b1ab997b41
* x86-64-tdep.c (x86_64_skip_prologue): Remove obsolete note. Let PC point right after the prologue before looking up symbols.
1150 lines
35 KiB
C
1150 lines
35 KiB
C
/* Target-dependent code for the x86-64 for GDB, the GNU debugger.
|
||
|
||
Copyright 2001, 2002 Free Software Foundation, Inc.
|
||
|
||
Contributed by Jiri Smid, SuSE Labs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
#include "symfile.h"
|
||
#include "x86-64-tdep.h"
|
||
#include "dwarf2cfi.h"
|
||
#include "gdb_assert.h"
|
||
|
||
/* Register numbers of various important registers. */
|
||
#define RAX_REGNUM 0
|
||
#define RDX_REGNUM 3
|
||
#define RDI_REGNUM 5
|
||
#define EFLAGS_REGNUM 17
|
||
#define ST0_REGNUM 22
|
||
#define XMM1_REGNUM 39
|
||
|
||
struct register_info
|
||
{
|
||
int size;
|
||
char *name;
|
||
struct type **type;
|
||
};
|
||
|
||
/* x86_64_register_raw_size_table[i] is the number of bytes of storage in
|
||
GDB's register array occupied by register i. */
|
||
static struct register_info x86_64_register_info_table[] = {
|
||
/* 0 */ {8, "rax", &builtin_type_int64},
|
||
/* 1 */ {8, "rbx", &builtin_type_int64},
|
||
/* 2 */ {8, "rcx", &builtin_type_int64},
|
||
/* 3 */ {8, "rdx", &builtin_type_int64},
|
||
/* 4 */ {8, "rsi", &builtin_type_int64},
|
||
/* 5 */ {8, "rdi", &builtin_type_int64},
|
||
/* 6 */ {8, "rbp", &builtin_type_void_func_ptr},
|
||
/* 7 */ {8, "rsp", &builtin_type_void_func_ptr},
|
||
/* 8 */ {8, "r8", &builtin_type_int64},
|
||
/* 9 */ {8, "r9", &builtin_type_int64},
|
||
/* 10 */ {8, "r10", &builtin_type_int64},
|
||
/* 11 */ {8, "r11", &builtin_type_int64},
|
||
/* 12 */ {8, "r12", &builtin_type_int64},
|
||
/* 13 */ {8, "r13", &builtin_type_int64},
|
||
/* 14 */ {8, "r14", &builtin_type_int64},
|
||
/* 15 */ {8, "r15", &builtin_type_int64},
|
||
/* 16 */ {8, "rip", &builtin_type_void_func_ptr},
|
||
/* 17 */ {4, "eflags", &builtin_type_int32},
|
||
/* 18 */ {4, "ds", &builtin_type_int32},
|
||
/* 19 */ {4, "es", &builtin_type_int32},
|
||
/* 20 */ {4, "fs", &builtin_type_int32},
|
||
/* 21 */ {4, "gs", &builtin_type_int32},
|
||
/* 22 */ {10, "st0", &builtin_type_i387_ext},
|
||
/* 23 */ {10, "st1", &builtin_type_i387_ext},
|
||
/* 24 */ {10, "st2", &builtin_type_i387_ext},
|
||
/* 25 */ {10, "st3", &builtin_type_i387_ext},
|
||
/* 26 */ {10, "st4", &builtin_type_i387_ext},
|
||
/* 27 */ {10, "st5", &builtin_type_i387_ext},
|
||
/* 28 */ {10, "st6", &builtin_type_i387_ext},
|
||
/* 29 */ {10, "st7", &builtin_type_i387_ext},
|
||
/* 30 */ {4, "fctrl", &builtin_type_int32},
|
||
/* 31 */ {4, "fstat", &builtin_type_int32},
|
||
/* 32 */ {4, "ftag", &builtin_type_int32},
|
||
/* 33 */ {4, "fiseg", &builtin_type_int32},
|
||
/* 34 */ {4, "fioff", &builtin_type_int32},
|
||
/* 35 */ {4, "foseg", &builtin_type_int32},
|
||
/* 36 */ {4, "fooff", &builtin_type_int32},
|
||
/* 37 */ {4, "fop", &builtin_type_int32},
|
||
/* 38 */ {16, "xmm0", &builtin_type_v4sf},
|
||
/* 39 */ {16, "xmm1", &builtin_type_v4sf},
|
||
/* 40 */ {16, "xmm2", &builtin_type_v4sf},
|
||
/* 41 */ {16, "xmm3", &builtin_type_v4sf},
|
||
/* 42 */ {16, "xmm4", &builtin_type_v4sf},
|
||
/* 43 */ {16, "xmm5", &builtin_type_v4sf},
|
||
/* 44 */ {16, "xmm6", &builtin_type_v4sf},
|
||
/* 45 */ {16, "xmm7", &builtin_type_v4sf},
|
||
/* 46 */ {16, "xmm8", &builtin_type_v4sf},
|
||
/* 47 */ {16, "xmm9", &builtin_type_v4sf},
|
||
/* 48 */ {16, "xmm10", &builtin_type_v4sf},
|
||
/* 49 */ {16, "xmm11", &builtin_type_v4sf},
|
||
/* 50 */ {16, "xmm12", &builtin_type_v4sf},
|
||
/* 51 */ {16, "xmm13", &builtin_type_v4sf},
|
||
/* 52 */ {16, "xmm14", &builtin_type_v4sf},
|
||
/* 53 */ {16, "xmm15", &builtin_type_v4sf},
|
||
/* 54 */ {4, "mxcsr", &builtin_type_int32}
|
||
};
|
||
|
||
/* This array is a mapping from Dwarf-2 register
|
||
numbering to GDB's one. Dwarf-2 numbering is
|
||
defined in x86-64 ABI, section 3.6. */
|
||
static int x86_64_dwarf2gdb_regno_map[] = {
|
||
0, 1, 2, 3, /* RAX - RDX */
|
||
4, 5, 6, 7, /* RSI, RDI, RBP, RSP */
|
||
8, 9, 10, 11, /* R8 - R11 */
|
||
12, 13, 14, 15, /* R12 - R15 */
|
||
-1, /* RA - not mapped */
|
||
XMM1_REGNUM - 1, XMM1_REGNUM, /* XMM0 ... */
|
||
XMM1_REGNUM + 1, XMM1_REGNUM + 2,
|
||
XMM1_REGNUM + 3, XMM1_REGNUM + 4,
|
||
XMM1_REGNUM + 5, XMM1_REGNUM + 6,
|
||
XMM1_REGNUM + 7, XMM1_REGNUM + 8,
|
||
XMM1_REGNUM + 9, XMM1_REGNUM + 10,
|
||
XMM1_REGNUM + 11, XMM1_REGNUM + 12,
|
||
XMM1_REGNUM + 13, XMM1_REGNUM + 14, /* ... XMM15 */
|
||
ST0_REGNUM + 0, ST0_REGNUM + 1, /* ST0 ... */
|
||
ST0_REGNUM + 2, ST0_REGNUM + 3,
|
||
ST0_REGNUM + 4, ST0_REGNUM + 5,
|
||
ST0_REGNUM + 6, ST0_REGNUM + 7 /* ... ST7 */
|
||
};
|
||
|
||
static int x86_64_dwarf2gdb_regno_map_length =
|
||
sizeof (x86_64_dwarf2gdb_regno_map) /
|
||
sizeof (x86_64_dwarf2gdb_regno_map[0]);
|
||
|
||
/* Number of all registers */
|
||
#define X86_64_NUM_REGS (sizeof (x86_64_register_info_table) / \
|
||
sizeof (x86_64_register_info_table[0]))
|
||
|
||
/* Number of general registers. */
|
||
#define X86_64_NUM_GREGS (22)
|
||
|
||
int x86_64_num_regs = X86_64_NUM_REGS;
|
||
int x86_64_num_gregs = X86_64_NUM_GREGS;
|
||
|
||
/* Did we already print a note about frame pointer? */
|
||
int omit_fp_note_printed = 0;
|
||
|
||
/* Number of bytes of storage in the actual machine representation for
|
||
register REGNO. */
|
||
int
|
||
x86_64_register_raw_size (int regno)
|
||
{
|
||
return x86_64_register_info_table[regno].size;
|
||
}
|
||
|
||
/* x86_64_register_byte_table[i] is the offset into the register file of the
|
||
start of register number i. We initialize this from
|
||
x86_64_register_info_table. */
|
||
int x86_64_register_byte_table[X86_64_NUM_REGS];
|
||
|
||
/* Index within `registers' of the first byte of the space for register REGNO. */
|
||
int
|
||
x86_64_register_byte (int regno)
|
||
{
|
||
return x86_64_register_byte_table[regno];
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register N. */
|
||
static struct type *
|
||
x86_64_register_virtual_type (int regno)
|
||
{
|
||
return *x86_64_register_info_table[regno].type;
|
||
}
|
||
|
||
/* x86_64_register_convertible is true if register N's virtual format is
|
||
different from its raw format. Note that this definition assumes
|
||
that the host supports IEEE 32-bit floats, since it doesn't say
|
||
that SSE registers need conversion. Even if we can't find a
|
||
counterexample, this is still sloppy. */
|
||
int
|
||
x86_64_register_convertible (int regno)
|
||
{
|
||
return IS_FP_REGNUM (regno);
|
||
}
|
||
|
||
/* Convert data from raw format for register REGNUM in buffer FROM to
|
||
virtual format with type TYPE in buffer TO. In principle both
|
||
formats are identical except that the virtual format has two extra
|
||
bytes appended that aren't used. We set these to zero. */
|
||
void
|
||
x86_64_register_convert_to_virtual (int regnum, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
char buf[12];
|
||
|
||
/* We only support floating-point values. */
|
||
if (TYPE_CODE (type) != TYPE_CODE_FLT)
|
||
{
|
||
warning ("Cannot convert floating-point register value "
|
||
"to non-floating-point type.");
|
||
memset (to, 0, TYPE_LENGTH (type));
|
||
return;
|
||
}
|
||
/* First add the necessary padding. */
|
||
memcpy (buf, from, FPU_REG_RAW_SIZE);
|
||
memset (buf + FPU_REG_RAW_SIZE, 0, sizeof buf - FPU_REG_RAW_SIZE);
|
||
/* Convert to TYPE. This should be a no-op, if TYPE is equivalent
|
||
to the extended floating-point format used by the FPU. */
|
||
convert_typed_floating (to, type, buf,
|
||
x86_64_register_virtual_type (regnum));
|
||
}
|
||
|
||
/* Convert data from virtual format with type TYPE in buffer FROM to
|
||
raw format for register REGNUM in buffer TO. Simply omit the two
|
||
unused bytes. */
|
||
|
||
void
|
||
x86_64_register_convert_to_raw (struct type *type, int regnum,
|
||
char *from, char *to)
|
||
{
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12);
|
||
/* Simply omit the two unused bytes. */
|
||
memcpy (to, from, FPU_REG_RAW_SIZE);
|
||
}
|
||
|
||
/* Dwarf-2 <-> GDB register numbers mapping. */
|
||
int
|
||
x86_64_dwarf2_reg_to_regnum (int dw_reg)
|
||
{
|
||
if (dw_reg < 0 || dw_reg > x86_64_dwarf2gdb_regno_map_length)
|
||
{
|
||
warning ("Dwarf-2 uses unmapped register #%d\n", dw_reg);
|
||
return dw_reg;
|
||
}
|
||
|
||
return x86_64_dwarf2gdb_regno_map[dw_reg];
|
||
}
|
||
|
||
/* This is the variable that is set with "set disassembly-flavour", and
|
||
its legitimate values. */
|
||
static const char att_flavour[] = "att";
|
||
static const char intel_flavour[] = "intel";
|
||
static const char *valid_flavours[] = {
|
||
att_flavour,
|
||
intel_flavour,
|
||
NULL
|
||
};
|
||
static const char *disassembly_flavour = att_flavour;
|
||
|
||
static CORE_ADDR
|
||
x86_64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
char buf[8];
|
||
|
||
store_unsigned_integer (buf, 8, CALL_DUMMY_ADDRESS ());
|
||
|
||
write_memory (sp - 8, buf, 8);
|
||
return sp - 8;
|
||
}
|
||
|
||
void
|
||
x86_64_pop_frame (void)
|
||
{
|
||
generic_pop_current_frame (cfi_pop_frame);
|
||
}
|
||
|
||
|
||
/* The returning of values is done according to the special algorithm.
|
||
Some types are returned in registers an some (big structures) in memory.
|
||
See ABI for details.
|
||
*/
|
||
|
||
#define MAX_CLASSES 4
|
||
|
||
enum x86_64_reg_class
|
||
{
|
||
X86_64_NO_CLASS,
|
||
X86_64_INTEGER_CLASS,
|
||
X86_64_INTEGERSI_CLASS,
|
||
X86_64_SSE_CLASS,
|
||
X86_64_SSESF_CLASS,
|
||
X86_64_SSEDF_CLASS,
|
||
X86_64_SSEUP_CLASS,
|
||
X86_64_X87_CLASS,
|
||
X86_64_X87UP_CLASS,
|
||
X86_64_MEMORY_CLASS
|
||
};
|
||
|
||
/* Return the union class of CLASS1 and CLASS2.
|
||
See the x86-64 ABI for details. */
|
||
|
||
static enum x86_64_reg_class
|
||
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
|
||
{
|
||
/* Rule #1: If both classes are equal, this is the resulting class. */
|
||
if (class1 == class2)
|
||
return class1;
|
||
|
||
/* Rule #2: If one of the classes is NO_CLASS, the resulting class is
|
||
the other class. */
|
||
if (class1 == X86_64_NO_CLASS)
|
||
return class2;
|
||
if (class2 == X86_64_NO_CLASS)
|
||
return class1;
|
||
|
||
/* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
|
||
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
|
||
return X86_64_MEMORY_CLASS;
|
||
|
||
/* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
|
||
if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
|
||
|| (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
|
||
return X86_64_INTEGERSI_CLASS;
|
||
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|
||
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
|
||
return X86_64_INTEGER_CLASS;
|
||
|
||
/* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used. */
|
||
if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
|
||
|| class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
|
||
return X86_64_MEMORY_CLASS;
|
||
|
||
/* Rule #6: Otherwise class SSE is used. */
|
||
return X86_64_SSE_CLASS;
|
||
}
|
||
|
||
|
||
/* Classify the argument type.
|
||
CLASSES will be filled by the register class used to pass each word
|
||
of the operand. The number of words is returned. In case the parameter
|
||
should be passed in memory, 0 is returned. As a special case for zero
|
||
sized containers, classes[0] will be NO_CLASS and 1 is returned.
|
||
|
||
See the x86-64 PS ABI for details.
|
||
*/
|
||
|
||
static int
|
||
classify_argument (struct type *type,
|
||
enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
|
||
{
|
||
int bytes = TYPE_LENGTH (type);
|
||
int words = (bytes + 8 - 1) / 8;
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
int i;
|
||
enum x86_64_reg_class subclasses[MAX_CLASSES];
|
||
|
||
/* On x86-64 we pass structures larger than 16 bytes on the stack. */
|
||
if (bytes > 16)
|
||
return 0;
|
||
|
||
for (i = 0; i < words; i++)
|
||
classes[i] = X86_64_NO_CLASS;
|
||
|
||
/* Zero sized arrays or structures are NO_CLASS. We return 0 to
|
||
signalize memory class, so handle it as special case. */
|
||
if (!words)
|
||
{
|
||
classes[0] = X86_64_NO_CLASS;
|
||
return 1;
|
||
}
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
{
|
||
int j;
|
||
for (j = 0; j < TYPE_NFIELDS (type); ++j)
|
||
{
|
||
int num = classify_argument (TYPE_FIELDS (type)[j].type,
|
||
subclasses,
|
||
(TYPE_FIELDS (type)[j].loc.bitpos
|
||
+ bit_offset) % 256);
|
||
if (!num)
|
||
return 0;
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
int pos =
|
||
(TYPE_FIELDS (type)[j].loc.bitpos + bit_offset) / 8 / 8;
|
||
classes[i + pos] =
|
||
merge_classes (subclasses[i], classes[i + pos]);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
int num;
|
||
|
||
num = classify_argument (TYPE_TARGET_TYPE (type),
|
||
subclasses, bit_offset);
|
||
if (!num)
|
||
return 0;
|
||
|
||
/* The partial classes are now full classes. */
|
||
if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
|
||
subclasses[0] = X86_64_SSE_CLASS;
|
||
if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
|
||
subclasses[0] = X86_64_INTEGER_CLASS;
|
||
|
||
for (i = 0; i < words; i++)
|
||
classes[i] = subclasses[i % num];
|
||
}
|
||
break;
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
int j;
|
||
{
|
||
for (j = 0; j < TYPE_NFIELDS (type); ++j)
|
||
{
|
||
int num;
|
||
num = classify_argument (TYPE_FIELDS (type)[j].type,
|
||
subclasses, bit_offset);
|
||
if (!num)
|
||
return 0;
|
||
for (i = 0; i < num; i++)
|
||
classes[i] = merge_classes (subclasses[i], classes[i]);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
/* Final merger cleanup. */
|
||
for (i = 0; i < words; i++)
|
||
{
|
||
/* If one class is MEMORY, everything should be passed in
|
||
memory. */
|
||
if (classes[i] == X86_64_MEMORY_CLASS)
|
||
return 0;
|
||
|
||
/* The X86_64_SSEUP_CLASS should be always preceeded by
|
||
X86_64_SSE_CLASS. */
|
||
if (classes[i] == X86_64_SSEUP_CLASS
|
||
&& (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
|
||
classes[i] = X86_64_SSE_CLASS;
|
||
|
||
/* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
|
||
if (classes[i] == X86_64_X87UP_CLASS
|
||
&& (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
|
||
classes[i] = X86_64_SSE_CLASS;
|
||
}
|
||
return words;
|
||
}
|
||
break;
|
||
case TYPE_CODE_FLT:
|
||
switch (bytes)
|
||
{
|
||
case 4:
|
||
if (!(bit_offset % 64))
|
||
classes[0] = X86_64_SSESF_CLASS;
|
||
else
|
||
classes[0] = X86_64_SSE_CLASS;
|
||
return 1;
|
||
case 8:
|
||
classes[0] = X86_64_SSEDF_CLASS;
|
||
return 1;
|
||
case 16:
|
||
classes[0] = X86_64_X87_CLASS;
|
||
classes[1] = X86_64_X87UP_CLASS;
|
||
return 2;
|
||
}
|
||
break;
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_PTR:
|
||
switch (bytes)
|
||
{
|
||
case 1:
|
||
case 2:
|
||
case 4:
|
||
case 8:
|
||
if (bytes * 8 + bit_offset <= 32)
|
||
classes[0] = X86_64_INTEGERSI_CLASS;
|
||
else
|
||
classes[0] = X86_64_INTEGER_CLASS;
|
||
return 1;
|
||
case 16:
|
||
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
|
||
return 2;
|
||
default:
|
||
break;
|
||
}
|
||
case TYPE_CODE_VOID:
|
||
return 0;
|
||
default: /* Avoid warning. */
|
||
break;
|
||
}
|
||
internal_error (__FILE__, __LINE__,
|
||
"classify_argument: unknown argument type");
|
||
}
|
||
|
||
/* Examine the argument and return set number of register required in each
|
||
class. Return 0 ifif parameter should be passed in memory. */
|
||
|
||
static int
|
||
examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
|
||
int n, int *int_nregs, int *sse_nregs)
|
||
{
|
||
*int_nregs = 0;
|
||
*sse_nregs = 0;
|
||
if (!n)
|
||
return 0;
|
||
for (n--; n >= 0; n--)
|
||
switch (classes[n])
|
||
{
|
||
case X86_64_INTEGER_CLASS:
|
||
case X86_64_INTEGERSI_CLASS:
|
||
(*int_nregs)++;
|
||
break;
|
||
case X86_64_SSE_CLASS:
|
||
case X86_64_SSESF_CLASS:
|
||
case X86_64_SSEDF_CLASS:
|
||
(*sse_nregs)++;
|
||
break;
|
||
case X86_64_NO_CLASS:
|
||
case X86_64_SSEUP_CLASS:
|
||
case X86_64_X87_CLASS:
|
||
case X86_64_X87UP_CLASS:
|
||
break;
|
||
case X86_64_MEMORY_CLASS:
|
||
internal_error (__FILE__, __LINE__,
|
||
"examine_argument: unexpected memory class");
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
#define RET_INT_REGS 2
|
||
#define RET_SSE_REGS 2
|
||
|
||
/* Check if the structure in value_type is returned in registers or in
|
||
memory. If this function returns 1, gdb will call STORE_STRUCT_RETURN and
|
||
EXTRACT_STRUCT_VALUE_ADDRESS else STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE
|
||
will be used. */
|
||
int
|
||
x86_64_use_struct_convention (int gcc_p, struct type *value_type)
|
||
{
|
||
enum x86_64_reg_class class[MAX_CLASSES];
|
||
int n = classify_argument (value_type, class, 0);
|
||
int needed_intregs;
|
||
int needed_sseregs;
|
||
|
||
return (!n ||
|
||
!examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
|
||
needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
|
||
}
|
||
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state, a
|
||
function return value of TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
void
|
||
x86_64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
enum x86_64_reg_class class[MAX_CLASSES];
|
||
int n = classify_argument (type, class, 0);
|
||
int needed_intregs;
|
||
int needed_sseregs;
|
||
int intreg = 0;
|
||
int ssereg = 0;
|
||
int offset = 0;
|
||
int ret_int_r[RET_INT_REGS] = { RAX_REGNUM, RDX_REGNUM };
|
||
int ret_sse_r[RET_SSE_REGS] = { XMM0_REGNUM, XMM1_REGNUM };
|
||
|
||
if (!n ||
|
||
!examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
|
||
needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
|
||
{ /* memory class */
|
||
CORE_ADDR addr;
|
||
memcpy (&addr, regbuf, REGISTER_RAW_SIZE (RAX_REGNUM));
|
||
read_memory (addr, valbuf, TYPE_LENGTH (type));
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
switch (class[i])
|
||
{
|
||
case X86_64_NO_CLASS:
|
||
break;
|
||
case X86_64_INTEGER_CLASS:
|
||
memcpy (valbuf + offset,
|
||
regbuf + REGISTER_BYTE (ret_int_r[(intreg + 1) / 2]),
|
||
8);
|
||
offset += 8;
|
||
intreg += 2;
|
||
break;
|
||
case X86_64_INTEGERSI_CLASS:
|
||
memcpy (valbuf + offset,
|
||
regbuf + REGISTER_BYTE (ret_int_r[intreg / 2]), 4);
|
||
offset += 8;
|
||
intreg++;
|
||
break;
|
||
case X86_64_SSEDF_CLASS:
|
||
case X86_64_SSESF_CLASS:
|
||
case X86_64_SSE_CLASS:
|
||
memcpy (valbuf + offset,
|
||
regbuf + REGISTER_BYTE (ret_sse_r[(ssereg + 1) / 2]),
|
||
8);
|
||
offset += 8;
|
||
ssereg += 2;
|
||
break;
|
||
case X86_64_SSEUP_CLASS:
|
||
memcpy (valbuf + offset + 8,
|
||
regbuf + REGISTER_BYTE (ret_sse_r[ssereg / 2]), 8);
|
||
offset += 8;
|
||
ssereg++;
|
||
break;
|
||
case X86_64_X87_CLASS:
|
||
memcpy (valbuf + offset, regbuf + REGISTER_BYTE (FP0_REGNUM),
|
||
8);
|
||
offset += 8;
|
||
break;
|
||
case X86_64_X87UP_CLASS:
|
||
memcpy (valbuf + offset,
|
||
regbuf + REGISTER_BYTE (FP0_REGNUM) + 8, 8);
|
||
offset += 8;
|
||
break;
|
||
case X86_64_MEMORY_CLASS:
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"Unexpected argument class");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handled by unwind informations. */
|
||
static void
|
||
x86_64_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
}
|
||
|
||
#define INT_REGS 6
|
||
#define SSE_REGS 16
|
||
|
||
CORE_ADDR
|
||
x86_64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int intreg = 0;
|
||
int ssereg = 0;
|
||
int i;
|
||
static int int_parameter_registers[INT_REGS] = {
|
||
5 /* RDI */ , 4 /* RSI */ ,
|
||
3 /* RDX */ , 2 /* RCX */ ,
|
||
8 /* R8 */ , 9 /* R9 */
|
||
};
|
||
/* XMM0 - XMM15 */
|
||
static int sse_parameter_registers[SSE_REGS] = {
|
||
XMM1_REGNUM - 1, XMM1_REGNUM, XMM1_REGNUM + 1, XMM1_REGNUM + 2,
|
||
XMM1_REGNUM + 3, XMM1_REGNUM + 4, XMM1_REGNUM + 5, XMM1_REGNUM + 6,
|
||
XMM1_REGNUM + 7, XMM1_REGNUM + 8, XMM1_REGNUM + 9, XMM1_REGNUM + 10,
|
||
XMM1_REGNUM + 11, XMM1_REGNUM + 12, XMM1_REGNUM + 13, XMM1_REGNUM + 14
|
||
};
|
||
int stack_values_count = 0;
|
||
int *stack_values;
|
||
stack_values = alloca (nargs * sizeof (int));
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
enum x86_64_reg_class class[MAX_CLASSES];
|
||
int n = classify_argument (args[i]->type, class, 0);
|
||
int needed_intregs;
|
||
int needed_sseregs;
|
||
|
||
if (!n ||
|
||
!examine_argument (class, n, &needed_intregs, &needed_sseregs)
|
||
|| intreg / 2 + needed_intregs > INT_REGS
|
||
|| ssereg / 2 + needed_sseregs > SSE_REGS)
|
||
{ /* memory class */
|
||
stack_values[stack_values_count++] = i;
|
||
}
|
||
else
|
||
{
|
||
int j;
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
int offset = 0;
|
||
switch (class[j])
|
||
{
|
||
case X86_64_NO_CLASS:
|
||
break;
|
||
case X86_64_INTEGER_CLASS:
|
||
write_register_gen (int_parameter_registers
|
||
[(intreg + 1) / 2],
|
||
VALUE_CONTENTS_ALL (args[i]) + offset);
|
||
offset += 8;
|
||
intreg += 2;
|
||
break;
|
||
case X86_64_INTEGERSI_CLASS:
|
||
write_register_gen (int_parameter_registers[intreg / 2],
|
||
VALUE_CONTENTS_ALL (args[i]) + offset);
|
||
offset += 8;
|
||
intreg++;
|
||
break;
|
||
case X86_64_SSEDF_CLASS:
|
||
case X86_64_SSESF_CLASS:
|
||
case X86_64_SSE_CLASS:
|
||
write_register_gen (sse_parameter_registers
|
||
[(ssereg + 1) / 2],
|
||
VALUE_CONTENTS_ALL (args[i]) + offset);
|
||
offset += 8;
|
||
ssereg += 2;
|
||
break;
|
||
case X86_64_SSEUP_CLASS:
|
||
write_register_gen (sse_parameter_registers[ssereg / 2],
|
||
VALUE_CONTENTS_ALL (args[i]) + offset);
|
||
offset += 8;
|
||
ssereg++;
|
||
break;
|
||
case X86_64_X87_CLASS:
|
||
case X86_64_MEMORY_CLASS:
|
||
stack_values[stack_values_count++] = i;
|
||
break;
|
||
case X86_64_X87UP_CLASS:
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"Unexpected argument class");
|
||
}
|
||
intreg += intreg % 2;
|
||
ssereg += ssereg % 2;
|
||
}
|
||
}
|
||
}
|
||
while (--stack_values_count >= 0)
|
||
{
|
||
struct value *arg = args[stack_values[stack_values_count]];
|
||
int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
|
||
len += 7;
|
||
len -= len % 8;
|
||
sp -= len;
|
||
write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
|
||
}
|
||
return sp;
|
||
}
|
||
|
||
/* Write into the appropriate registers a function return value stored
|
||
in VALBUF of type TYPE, given in virtual format. */
|
||
void
|
||
x86_64_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE_FLT == TYPE_CODE (type))
|
||
{
|
||
/* Floating-point return values can be found in %st(0). */
|
||
if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
|
||
&& TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
|
||
{
|
||
/* Copy straight over. */
|
||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
|
||
FPU_REG_RAW_SIZE);
|
||
}
|
||
else
|
||
{
|
||
char buf[FPU_REG_RAW_SIZE];
|
||
DOUBLEST val;
|
||
|
||
/* Convert the value found in VALBUF to the extended
|
||
floating point format used by the FPU. This is probably
|
||
not exactly how it would happen on the target itself, but
|
||
it is the best we can do. */
|
||
val = extract_floating (valbuf, TYPE_LENGTH (type));
|
||
floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
|
||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
|
||
FPU_REG_RAW_SIZE);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int low_size = REGISTER_RAW_SIZE (0);
|
||
int high_size = REGISTER_RAW_SIZE (1);
|
||
|
||
if (len <= low_size)
|
||
write_register_bytes (REGISTER_BYTE (0), valbuf, len);
|
||
else if (len <= (low_size + high_size))
|
||
{
|
||
write_register_bytes (REGISTER_BYTE (0), valbuf, low_size);
|
||
write_register_bytes (REGISTER_BYTE (1),
|
||
valbuf + low_size, len - low_size);
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"Cannot store return value of %d bytes long.", len);
|
||
}
|
||
}
|
||
|
||
|
||
static char *
|
||
x86_64_register_name (int reg_nr)
|
||
{
|
||
if (reg_nr < 0 || reg_nr >= X86_64_NUM_REGS)
|
||
return NULL;
|
||
return x86_64_register_info_table[reg_nr].name;
|
||
}
|
||
|
||
|
||
|
||
/* We have two flavours of disassembly. The machinery on this page
|
||
deals with switching between those. */
|
||
|
||
static int
|
||
gdb_print_insn_x86_64 (bfd_vma memaddr, disassemble_info * info)
|
||
{
|
||
if (disassembly_flavour == att_flavour)
|
||
return print_insn_i386_att (memaddr, info);
|
||
else if (disassembly_flavour == intel_flavour)
|
||
return print_insn_i386_intel (memaddr, info);
|
||
/* Never reached -- disassembly_flavour is always either att_flavour
|
||
or intel_flavour. */
|
||
internal_error (__FILE__, __LINE__, "failed internal consistency check");
|
||
}
|
||
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
void
|
||
x86_64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
write_register (RDI_REGNUM, addr);
|
||
}
|
||
|
||
int
|
||
x86_64_frameless_function_invocation (struct frame_info *frame)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* If a function with debugging information and known beginning
|
||
is detected, we will return pc of the next line in the source
|
||
code. With this approach we effectively skip the prolog. */
|
||
|
||
#define PROLOG_BUFSIZE 4
|
||
CORE_ADDR
|
||
x86_64_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
int i, firstline, currline;
|
||
struct symtab_and_line v_sal;
|
||
struct symbol *v_function;
|
||
CORE_ADDR salendaddr = 0, endaddr = 0;
|
||
|
||
/* We will handle only functions beginning with:
|
||
55 pushq %rbp
|
||
48 89 e5 movq %rsp,%rbp
|
||
*/
|
||
unsigned char prolog_expect[PROLOG_BUFSIZE] = { 0x55, 0x48, 0x89, 0xe5 },
|
||
prolog_buf[PROLOG_BUFSIZE];
|
||
|
||
read_memory (pc, (char *) prolog_buf, PROLOG_BUFSIZE);
|
||
|
||
/* First check, whether pc points to pushq %rbp, movq %rsp,%rbp. */
|
||
for (i = 0; i < PROLOG_BUFSIZE; i++)
|
||
if (prolog_expect[i] != prolog_buf[i])
|
||
return pc; /* ... no, it doesn't. Nothing to skip. */
|
||
|
||
/* OK, we have found the prologue and want PC of the first
|
||
non-prologue instruction. */
|
||
pc += PROLOG_BUFSIZE;
|
||
|
||
v_function = find_pc_function (pc);
|
||
v_sal = find_pc_line (pc, 0);
|
||
|
||
/* If pc doesn't point to a function with debuginfo,
|
||
some of the following may be NULL. */
|
||
if (!v_function || !v_function->ginfo.value.block || !v_sal.symtab)
|
||
return pc;
|
||
|
||
firstline = v_sal.line;
|
||
currline = firstline;
|
||
salendaddr = v_sal.end;
|
||
endaddr = v_function->ginfo.value.block->endaddr;
|
||
|
||
for (i = 0; i < v_sal.symtab->linetable->nitems; i++)
|
||
if (v_sal.symtab->linetable->item[i].line > firstline
|
||
&& v_sal.symtab->linetable->item[i].pc >= salendaddr
|
||
&& v_sal.symtab->linetable->item[i].pc < endaddr)
|
||
{
|
||
pc = v_sal.symtab->linetable->item[i].pc;
|
||
currline = v_sal.symtab->linetable->item[i].line;
|
||
break;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
static unsigned char *
|
||
x86_64_breakpoint_from_pc (CORE_ADDR * pc, int *lenptr)
|
||
{
|
||
static unsigned char breakpoint[] = { 0xcc };
|
||
*lenptr = 1;
|
||
return breakpoint;
|
||
}
|
||
|
||
static struct gdbarch *
|
||
x86_64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
int i, sum;
|
||
|
||
/* Find a candidate among the list of pre-declared architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_x86_64:
|
||
case bfd_mach_x86_64_intel_syntax:
|
||
switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
|
||
{
|
||
case bfd_mach_x86_64:
|
||
case bfd_mach_x86_64_intel_syntax:
|
||
return arches->gdbarch;
|
||
case bfd_mach_i386_i386:
|
||
case bfd_mach_i386_i8086:
|
||
case bfd_mach_i386_i386_intel_syntax:
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"x86_64_gdbarch_init: unknown machine type");
|
||
}
|
||
break;
|
||
case bfd_mach_i386_i386:
|
||
case bfd_mach_i386_i8086:
|
||
case bfd_mach_i386_i386_intel_syntax:
|
||
switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
|
||
{
|
||
case bfd_mach_x86_64:
|
||
case bfd_mach_x86_64_intel_syntax:
|
||
break;
|
||
case bfd_mach_i386_i386:
|
||
case bfd_mach_i386_i8086:
|
||
case bfd_mach_i386_i386_intel_syntax:
|
||
return arches->gdbarch;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"x86_64_gdbarch_init: unknown machine type");
|
||
}
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"x86_64_gdbarch_init: unknown machine type");
|
||
}
|
||
}
|
||
|
||
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_x86_64:
|
||
case bfd_mach_x86_64_intel_syntax:
|
||
tdep->num_xmm_regs = 16;
|
||
break;
|
||
case bfd_mach_i386_i386:
|
||
case bfd_mach_i386_i8086:
|
||
case bfd_mach_i386_i386_intel_syntax:
|
||
/* This is place for definition of i386 target vector. */
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"x86_64_gdbarch_init: unknown machine type");
|
||
}
|
||
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
|
||
set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
|
||
|
||
set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
|
||
set_gdbarch_register_name (gdbarch, x86_64_register_name);
|
||
set_gdbarch_register_size (gdbarch, 8);
|
||
set_gdbarch_register_raw_size (gdbarch, x86_64_register_raw_size);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 16);
|
||
set_gdbarch_register_byte (gdbarch, x86_64_register_byte);
|
||
|
||
/* Total amount of space needed to store our copies of the machine's register
|
||
(SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS + SIZEOF_SSE_REGS) */
|
||
for (i = 0, sum = 0; i < X86_64_NUM_REGS; i++)
|
||
sum += x86_64_register_info_table[i].size;
|
||
set_gdbarch_register_bytes (gdbarch, sum);
|
||
set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 16);
|
||
|
||
set_gdbarch_register_virtual_type (gdbarch, x86_64_register_virtual_type);
|
||
|
||
set_gdbarch_register_convertible (gdbarch, x86_64_register_convertible);
|
||
set_gdbarch_register_convert_to_virtual (gdbarch,
|
||
x86_64_register_convert_to_virtual);
|
||
set_gdbarch_register_convert_to_raw (gdbarch,
|
||
x86_64_register_convert_to_raw);
|
||
|
||
/* Register numbers of various important registers. */
|
||
set_gdbarch_sp_regnum (gdbarch, 7); /* (rsp) Contains address of top of stack. */
|
||
set_gdbarch_fp_regnum (gdbarch, 6); /* (rbp) */
|
||
set_gdbarch_pc_regnum (gdbarch, 16); /* (rip) Contains program counter. */
|
||
|
||
set_gdbarch_fp0_regnum (gdbarch, X86_64_NUM_GREGS); /* First FPU floating-point register. */
|
||
|
||
set_gdbarch_read_fp (gdbarch, cfi_read_fp);
|
||
|
||
/* Discard from the stack the innermost frame, restoring all registers. */
|
||
set_gdbarch_pop_frame (gdbarch, x86_64_pop_frame);
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address and produces the frame's
|
||
chain-pointer. */
|
||
set_gdbarch_frame_chain (gdbarch, cfi_frame_chain);
|
||
|
||
set_gdbarch_frameless_function_invocation (gdbarch,
|
||
x86_64_frameless_function_invocation);
|
||
set_gdbarch_frame_saved_pc (gdbarch, x86_64_linux_frame_saved_pc);
|
||
|
||
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
||
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
|
||
|
||
/* Frame pc initialization is handled by unwind informations. */
|
||
set_gdbarch_init_frame_pc (gdbarch, cfi_init_frame_pc);
|
||
|
||
/* Initialization of unwind informations. */
|
||
set_gdbarch_init_extra_frame_info (gdbarch, cfi_init_extra_frame_info);
|
||
|
||
/* Getting saved registers is handled by unwind informations. */
|
||
set_gdbarch_get_saved_register (gdbarch, cfi_get_saved_register);
|
||
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
|
||
|
||
/* Cons up virtual frame pointer for trace */
|
||
set_gdbarch_virtual_frame_pointer (gdbarch, cfi_virtual_frame_pointer);
|
||
|
||
|
||
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
||
|
||
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
||
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
||
set_gdbarch_call_dummy_words (gdbarch, 0);
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
|
||
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
||
set_gdbarch_call_dummy_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
||
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
||
set_gdbarch_push_return_address (gdbarch, x86_64_push_return_address);
|
||
set_gdbarch_push_arguments (gdbarch, x86_64_push_arguments);
|
||
|
||
/* Return number of args passed to a frame, no way to tell. */
|
||
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
||
/* Don't use default structure extract routine */
|
||
set_gdbarch_extract_struct_value_address (gdbarch, 0);
|
||
|
||
/* If USE_STRUCT_CONVENTION retruns 0, then gdb uses STORE_RETURN_VALUE
|
||
and EXTRACT_RETURN_VALUE to store/fetch the functions return value. It is
|
||
the case when structure is returned in registers. */
|
||
set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
set_gdbarch_store_struct_return (gdbarch, x86_64_store_struct_return);
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
|
||
|
||
|
||
/* Write into the appropriate registers a function return value stored
|
||
in VALBUF of type TYPE, given in virtual format. */
|
||
set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
|
||
|
||
|
||
/* Offset from address of function to start of its code. */
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
|
||
|
||
set_gdbarch_saved_pc_after_call (gdbarch, x86_64_linux_saved_pc_after_call);
|
||
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
|
||
set_gdbarch_breakpoint_from_pc (gdbarch,
|
||
(gdbarch_breakpoint_from_pc_ftype *)
|
||
x86_64_breakpoint_from_pc);
|
||
|
||
|
||
/* Amount PC must be decremented by after a breakpoint. This is often the
|
||
number of bytes in BREAKPOINT but not always. */
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 1);
|
||
|
||
/* Use dwarf2 debug frame informations. */
|
||
set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
void
|
||
_initialize_x86_64_tdep (void)
|
||
{
|
||
register_gdbarch_init (bfd_arch_i386, x86_64_gdbarch_init);
|
||
|
||
/* Initialize the table saying where each register starts in the
|
||
register file. */
|
||
{
|
||
int i, offset;
|
||
|
||
offset = 0;
|
||
for (i = 0; i < X86_64_NUM_REGS; i++)
|
||
{
|
||
x86_64_register_byte_table[i] = offset;
|
||
offset += x86_64_register_info_table[i].size;
|
||
}
|
||
}
|
||
|
||
tm_print_insn = gdb_print_insn_x86_64;
|
||
tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 3)->mach;
|
||
|
||
/* Add the variable that controls the disassembly flavour. */
|
||
{
|
||
struct cmd_list_element *new_cmd;
|
||
|
||
new_cmd = add_set_enum_cmd ("disassembly-flavour", no_class,
|
||
valid_flavours, &disassembly_flavour, "\
|
||
Set the disassembly flavour, the valid values are \"att\" and \"intel\", \
|
||
and the default value is \"att\".", &setlist);
|
||
add_show_from_set (new_cmd, &showlist);
|
||
}
|
||
}
|