old-cross-binutils/gas/config/vms/vms-dbg.c
1992-02-13 09:49:39 +00:00

1147 lines
39 KiB
C

/* This file is vms-dbg.c
Copyright (C) 1987-1992 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "as.h"
#include "struc-symbol.h"
#include "symbols.h"
#include "objrecdef.h"
#include <stab.h>
/* This file contains many of the routines needed to output debugging info into
* the object file that the VMS debugger needs to understand symbols. These
* routines are called very late in the assembly process, and thus we can be
* fairly lax about changing things, since the GSD and the TIR sections have
* already been output.
*/
/* We need this info to cross correlate between the stabs def for a symbol and
* the actual symbol def. The actual symbol def contains the psect number and
* offset, which is needed to declare a variable to the debugger for global
* and static variables
*/
struct VMS_Symbol {
struct VMS_Symbol *Next;
struct symbol *Symbol;
int Size;
int Psect_Index;
int Psect_Offset;
};
extern struct VMS_Symbol *VMS_Symbols;
enum advanced_type {BASIC,POINTER,ARRAY,ENUM,STRUCT,UNION,FUNCTION,VOID,UNKNOWN};
/* this structure contains the information from the stabs directives, and the
* information is filled in by VMS_typedef_parse. Everything that is needed
* to generate the debugging record for a given symbol is present here.
* This could be done more efficiently, using nested struct/unions, but for now
* I am happy that it works.
*/
struct VMS_DBG_Symbol{
struct VMS_DBG_Symbol * next;
enum advanced_type advanced; /* description of what this is */
int dbx_type; /* this record is for this type */
int type2; /* For advanced types this is the type referred to.
i.e. the type a pointer points to, or the type
of object that makes up an array */
int VMS_type; /* Use this type when generating a variable def */
int index_min; /* used for arrays - this will be present for all */
int index_max; /* entries, but will be meaningless for non-arrays */
int data_size; /* size in bytes of the data type. For an array, this
is the size of one element in the array */
int struc_numb; /* Number of the structure/union/enum - used for ref */
};
struct VMS_DBG_Symbol *VMS_Symbol_type_list={(struct VMS_DBG_Symbol*) NULL};
/* we need this structure to keep track of forward references to
* struct/union/enum that have not been defined yet. When they are ultimately
* defined, then we can go back and generate the TIR commands to make a back
* reference.
*/
struct forward_ref{
struct forward_ref * next;
int dbx_type;
int struc_numb;
char resolved;
};
struct forward_ref * f_ref_root={(struct forward_ref*) NULL};
static char * symbol_name;
static structure_count=0;
/* this routine converts a number string into an integer, and stops when it
* sees an invalid character the return value is the address of the character
* just past the last character read. No error is generated.
*/
static char * cvt_integer(char* str,int * rtn){
int ival, neg;
neg = *str == '-' ? ++str, -1 : 1;
ival=0; /* first get the number of the type for dbx */
while((*str <= '9') && (*str >= '0'))
ival = 10*ival + *str++ -'0';
*rtn = neg*ival;
return str;
}
/* this routine fixes the names that are generated by C++, ".this" is a good
* example. The period does not work for the debugger, since it looks like
* the syntax for a structure element, and thus it gets mightily confused
*/
static fix_name(char* pnt){
for( ;*pnt != 0; pnt++){
if(*pnt == '.') *pnt = '$';
};
}
/* this routine is used to compare the names of certain types to various
* fixed types that are known by the debugger.
*/
#define type_check(x) !strcmp( symbol_name , x )
/* When defining a structure, this routine is called to find the name of
* the actual structure. It is assumed that str points to the equal sign
* in the definition, and it moves backward until it finds the start of the
* name. If it finds a 0, then it knows that this structure def is in the
* outermost level, and thus symbol_name points to the symbol name.
*/
static char* get_struct_name(char* str){
char* pnt;
pnt=str;
while((*pnt != ':') && (*pnt != '\0')) pnt--;
if(*pnt == '\0') return symbol_name;
*pnt-- = '\0';
while((*pnt != ';') && (*pnt != '=')) pnt--;
if(*pnt == ';') return pnt+1;
while((*pnt < '0') || (*pnt > '9')) pnt++;
while((*pnt >= '0') && (*pnt <= '9')) pnt++;
return pnt;
}
/* search symbol list for type number dbx_type. Return a pointer to struct */
static struct VMS_DBG_Symbol* find_symbol(int dbx_type){
struct VMS_DBG_Symbol* spnt;
spnt=VMS_Symbol_type_list;
while (spnt!=(struct VMS_DBG_Symbol*) NULL){
if(spnt->dbx_type==dbx_type) break;
spnt=spnt->next;};
if(spnt==(struct VMS_DBG_Symbol*) NULL) return 0;/*Dunno what this is*/
return spnt;
}
/* Many good programmers cringe when they see a fixed size array - since I am
* using this to generate the various descriptors for the data types present,
* you might argue that the descriptor could overflow the array for a
* complicated variable, and then I am in deep doo-doo. My answer to this is
* that the debugger records that we write have all sorts of length bytes
* stored in them all over the place, and if we exceed 127 bytes (since the top
* bit indicates data, rather than a command), we are dead anyhow. So I figure
* why not do this the easy way. Besides, to get 128 bytes, you need something
* like an array with 10 indicies, or something like
* char **************************************** var;
* Lets get real. If some idiot writes programs like that he/she gets what
* they deserve. (It is possible to overflow the record with a somewhat
* simpler example, like: int (*(*(*(*(*(* sarr6)[1])[1])[2])[3])[4])[5];
* but still...). And if someone in the peanut gallery wants to know "What
* does VAX-C do with something like this?", I will tell you. It crashes.
* At least this code has the good sense to convert it to *void.
* In practice, I do not think that this presents too much of a problem, since
* struct/union/enum all use defined types, which sort of terminate the
* definition. It occurs to me that we could possibly do the same thing with
* arrays and pointers, but I don't know quite how it would be coded.
*
* And now back to the regularly scheduled program...
*/
#define MAX_DEBUG_RECORD 128
static char Local[MAX_DEBUG_RECORD]; /* buffer for variable descriptor */
static int Lpnt; /* index into Local */
static char Asuffix[MAX_DEBUG_RECORD]; /* buffer for array descriptor */
static int Apoint; /* index into Asuffix */
static char overflow; /* flag to indicate we have written too much*/
static int total_len; /* used to calculate the total length of variable
descriptor plus array descriptor - used for len byte*/
static int struct_number; /* counter used to assign indexes to struct
unions and enums */
/* this routine puts info into either Local or Asuffix, depending on the sign
* of size. The reason is that it is easier to build the variable descriptor
* backwards, while the array descriptor is best built forwards. In the end
* they get put together, if there is not a struct/union/enum along the way
*/
push(int value, int size){
char * pnt;
int i;
int size1;
long int val;
val=value;
pnt=(char*) &val;
size1 = size;
if (size < 0) {size1 = -size; pnt += size1-1;};
if(size < 0)
for(i=0;i<size1;i++) {
Local[Lpnt--] = *pnt--;
if(Lpnt < 0) {overflow = 1; Lpnt = 1;};}
else for(i=0;i<size1;i++){
Asuffix[Apoint++] = *pnt++;
if(Apoint >= MAX_DEBUG_RECORD)
{overflow = 1; Apoint =MAX_DEBUG_RECORD-1;};}
}
/* this routine generates the array descriptor for a given array */
static array_suffix(struct VMS_DBG_Symbol* spnt2){
struct VMS_DBG_Symbol * spnt;
struct VMS_DBG_Symbol * spnt1;
int rank;
int total_size;
int i;
rank=0;
spnt=spnt2;
while(spnt->advanced != ARRAY) {
spnt=find_symbol(spnt->type2);
if(spnt == (struct VMS_DBG_Symbol *) NULL) return;};
spnt1=spnt;
spnt1=spnt;
total_size= 1;
while(spnt1->advanced == ARRAY) {rank++;
total_size *= (spnt1->index_max - spnt1->index_min +1);
spnt1=find_symbol(spnt1->type2);};
total_size = total_size * spnt1->data_size;
push(spnt1->data_size,2);
if(spnt1->VMS_type == 0xa3) push(0,1);
else push(spnt1->VMS_type,1);
push(4,1);
for(i=0;i<6;i++) push(0,1);
push(0xc0,1);
push(rank,1);
push(total_size,4);
push(0,4);
spnt1=spnt;
while(spnt1->advanced == ARRAY) {
push(spnt1->index_max - spnt1->index_min+1,4);
spnt1=find_symbol(spnt1->type2);};
spnt1=spnt;
while(spnt1->advanced == ARRAY) {
push(spnt1->index_min,4);
push(spnt1->index_max,4);
spnt1=find_symbol(spnt1->type2);};
}
/* this routine generates the start of a variable descriptor based upon
* a struct/union/enum that has yet to be defined. We define this spot as
* a new location, and save four bytes for the address. When the struct is
* finally defined, then we can go back and plug in the correct address
*/
static new_forward_ref(int dbx_type){
struct forward_ref* fpnt;
fpnt = (struct forward_ref*) malloc(sizeof(struct forward_ref));
fpnt->next = f_ref_root;
f_ref_root = fpnt;
fpnt->dbx_type = dbx_type;
fpnt->struc_numb = ++structure_count;
fpnt->resolved = 'N';
push(3,-1);
total_len = 5;
push(total_len,-2);
struct_number = - fpnt->struc_numb;
}
/* this routine generates the variable descriptor used to describe non-basic
* variables. It calls itself recursively until it gets to the bottom of it
* all, and then builds the descriptor backwards. It is easiest to do it this
*way since we must periodically write length bytes, and it is easiest if we know
*the value when it is time to write it.
*/
static int gen1(struct VMS_DBG_Symbol * spnt,int array_suffix_len){
struct VMS_DBG_Symbol * spnt1;
int i;
switch(spnt->advanced){
case VOID:
push(DBG$C_VOID,-1);
total_len += 1;
push(total_len,-2);
return 0;
case BASIC:
case FUNCTION:
if(array_suffix_len == 0) {
push(spnt->VMS_type,-1);
push(DBG$C_BASIC,-1);
total_len = 2;
push(total_len,-2);
return 1;};
push(0,-4);
push(0xfa02,-2);
total_len = -2;
return 1;
case STRUCT:
case UNION:
case ENUM:
struct_number=spnt->struc_numb;
if(struct_number < 0) {
new_forward_ref(spnt->dbx_type);
return 1;
}
push(DBG$C_STRUCT,-1);
total_len = 5;
push(total_len,-2);
return 1;
case POINTER:
spnt1=find_symbol(spnt->type2);
i=1;
if(spnt1 == (struct VMS_DBG_Symbol *) NULL)
new_forward_ref(spnt->type2);
else i=gen1(spnt1,0);
if(i){ /* (*void) is a special case, do not put pointer suffix*/
push(DBG$C_POINTER,-1);
total_len += 3;
push(total_len,-2);
};
return 1;
case ARRAY:
spnt1=spnt;
while(spnt1->advanced == ARRAY)
{spnt1 = find_symbol(spnt1->type2);
if(spnt1 == (struct VMS_DBG_Symbol *) NULL) {
printf("gcc-as warning(debugger output):");
printf("Forward reference error, dbx type %d\n",
spnt->type2);
return;}
};
/* It is too late to generate forward references, so the user gets a message.
* This should only happen on a compiler error */
i=gen1(spnt1,1);
i=Apoint;
array_suffix(spnt);
array_suffix_len = Apoint - i;
switch(spnt1->advanced){
case BASIC:
case FUNCTION:
break;
default:
push(0,-2);
total_len += 2;
push(total_len,-2);
push(0xfa,-1);
push(0x0101,-2);
push(DBG$C_COMPLEX_ARRAY,-1);
};
total_len += array_suffix_len + 8;
push(total_len,-2);
};
}
/* this generates a suffix for a variable. If it is not a defined type yet,
* then dbx_type contains the type we are expecting so we can generate a
* forward reference. This calls gen1 to build most of the descriptor, and
* then it puts the icing on at the end. It then dumps whatever is needed
* to get a complete descriptor (i.e. struct reference, array suffix ).
*/
static generate_suffix(struct VMS_DBG_Symbol * spnt,int dbx_type){
int ilen;
int i;
char pvoid[6] = {5,0xaf,0,1,0,5};
struct VMS_DBG_Symbol * spnt1;
Apoint=0;
Lpnt =MAX_DEBUG_RECORD-1;
total_len=0;
struct_number = 0;
overflow = 0;
if(spnt == (struct VMS_DBG_Symbol*) NULL)
new_forward_ref(dbx_type);
else{
if(spnt->VMS_type != 0xa3) return 0; /* no suffix needed */
gen1(spnt,0);
};
push(0x00af,-2);
total_len += 4;
push(total_len,-1);
/* if the variable descriptor overflows the record, output a descriptor for
* a pointer to void.
*/
if((total_len >= MAX_DEBUG_RECORD) || overflow) {
printf(" Variable descriptor %d too complicated. Defined as *void ",spnt->dbx_type);
VMS_Store_Immediate_Data(pvoid, 6, OBJ$C_DBG);
return;
};
i=0;
while(Lpnt < MAX_DEBUG_RECORD-1) Local[i++] = Local[++Lpnt];
Lpnt = i;
/* we use this for a reference to a structure that has already been defined */
if(struct_number > 0){
VMS_Store_Immediate_Data(Local, Lpnt, OBJ$C_DBG);Lpnt=0;
VMS_Store_Struct(struct_number);};
/* we use this for a forward reference to a structure that has yet to be
*defined. We store four bytes of zero to make room for the actual address once
* it is known
*/
if(struct_number < 0){
struct_number = -struct_number;
VMS_Store_Immediate_Data(Local, Lpnt,OBJ$C_DBG);Lpnt=0;
VMS_Def_Struct(struct_number);
for(i=0;i<4;i++) Local[Lpnt++] = 0;
VMS_Store_Immediate_Data(Local, Lpnt, OBJ$C_DBG);Lpnt=0;
};
i=0;
while(i<Apoint) Local[Lpnt++] = Asuffix[i++];
if(Lpnt != 0)
VMS_Store_Immediate_Data(Local, Lpnt, OBJ$C_DBG);
Lpnt=0;
}
/* This routine generates a symbol definition for a C sybmol for the debugger.
* It takes a psect and offset for global symbols - if psect < 0, then this is
* a local variable and the offset is relative to FP. In this case it can
* be either a variable (Offset < 0) or a parameter (Offset > 0).
*/
VMS_DBG_record(struct VMS_DBG_Symbol* spnt,int Psect,int Offset, char* Name)
{
char* pnt;
int j;
int maxlen;
int i=0;
if(Psect < 0) { /* this is a local variable, referenced to SP */
maxlen=7+strlen(Name);
Local[i++] = maxlen;
Local[i++]=spnt->VMS_type;
if(Offset > 0) Local[i++] = DBG$C_FUNCTION_PARAMETER;
else Local[i++] = DBG$C_LOCAL_SYM;
pnt=(char*) &Offset;
for(j=0;j<4;j++) Local[i++]=*pnt++; /* copy the offset */
} else {
maxlen=7+strlen(Name); /* symbols fixed in memory */
Local[i++]=7+strlen(Name);
Local[i++]=spnt->VMS_type;
Local[i++]=1;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
VMS_Set_Data(Psect,Offset,OBJ$C_DBG,0);
}
Local[i++]=strlen(Name);
pnt=Name;
fix_name(pnt); /* if there are bad characters in name, convert them */
while(*pnt!='\0') Local[i++]=*pnt++;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG);
if(spnt->VMS_type == DBG$C_ADVANCED_TYPE) generate_suffix(spnt,0);
}
/* This routine parses the stabs entries in order to make the definition
* for the debugger of local symbols and function parameters
*/
int VMS_local_stab_Parse(symbolS * sp){
char *pnt;
char *pnt1;
char *str;
struct VMS_DBG_Symbol* spnt;
struct VMS_Symbol * vsp;
int dbx_type;
int VMS_type;
dbx_type=0;
str=sp->sy_nlist.n_un.n_name;
pnt=(char*) strchr(str,':');
if(pnt==(char*) NULL) return; /* no colon present */
pnt1=pnt++; /* save this for later, and skip colon */
if(*pnt == 'c') return 0; /* ignore static constants */
/* there is one little catch that we must be aware of. Sometimes function
* parameters are optimized into registers, and the compiler, in its infiite
* wisdom outputs stabs records for *both*. In general we want to use the
* register if it is present, so we must search the rest of the symbols for
* this function to see if this parameter is assigned to a register.
*/
{
char *str1;
char *pnt2;
symbolS * sp1;
if(*pnt == 'p'){
for(sp1 = symbol_next(sp); sp1; sp1 = symbol_next(sp1)) {
if ((sp1->sy_nlist.n_type & N_STAB) == 0) continue;
if((unsigned char)sp1->sy_nlist.n_type == N_FUN) break;
if((unsigned char)sp1->sy_nlist.n_type != N_RSYM) continue;
str1=sp1->sy_nlist.n_un.n_name; /* and get the name */
pnt2=str;
while(*pnt2 != ':') {
if(*pnt2 != *str1) break;
pnt2++; str1++;};
if((*str1 != ':') || (*pnt2 != ':') ) continue;
return; /* they are the same! lets skip this one */
}; /* for */
/* first find the dbx symbol type from list, and then find VMS type */
pnt++; /* skip p in case no register */
};/* if */ }; /* p block */
pnt = cvt_integer( pnt, &dbx_type);
spnt = find_symbol(dbx_type);
if(spnt==(struct VMS_DBG_Symbol*) NULL) return 0;/*Dunno what this is*/
*pnt1='\0';
VMS_DBG_record(spnt,-1,sp->sy_nlist.n_value,str);
*pnt1=':'; /* and restore the string */
return 1;
}
/* this routine parses a stabs entry to find the information required to define
* a variable. It is used for global and static variables.
* Basically we need to know the address of the symbol. With older versions
* of the compiler, const symbols are
* treated differently, in that if they are global they are written into the
* text psect. The global symbol entry for such a const is actually written
* as a program entry point (Yuk!!), so if we cannot find a symbol in the list
* of psects, we must search the entry points as well. static consts are even
* harder, since they are never assigned a memory address. The compiler passes
* a stab to tell us the value, but I am not sure what to do with it.
*/
static gave_compiler_message = 0;
static int VMS_stab_parse(symbolS * sp,char expected_type,
int type1,int type2,int Text_Psect){
char *pnt;
char *pnt1;
char *str;
symbolS * sp1;
struct VMS_DBG_Symbol* spnt;
struct VMS_Symbol * vsp;
int dbx_type;
int VMS_type;
dbx_type=0;
str=sp->sy_nlist.n_un.n_name;
pnt=(char*) strchr(str,':');
if(pnt==(char*) NULL) return; /* no colon present */
pnt1=pnt; /* save this for later*/
pnt++;
if(*pnt==expected_type){
pnt = cvt_integer(pnt+1,&dbx_type);
spnt = find_symbol(dbx_type);
if(spnt==(struct VMS_DBG_Symbol*) NULL) return 0;/*Dunno what this is*/
/* now we need to search the symbol table to find the psect and offset for
* this variable.
*/
*pnt1='\0';
vsp=VMS_Symbols;
while(vsp != (struct VMS_Symbol*) NULL)
{pnt=vsp->Symbol->sy_nlist.n_un.n_name;
if(pnt!=(char*) NULL) if(*pnt++ == '_')
/* make sure name is the same, and make sure correct symbol type */
if((strlen(pnt) == strlen(str)) && (strcmp(pnt,str)==0)
&& ((vsp->Symbol->sy_type == type1) ||
(vsp->Symbol->sy_type == type2))) break;
vsp=vsp->Next;};
if(vsp != (struct VMS_Symbol*) NULL){
VMS_DBG_record(spnt,vsp->Psect_Index,vsp->Psect_Offset,str);
*pnt1=':'; /* and restore the string */
return 1;};
/* the symbol was not in the symbol list, but it may be an "entry point"
if it was a constant */
for(sp1 = symbol_rootP; sp1; sp1 = symbol_next(sp1)) {
/*
* Dispatch on STAB type
*/
if(sp1->sy_type != (N_TEXT | N_EXT) && sp1->sy_type!=N_TEXT)
continue;
pnt = sp1->sy_nlist.n_un.n_name;
if(*pnt == '_') pnt++;
if(strcmp(pnt,str) == 0){
if(!gave_compiler_message && expected_type=='G'){
printf("***Warning - the assembly code generated by the compiler has placed\n");
printf("global constant(s) in the text psect. These will not be available to\n");
printf("other modules, since this is not the correct way to handle this. You\n");
printf("have two options: 1) get a patched compiler that does not put global\n");
printf("constants in the text psect, or 2) remove the 'const' keyword from\n");
printf("definitions of global variables in your source module(s). Don't say\n");
printf("I didn't warn you!");
gave_compiler_message = 1;};
VMS_DBG_record(spnt,
Text_Psect,
sp1->sy_nlist.n_value,
str);
*pnt1=':';
*(sp1->sy_nlist.n_un.n_name) = 'L';
/* fool assembler to not output this
* as a routine in the TBT */
return 1;};
};
};
*pnt1=':'; /* and restore the string */
return 0;
}
VMS_GSYM_Parse(symbolS * sp,int Text_Psect){ /* Global variables */
VMS_stab_parse(sp,'G',(N_UNDF | N_EXT),(N_DATA | N_EXT),Text_Psect);
}
VMS_LCSYM_Parse(symbolS * sp,int Text_Psect){/* Static symbols - uninitialized */
VMS_stab_parse(sp,'S',N_BSS,-1,Text_Psect);
}
VMS_STSYM_Parse(symbolS * sp,int Text_Psect){ /*Static symbols - initialized */
VMS_stab_parse(sp,'S',N_DATA,-1,Text_Psect);
}
/* for register symbols, we must figure out what range of addresses within the
* psect are valid. We will use the brackets in the stab directives to give us
* guidance as to the PC range that this variable is in scope. I am still not
* completely comfortable with this but as I learn more, I seem to get a better
* handle on what is going on.
* Caveat Emptor.
*/
VMS_RSYM_Parse(symbolS * sp,symbolS * Current_Routine,int Text_Psect){
char* pnt;
char* pnt1;
char* str;
int dbx_type;
struct VMS_DBG_Symbol* spnt;
int j;
int maxlen;
int i=0;
int bcnt=0;
int Min_Offset=-1; /* min PC of validity */
int Max_Offset=0; /* max PC of validity */
symbolS * symbolP;
for(symbolP = sp; symbolP; symbolP = symbol_next(symbolP)) {
/*
* Dispatch on STAB type
*/
switch((unsigned char)symbolP->sy_type) {
case N_LBRAC:
if(bcnt++==0) Min_Offset = symbolP->sy_nlist.n_value;
break;
case N_RBRAC:
if(--bcnt==0) Max_Offset =
symbolP->sy_nlist.n_value-1;
break;
}
if((Min_Offset != -1) && (bcnt == 0)) break;
if((unsigned char)symbolP->sy_type == N_FUN) break;
}
/* check to see that the addresses were defined. If not, then there were no
* brackets in the function, and we must try to search for the next function
* Since functions can be in any order, we should search all of the symbol list
* to find the correct ending address. */
if(Min_Offset == -1){
int Max_Source_Offset;
int This_Offset;
Min_Offset = sp->sy_nlist.n_value;
for(symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
/*
* Dispatch on STAB type
*/
This_Offset = symbolP->sy_nlist.n_value;
switch(symbolP->sy_type) {
case N_TEXT | N_EXT:
if((This_Offset > Min_Offset) && (This_Offset < Max_Offset))
Max_Offset = This_Offset;
break;
case N_SLINE:
if(This_Offset > Max_Source_Offset)
Max_Source_Offset=This_Offset;
}
}
/* if this is the last routine, then we use the PC of the last source line
* as a marker of the max PC for which this reg is valid */
if(Max_Offset == 0x7fffffff) Max_Offset = Max_Source_Offset;
};
dbx_type=0;
str=sp->sy_nlist.n_un.n_name;
pnt=(char*) strchr(str,':');
if(pnt==(char*) NULL) return; /* no colon present */
pnt1=pnt; /* save this for later*/
pnt++;
if(*pnt!='r') return 0;
pnt = cvt_integer( pnt+1, &dbx_type);
spnt = find_symbol(dbx_type);
if(spnt==(struct VMS_DBG_Symbol*) NULL) return 0;/*Dunno what this is yet*/
*pnt1='\0';
maxlen=25+strlen(sp->sy_nlist.n_un.n_name);
Local[i++]=maxlen;
Local[i++]=spnt->VMS_type;
Local[i++]=0xfb;
Local[i++]=strlen(sp->sy_nlist.n_un.n_name)+1;
Local[i++]=0x00;
Local[i++]=0x00;
Local[i++]=0x00;
Local[i++]=strlen(sp->sy_nlist.n_un.n_name);
pnt=sp->sy_nlist.n_un.n_name;
fix_name(pnt); /* if there are bad characters in name, convert them */
while(*pnt!='\0') Local[i++]=*pnt++;
Local[i++]=0xfd;
Local[i++]=0x0f;
Local[i++]=0x00;
Local[i++]=0x03;
Local[i++]=0x01;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
VMS_Set_Data(Text_Psect,Min_Offset,OBJ$C_DBG,1);
VMS_Set_Data(Text_Psect,Max_Offset,OBJ$C_DBG,1);
Local[i++]=0x03;
Local[i++]=sp->sy_nlist.n_value;
Local[i++]=0x00;
Local[i++]=0x00;
Local[i++]=0x00;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG);
*pnt1=':';
if(spnt->VMS_type == DBG$C_ADVANCED_TYPE) generate_suffix(spnt,0);
}
/* this function examines a structure definition, checking all of the elements
* to make sure that all of them are fully defined. The only thing that we
* kick out are arrays of undefined structs, since we do not know how big
* they are. All others we can handle with a normal forward reference.
*/
static int forward_reference(char* pnt){
int i;
struct VMS_DBG_Symbol * spnt;
struct VMS_DBG_Symbol * spnt1;
pnt = cvt_integer(pnt+1,&i);
if(*pnt == ';') return 0; /* no forward references */
do{
pnt=(char*) strchr(pnt,':');
pnt = cvt_integer(pnt+1,&i);
spnt = find_symbol(i);
if(spnt == (struct VMS_DBG_Symbol*) NULL) return 0;
while((spnt->advanced == POINTER) || (spnt->advanced == ARRAY)){
i=spnt->type2;
spnt1 = find_symbol(spnt->type2);
if((spnt->advanced == ARRAY) &&
(spnt1 == (struct VMS_DBG_Symbol*) NULL))return 1;
if(spnt1 == (struct VMS_DBG_Symbol*) NULL) break;
spnt=spnt1;
};
pnt = cvt_integer(pnt+1,&i);
pnt = cvt_integer(pnt+1,&i);
}while(*++pnt != ';');
return 0; /* no forward refences found */
}
/* This routine parses the stabs directives to find any definitions of dbx type
* numbers. It makes a note of all of them, creating a structure element
* of VMS_DBG_Symbol that describes it. This also generates the info for the
* debugger that describes the struct/union/enum, so that further references
* to these data types will be by number
* We have to process pointers right away, since there can be references
* to them later in the same stabs directive. We cannot have forward
* references to pointers, (but we can have a forward reference to a pointer to
* a structure/enum/union) and this is why we process them immediately.
* After we process the pointer, then we search for defs that are nested even
* deeper.
*/
static int VMS_typedef_parse(char* str){
char* pnt;
char* pnt1;
char* pnt2;
int i;
int dtype;
struct forward_ref * fpnt;
int i1,i2,i3;
int convert_integer;
struct VMS_DBG_Symbol* spnt;
struct VMS_DBG_Symbol* spnt1;
/* check for any nested def's */
pnt=(char*)strchr(str+1,'=');
if((pnt != (char*) NULL) && (*(str+1) != '*'))
if(VMS_typedef_parse(pnt) == 1 ) return 1;
/* now find dbx_type of entry */
pnt=str-1;
if(*pnt == 'c'){ /* check for static constants */
*str = '\0'; /* for now we ignore them */
return 0;};
while((*pnt <= '9')&& (*pnt >= '0')) pnt--;
pnt++; /* and get back to the number */
cvt_integer(pnt,&i1);
spnt = find_symbol(i1);
/* first we see if this has been defined already, due to a forward reference*/
if(spnt == (struct VMS_DBG_Symbol*) NULL) {
if(VMS_Symbol_type_list==(struct VMS_DBG_Symbol*) NULL)
{spnt=(struct VMS_DBG_Symbol*) malloc(sizeof(struct VMS_DBG_Symbol));
spnt->next = (struct VMS_DBG_Symbol*) NULL;
VMS_Symbol_type_list=spnt;}
else
{spnt=(struct VMS_DBG_Symbol*) malloc(sizeof(struct VMS_DBG_Symbol));
spnt->next=VMS_Symbol_type_list;
VMS_Symbol_type_list = spnt;};
spnt->dbx_type = i1; /* and save the type */
};
/* for structs and unions, do a partial parse, otherwise we sometimes get
* circular definitions that are impossible to resolve. We read enough info
* so that any reference to this type has enough info to be resolved
*/
pnt=str + 1; /* point to character past equal sign */
if((*pnt == 'u') || (*pnt == 's')){
};
if((*pnt <= '9') && (*pnt >= '0')){
if(type_check("void")){ /* this is the void symbol */
*str='\0';
spnt->advanced = VOID;
return 0;};
printf("gcc-as warning(debugger output):");
printf(" %d is an unknown untyped variable.\n",spnt->dbx_type);
return 1; /* do not know what this is */
};
/* now define this module*/
pnt=str + 1; /* point to character past equal sign */
switch (*pnt){
case 'r':
spnt->advanced= BASIC;
if(type_check("int")) {
spnt->VMS_type=DBG$C_SLINT; spnt->data_size=4;}
else if(type_check("long int")) {
spnt->VMS_type=DBG$C_SLINT; spnt->data_size=4;}
else if(type_check("unsigned int")) {
spnt->VMS_type=DBG$C_ULINT; spnt->data_size = 4;}
else if(type_check("long unsigned int")) {
spnt->VMS_type=DBG$C_ULINT; spnt->data_size = 4;}
else if(type_check("short int")) {
spnt->VMS_type=DBG$C_SSINT; spnt->data_size = 2;}
else if(type_check("short unsigned int")) {
spnt->VMS_type=DBG$C_USINT; spnt->data_size = 2;}
else if(type_check("char")) {
spnt->VMS_type=DBG$C_SCHAR; spnt->data_size = 1;}
else if(type_check("signed char")) {
spnt->VMS_type=DBG$C_SCHAR; spnt->data_size = 1;}
else if(type_check("unsigned char")) {
spnt->VMS_type=DBG$C_UCHAR; spnt->data_size = 1;}
else if(type_check("float")) {
spnt->VMS_type=DBG$C_REAL4; spnt->data_size = 4;}
else if(type_check("double")) {
spnt->VMS_type=DBG$C_REAL8; spnt->data_size = 8;}
pnt1=(char*) strchr(str,';')+1;
break;
case 's':
case 'u':
if(*pnt == 's') spnt->advanced= STRUCT;
else spnt->advanced= UNION;
spnt->VMS_type = DBG$C_ADVANCED_TYPE;
pnt1 = cvt_integer(pnt+1,&spnt->data_size);
if(forward_reference(pnt)) {
spnt->struc_numb = -1;
return 1;
}
spnt->struc_numb = ++structure_count;
pnt1--;
pnt=get_struct_name(str);
VMS_Def_Struct(spnt->struc_numb);
fpnt = f_ref_root;
while(fpnt != (struct forward_ref*) NULL){
if(fpnt->dbx_type == spnt->dbx_type) {
fpnt->resolved = 'Y';
VMS_Set_Struct(fpnt->struc_numb);
VMS_Store_Struct(spnt->struc_numb);};
fpnt = fpnt->next;};
VMS_Set_Struct(spnt->struc_numb);
i=0;
Local[i++] = 11+strlen(pnt);
Local[i++] = DBG$C_STRUCT_START;
Local[i++] = 0x80;
for(i1=0;i1<4;i1++) Local[i++] = 0x00;
Local[i++] = strlen(pnt);
pnt2=pnt;
while(*pnt2 != '\0') Local[i++] = *pnt2++;
i2=spnt->data_size * 8; /* number of bits */
pnt2=(char*) &i2;
for(i1=0;i1<4;i1++) Local[i++] = *pnt2++;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
if(pnt != symbol_name) {
pnt += strlen(pnt);
*pnt=':';}; /* replace colon for later */
while(*++pnt1 != ';'){
pnt=(char*) strchr(pnt1,':');
*pnt='\0';
pnt2=pnt1;
pnt1 = cvt_integer(pnt+1,&dtype);
pnt1 = cvt_integer(pnt1+1,&i2);
pnt1 = cvt_integer(pnt1+1,&i3);
if((dtype == 1) && (i3 != 32)) { /* bitfield */
Apoint = 0;
push(19+strlen(pnt2),1);
push(0xfa22,2);
push(1+strlen(pnt2),4);
push(strlen(pnt2),1);
while(*pnt2 != '\0') push(*pnt2++,1);
push(i3,2); /* size of bitfield */
push(0x0d22,2);
push(0x00,4);
push(i2,4); /* start position */
VMS_Store_Immediate_Data(Asuffix,Apoint,OBJ$C_DBG);
Apoint=0;
}else{
Local[i++] = 7+strlen(pnt2);
spnt1 = find_symbol(dtype);
/* check if this is a forward reference */
if(spnt1 != (struct VMS_DBG_Symbol*) NULL)
Local[i++] = spnt1->VMS_type;
else
Local[i++] = DBG$C_ADVANCED_TYPE;
Local[i++] = DBG$C_STRUCT_ITEM;
pnt=(char*) &i2;
for(i1=0;i1<4;i1++) Local[i++] = *pnt++;
Local[i++] = strlen(pnt2);
while(*pnt2 != '\0') Local[i++] = *pnt2++;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
if(spnt1 == (struct VMS_DBG_Symbol*) NULL)
generate_suffix(spnt1,dtype);
else if(spnt1->VMS_type == DBG$C_ADVANCED_TYPE)
generate_suffix(spnt1,0);
};
};
pnt1++;
Local[i++] = 0x01; /* length byte */
Local[i++] = DBG$C_STRUCT_END;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
break;
case 'e':
spnt->advanced= ENUM;
spnt->VMS_type = DBG$C_ADVANCED_TYPE;
spnt->struc_numb = ++structure_count;
spnt->data_size=4;
VMS_Def_Struct(spnt->struc_numb);
fpnt = f_ref_root;
while(fpnt != (struct forward_ref*) NULL){
if(fpnt->dbx_type == spnt->dbx_type) {
fpnt->resolved = 'Y';
VMS_Set_Struct(fpnt->struc_numb);
VMS_Store_Struct(spnt->struc_numb);};
fpnt = fpnt->next;};
VMS_Set_Struct(spnt->struc_numb);
i=0;
Local[i++] = 3+strlen(symbol_name);
Local[i++] = DBG$C_ENUM_START;
Local[i++] = 0x20;
Local[i++] = strlen(symbol_name);
pnt2=symbol_name;
while(*pnt2 != '\0') Local[i++] = *pnt2++;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
while(*++pnt != ';') {
pnt1=(char*) strchr(pnt,':');
*pnt1++='\0';
pnt1 = cvt_integer(pnt1,&i1);
Local[i++] = 7+strlen(pnt);
Local[i++] = DBG$C_ENUM_ITEM;
Local[i++] = 0x00;
pnt2=(char*) &i1;
for(i2=0;i2<4;i2++) Local[i++] = *pnt2++;
Local[i++] = strlen(pnt);
pnt2=pnt;
while(*pnt != '\0') Local[i++] = *pnt++;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
pnt= pnt1; /* Skip final semicolon */
};
Local[i++] = 0x01; /* len byte */
Local[i++] = DBG$C_ENUM_END;
VMS_Store_Immediate_Data(Local, i, OBJ$C_DBG); i=0;
pnt1=pnt + 1;
break;
case 'a':
spnt->advanced= ARRAY;
spnt->VMS_type = DBG$C_ADVANCED_TYPE;
pnt=(char*)strchr(pnt,';'); if (pnt == (char*) NULL) return 1;
pnt1 = cvt_integer(pnt+1,&spnt->index_min);
pnt1 = cvt_integer(pnt1+1,&spnt->index_max);
pnt1 = cvt_integer(pnt1+1,&spnt->type2);
break;
case 'f':
spnt->advanced= FUNCTION;
spnt->VMS_type = DBG$C_FUNCTION_ADDR;
/* this masquerades as a basic type*/
spnt->data_size=4;
pnt1 = cvt_integer(pnt+1,&spnt->type2);
break;
case '*':
spnt->advanced= POINTER;
spnt->VMS_type = DBG$C_ADVANCED_TYPE;
spnt->data_size=4;
pnt1 = cvt_integer(pnt+1,&spnt->type2);
pnt=(char*)strchr(str+1,'=');
if((pnt != (char*) NULL))
if(VMS_typedef_parse(pnt) == 1 ) return 1;
break;
default:
spnt->advanced= UNKNOWN;
spnt->VMS_type = 0;
printf("gcc-as warning(debugger output):");
printf(" %d is an unknown type of variable.\n",spnt->dbx_type);
return 1; /* unable to decipher */
};
/* this removes the evidence of the definition so that the outer levels of
parsing do not have to worry about it */
pnt=str;
while (*pnt1 != '\0') *pnt++ = *pnt1++;
*pnt = '\0';
return 0;
}
/*
* This is the root routine that parses the stabs entries for definitions.
* it calls VMS_typedef_parse, which can in turn call itself.
* We need to be careful, since sometimes there are forward references to
* other symbol types, and these cannot be resolved until we have completed
* the parse.
*/
int VMS_LSYM_Parse(){
char *pnt;
char *pnt1;
char *pnt2;
char *str;
char fixit[10];
int incomplete,i,pass,incom1;
struct VMS_DBG_Symbol* spnt;
struct VMS_Symbol * vsp;
struct forward_ref * fpnt;
symbolS * sp;
pass=0;
incomplete = 0;
do{
incom1=incomplete;
incomplete = 0;
for(sp = symbol_rootP; sp; sp = symbol_next(sp)) {
/*
* Deal with STAB symbols
*/
if ((sp->sy_nlist.n_type & N_STAB) != 0) {
/*
* Dispatch on STAB type
*/
switch((unsigned char)sp->sy_nlist.n_type) {
case N_GSYM:
case N_LCSYM:
case N_STSYM:
case N_PSYM:
case N_RSYM:
case N_LSYM:
case N_FUN: /*sometimes these contain typedefs*/
str=sp->sy_nlist.n_un.n_name;
symbol_name = str;
pnt=(char*)strchr(str,':');
if(pnt== (char*) NULL) break;
*pnt='\0';
pnt1=pnt+1;
pnt2=(char*)strchr(pnt1,'=');
if(pnt2 == (char*) NULL){
*pnt=':'; /* replace colon */
break;}; /* no symbol here */
incomplete += VMS_typedef_parse(pnt2);
*pnt=':'; /* put back colon so variable def code finds dbx_type*/
break;
} /*switch*/
} /* if */
} /*for*/
pass++;
} while((incomplete != 0) && (incomplete != incom1 ));
/* repeat until all refs resolved if possible */
/* if(pass > 1) printf(" Required %d passes\n",pass);*/
if(incomplete != 0){
printf("gcc-as warning(debugger output):");
printf("Unable to resolve %d circular references.\n",incomplete);
};
fpnt = f_ref_root;
symbol_name="\0";
while(fpnt != (struct forward_ref*) NULL){
if(fpnt->resolved != 'Y') {
if( find_symbol(fpnt->dbx_type) !=
(struct VMS_DBG_Symbol*) NULL){
printf("gcc-as warning(debugger output):");
printf("Forward reference error, dbx type %d\n",
fpnt->dbx_type);
break;};
fixit[0]=0;
sprintf(&fixit[1],"%d=s4;",fpnt->dbx_type);
pnt2=(char*)strchr(&fixit[1],'=');
VMS_typedef_parse(pnt2);
};
fpnt = fpnt->next;};
}
static symbolS* Current_Routine;
static int Text_Psect;
static Define_Local_Symbols(symbolS* s1,symbolS* s2){
symbolS * symbolP1;
for(symbolP1 = symbol_next(s1); symbolP1 != s2; symbolP1 = symbol_next(symbolP1)) {
if (symbolP1 == (symbolS *)NULL) return;
if (symbolP1->sy_nlist.n_type == N_FUN) return;
/*
* Deal with STAB symbols
*/
if ((symbolP1->sy_nlist.n_type & N_STAB) != 0) {
/*
* Dispatch on STAB type
*/
switch((unsigned char)symbolP1->sy_nlist.n_type) {
case N_LSYM:
case N_PSYM:
VMS_local_stab_Parse(symbolP1);
break;
case N_RSYM:
VMS_RSYM_Parse(symbolP1,Current_Routine,Text_Psect);
break;
} /*switch*/
} /* if */
} /* for */
}
static symbolS* Define_Routine(symbolS* symbolP,int Level){
symbolS * sstart;
symbolS * symbolP1;
char str[10];
char * pnt;
int rcount = 0;
int Offset;
sstart = symbolP;
for(symbolP1 = symbol_next(symbolP); symbolP1; symbolP1 = symbol_next(symbolP1)) {
if (symbolP1->sy_nlist.n_type == N_FUN) break;
/*
* Deal with STAB symbols
*/
if ((symbolP1->sy_nlist.n_type & N_STAB) != 0) {
/*
* Dispatch on STAB type
*/
if((unsigned char)symbolP1->sy_nlist.n_type == N_FUN) break;
switch((unsigned char)symbolP1->sy_nlist.n_type) {
case N_LBRAC:
if(Level != 0) {
pnt = str +sprintf(str,"$%d",rcount++);
*pnt = '\0';
VMS_TBT_Block_Begin(symbolP1,Text_Psect,str);
};
Offset = symbolP1->sy_nlist.n_value;
Define_Local_Symbols(sstart,symbolP1);
symbolP1 =
Define_Routine(symbolP1,Level+1);
if(Level != 0)
VMS_TBT_Block_End(symbolP1->sy_nlist.n_value -
Offset);
sstart=symbolP1;
break;
case N_RBRAC:
return symbolP1;
} /*switch*/
} /* if */
} /* for */
/* we end up here if there were no brackets in this function. Define
everything */
Define_Local_Symbols(sstart,(symbolS *) 0);
}
VMS_DBG_Define_Routine(symbolS* symbolP,symbolS* Curr_Routine,int Txt_Psect){
Current_Routine = Curr_Routine;
Text_Psect = Txt_Psect;
Define_Routine(symbolP,0);
}
/* end of vms-dbg.c */