ee9a6181ff
tests if gdb can't call functions on the target.
568 lines
18 KiB
Text
568 lines
18 KiB
Text
# Copyright (C) 1992, 1994, 1997 Free Software Foundation, Inc.
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
# Please email any bugs, comments, and/or additions to this file to:
|
|
# bug-gdb@prep.ai.mit.edu
|
|
|
|
# This file was written by Fred Fish. (fnf@cygnus.com)
|
|
|
|
if $tracelevel then {
|
|
strace $tracelevel
|
|
}
|
|
|
|
set prms_id 0
|
|
set bug_id 0
|
|
|
|
set testfile "watchpoint"
|
|
set srcfile ${testfile}.c
|
|
set binfile ${objdir}/${subdir}/${testfile}
|
|
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable {debug}] != "" } {
|
|
perror "Couldn't compile ${srcfile}"
|
|
return -1
|
|
}
|
|
|
|
# Prepare for watchpoint tests by setting up two breakpoints and one
|
|
# watchpoint.
|
|
#
|
|
# We use breakpoints at marker functions to get past all the startup code,
|
|
# so we can get to the watchpoints in a reasonable amount of time from a
|
|
# known starting point.
|
|
#
|
|
# For simplicity, so we always know how to reference specific breakpoints or
|
|
# watchpoints by number, we expect a particular ordering and numbering of
|
|
# each in the combined breakpoint/watchpoint table, as follows:
|
|
#
|
|
# Number What Where
|
|
# 1 Breakpoint marker1()
|
|
# 2 Breakpoint marker2()
|
|
# 3 Watchpoint ival3
|
|
|
|
proc initialize {} {
|
|
global gdb_prompt
|
|
global hex
|
|
global decimal
|
|
global srcfile
|
|
|
|
if [gdb_test "break marker1" "Breakpoint 1 at $hex: file .*$srcfile, line $decimal.*" "set breakpoint at marker1" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
if [gdb_test "break marker2" "Breakpoint 2 at $hex: file .*$srcfile, line $decimal.*" "set breakpoint at marker2" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
if [gdb_test "info break" "1\[ \]*breakpoint.*marker1.*\r\n2\[ \]*breakpoint.*marker2.*" "info break in watchpoint.exp" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
if [gdb_test "watch ival3" ".*\[Ww\]atchpoint 3: ival3" "set watchpoint on ival3" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
# "info watch" is the same as "info break"
|
|
|
|
if [gdb_test "info watch" "1\[ \]*breakpoint.*marker1.*\r\n2\[ \]*breakpoint.*marker2.*\r\n3\[ \]*.*watchpoint.*ival3" "watchpoint found in watchpoint/breakpoint table" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
# After installing the watchpoint, we disable it until we are ready
|
|
# to use it. This allows the test program to run at full speed until
|
|
# we get to the first marker function.
|
|
|
|
if [gdb_test "disable 3" "disable 3\[\r\n\]+" "disable watchpoint" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
return 1
|
|
}
|
|
|
|
#
|
|
# Test simple watchpoint.
|
|
#
|
|
|
|
proc test_simple_watchpoint {} {
|
|
global gdb_prompt
|
|
global hex
|
|
global decimal
|
|
|
|
# Ensure that the watchpoint is disabled when we startup.
|
|
|
|
if [gdb_test "disable 3" "^disable 3\[\r\n\]+" "disable watchpoint in test_simple_watchpoint" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
# Run until we get to the first marker function.
|
|
|
|
gdb_run_cmd
|
|
set timeout 600
|
|
gdb_expect {
|
|
-re "Breakpoint 1, marker1 .*$gdb_prompt $" {
|
|
pass "run to marker1 in test_simple_watchpoint"
|
|
}
|
|
-re ".*$gdb_prompt $" {
|
|
fail "run to marker1 in test_simple_watchpoint"
|
|
return
|
|
}
|
|
timeout {
|
|
fail "run to marker1 in test_simple_watchpoint (timeout)"
|
|
return
|
|
}
|
|
}
|
|
|
|
# After reaching the marker function, enable the watchpoint.
|
|
|
|
if [gdb_test "enable 3" "^enable 3\[\r\n\]+" "enable watchpoint" ] {
|
|
return ;
|
|
}
|
|
|
|
|
|
gdb_test "break func1" "Breakpoint.*at.*"
|
|
gdb_test "set \$func1_breakpoint_number = \$bpnum" ""
|
|
|
|
gdb_test "continue" "Continuing.*Breakpoint \[0-9\]*, func1.*" \
|
|
"continue to breakpoint at func1"
|
|
|
|
# Continue until the first change, from -1 to 0
|
|
|
|
send_gdb "cont\n"
|
|
gdb_expect {
|
|
-re "Continuing.*\[Ww\]atchpoint.*ival3.*Old value = -1.*New value = 0.*ival3 = count; ival4 = count;.*$gdb_prompt $" {
|
|
pass "watchpoint hit, first time"
|
|
}
|
|
-re "Continuing.*Breakpoint.*func1.*$gdb_prompt $" {
|
|
setup_xfail "m68*-*-*" 2597
|
|
fail "thought it hit breakpoint at func1 twice"
|
|
gdb_test "delete \$func1_breakpoint_number" ""
|
|
gdb_test "continue" "\
|
|
Continuing.*\[Ww\]atchpoint.*ival3.*Old value = -1.*New value = 0.*ival3 = count;" \
|
|
"watchpoint hit, first time"
|
|
}
|
|
-re ".*$gdb_prompt $" { fail "watchpoint hit, first time" ; return }
|
|
timeout { fail "watchpoint hit, first time (timeout)" ; return }
|
|
eof { fail "watchpoint hit, first time (eof)" ; return }
|
|
}
|
|
|
|
gdb_test "delete \$func1_breakpoint_number" ""
|
|
|
|
# Continue until the next change, from 0 to 1.
|
|
gdb_test "cont" "Continuing.*\[Ww\]atchpoint.*ival3.*Old value = 0.*New value = 1.*ival3 = count; ival4 = count;.*" "watchpoint hit, second time"
|
|
|
|
# Continue until the next change, from 1 to 2.
|
|
gdb_test "cont" "Continuing.*\[Ww\]atchpoint.*ival3.*Old value = 1.*New value = 2.*ival3 = count; ival4 = count;.*" "watchpoint hit, third time"
|
|
|
|
# Continue until the next change, from 2 to 3.
|
|
gdb_test "cont" "Continuing.*\[Ww\]atchpoint.*ival3.*Old value = 2.*New value = 3.*ival3 = count; ival4 = count;.*" "watchpoint hit, fourth time"
|
|
|
|
# Continue until the next change, from 3 to 4.
|
|
# Note that this one is outside the loop.
|
|
|
|
gdb_test "cont" "Continuing.*\[Ww\]atchpoint.*ival3.*Old value = 3.*New value = 4.*ival3 = count; ival4 = count;.*" "watchpoint hit, fifth time"
|
|
|
|
# Continue until we hit the finishing marker function.
|
|
# Make sure we hit no more watchpoints.
|
|
|
|
gdb_test "cont" "Continuing.*Breakpoint.*marker2 \(\).*" \
|
|
"continue to marker2"
|
|
|
|
# Disable the watchpoint so we run at full speed until we exit.
|
|
|
|
if [gdb_test "disable 3" "^disable 3\[\r\n\]+" "watchpoint disabled" ] {
|
|
return ;
|
|
}
|
|
|
|
|
|
# Run until process exits.
|
|
|
|
if [target_info exists gdb,noresults] { return }
|
|
|
|
gdb_test "cont" "Continuing.*Program exited normally.*" \
|
|
"continue to exit in test_simple_watchpoint"
|
|
}
|
|
|
|
# Test disabling watchpoints.
|
|
|
|
proc test_disabling_watchpoints {} {
|
|
global gdb_prompt
|
|
global binfile
|
|
global srcfile
|
|
global decimal
|
|
global hex
|
|
|
|
# Ensure that the watchpoint is disabled when we startup.
|
|
|
|
if [gdb_test "disable 3" "^disable 3\[\r\n\]+" "disable watchpoint in test_disabling_watchpoints" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
# Run until we get to the first marker function.
|
|
|
|
gdb_run_cmd
|
|
set timeout 600
|
|
gdb_expect {
|
|
-re "Breakpoint 1, marker1 .*$gdb_prompt $" {
|
|
pass "run to marker1 in test_disabling_watchpoints"
|
|
}
|
|
-re ".*$gdb_prompt $" {
|
|
fail "run to marker1 in test_disabling_watchpoints"
|
|
return
|
|
}
|
|
timeout {
|
|
fail "run to marker1 in test_disabling_watchpoints (timeout)"
|
|
return
|
|
}
|
|
}
|
|
|
|
# After reaching the marker function, enable the watchpoint.
|
|
|
|
if [gdb_test "enable 3" "^enable 3\[\r\n\]+" "watchpoint enabled" ] {
|
|
return ;
|
|
}
|
|
|
|
|
|
# Continue until the first change, from -1 to 0
|
|
# Don't check the old value, because on VxWorks the variable value
|
|
# will not have been reinitialized.
|
|
gdb_test "cont" "Continuing.*\[Ww\]atchpoint.*ival3.*Old value = .*New value = 0.*ival3 = count; ival4 = count;.*" "watchpoint hit in test_disabling_watchpoints, first time"
|
|
|
|
# Continue until the next change, from 0 to 1.
|
|
gdb_test "cont" "Continuing.*\[Ww\]atchpoint.*ival3.*Old value = 0.*New value = 1.*ival3 = count; ival4 = count;.*" "watchpoint hit in test_disabling_watchpoints, second time"
|
|
|
|
# Disable the watchpoint but leave breakpoints
|
|
|
|
if [gdb_test "disable 3" "^disable 3\[\r\n\]+" "disable watchpoint #2 in test_disabling_watchpoints" ] {
|
|
return 0;
|
|
}
|
|
|
|
|
|
# Check watchpoint list, looking for the entry that confirms the
|
|
# watchpoint is disabled.
|
|
gdb_test "info watchpoints" "3\[ \]*.*watchpoint\[ \]*keep\[ \]*n\[ \]*ival3\r\n.*" "watchpoint disabled in table"
|
|
|
|
# Continue until we hit the finishing marker function.
|
|
# Make sure we hit no more watchpoints.
|
|
gdb_test "cont" "Continuing.*Breakpoint.*marker2 \\(\\).*" \
|
|
"disabled watchpoint skipped"
|
|
|
|
if [target_info exists gdb,noresults] { return }
|
|
|
|
gdb_test "cont" "Continuing.*Program exited normally.*" \
|
|
"continue to exit in test_disabling_watchpoints"
|
|
}
|
|
|
|
# Test stepping and other mundane operations with watchpoints enabled
|
|
proc test_stepping {} {
|
|
global gdb_prompt
|
|
|
|
if [runto marker1] then {
|
|
gdb_test "watch ival2" ".*\[Ww\]atchpoint \[0-9\]*: ival2"
|
|
|
|
# Well, let's not be too mundane. It should be a *bit* of a challenge
|
|
gdb_test "break func2 if 0" "Breakpoint.*at.*"
|
|
gdb_test "p \$func2_breakpoint_number = \$bpnum" " = .*"
|
|
|
|
# The HPPA has a problem here if it's not using hardware watchpoints
|
|
if {[ istarget "hppa*-*-*" ] && ![ istarget "hppa*-*-*bsd*" ]} then {
|
|
# Don't actually try doing the call, if we do we can't continue.
|
|
setup_xfail "*-*-*"
|
|
fail "calling function with watchpoint enabled"
|
|
} else {
|
|
# The problem is that GDB confuses stepping through the call
|
|
# dummy with hitting the breakpoint at the end of the call dummy.
|
|
# Will be fixed once all architectures define
|
|
# CALL_DUMMY_BREAKPOINT_OFFSET.
|
|
setup_xfail "*-*-*"
|
|
# This doesn't occur if the call dummy starts with a call,
|
|
# because we are out of the dummy by the first time the inferior
|
|
# stops.
|
|
clear_xfail "m68*-*-*"
|
|
clear_xfail "i*86*-*-*"
|
|
clear_xfail "vax-*-*"
|
|
# The following architectures define CALL_DUMMY_BREAKPOINT_OFFSET.
|
|
clear_xfail "alpha-*-*"
|
|
clear_xfail "mips*-*-*"
|
|
clear_xfail "sparc-*-*"
|
|
clear_xfail "hppa*-*-*bsd*"
|
|
# It works with the generic inferior function calling code too.
|
|
clear_xfail "mn10200*-*-*"
|
|
clear_xfail "mn10300*-*-*"
|
|
gdb_test "p func1 ()" "= 73" \
|
|
"calling function with watchpoint enabled"
|
|
}
|
|
|
|
#
|
|
# "finish" brings us back to main.
|
|
# On some targets (e.g. alpha) gdb will stop from the finish in midline
|
|
# of the marker1 call. This is due to register restoring code on
|
|
# the alpha and might be caused by stack adjustment instructions
|
|
# on other targets. In this case we will step once more.
|
|
#
|
|
|
|
send_gdb "finish\n"
|
|
gdb_expect {
|
|
-re "Run.*exit from.*marker1.* at" { }
|
|
default { fail "finish from marker1" ; return }
|
|
}
|
|
|
|
gdb_expect {
|
|
-re "marker1 \\(\\);.*$gdb_prompt $" {
|
|
send_gdb "step\n"
|
|
exp_continue
|
|
}
|
|
-re "func1 \\(\\);.*$gdb_prompt $" {
|
|
pass "finish from marker1"
|
|
}
|
|
-re ".*$gdb_prompt $" {
|
|
fail "finish from marker1"
|
|
}
|
|
default { fail "finish from marker1" ; return }
|
|
}
|
|
|
|
gdb_test "next" "for \\(count = 0.*" "next to `for' in watchpoint.exp"
|
|
|
|
# Now test that "until" works. It's a bit tricky to test
|
|
# "until", because compilers don't always arrange the code
|
|
# exactly the same way, and we might get slightly different
|
|
# sequences of statements. But the following should be true
|
|
# (if not it is a compiler or a debugger bug): The user who
|
|
# does "until" at every statement of a loop should end up
|
|
# stepping through the loop once, and the debugger should not
|
|
# stop for any of the remaining iterations.
|
|
|
|
gdb_test "until" "ival1 = count.*" "until to ival1 assignment"
|
|
gdb_test "until" "ival3 = count.*" "until to ival3 assignment"
|
|
send_gdb "until\n"
|
|
gdb_expect {
|
|
-re "(for \\(count = 0|\}).*$gdb_prompt $" {
|
|
gdb_test "until" "ival1 = count; /. Outside loop ./" \
|
|
"until out of loop"
|
|
}
|
|
-re "ival1 = count; /. Outside loop ./.*$gdb_prompt $" {
|
|
pass "until out of loop"
|
|
}
|
|
-re ".*$gdb_prompt $" {
|
|
fail "until out of loop"
|
|
}
|
|
default { fail "until out of loop" ; return }
|
|
}
|
|
|
|
gdb_test "step" "ival2 = count.*" "step to ival2 assignment"
|
|
}
|
|
}
|
|
|
|
# Test stepping and other mundane operations with watchpoints enabled
|
|
proc test_watchpoint_triggered_in_syscall {} {
|
|
global gdb_prompt
|
|
|
|
if [target_info exists gdb,noinferiorio] {
|
|
verbose "Skipping test_watchpoint_triggered_in_syscall due to noinferiorio"
|
|
return
|
|
}
|
|
# Run until we get to the first marker function.
|
|
set x 0
|
|
set y 0
|
|
set testname "Watch buffer passed to read syscall"
|
|
if [runto marker2] then {
|
|
gdb_test "watch buf\[0\]" ".*\[Ww\]atchpoint \[0-9\]*: buf\\\[0\\\]"
|
|
gdb_test "watch buf\[1\]" ".*\[Ww\]atchpoint \[0-9\]*: buf\\\[1\\\]"
|
|
gdb_test "watch buf\[2\]" ".*\[Ww\]atchpoint \[0-9\]*: buf\\\[2\\\]"
|
|
gdb_test "watch buf\[3\]" ".*\[Ww\]atchpoint \[0-9\]*: buf\\\[3\\\]"
|
|
gdb_test "watch buf\[4\]" ".*\[Ww\]atchpoint \[0-9\]*: buf\\\[4\\\]"
|
|
gdb_test "break marker4" ".*Breakpoint.*"
|
|
|
|
gdb_test "set doread = 1" ""
|
|
|
|
# If we send_gdb "123\n" before gdb has switched the tty, then it goes
|
|
# to gdb, not the inferior, and we lose. So that is why we have
|
|
# watchpoint.c prompt us, so we can wait for that prompt.
|
|
send_gdb "continue\n";
|
|
gdb_expect {
|
|
-re "Continuing\\.\r\ntype stuff for buf now:" {
|
|
pass "continue to read"
|
|
}
|
|
default {
|
|
fail "continue to read";
|
|
return ;
|
|
}
|
|
}
|
|
|
|
send_gdb "123\n"
|
|
gdb_expect {
|
|
-re ".*\[Ww\]atchpoint.*buf\\\[0\\\].*Old value = 0.*New value = 49\[^\n\]*\n" { set x [expr $x+1] ; exp_continue }
|
|
-re ".*\[Ww\]atchpoint.*buf\\\[1\\\].*Old value = 0.*New value = 50\[^\n\]*\n" { set x [expr $x+1] ; exp_continue }
|
|
-re ".*\[Ww\]atchpoint.*buf\\\[2\\\].*Old value = 0.*New value = 51\[^\n\]*\n" { set x [expr $x+1] ; exp_continue }
|
|
-re ".*\[Ww\]atchpoint.*buf\\\[3\\\].*Old value = 0.*New value = 10\[^\n\]*\n" { set x [expr $x+1] ; exp_continue }
|
|
-re ".*$gdb_prompt $" { pass "sent 123" }
|
|
timeout { fail "sent 123 (timeout)" }
|
|
}
|
|
|
|
# Examine the values in buf to see how many watchpoints we
|
|
# should have printed.
|
|
send_gdb "print buf\[0\]\n"
|
|
gdb_expect {
|
|
-re ".*= 49.*$gdb_prompt $" { set y [expr $y+1]; pass "print buf\[0\]"}
|
|
-re ".*= 0.*$gdb_prompt $" { pass "print buf\[0\]"}
|
|
-re ".*$gdb_prompt $" { fail "print buf\[0\]"}
|
|
default { fail "print buf\[0\]"}
|
|
}
|
|
send_gdb "print buf\[1\]\n"
|
|
gdb_expect {
|
|
-re ".*= 50.*$gdb_prompt $" { set y [expr $y+1]; pass "print buf\[1\]"}
|
|
-re ".*= 0.*$gdb_prompt $" { pass "print buf\[1\]"}
|
|
-re ".*$gdb_prompt $" { fail "print buf\[1\]"}
|
|
default { fail "print buf\[1\]"}
|
|
}
|
|
send_gdb "print buf\[2\]\n"
|
|
gdb_expect {
|
|
-re ".*= 51.*$gdb_prompt $" { set y [expr $y+1]; pass "print buf\[2\]"}
|
|
-re ".*= 0.*$gdb_prompt $" { pass "print buf\[2\]"}
|
|
-re ".*$gdb_prompt $" { fail "print buf\[2\]"}
|
|
default { fail "print buf\[2\]"}
|
|
}
|
|
send_gdb "print buf\[3\]\n"
|
|
gdb_expect {
|
|
-re ".*= 10.*$gdb_prompt $" { set y [expr $y+1]; pass "print buf\[3\]"}
|
|
-re ".*= 0.*$gdb_prompt $" { pass "print buf\[3\]"}
|
|
-re ".*$gdb_prompt $" { fail "print buf\[3\]" }
|
|
default { fail "print buf\[3\]" }
|
|
}
|
|
|
|
# Did we find what we were looking for? If not, flunk it.
|
|
if [expr $x==$y] then { pass $testname } else { fail "$testname (only triggered $x watchpoints, expected $y)"}
|
|
|
|
# Continue until we hit the finishing marker function.
|
|
# Make sure we hit no more watchpoints.
|
|
gdb_test "cont" "Continuing.*Breakpoint.*marker4 \\(\\).*" \
|
|
"continue to marker4"
|
|
|
|
# Disable everything so we can finish the program at full speed
|
|
gdb_test "disable" "" "disable in test_watchpoint_triggered_in_syscall"
|
|
|
|
if [target_info exists gdb,noresults] { return }
|
|
|
|
gdb_test "cont" "Continuing.*Program exited normally.*" \
|
|
"continue to exit in test_watchpoint_triggered_in_syscall"
|
|
}
|
|
}
|
|
|
|
# Do a simple test of of watching through a pointer when the pointer
|
|
# itself changes. Should add some more complicated stuff here.
|
|
|
|
proc test_complex_watchpoint {} {
|
|
global gdb_prompt
|
|
|
|
if [runto marker4] then {
|
|
gdb_test "watch ptr1->val" ".*\[Ww\]atchpoint \[0-9\]*: ptr1->val"
|
|
gdb_test "break marker5" ".*Breakpoint.*"
|
|
|
|
gdb_test "cont" "Continuing.*\[Ww\]atchpoint.*ptr1->val.*Old value = 1.*New value = 2.*" "Test complex watchpoint"
|
|
|
|
# Continue until we hit the marker5 function.
|
|
# Make sure we hit no more watchpoints.
|
|
|
|
gdb_test "cont" "Continuing.*Breakpoint.*marker5 \\(\\).*" \
|
|
"did not trigger wrong watchpoint"
|
|
|
|
# Disable everything so we can finish the program at full speed
|
|
gdb_test "disable" "" "disable in test_complex_watchpoint"
|
|
|
|
if [target_info exists gdb,noresults] { return }
|
|
|
|
|
|
gdb_test "cont" "Continuing.*Program exited normally.*" \
|
|
"continue to exit in test_complex_watchpoint"
|
|
}
|
|
}
|
|
|
|
# Start with a fresh gdb.
|
|
|
|
gdb_start
|
|
gdb_reinitialize_dir $srcdir/$subdir
|
|
gdb_load $binfile
|
|
set timeout 600
|
|
verbose "Timeout now 600 sec.\n"
|
|
|
|
if [initialize] then {
|
|
|
|
test_simple_watchpoint
|
|
|
|
# The IDT/sim monitor only has 8 (!) open files, of which it uses
|
|
# 4 (!). So we have to make sure one program exits before
|
|
# starting another one.
|
|
if [istarget "mips-idt-*"] then {
|
|
gdb_exit
|
|
gdb_start
|
|
gdb_reinitialize_dir $srcdir/$subdir
|
|
gdb_load $binfile
|
|
initialize
|
|
}
|
|
|
|
test_disabling_watchpoints
|
|
|
|
# See above.
|
|
if [istarget "mips-idt-*"] then {
|
|
gdb_exit
|
|
gdb_start
|
|
gdb_reinitialize_dir $srcdir/$subdir
|
|
gdb_load $binfile
|
|
initialize
|
|
}
|
|
|
|
if ![target_info exsts gdb,cannot_call_functions] {
|
|
test_stepping
|
|
|
|
# See above.
|
|
if [istarget "mips-idt-*"] then {
|
|
gdb_exit
|
|
gdb_start
|
|
gdb_reinitialize_dir $srcdir/$subdir
|
|
gdb_load $binfile
|
|
initialize
|
|
}
|
|
}
|
|
|
|
# Only enabled for some targets merely because it has not been tested
|
|
# elsewhere.
|
|
# On sparc-sun-sunos4.1.3, GDB was running all the way to the marker4
|
|
# breakpoint before stopping for the watchpoint. I don't know why.
|
|
if {[istarget "hppa*-*-*"]} then {
|
|
test_watchpoint_triggered_in_syscall
|
|
}
|
|
|
|
# See above.
|
|
if [istarget "mips-idt-*"] then {
|
|
gdb_exit
|
|
gdb_start
|
|
gdb_reinitialize_dir $srcdir/$subdir
|
|
gdb_load $binfile
|
|
initialize
|
|
}
|
|
|
|
# Only enabled for some targets merely because it has not been tested
|
|
# elsewhere.
|
|
if {[istarget "hppa*-*-*"] || \
|
|
[istarget "sparc*-*-sunos*"] || \
|
|
[istarget "m32r-*-*"]} then {
|
|
test_complex_watchpoint
|
|
}
|
|
}
|