483 lines
28 KiB
C
483 lines
28 KiB
C
/* OBSOLETE /* Definitions to make GDB run on a Pyramid under OSx 4.0 (4.2bsd). */
|
||
/* OBSOLETE Copyright 1988, 1989, 1991, 1993 Free Software Foundation, Inc. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE This file is part of GDB. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE This program is free software; you can redistribute it and/or modify */
|
||
/* OBSOLETE it under the terms of the GNU General Public License as published by */
|
||
/* OBSOLETE the Free Software Foundation; either version 2 of the License, or */
|
||
/* OBSOLETE (at your option) any later version. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE This program is distributed in the hope that it will be useful, */
|
||
/* OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of */
|
||
/* OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
|
||
/* OBSOLETE GNU General Public License for more details. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE You should have received a copy of the GNU General Public License */
|
||
/* OBSOLETE along with this program; if not, write to the Free Software */
|
||
/* OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define TARGET_BYTE_ORDER BIG_ENDIAN */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Traditional Unix virtual address spaces have thre regions: text, */
|
||
/* OBSOLETE data and stack. The text, initialised data, and uninitialised data */
|
||
/* OBSOLETE are represented in separate segments of the a.out file. */
|
||
/* OBSOLETE When a process dumps core, the data and stack regions are written */
|
||
/* OBSOLETE to a core file. This gives a debugger enough information to */
|
||
/* OBSOLETE reconstruct (and debug) the virtual address space at the time of */
|
||
/* OBSOLETE the coredump. */
|
||
/* OBSOLETE Pyramids have an distinct fourth region of the virtual address */
|
||
/* OBSOLETE space, in which the contents of the windowed registers are stacked */
|
||
/* OBSOLETE in fixed-size frames. Pyramid refer to this region as the control */
|
||
/* OBSOLETE stack. Each call (or trap) automatically allocates a new register */
|
||
/* OBSOLETE frame; each return deallocates the current frame and restores the */
|
||
/* OBSOLETE windowed registers to their values before the call. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE When dumping core, the control stack is written to a core files as */
|
||
/* OBSOLETE a third segment. The core-handling functions need to know to deal */
|
||
/* OBSOLETE with it. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Tell corefile.c there is an extra segment. *x/ */
|
||
/* OBSOLETE #define REG_STACK_SEGMENT */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Floating point is IEEE compatible on most Pyramid hardware */
|
||
/* OBSOLETE (Older processors do not have IEEE NaNs). *x/ */
|
||
/* OBSOLETE #define IEEE_FLOAT */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Offset from address of function to start of its code. */
|
||
/* OBSOLETE Zero on most machines. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FUNCTION_START_OFFSET 0 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Advance PC across any function entry prologue instructions */
|
||
/* OBSOLETE to reach some "real" code. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* FIXME -- do we want to skip insns to allocate the local frame? */
|
||
/* OBSOLETE If so, what do they look like? */
|
||
/* OBSOLETE This is becoming harder, since tege@sics.SE wants to change */
|
||
/* OBSOLETE gcc to not output a prologue when no frame is needed. *x/ */
|
||
/* OBSOLETE #define SKIP_PROLOGUE(pc) (pc) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Immediately after a function call, return the saved pc. */
|
||
/* OBSOLETE Can't always go through the frames for this because on some machines */
|
||
/* OBSOLETE the new frame is not set up until the new function executes */
|
||
/* OBSOLETE some instructions. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define SAVED_PC_AFTER_CALL(frame) FRAME_SAVED_PC(frame) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Address of end of stack space. *x/ */
|
||
/* OBSOLETE /* This seems to be right for the 90x comp.vuw.ac.nz. */
|
||
/* OBSOLETE The correct value at any site may be a function of the configured */
|
||
/* OBSOLETE maximum control stack depth. If so, I don't know where the */
|
||
/* OBSOLETE control-stack depth is configured, so I can't #include it here. *x/ */
|
||
/* OBSOLETE #define STACK_END_ADDR (0xc00cc000) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Register window stack (Control stack) stack definitions */
|
||
/* OBSOLETE - Address of beginning of control stack. */
|
||
/* OBSOLETE - size of control stack frame */
|
||
/* OBSOLETE (Note that since crts0 is usually the first function called, */
|
||
/* OBSOLETE main()'s control stack is one frame (0x80 bytes) beyond this value. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define CONTROL_STACK_ADDR (0xc00cd000) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Bytes in a register window -- 16 parameter regs, 16 local regs */
|
||
/* OBSOLETE for each call, is 32 regs * 4 bytes *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define CONTROL_STACK_FRAME_SIZE (32*4) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* FIXME. On a pyr, Data Stack grows downward; control stack goes upwards. */
|
||
/* OBSOLETE Which direction should we use for INNER_THAN, PC_INNER_THAN ?? *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define INNER_THAN(lhs,rhs) ((lhs) < (rhs)) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Stack must be aligned on 32-bit boundaries when synthesizing */
|
||
/* OBSOLETE function calls. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define STACK_ALIGN(ADDR) (((ADDR) + 3) & -4) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Sequence of bytes for breakpoint instruction. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define BREAKPOINT {0xf0, 00, 00, 00} */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Amount PC must be decremented by after a breakpoint. */
|
||
/* OBSOLETE This is often the number of bytes in BREAKPOINT */
|
||
/* OBSOLETE but not always. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define DECR_PC_AFTER_BREAK 0 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Say how long (ordinary) registers are. This is a piece of bogosity */
|
||
/* OBSOLETE used in push_word and a few other places; REGISTER_RAW_SIZE is the */
|
||
/* OBSOLETE real way to know how big a register is. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define REGISTER_SIZE 4 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Number of machine registers *x/ */
|
||
/* OBSOLETE /* pyramids have 64, plus one for the PSW; plus perhaps one more for the */
|
||
/* OBSOLETE kernel stack pointer (ksp) and control-stack pointer (CSP) *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define NUM_REGS 67 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Initializer for an array of names of registers. */
|
||
/* OBSOLETE There should be NUM_REGS strings in this initializer. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define REGISTER_NAMES \ */
|
||
/* OBSOLETE {"gr0", "gr1", "gr2", "gr3", "gr4", "gr5", "gr6", "gr7", \ */
|
||
/* OBSOLETE "gr8", "gr9", "gr10", "gr11", "logpsw", "cfp", "sp", "pc", \ */
|
||
/* OBSOLETE "pr0", "pr1", "pr2", "pr3", "pr4", "pr5", "pr6", "pr7", \ */
|
||
/* OBSOLETE "pr8", "pr9", "pr10", "pr11", "pr12", "pr13", "pr14", "pr15", \ */
|
||
/* OBSOLETE "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", \ */
|
||
/* OBSOLETE "lr8", "lr9", "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", \ */
|
||
/* OBSOLETE "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \ */
|
||
/* OBSOLETE "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15", \ */
|
||
/* OBSOLETE "psw", "ksp", "csp"} */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Register numbers of various important registers. */
|
||
/* OBSOLETE Note that some of these values are "real" register numbers, */
|
||
/* OBSOLETE and correspond to the general registers of the machine, */
|
||
/* OBSOLETE and some are "phony" register numbers which are too large */
|
||
/* OBSOLETE to be actual register numbers as far as the user is concerned */
|
||
/* OBSOLETE but do serve to get the desired values when passed to read_register. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* pseudo-registers: *x/ */
|
||
/* OBSOLETE #define PS_REGNUM 64 /* Contains processor status *x/ */
|
||
/* OBSOLETE #define PSW_REGNUM 64 /* Contains current psw, whatever it is.*x/ */
|
||
/* OBSOLETE #define CSP_REGNUM 65 /* address of this control stack frame*x/ */
|
||
/* OBSOLETE #define KSP_REGNUM 66 /* Contains process's Kernel Stack Pointer *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define CFP_REGNUM 13 /* Current data-stack frame ptr *x/ */
|
||
/* OBSOLETE #define TR0_REGNUM 48 /* After function call, contains */
|
||
/* OBSOLETE function result *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Registers interesting to the machine-independent part of gdb*x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FP_REGNUM CSP_REGNUM /* Contains address of executing (control) */
|
||
/* OBSOLETE stack frame *x/ */
|
||
/* OBSOLETE #define SP_REGNUM 14 /* Contains address of top of stack -??*x/ */
|
||
/* OBSOLETE #define PC_REGNUM 15 /* Contains program counter *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Define DO_REGISTERS_INFO() to do machine-specific formatting */
|
||
/* OBSOLETE of register dumps. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define DO_REGISTERS_INFO(_regnum, fp) pyr_do_registers_info(_regnum, fp) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* need this so we can find the global registers: they never get saved. *x/ */
|
||
/* OBSOLETE extern unsigned int global_reg_offset; */
|
||
/* OBSOLETE extern unsigned int last_frame_offset; */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Total amount of space needed to store our copies of the machine's */
|
||
/* OBSOLETE register state, the array `registers'. *x/ */
|
||
/* OBSOLETE #define REGISTER_BYTES (NUM_REGS*4) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* the Pyramid has register windows. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define HAVE_REGISTER_WINDOWS */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Is this register part of the register window system? A yes answer */
|
||
/* OBSOLETE implies that 1) The name of this register will not be the same in */
|
||
/* OBSOLETE other frames, and 2) This register is automatically "saved" (out */
|
||
/* OBSOLETE registers shifting into ins counts) upon subroutine calls and thus */
|
||
/* OBSOLETE there is no need to search more than one stack frame for it. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define REGISTER_IN_WINDOW_P(regnum) \ */
|
||
/* OBSOLETE ((regnum) >= 16 && (regnum) < 64) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Index within `registers' of the first byte of the space for */
|
||
/* OBSOLETE register N. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define REGISTER_BYTE(N) ((N) * 4) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Number of bytes of storage in the actual machine representation */
|
||
/* OBSOLETE for register N. On the Pyramid, all regs are 4 bytes. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define REGISTER_RAW_SIZE(N) 4 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Number of bytes of storage in the program's representation */
|
||
/* OBSOLETE for register N. On the Pyramid, all regs are 4 bytes. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define REGISTER_VIRTUAL_SIZE(N) 4 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Largest value REGISTER_RAW_SIZE can have. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define MAX_REGISTER_RAW_SIZE 4 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Largest value REGISTER_VIRTUAL_SIZE can have. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define MAX_REGISTER_VIRTUAL_SIZE 4 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Return the GDB type object for the "standard" data type */
|
||
/* OBSOLETE of data in register N. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define REGISTER_VIRTUAL_TYPE(N) builtin_type_int */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* FIXME: It seems impossible for both EXTRACT_RETURN_VALUE and */
|
||
/* OBSOLETE STORE_RETURN_VALUE to be correct. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Store the address of the place in which to copy the structure the */
|
||
/* OBSOLETE subroutine will return. This is called from call_function. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /****FIXME****x/ */
|
||
/* OBSOLETE #define STORE_STRUCT_RETURN(ADDR, SP) \ */
|
||
/* OBSOLETE { write_register (TR0_REGNUM, (ADDR)); } */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Extract from an array REGBUF containing the (raw) register state */
|
||
/* OBSOLETE a function return value of type TYPE, and copy that, in virtual format, */
|
||
/* OBSOLETE into VALBUF. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Note that on a register-windowing machine (eg, Pyr, SPARC), this is */
|
||
/* OBSOLETE where the value is found after the function call -- ie, it should */
|
||
/* OBSOLETE correspond to GNU CC's FUNCTION_VALUE rather than FUNCTION_OUTGOING_VALUE.*x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ */
|
||
/* OBSOLETE memcpy (VALBUF, ((int *)(REGBUF))+TR0_REGNUM, TYPE_LENGTH (TYPE)) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Write into appropriate registers a function return value */
|
||
/* OBSOLETE of type TYPE, given in virtual format. *x/ */
|
||
/* OBSOLETE /* on pyrs, values are returned in *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define STORE_RETURN_VALUE(TYPE,VALBUF) \ */
|
||
/* OBSOLETE write_register_bytes (REGISTER_BYTE(TR0_REGNUM), VALBUF, TYPE_LENGTH (TYPE)) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Extract from an array REGBUF containing the (raw) register state */
|
||
/* OBSOLETE the address in which a function should return its structure value, */
|
||
/* OBSOLETE as a CORE_ADDR (or an expression that can be used as one). *x/ */
|
||
/* OBSOLETE /* FIXME *x/ */
|
||
/* OBSOLETE #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \ */
|
||
/* OBSOLETE ( ((int *)(REGBUF)) [TR0_REGNUM]) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Describe the pointer in each stack frame to the previous stack frame */
|
||
/* OBSOLETE (its caller). *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define EXTRA_FRAME_INFO \ */
|
||
/* OBSOLETE CORE_ADDR bottom; \ */
|
||
/* OBSOLETE CORE_ADDR frame_cfp; \ */
|
||
/* OBSOLETE CORE_ADDR frame_window_addr; */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* The bottom field is misnamed, since it might imply that memory from */
|
||
/* OBSOLETE bottom to frame contains this frame. That need not be true if */
|
||
/* OBSOLETE stack frames are allocated in different segments (e.g. some on a */
|
||
/* OBSOLETE stack, some on a heap in the data segment). *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \ */
|
||
/* OBSOLETE do { \ */
|
||
/* OBSOLETE (fci)->frame_window_addr = (fci)->frame; \ */
|
||
/* OBSOLETE (fci)->bottom = \ */
|
||
/* OBSOLETE ((fci)->next ? \ */
|
||
/* OBSOLETE ((fci)->frame == (fci)->next->frame ? \ */
|
||
/* OBSOLETE (fci)->next->bottom : (fci)->next->frame) : \ */
|
||
/* OBSOLETE read_register (SP_REGNUM)); \ */
|
||
/* OBSOLETE (fci)->frame_cfp = \ */
|
||
/* OBSOLETE read_register (CFP_REGNUM); \ */
|
||
/* OBSOLETE /***fprintf (stderr, \ */
|
||
/* OBSOLETE "[[creating new frame for %0x,pc=%0x,csp=%0x]]\n", \ */
|
||
/* OBSOLETE (fci)->frame, (fci)->pc,(fci)->frame_cfp);*x/ \ */
|
||
/* OBSOLETE } while (0); */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* FRAME_CHAIN takes a frame's nominal address */
|
||
/* OBSOLETE and produces the frame's chain-pointer. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* In the case of the pyr, the frame's nominal address is the address */
|
||
/* OBSOLETE of parameter register 0. The previous frame is found 32 words up. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FRAME_CHAIN(thisframe) \ */
|
||
/* OBSOLETE ( (thisframe) -> frame - CONTROL_STACK_FRAME_SIZE) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /*((thisframe) >= CONTROL_STACK_ADDR))*x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Define other aspects of the stack frame. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* A macro that tells us whether the function invocation represented */
|
||
/* OBSOLETE by FI does not have a frame on the stack associated with it. If it */
|
||
/* OBSOLETE does not, FRAMELESS is set to 1, else 0. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE I do not understand what this means on a Pyramid, where functions */
|
||
/* OBSOLETE *always* have a control-stack frame, but may or may not have a */
|
||
/* OBSOLETE frame on the data stack. Since GBD uses the value of the */
|
||
/* OBSOLETE control stack pointer as its "address" of a frame, FRAMELESS */
|
||
/* OBSOLETE is always 1, so does not need to be defined. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Where is the PC for a specific frame *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FRAME_SAVED_PC(fi) \ */
|
||
/* OBSOLETE ((CORE_ADDR) (read_memory_integer ( (fi) -> frame + 60, 4))) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* There may be bugs in FRAME_ARGS_ADDRESS and FRAME_LOCALS_ADDRESS; */
|
||
/* OBSOLETE or there may be bugs in accessing the registers that break */
|
||
/* OBSOLETE their definitions. */
|
||
/* OBSOLETE Having the macros expand into functions makes them easier to debug. */
|
||
/* OBSOLETE When the bug is finally located, the inline macro defintions can */
|
||
/* OBSOLETE be un-#if 0ed, and frame_args_addr and frame_locals_address can */
|
||
/* OBSOLETE be deleted from pyr-dep.c *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* If the argument is on the stack, it will be here. *x/ */
|
||
/* OBSOLETE #define FRAME_ARGS_ADDRESS(fi) \ */
|
||
/* OBSOLETE frame_args_addr(fi) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FRAME_LOCALS_ADDRESS(fi) \ */
|
||
/* OBSOLETE frame_locals_address(fi) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* The following definitions doesn't seem to work. */
|
||
/* OBSOLETE I don't understand why. *x/ */
|
||
/* OBSOLETE #if 0 */
|
||
/* OBSOLETE #define FRAME_ARGS_ADDRESS(fi) \ */
|
||
/* OBSOLETE /*(FRAME_FP(fi) + (13*4))*x/ (read_register (CFP_REGNUM)) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FRAME_LOCALS_ADDRESS(fi) \ */
|
||
/* OBSOLETE ((fi)->frame +(16*4)) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #endif /* 0 *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Return number of args passed to a frame. */
|
||
/* OBSOLETE Can return -1, meaning no way to tell. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FRAME_NUM_ARGS(fi) (-1) */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Return number of bytes at start of arglist that are not really args. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FRAME_ARGS_SKIP 0 */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Put here the code to store, into a struct frame_saved_regs, */
|
||
/* OBSOLETE the addresses of the saved registers of frame described by FRAME_INFO. */
|
||
/* OBSOLETE This includes special registers such as pc and fp saved in special */
|
||
/* OBSOLETE ways in the stack frame. sp is even more special: */
|
||
/* OBSOLETE the address we return for it IS the sp for the next frame. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE Note that on register window machines, we are currently making the */
|
||
/* OBSOLETE assumption that window registers are being saved somewhere in the */
|
||
/* OBSOLETE frame in which they are being used. If they are stored in an */
|
||
/* OBSOLETE inferior frame, find_saved_register will break. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE On pyrs, frames of window registers are stored contiguously on a */
|
||
/* OBSOLETE separate stack. All window registers are always stored. */
|
||
/* OBSOLETE The pc and psw (gr15 and gr14) are also always saved: the call */
|
||
/* OBSOLETE insn saves them in pr15 and pr14 of the new frame (tr15,tr14 of the */
|
||
/* OBSOLETE old frame). */
|
||
/* OBSOLETE The data-stack frame pointer (CFP) is only saved in functions which */
|
||
/* OBSOLETE allocate a (data)stack frame (with "adsf"). We detect them by */
|
||
/* OBSOLETE looking at the first insn of the procedure. */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE Other non-window registers (gr0-gr11) are never saved. Pyramid's C */
|
||
/* OBSOLETE compiler and gcc currently ignore them, so it's not an issue. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FRAME_FIND_SAVED_REGS(fi_p, frame_saved_regs) \ */
|
||
/* OBSOLETE { register int regnum; \ */
|
||
/* OBSOLETE register CORE_ADDR pc; \ */
|
||
/* OBSOLETE register CORE_ADDR fn_start_pc; \ */
|
||
/* OBSOLETE register int first_insn; \ */
|
||
/* OBSOLETE register CORE_ADDR prev_cf_addr; \ */
|
||
/* OBSOLETE register int window_ptr; \ */
|
||
/* OBSOLETE if (!fi_p) fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); \ */
|
||
/* OBSOLETE memset (&(frame_saved_regs), '\0', sizeof (frame_saved_regs)); \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE window_ptr = prev_cf_addr = FRAME_FP(fi_p); \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE for (regnum = 16 ; regnum < 64; regnum++,window_ptr+=4) \ */
|
||
/* OBSOLETE { \ */
|
||
/* OBSOLETE (frame_saved_regs).regs[regnum] = window_ptr; \ */
|
||
/* OBSOLETE } \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE /* In each window, psw, and pc are "saved" in tr14,tr15. *x/ \ */
|
||
/* OBSOLETE /*** psw is sometimes saved in gr12 (so sez <sys/pcb.h>) *x/ \ */
|
||
/* OBSOLETE (frame_saved_regs).regs[PS_REGNUM] = FRAME_FP(fi_p) + (14*4); \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE /*(frame_saved_regs).regs[PC_REGNUM] = (frame_saved_regs).regs[31];*x/ \ */
|
||
/* OBSOLETE (frame_saved_regs).regs[PC_REGNUM] = FRAME_FP(fi_p) + ((15+32)*4); \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE /* Functions that allocate a frame save sp *where*? *x/ \ */
|
||
/* OBSOLETE /*first_insn = read_memory_integer (get_pc_function_start ((fi_p)->pc),4); *x/ \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE fn_start_pc = (get_pc_function_start ((fi_p)->pc)); \ */
|
||
/* OBSOLETE first_insn = read_memory_integer(fn_start_pc, 4); \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE if (0x08 == ((first_insn >> 20) &0x0ff)) { \ */
|
||
/* OBSOLETE /* NB: because WINDOW_REGISTER_P(cfp) is false, a saved cfp \ */
|
||
/* OBSOLETE in this frame is only visible in this frame's callers. \ */
|
||
/* OBSOLETE That means the cfp we mark saved is my caller's cfp, ie pr13. \ */
|
||
/* OBSOLETE I don't understand why we don't have to do that for pc, too. *x/ \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE (frame_saved_regs).regs[CFP_REGNUM] = FRAME_FP(fi_p)+(13*4); \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE (frame_saved_regs).regs[SP_REGNUM] = \ */
|
||
/* OBSOLETE read_memory_integer (FRAME_FP(fi_p)+((13+32)*4),4); \ */
|
||
/* OBSOLETE } \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE /* \ */
|
||
/* OBSOLETE *(frame_saved_regs).regs[CFP_REGNUM] = (frame_saved_regs).regs[61]; \ */
|
||
/* OBSOLETE * (frame_saved_regs).regs[SP_REGNUM] = \ */
|
||
/* OBSOLETE * read_memory_integer (FRAME_FP(fi_p)+((13+32)*4),4); \ */
|
||
/* OBSOLETE *x/ \ */
|
||
/* OBSOLETE \ */
|
||
/* OBSOLETE (frame_saved_regs).regs[CSP_REGNUM] = prev_cf_addr; \ */
|
||
/* OBSOLETE } */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Things needed for making the inferior call functions. *x/ */
|
||
/* OBSOLETE #if 0 */
|
||
/* OBSOLETE /* These are all lies. These macro definitions are appropriate for a */
|
||
/* OBSOLETE SPARC. On a pyramid, pushing a dummy frame will */
|
||
/* OBSOLETE surely involve writing the control stack pointer, */
|
||
/* OBSOLETE then saving the pc. This requires a privileged instruction. */
|
||
/* OBSOLETE Maybe one day Pyramid can be persuaded to add a syscall to do this. */
|
||
/* OBSOLETE Until then, we are out of luck. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Push an empty stack frame, to record the current PC, etc. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define PUSH_DUMMY_FRAME \ */
|
||
/* OBSOLETE { register CORE_ADDR sp = read_register (SP_REGNUM);\ */
|
||
/* OBSOLETE register int regnum; \ */
|
||
/* OBSOLETE sp = push_word (sp, 0); /* arglist *x/ \ */
|
||
/* OBSOLETE for (regnum = 11; regnum >= 0; regnum--) \ */
|
||
/* OBSOLETE sp = push_word (sp, read_register (regnum)); \ */
|
||
/* OBSOLETE sp = push_word (sp, read_register (PC_REGNUM)); \ */
|
||
/* OBSOLETE sp = push_word (sp, read_register (FP_REGNUM)); \ */
|
||
/* OBSOLETE /* sp = push_word (sp, read_register (AP_REGNUM));*x/ \ */
|
||
/* OBSOLETE sp = push_word (sp, (read_register (PS_REGNUM) & 0xffef) \ */
|
||
/* OBSOLETE + 0x2fff0000); \ */
|
||
/* OBSOLETE sp = push_word (sp, 0); \ */
|
||
/* OBSOLETE write_register (SP_REGNUM, sp); \ */
|
||
/* OBSOLETE write_register (FP_REGNUM, sp); \ */
|
||
/* OBSOLETE /* write_register (AP_REGNUM, sp + 17 * sizeof (int));*x/ } */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Discard from the stack the innermost frame, restoring all registers. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define POP_FRAME \ */
|
||
/* OBSOLETE { register CORE_ADDR fp = read_register (FP_REGNUM); \ */
|
||
/* OBSOLETE register int regnum; \ */
|
||
/* OBSOLETE register int regmask = read_memory_integer (fp + 4, 4); \ */
|
||
/* OBSOLETE write_register (PS_REGNUM, \ */
|
||
/* OBSOLETE (regmask & 0xffff) \ */
|
||
/* OBSOLETE | (read_register (PS_REGNUM) & 0xffff0000)); \ */
|
||
/* OBSOLETE write_register (PC_REGNUM, read_memory_integer (fp + 16, 4)); \ */
|
||
/* OBSOLETE write_register (FP_REGNUM, read_memory_integer (fp + 12, 4)); \ */
|
||
/* OBSOLETE /* write_register (AP_REGNUM, read_memory_integer (fp + 8, 4));*x/ \ */
|
||
/* OBSOLETE fp += 16; \ */
|
||
/* OBSOLETE for (regnum = 0; regnum < 12; regnum++) \ */
|
||
/* OBSOLETE if (regmask & (0x10000 << regnum)) \ */
|
||
/* OBSOLETE write_register (regnum, read_memory_integer (fp += 4, 4)); \ */
|
||
/* OBSOLETE fp = fp + 4 + ((regmask >> 30) & 3); \ */
|
||
/* OBSOLETE if (regmask & 0x20000000) \ */
|
||
/* OBSOLETE { regnum = read_memory_integer (fp, 4); \ */
|
||
/* OBSOLETE fp += (regnum + 1) * 4; } \ */
|
||
/* OBSOLETE write_register (SP_REGNUM, fp); \ */
|
||
/* OBSOLETE set_current_frame (read_register (FP_REGNUM)); } */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* This sequence of words is the instructions */
|
||
/* OBSOLETE calls #69, @#32323232 */
|
||
/* OBSOLETE bpt */
|
||
/* OBSOLETE Note this is 8 bytes. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define CALL_DUMMY {0x329f69fb, 0x03323232} */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE /* Insert the specified number of args and function address */
|
||
/* OBSOLETE into a call sequence of the above form stored at DUMMYNAME. *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \ */
|
||
/* OBSOLETE { *((char *) dummyname + 1) = nargs; \ */
|
||
/* OBSOLETE *(int *)((char *) dummyname + 3) = fun; } */
|
||
/* OBSOLETE #endif /* 0 *x/ */
|
||
/* OBSOLETE */
|
||
/* OBSOLETE #define POP_FRAME \ */
|
||
/* OBSOLETE { error ("The return command is not supported on this machine."); } */
|