old-cross-binutils/gdb/gdbthread.h
Pedro Alves 17b2616cba PR gdb/13860: don't lose '-interpreter-exec console EXECUTION_COMMAND''s output in async mode.
The other part of PR gdb/13860 is about console execution commands in
MI getting their output half lost.  E.g., take the finish command,
executed on a frontend's GDB console:

sync:

  finish
  &"finish\n"
  ~"Run till exit from #0  usleep (useconds=10) at ../sysdeps/unix/sysv/linux/usleep.c:27\n"
  ^running
  *running,thread-id="1"
  (gdb)
  ~"0x00000000004004d7 in foo () at stepinf.c:6\n"
  ~"6\t    usleep (10);\n"
  ~"Value returned is $1 = 0\n"
  *stopped,reason="function-finished",frame={addr="0x00000000004004d7",func="foo",args=[],file="stepinf.c",fullname="/home/pedro/gdb/tests/stepinf.c",line="6"},thread-id="1",stopped-threads="all",core="1"

async:

  finish
  &"finish\n"
  ~"Run till exit from #0  usleep (useconds=10) at ../sysdeps/unix/sysv/linux/usleep.c:27\n"
  ^running
  *running,thread-id="1"
  (gdb)
  *stopped,reason="function-finished",frame={addr="0x00000000004004d7",func="foo",args=[],file="stepinf.c",fullname="/home/pedro/gdb/tests/stepinf.c",line="6"},gdb-result-var="$1",return-value="0",thread-id="1",stopped-threads="all",core="0"

Note how all the "Value returned" etc. output is missing in async mode.

The same happens with e.g., catchpoints:

  =breakpoint-modified,bkpt={number="1",type="catchpoint",disp="keep",enabled="y",what="22016",times="1"}
  ~"\nCatchpoint "
  ~"1 (forked process 22016), 0x0000003791cbd8a6 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131\n"
  ~"131\t  pid = ARCH_FORK ();\n"
  *stopped,reason="fork",disp="keep",bkptno="1",newpid="22016",frame={addr="0x0000003791cbd8a6",func="__libc_fork",args=[],file="../nptl/sysdeps/unix/sysv/linux/fork.c",fullname="/usr/src/debug/glibc-2.14-394-g8f3b1ff/nptl/sysdeps/unix/sysv/linux/fork.c",line="131"},thread-id="1",stopped-threads="all",core="0"

where all those ~ lines are missing in async mode, or just the "step"
current line indication:

  s
  &"s\n"
  ^running
  *running,thread-id="all"
  (gdb)
  ~"13\t  foo ();\n"
  *stopped,frame={addr="0x00000000004004ef",func="main",args=[{name="argc",value="1"},{name="argv",value="0x7fffffffdd78"}],file="stepinf.c",fullname="/home/pedro/gdb/tests/stepinf.c",line="13"},thread-id="1",stopped-threads="all",core="3"
  (gdb)

Or in the case of the PRs example, the "Stopped due to shared library
event" note:

  start
  &"start\n"
  ~"Temporary breakpoint 1 at 0x400608: file ../../../src/gdb/testsuite/gdb.mi/solib-main.c, line 21.\n"
  =breakpoint-created,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x0000000000400608",func="main",file="../../../src/gdb/testsuite/gdb.mi/solib-main.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.mi/solib-main.c",line="21",times="0",original-location="main"}
  ~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n"
  =thread-group-started,id="i1",pid="21990"
  =thread-created,id="1",group-id="i1"
  ^running
  *running,thread-id="all"
  (gdb)
  =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
  ~"Stopped due to shared library event (no libraries added or removed)\n"
  *stopped,reason="solib-event",thread-id="1",stopped-threads="all",core="3"
  (gdb)

IMO, if you're typing execution commands in a frontend's console, you
expect to see their output.  Indeed it's what you get in sync mode.  I
think async mode should do the same.  Deciding what to mirror to the
console wrt to breakpoints and random stops gets messy real fast.
E.g., say "s" trips on a breakpoint.  We'd clearly want to mirror the
event to the console in this case.  But what about more complicated
cases like "s&; thread n; s&", and one of those steps spawning a new
thread, and that thread hitting a breakpoint?  It's impossible in
general to track whether the thread had any relation to the commands
that had been executed.  So I think we should just simplify and always
mirror breakpoints and random events to the console.

Notes:

  - mi->out is the same as gdb_stdout when MI is the current
    interpreter.  I think that referring to that directly is cleaner.
    An earlier revision of this patch made the changes that are now
    done in mi_on_normal_stop directly in infrun.c:normal_stop, and so
    not having an obvious place to put the new uiout by then, and not
    wanting to abuse CLI's uiout, I made a temporary uiout when
    necessary.

  - Hopefuly the rest of the patch is more or less obvious given the
    comments added.

Tested on x86_64 Fedora 20, no regressions.

2014-05-21  Pedro Alves  <palves@redhat.com>

	PR gdb/13860
	* gdbthread.h (struct thread_control_state): New field
	`command_interp'.
	* infrun.c (follow_fork): Copy the new thread control field to the
	child fork thread.
	(clear_proceed_status_thread): Clear the new thread control field.
	(proceed): Set the new thread control field.
	* interps.h (command_interp): Declare.
	* interps.c (command_interpreter): New global.
	(command_interp): New function.
	(interp_exec): Set `command_interpreter' while here.
	* cli-out.c (cli_uiout_dtor): New function.
	(cli_ui_out_impl): Install it.
	* mi/mi-interp.c: Include cli-out.h.
	(mi_cmd_interpreter_exec): Add comment.
	(restore_current_uiout_cleanup): New function.
	(ui_out_free_cleanup): New function.
	(mi_on_normal_stop): If finishing an execution command started by
	a CLI command, or any kind of breakpoint-like event triggered,
	print the stop event to the output (CLI) stream.
	* mi/mi-out.c (mi_ui_out_impl): Install NULL `dtor' handler.

2014-05-21  Pedro Alves  <palves@redhat.com>

	PR gdb/13860
	* gdb.mi/mi-cli.exp (line_callee4_next_step): New global.
	(top level): Test that output related to execution commands is
	sent to the console with CLI commands, but not with MI commands.
	Test that breakpoint events are always mirrored to the console.
	Also expect the new source line to be output after a "next" in
	async mode too.  Make it a pass/fail test.
	* gdb.mi/mi-solib.exp: Test that the CLI solib event note is
	output.
	* lib/mi-support.exp (mi_gdb_expect_cli_output): New procedure.
2014-05-21 23:17:23 +01:00

421 lines
15 KiB
C

/* Multi-process/thread control defs for GDB, the GNU debugger.
Copyright (C) 1987-2014 Free Software Foundation, Inc.
Contributed by Lynx Real-Time Systems, Inc. Los Gatos, CA.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef GDBTHREAD_H
#define GDBTHREAD_H
struct symtab;
#include "breakpoint.h"
#include "frame.h"
#include "ui-out.h"
#include "inferior.h"
#include "btrace.h"
/* Frontend view of the thread state. Possible extensions: stepping,
finishing, until(ling),... */
enum thread_state
{
THREAD_STOPPED,
THREAD_RUNNING,
THREAD_EXITED,
};
/* Inferior thread specific part of `struct infcall_control_state'.
Inferior process counterpart is `struct inferior_control_state'. */
struct thread_control_state
{
/* User/external stepping state. */
/* Step-resume or longjmp-resume breakpoint. */
struct breakpoint *step_resume_breakpoint;
/* Exception-resume breakpoint. */
struct breakpoint *exception_resume_breakpoint;
/* Range to single step within.
If this is nonzero, respond to a single-step signal by continuing
to step if the pc is in this range.
If step_range_start and step_range_end are both 1, it means to
step for a single instruction (FIXME: it might clean up
wait_for_inferior in a minor way if this were changed to the
address of the instruction and that address plus one. But maybe
not). */
CORE_ADDR step_range_start; /* Inclusive */
CORE_ADDR step_range_end; /* Exclusive */
/* If GDB issues a target step request, and this is nonzero, the
target should single-step this thread once, and then continue
single-stepping it without GDB core involvement as long as the
thread stops in the step range above. If this is zero, the
target should ignore the step range, and only issue one single
step. */
int may_range_step;
/* Stack frame address as of when stepping command was issued.
This is how we know when we step into a subroutine call, and how
to set the frame for the breakpoint used to step out. */
struct frame_id step_frame_id;
/* Similarly, the frame ID of the underlying stack frame (skipping
any inlined frames). */
struct frame_id step_stack_frame_id;
/* Nonzero if we are presently stepping over a breakpoint.
If we hit a breakpoint or watchpoint, and then continue, we need
to single step the current thread with breakpoints disabled, to
avoid hitting the same breakpoint or watchpoint again. And we
should step just a single thread and keep other threads stopped,
so that other threads don't miss breakpoints while they are
removed.
So, this variable simultaneously means that we need to single
step the current thread, keep other threads stopped, and that
breakpoints should be removed while we step.
This variable is set either:
- in proceed, when we resume inferior on user's explicit request
- in keep_going, if handle_inferior_event decides we need to
step over breakpoint.
The variable is cleared in normal_stop. The proceed calls
wait_for_inferior, which calls handle_inferior_event in a loop,
and until wait_for_inferior exits, this variable is changed only
by keep_going. */
int trap_expected;
/* Nonzero if the thread is being proceeded for a "finish" command
or a similar situation when stop_registers should be saved. */
int proceed_to_finish;
/* Nonzero if the thread is being proceeded for an inferior function
call. */
int in_infcall;
enum step_over_calls_kind step_over_calls;
/* Nonzero if stopped due to a step command. */
int stop_step;
/* Chain containing status of breakpoint(s) the thread stopped
at. */
bpstat stop_bpstat;
/* The interpreter that issued the execution command. NULL if the
thread was resumed as a result of a command applied to some other
thread (e.g., "next" with scheduler-locking off). */
struct interp *command_interp;
};
/* Inferior thread specific part of `struct infcall_suspend_state'.
Inferior process counterpart is `struct inferior_suspend_state'. */
struct thread_suspend_state
{
/* Last signal that the inferior received (why it stopped). */
enum gdb_signal stop_signal;
};
struct thread_info
{
struct thread_info *next;
ptid_t ptid; /* "Actual process id";
In fact, this may be overloaded with
kernel thread id, etc. */
int num; /* Convenient handle (GDB thread id) */
/* The name of the thread, as specified by the user. This is NULL
if the thread does not have a user-given name. */
char *name;
/* Non-zero means the thread is executing. Note: this is different
from saying that there is an active target and we are stopped at
a breakpoint, for instance. This is a real indicator whether the
thread is off and running. */
int executing;
/* Frontend view of the thread state. Note that the RUNNING/STOPPED
states are different from EXECUTING. When the thread is stopped
internally while handling an internal event, like a software
single-step breakpoint, EXECUTING will be false, but running will
still be true. As a possible future extension, this could turn
into enum { stopped, exited, stepping, finishing, until(ling),
running ... } */
int state;
/* If this is > 0, then it means there's code out there that relies
on this thread being listed. Don't delete it from the lists even
if we detect it exiting. */
int refcount;
/* State of GDB control of inferior thread execution.
See `struct thread_control_state'. */
struct thread_control_state control;
/* State of inferior thread to restore after GDB is done with an inferior
call. See `struct thread_suspend_state'. */
struct thread_suspend_state suspend;
int current_line;
struct symtab *current_symtab;
/* Internal stepping state. */
/* Record the pc of the thread the last time it stopped. This is
maintained by proceed and keep_going, and used in
adjust_pc_after_break to distinguish a hardware single-step
SIGTRAP from a breakpoint SIGTRAP. */
CORE_ADDR prev_pc;
/* Should we step over breakpoint next time keep_going is called? */
int stepping_over_breakpoint;
/* Set to TRUE if we should finish single-stepping over a breakpoint
after hitting the current step-resume breakpoint. The context here
is that GDB is to do `next' or `step' while signal arrives.
When stepping over a breakpoint and signal arrives, GDB will attempt
to skip signal handler, so it inserts a step_resume_breakpoint at the
signal return address, and resume inferior.
step_after_step_resume_breakpoint is set to TRUE at this moment in
order to keep GDB in mind that there is still a breakpoint to step over
when GDB gets back SIGTRAP from step_resume_breakpoint. */
int step_after_step_resume_breakpoint;
/* Per-thread command support. */
/* Pointer to what is left to do for an execution command after the
target stops. Used only in asynchronous mode, by targets that
support async execution. Several execution commands use it. */
struct continuation *continuations;
/* Similar to the above, but used when a single execution command
requires several resume/stop iterations. Used by the step
command. */
struct continuation *intermediate_continuations;
/* If stepping, nonzero means step count is > 1 so don't print frame
next time inferior stops if it stops due to stepping. */
int step_multi;
/* This is used to remember when a fork or vfork event was caught by
a catchpoint, and thus the event is to be followed at the next
resume of the thread, and not immediately. */
struct target_waitstatus pending_follow;
/* True if this thread has been explicitly requested to stop. */
int stop_requested;
/* The initiating frame of a nexting operation, used for deciding
which exceptions to intercept. If it is null_frame_id no
bp_longjmp or bp_exception but longjmp has been caught just for
bp_longjmp_call_dummy. */
struct frame_id initiating_frame;
/* Private data used by the target vector implementation. */
struct private_thread_info *private;
/* Function that is called to free PRIVATE. If this is NULL, then
xfree will be called on PRIVATE. */
void (*private_dtor) (struct private_thread_info *);
/* Branch trace information for this thread. */
struct btrace_thread_info btrace;
};
/* Create an empty thread list, or empty the existing one. */
extern void init_thread_list (void);
/* Add a thread to the thread list, print a message
that a new thread is found, and return the pointer to
the new thread. Caller my use this pointer to
initialize the private thread data. */
extern struct thread_info *add_thread (ptid_t ptid);
/* Same as add_thread, but does not print a message
about new thread. */
extern struct thread_info *add_thread_silent (ptid_t ptid);
/* Same as add_thread, and sets the private info. */
extern struct thread_info *add_thread_with_info (ptid_t ptid,
struct private_thread_info *);
/* Delete an existing thread list entry. */
extern void delete_thread (ptid_t);
/* Delete an existing thread list entry, and be quiet about it. Used
after the process this thread having belonged to having already
exited, for example. */
extern void delete_thread_silent (ptid_t);
/* Delete a step_resume_breakpoint from the thread database. */
extern void delete_step_resume_breakpoint (struct thread_info *);
/* Delete an exception_resume_breakpoint from the thread database. */
extern void delete_exception_resume_breakpoint (struct thread_info *);
/* Translate the integer thread id (GDB's homegrown id, not the system's)
into a "pid" (which may be overloaded with extra thread information). */
extern ptid_t thread_id_to_pid (int);
/* Translate a 'pid' (which may be overloaded with extra thread information)
into the integer thread id (GDB's homegrown id, not the system's). */
extern int pid_to_thread_id (ptid_t ptid);
/* Boolean test for an already-known pid (which may be overloaded with
extra thread information). */
extern int in_thread_list (ptid_t ptid);
/* Boolean test for an already-known thread id (GDB's homegrown id,
not the system's). */
extern int valid_thread_id (int thread);
/* Search function to lookup a thread by 'pid'. */
extern struct thread_info *find_thread_ptid (ptid_t ptid);
/* Find thread by GDB user-visible thread number. */
struct thread_info *find_thread_id (int num);
/* Finds the first thread of the inferior given by PID. If PID is -1,
returns the first thread in the list. */
struct thread_info *first_thread_of_process (int pid);
/* Returns any thread of process PID. */
extern struct thread_info *any_thread_of_process (int pid);
/* Returns any non-exited thread of process PID, giving preference for
not executing threads. */
extern struct thread_info *any_live_thread_of_process (int pid);
/* Change the ptid of thread OLD_PTID to NEW_PTID. */
void thread_change_ptid (ptid_t old_ptid, ptid_t new_ptid);
/* Iterator function to call a user-provided callback function
once for each known thread. */
typedef int (*thread_callback_func) (struct thread_info *, void *);
extern struct thread_info *iterate_over_threads (thread_callback_func, void *);
/* Traverse all threads. */
#define ALL_THREADS(T) \
for (T = thread_list; T; T = T->next)
extern int thread_count (void);
/* Switch from one thread to another. */
extern void switch_to_thread (ptid_t ptid);
/* Marks thread PTID is running, or stopped.
If ptid_get_pid (PTID) is -1, marks all threads. */
extern void set_running (ptid_t ptid, int running);
/* Marks or clears thread(s) PTID as having been requested to stop.
If PTID is MINUS_ONE_PTID, applies to all threads. If
ptid_is_pid(PTID) is true, applies to all threads of the process
pointed at by PTID. If STOP, then the THREAD_STOP_REQUESTED
observer is called with PTID as argument. */
extern void set_stop_requested (ptid_t ptid, int stop);
/* NOTE: Since the thread state is not a boolean, most times, you do
not want to check it with negation. If you really want to check if
the thread is stopped,
use (good):
if (is_stopped (ptid))
instead of (bad):
if (!is_running (ptid))
The latter also returns true on exited threads, most likelly not
what you want. */
/* Reports if in the frontend's perpective, thread PTID is running. */
extern int is_running (ptid_t ptid);
/* Is this thread listed, but known to have exited? We keep it listed
(but not visible) until it's safe to delete. */
extern int is_exited (ptid_t ptid);
/* In the frontend's perpective, is this thread stopped? */
extern int is_stopped (ptid_t ptid);
/* In the frontend's perpective is there any thread running? */
extern int any_running (void);
/* Marks thread PTID as executing, or not. If ptid_get_pid (PTID) is -1,
marks all threads.
Note that this is different from the running state. See the
description of state and executing fields of struct
thread_info. */
extern void set_executing (ptid_t ptid, int executing);
/* Reports if thread PTID is executing. */
extern int is_executing (ptid_t ptid);
/* Merge the executing property of thread PTID over to its thread
state property (frontend running/stopped view).
"not executing" -> "stopped"
"executing" -> "running"
"exited" -> "exited"
If ptid_get_pid (PTID) is -1, go over all threads.
Notifications are only emitted if the thread state did change. */
extern void finish_thread_state (ptid_t ptid);
/* Same as FINISH_THREAD_STATE, but with an interface suitable to be
registered as a cleanup. PTID_P points to the ptid_t that is
passed to FINISH_THREAD_STATE. */
extern void finish_thread_state_cleanup (void *ptid_p);
/* Commands with a prefix of `thread'. */
extern struct cmd_list_element *thread_cmd_list;
/* Print notices on thread events (attach, detach, etc.), set with
`set print thread-events'. */
extern int print_thread_events;
extern void print_thread_info (struct ui_out *uiout, char *threads,
int pid);
extern struct cleanup *make_cleanup_restore_current_thread (void);
/* Returns a pointer into the thread_info corresponding to
INFERIOR_PTID. INFERIOR_PTID *must* be in the thread list. */
extern struct thread_info* inferior_thread (void);
extern void update_thread_list (void);
/* Return true if PC is in the stepping range of THREAD. */
int pc_in_thread_step_range (CORE_ADDR pc, struct thread_info *thread);
extern struct thread_info *thread_list;
#endif /* GDBTHREAD_H */