
inst = RLW (byte_pc);
oldpc = PC;
switch (inst & 0xC0000000)
{
case 0xC0000000:
/* long instruction */
do_long (inst & 0x3FFFFFFF);
break;
case 0x80000000:
/* R -> L */
do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, 0);
break;
case 0x40000000:
/* L -> R */
do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, 1);
break;
case 0:
do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF);
break;
}
if (State.RP && PC == RPT_E)
{
RPT_C -= 1;
if (RPT_C == 0)
State.RP = 0;
else
PC = RPT_S;
}
/* FIXME */
if (PC == oldpc)
PC++;
}
}
while (!State.exception);
}
int
sim_trace ()
{
#ifdef DEBUG
d10v_debug = DEBUG;
#endif
sim_resume (0, 0);
return 1;
}
void
sim_info (verbose)
int verbose;
{
char buf[40];
int size;
long total = (ins_type_counters[ (int)INS_LONG ]
+ ins_type_counters[ (int)INS_LEFT ]
+ ins_type_counters[ (int)INS_LEFT_PARALLEL ]
+ ins_type_counters[ (int)INS_RIGHT ]
+ ins_type_counters[ (int)INS_RIGHT_PARALLEL ]);
sprintf (buf, "%ld", total);
size = strlen (buf);
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*ld instructions in the left container, %*ld parallel, %*ld nops\n",
size, ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_PARALLEL ],
size, ins_type_counters[ (int)INS_LEFT_PARALLEL ],
size, left_nops);
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*ld instructions in the right container, %*ld parallel, %*ld nops\n",
size, ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_PARALLEL ],
size, ins_type_counters[ (int)INS_RIGHT_PARALLEL ],
size, right_nops);
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*ld long instructions\n",
size, ins_type_counters[ (int)INS_LONG ]);
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*ld total instructions\n",
size, total);
}
void
sim_create_inferior (start_address, argv, env)
SIM_ADDR start_address;
char **argv;
char **env;
{
uint8 *imem, *dmem;
uint32 mem_min, mem_max;
#ifdef DEBUG
if (d10v_debug)
(*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior: PC=0x%x\n", start_address);
#endif
/* save memory pointers */
imem = State.imem;
dmem = State.dmem;
mem_min = State.mem_min;
mem_max = State.mem_max;
/* reset all state information */
memset (&State, 0, sizeof(State));
/* restore memory pointers */
State.imem = imem;
State.dmem = dmem;
State.mem_min = mem_min;
State.mem_max = mem_max;
/* set PC */
PC = start_address >> 2;
}
void
sim_kill ()
{
/* nothing to do */
}
void
sim_set_callbacks(p)
host_callback *p;
{
/* printf ("sim_set_callbacks\n"); */
d10v_callback = p;
}
void
sim_stop_reason (reason, sigrc)
enum sim_stop *reason;
int *sigrc;
{
/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */
switch (State.exception)
{
case SIG_D10V_STOP: /* stop instruction */
*reason = sim_exited;
*sigrc = 0;
break;
case SIG_D10V_EXIT: /* exit trap */
*reason = sim_exited;
*sigrc = State.regs[2];
break;
default: /* some signal */
*reason = sim_stopped;
*sigrc = State.exception;
break;
}
}
void
sim_fetch_register (rn, memory)
int rn;
unsigned char *memory;
{
if (rn > 31)
{
WRITE_64 (memory, State.a[rn-32]);
/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_fetch_register %d 0x%llx\n",rn,State.a[rn-32]); */
}
else
{
WRITE_16 (memory, State.regs[rn]);
/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_fetch_register %d 0x%x\n",rn,State.regs[rn]); */
}
}
void
sim_store_register (rn, memory)
int rn;
unsigned char *memory;
{
if (rn > 31)
{
State.a[rn-32] = READ_64 (memory) & MASK40;
/* (*d10v_callback->printf_filtered) (d10v_callback, "store: a%d=0x%llx\n",rn-32,State.a[rn-32]); */
}
else
{
State.regs[rn]= READ_16 (memory);
/* (*d10v_callback->printf_filtered) (d10v_callback, "store: r%d=0x%x\n",rn,State.regs[rn]); */
}
}
sim_read (addr, buffer, size)
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
for (i = 0; i < size; i++)
{
buffer[i] = State.imem[addr + i];
}
return size;
}
void
sim_do_command (cmd)
char *cmd;
{
(*d10v_callback->printf_filtered) (d10v_callback, "sim_do_command: %s\n",cmd);
}
int
sim_load (prog, from_tty)
char *prog;
int from_tty;
{
/* Return nonzero so GDB will handle it. */
return 1;
}