old-cross-binutils/gold/powerpc.cc
Cary Coutant c6905c28a5 gold/
* object.cc (Sized_relobj::do_output_section_address): New function.
	(Sized_relobj): Instantiate explicitly.
	* object.h (Object::output_section_address): New function.
	(Object::do_output_section_address): New function.
	(Sized_relobj::do_output_section_address): New function.
	* powerpc.cc (Target_powerpc::symval_for_branch): Use it.
2013-07-31 18:47:50 +00:00

7700 lines
228 KiB
C++

// powerpc.cc -- powerpc target support for gold.
// Copyright 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
// Written by David S. Miller <davem@davemloft.net>
// and David Edelsohn <edelsohn@gnu.org>
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <set>
#include <algorithm>
#include "elfcpp.h"
#include "dwarf.h"
#include "parameters.h"
#include "reloc.h"
#include "powerpc.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "errors.h"
#include "gc.h"
namespace
{
using namespace gold;
template<int size, bool big_endian>
class Output_data_plt_powerpc;
template<int size, bool big_endian>
class Output_data_brlt_powerpc;
template<int size, bool big_endian>
class Output_data_got_powerpc;
template<int size, bool big_endian>
class Output_data_glink;
template<int size, bool big_endian>
class Stub_table;
inline bool
is_branch_reloc(unsigned int r_type);
template<int size, bool big_endian>
class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
typedef Unordered_map<Address, Section_refs> Access_from;
Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
const typename elfcpp::Ehdr<size, big_endian>& ehdr)
: Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
special_(0), has_small_toc_reloc_(false), opd_valid_(false),
opd_ent_(), access_from_map_(), has14_(), stub_table_()
{ }
~Powerpc_relobj()
{ }
// The .got2 section shndx.
unsigned int
got2_shndx() const
{
if (size == 32)
return this->special_;
else
return 0;
}
// The .opd section shndx.
unsigned int
opd_shndx() const
{
if (size == 32)
return 0;
else
return this->special_;
}
// Init OPD entry arrays.
void
init_opd(size_t opd_size)
{
size_t count = this->opd_ent_ndx(opd_size);
this->opd_ent_.resize(count);
}
// Return section and offset of function entry for .opd + R_OFF.
unsigned int
get_opd_ent(Address r_off, Address* value = NULL) const
{
size_t ndx = this->opd_ent_ndx(r_off);
gold_assert(ndx < this->opd_ent_.size());
gold_assert(this->opd_ent_[ndx].shndx != 0);
if (value != NULL)
*value = this->opd_ent_[ndx].off;
return this->opd_ent_[ndx].shndx;
}
// Set section and offset of function entry for .opd + R_OFF.
void
set_opd_ent(Address r_off, unsigned int shndx, Address value)
{
size_t ndx = this->opd_ent_ndx(r_off);
gold_assert(ndx < this->opd_ent_.size());
this->opd_ent_[ndx].shndx = shndx;
this->opd_ent_[ndx].off = value;
}
// Return discard flag for .opd + R_OFF.
bool
get_opd_discard(Address r_off) const
{
size_t ndx = this->opd_ent_ndx(r_off);
gold_assert(ndx < this->opd_ent_.size());
return this->opd_ent_[ndx].discard;
}
// Set discard flag for .opd + R_OFF.
void
set_opd_discard(Address r_off)
{
size_t ndx = this->opd_ent_ndx(r_off);
gold_assert(ndx < this->opd_ent_.size());
this->opd_ent_[ndx].discard = true;
}
bool
opd_valid() const
{ return this->opd_valid_; }
void
set_opd_valid()
{ this->opd_valid_ = true; }
// Examine .rela.opd to build info about function entry points.
void
scan_opd_relocs(size_t reloc_count,
const unsigned char* prelocs,
const unsigned char* plocal_syms);
// Perform the Sized_relobj_file method, then set up opd info from
// .opd relocs.
void
do_read_relocs(Read_relocs_data*);
bool
do_find_special_sections(Read_symbols_data* sd);
// Adjust this local symbol value. Return false if the symbol
// should be discarded from the output file.
bool
do_adjust_local_symbol(Symbol_value<size>* lv) const
{
if (size == 64 && this->opd_shndx() != 0)
{
bool is_ordinary;
if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
return true;
if (this->get_opd_discard(lv->input_value()))
return false;
}
return true;
}
Access_from*
access_from_map()
{ return &this->access_from_map_; }
// Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
// section at DST_OFF.
void
add_reference(Object* src_obj,
unsigned int src_indx,
typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
{
Section_id src_id(src_obj, src_indx);
this->access_from_map_[dst_off].insert(src_id);
}
// Add a reference to the code section specified by the .opd entry
// at DST_OFF
void
add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
{
size_t ndx = this->opd_ent_ndx(dst_off);
if (ndx >= this->opd_ent_.size())
this->opd_ent_.resize(ndx + 1);
this->opd_ent_[ndx].gc_mark = true;
}
void
process_gc_mark(Symbol_table* symtab)
{
for (size_t i = 0; i < this->opd_ent_.size(); i++)
if (this->opd_ent_[i].gc_mark)
{
unsigned int shndx = this->opd_ent_[i].shndx;
symtab->gc()->worklist().push(Section_id(this, shndx));
}
}
// Return offset in output GOT section that this object will use
// as a TOC pointer. Won't be just a constant with multi-toc support.
Address
toc_base_offset() const
{ return 0x8000; }
void
set_has_small_toc_reloc()
{ has_small_toc_reloc_ = true; }
bool
has_small_toc_reloc() const
{ return has_small_toc_reloc_; }
void
set_has_14bit_branch(unsigned int shndx)
{
if (shndx >= this->has14_.size())
this->has14_.resize(shndx + 1);
this->has14_[shndx] = true;
}
bool
has_14bit_branch(unsigned int shndx) const
{ return shndx < this->has14_.size() && this->has14_[shndx]; }
void
set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
{
if (shndx >= this->stub_table_.size())
this->stub_table_.resize(shndx + 1);
this->stub_table_[shndx] = stub_table;
}
Stub_table<size, big_endian>*
stub_table(unsigned int shndx)
{
if (shndx < this->stub_table_.size())
return this->stub_table_[shndx];
return NULL;
}
private:
struct Opd_ent
{
unsigned int shndx;
bool discard : 1;
bool gc_mark : 1;
Address off;
};
// Return index into opd_ent_ array for .opd entry at OFF.
// .opd entries are 24 bytes long, but they can be spaced 16 bytes
// apart when the language doesn't use the last 8-byte word, the
// environment pointer. Thus dividing the entry section offset by
// 16 will give an index into opd_ent_ that works for either layout
// of .opd. (It leaves some elements of the vector unused when .opd
// entries are spaced 24 bytes apart, but we don't know the spacing
// until relocations are processed, and in any case it is possible
// for an object to have some entries spaced 16 bytes apart and
// others 24 bytes apart.)
size_t
opd_ent_ndx(size_t off) const
{ return off >> 4;}
// For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
unsigned int special_;
// For 64-bit, whether this object uses small model relocs to access
// the toc.
bool has_small_toc_reloc_;
// Set at the start of gc_process_relocs, when we know opd_ent_
// vector is valid. The flag could be made atomic and set in
// do_read_relocs with memory_order_release and then tested with
// memory_order_acquire, potentially resulting in fewer entries in
// access_from_map_.
bool opd_valid_;
// The first 8-byte word of an OPD entry gives the address of the
// entry point of the function. Relocatable object files have a
// relocation on this word. The following vector records the
// section and offset specified by these relocations.
std::vector<Opd_ent> opd_ent_;
// References made to this object's .opd section when running
// gc_process_relocs for another object, before the opd_ent_ vector
// is valid for this object.
Access_from access_from_map_;
// Whether input section has a 14-bit branch reloc.
std::vector<bool> has14_;
// The stub table to use for a given input section.
std::vector<Stub_table<size, big_endian>*> stub_table_;
};
template<int size, bool big_endian>
class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
const typename elfcpp::Ehdr<size, big_endian>& ehdr)
: Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
opd_shndx_(0), opd_ent_()
{ }
~Powerpc_dynobj()
{ }
// Call Sized_dynobj::do_read_symbols to read the symbols then
// read .opd from a dynamic object, filling in opd_ent_ vector,
void
do_read_symbols(Read_symbols_data*);
// The .opd section shndx.
unsigned int
opd_shndx() const
{
return this->opd_shndx_;
}
// The .opd section address.
Address
opd_address() const
{
return this->opd_address_;
}
// Init OPD entry arrays.
void
init_opd(size_t opd_size)
{
size_t count = this->opd_ent_ndx(opd_size);
this->opd_ent_.resize(count);
}
// Return section and offset of function entry for .opd + R_OFF.
unsigned int
get_opd_ent(Address r_off, Address* value = NULL) const
{
size_t ndx = this->opd_ent_ndx(r_off);
gold_assert(ndx < this->opd_ent_.size());
gold_assert(this->opd_ent_[ndx].shndx != 0);
if (value != NULL)
*value = this->opd_ent_[ndx].off;
return this->opd_ent_[ndx].shndx;
}
// Set section and offset of function entry for .opd + R_OFF.
void
set_opd_ent(Address r_off, unsigned int shndx, Address value)
{
size_t ndx = this->opd_ent_ndx(r_off);
gold_assert(ndx < this->opd_ent_.size());
this->opd_ent_[ndx].shndx = shndx;
this->opd_ent_[ndx].off = value;
}
private:
// Used to specify extent of executable sections.
struct Sec_info
{
Sec_info(Address start_, Address len_, unsigned int shndx_)
: start(start_), len(len_), shndx(shndx_)
{ }
bool
operator<(const Sec_info& that) const
{ return this->start < that.start; }
Address start;
Address len;
unsigned int shndx;
};
struct Opd_ent
{
unsigned int shndx;
Address off;
};
// Return index into opd_ent_ array for .opd entry at OFF.
size_t
opd_ent_ndx(size_t off) const
{ return off >> 4;}
// For 64-bit the .opd section shndx and address.
unsigned int opd_shndx_;
Address opd_address_;
// The first 8-byte word of an OPD entry gives the address of the
// entry point of the function. Records the section and offset
// corresponding to the address. Note that in dynamic objects,
// offset is *not* relative to the section.
std::vector<Opd_ent> opd_ent_;
};
template<int size, bool big_endian>
class Target_powerpc : public Sized_target<size, big_endian>
{
public:
typedef
Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
static const Address invalid_address = static_cast<Address>(0) - 1;
// Offset of tp and dtp pointers from start of TLS block.
static const Address tp_offset = 0x7000;
static const Address dtp_offset = 0x8000;
Target_powerpc()
: Sized_target<size, big_endian>(&powerpc_info),
got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
dynbss_(NULL), tlsld_got_offset_(-1U),
stub_tables_(), branch_lookup_table_(), branch_info_(),
plt_thread_safe_(false)
{
}
// Process the relocations to determine unreferenced sections for
// garbage collection.
void
gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Map input .toc section to output .got section.
const char*
do_output_section_name(const Relobj*, const char* name, size_t* plen) const
{
if (size == 64 && strcmp(name, ".toc") == 0)
{
*plen = 4;
return ".got";
}
return NULL;
}
// Provide linker defined save/restore functions.
void
define_save_restore_funcs(Layout*, Symbol_table*);
// No stubs unless a final link.
bool
do_may_relax() const
{ return !parameters->options().relocatable(); }
bool
do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
void
do_plt_fde_location(const Output_data*, unsigned char*,
uint64_t*, off_t*) const;
// Stash info about branches, for stub generation.
void
push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
unsigned int data_shndx, Address r_offset,
unsigned int r_type, unsigned int r_sym, Address addend)
{
Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
this->branch_info_.push_back(info);
if (r_type == elfcpp::R_POWERPC_REL14
|| r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
|| r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
ppc_object->set_has_14bit_branch(data_shndx);
}
Stub_table<size, big_endian>*
new_stub_table();
void
do_define_standard_symbols(Symbol_table*, Layout*);
// Finalize the sections.
void
do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
// Return the value to use for a dynamic which requires special
// treatment.
uint64_t
do_dynsym_value(const Symbol*) const;
// Return the PLT address to use for a local symbol.
uint64_t
do_plt_address_for_local(const Relobj*, unsigned int) const;
// Return the PLT address to use for a global symbol.
uint64_t
do_plt_address_for_global(const Symbol*) const;
// Return the offset to use for the GOT_INDX'th got entry which is
// for a local tls symbol specified by OBJECT, SYMNDX.
int64_t
do_tls_offset_for_local(const Relobj* object,
unsigned int symndx,
unsigned int got_indx) const;
// Return the offset to use for the GOT_INDX'th got entry which is
// for global tls symbol GSYM.
int64_t
do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
void
do_function_location(Symbol_location*) const;
bool
do_can_check_for_function_pointers() const
{ return true; }
// Relocate a section.
void
relocate_section(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Address view_address,
section_size_type view_size,
const Reloc_symbol_changes*);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Emit relocations for a section.
void
relocate_relocs(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off
offset_in_output_section,
const Relocatable_relocs*,
unsigned char*,
Address view_address,
section_size_type,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(const Symbol* sym) const
{
return strcmp(sym->name(), "__tls_get_addr") == 0;
}
// Return the size of the GOT section.
section_size_type
got_size() const
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
// Get the PLT section.
const Output_data_plt_powerpc<size, big_endian>*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the IPLT section.
const Output_data_plt_powerpc<size, big_endian>*
iplt_section() const
{
gold_assert(this->iplt_ != NULL);
return this->iplt_;
}
// Get the .glink section.
const Output_data_glink<size, big_endian>*
glink_section() const
{
gold_assert(this->glink_ != NULL);
return this->glink_;
}
bool has_glink() const
{ return this->glink_ != NULL; }
// Get the GOT section.
const Output_data_got_powerpc<size, big_endian>*
got_section() const
{
gold_assert(this->got_ != NULL);
return this->got_;
}
// Get the GOT section, creating it if necessary.
Output_data_got_powerpc<size, big_endian>*
got_section(Symbol_table*, Layout*);
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<size, big_endian>&);
// Return the number of entries in the GOT.
unsigned int
got_entry_count() const
{
if (this->got_ == NULL)
return 0;
return this->got_size() / (size / 8);
}
// Return the number of entries in the PLT.
unsigned int
plt_entry_count() const;
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const;
// Return the size of each PLT entry.
unsigned int
plt_entry_size() const;
// Add any special sections for this symbol to the gc work list.
// For powerpc64, this adds the code section of a function
// descriptor.
void
do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
// Handle target specific gc actions when adding a gc reference from
// SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
// and DST_OFF. For powerpc64, this adds a referenc to the code
// section of a function descriptor.
void
do_gc_add_reference(Symbol_table* symtab,
Object* src_obj,
unsigned int src_shndx,
Object* dst_obj,
unsigned int dst_shndx,
Address dst_off) const;
typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
const Stub_tables&
stub_tables() const
{ return this->stub_tables_; }
const Output_data_brlt_powerpc<size, big_endian>*
brlt_section() const
{ return this->brlt_section_; }
void
add_branch_lookup_table(Address to)
{
unsigned int off = this->branch_lookup_table_.size() * (size / 8);
this->branch_lookup_table_.insert(std::make_pair(to, off));
}
Address
find_branch_lookup_table(Address to)
{
typename Branch_lookup_table::const_iterator p
= this->branch_lookup_table_.find(to);
return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
}
void
write_branch_lookup_table(unsigned char *oview)
{
for (typename Branch_lookup_table::const_iterator p
= this->branch_lookup_table_.begin();
p != this->branch_lookup_table_.end();
++p)
{
elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
}
}
bool
plt_thread_safe() const
{ return this->plt_thread_safe_; }
private:
class Track_tls
{
public:
enum Tls_get_addr
{
NOT_EXPECTED = 0,
EXPECTED = 1,
SKIP = 2,
NORMAL = 3
};
Track_tls()
: tls_get_addr_(NOT_EXPECTED),
relinfo_(NULL), relnum_(0), r_offset_(0)
{ }
~Track_tls()
{
if (this->tls_get_addr_ != NOT_EXPECTED)
this->missing();
}
void
missing(void)
{
if (this->relinfo_ != NULL)
gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
_("missing expected __tls_get_addr call"));
}
void
expect_tls_get_addr_call(
const Relocate_info<size, big_endian>* relinfo,
size_t relnum,
Address r_offset)
{
this->tls_get_addr_ = EXPECTED;
this->relinfo_ = relinfo;
this->relnum_ = relnum;
this->r_offset_ = r_offset;
}
void
expect_tls_get_addr_call()
{ this->tls_get_addr_ = EXPECTED; }
void
skip_next_tls_get_addr_call()
{this->tls_get_addr_ = SKIP; }
Tls_get_addr
maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
{
bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
|| r_type == elfcpp::R_PPC_PLTREL24)
&& gsym != NULL
&& strcmp(gsym->name(), "__tls_get_addr") == 0);
Tls_get_addr last_tls = this->tls_get_addr_;
this->tls_get_addr_ = NOT_EXPECTED;
if (is_tls_call && last_tls != EXPECTED)
return last_tls;
else if (!is_tls_call && last_tls != NOT_EXPECTED)
{
this->missing();
return EXPECTED;
}
return NORMAL;
}
private:
// What we're up to regarding calls to __tls_get_addr.
// On powerpc, the branch and link insn making a call to
// __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
// R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
// usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
// The marker relocation always comes first, and has the same
// symbol as the reloc on the insn setting up the __tls_get_addr
// argument. This ties the arg setup insn with the call insn,
// allowing ld to safely optimize away the call. We check that
// every call to __tls_get_addr has a marker relocation, and that
// every marker relocation is on a call to __tls_get_addr.
Tls_get_addr tls_get_addr_;
// Info about the last reloc for error message.
const Relocate_info<size, big_endian>* relinfo_;
size_t relnum_;
Address r_offset_;
};
// The class which scans relocations.
class Scan : protected Track_tls
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
Scan()
: Track_tls(), issued_non_pic_error_(false)
{ }
static inline int
get_reference_flags(unsigned int r_type);
inline void
local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded);
inline void
global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
Symbol* gsym);
inline bool
local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
Target_powerpc* ,
Sized_relobj_file<size, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rela<size, big_endian>& ,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>&)
{
// PowerPC64 .opd is not folded, so any identical function text
// may be folded and we'll still keep function addresses distinct.
// That means no reloc is of concern here.
if (size == 64)
return false;
// For 32-bit, conservatively assume anything but calls to
// function code might be taking the address of the function.
return !is_branch_reloc(r_type);
}
inline bool
global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
Target_powerpc* ,
Sized_relobj_file<size, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rela<size, big_endian>& ,
unsigned int r_type,
Symbol*)
{
// As above.
if (size == 64)
return false;
return !is_branch_reloc(r_type);
}
static bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
unsigned int r_type, bool report_err);
private:
static void
unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
unsigned int r_type, Symbol*);
static void
generate_tls_call(Symbol_table* symtab, Layout* layout,
Target_powerpc* target);
void
check_non_pic(Relobj*, unsigned int r_type);
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
Address
symval_for_branch(const Symbol_table* symtab, Address value,
const Sized_symbol<size>* gsym,
Powerpc_relobj<size, big_endian>* object,
unsigned int *dest_shndx);
// The class which implements relocation.
class Relocate : protected Track_tls
{
public:
// Use 'at' branch hints when true, 'y' when false.
// FIXME maybe: set this with an option.
static const bool is_isa_v2 = true;
Relocate()
: Track_tls()
{ }
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
Output_section*, size_t relnum,
const elfcpp::Rela<size, big_endian>&,
unsigned int r_type, const Sized_symbol<size>*,
const Symbol_value<size>*,
unsigned char*,
typename elfcpp::Elf_types<size>::Elf_Addr,
section_size_type);
};
class Relocate_comdat_behavior
{
public:
// Decide what the linker should do for relocations that refer to
// discarded comdat sections.
inline Comdat_behavior
get(const char* name)
{
gold::Default_comdat_behavior default_behavior;
Comdat_behavior ret = default_behavior.get(name);
if (ret == CB_WARNING)
{
if (size == 32
&& (strcmp(name, ".fixup") == 0
|| strcmp(name, ".got2") == 0))
ret = CB_IGNORE;
if (size == 64
&& (strcmp(name, ".opd") == 0
|| strcmp(name, ".toc") == 0
|| strcmp(name, ".toc1") == 0))
ret = CB_IGNORE;
}
return ret;
}
};
// A class which returns the size required for a relocation type,
// used while scanning relocs during a relocatable link.
class Relocatable_size_for_reloc
{
public:
unsigned int
get_size_for_reloc(unsigned int, Relobj*)
{
gold_unreachable();
return 0;
}
};
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
tls::Tls_optimization
optimize_tls_gd(bool is_final)
{
// If we are generating a shared library, then we can't do anything
// in the linker.
if (parameters->options().shared())
return tls::TLSOPT_NONE;
if (!is_final)
return tls::TLSOPT_TO_IE;
return tls::TLSOPT_TO_LE;
}
tls::Tls_optimization
optimize_tls_ld()
{
if (parameters->options().shared())
return tls::TLSOPT_NONE;
return tls::TLSOPT_TO_LE;
}
tls::Tls_optimization
optimize_tls_ie(bool is_final)
{
if (!is_final || parameters->options().shared())
return tls::TLSOPT_NONE;
return tls::TLSOPT_TO_LE;
}
// Create glink.
void
make_glink_section(Layout*);
// Create the PLT section.
void
make_plt_section(Symbol_table*, Layout*);
void
make_iplt_section(Symbol_table*, Layout*);
void
make_brlt_section(Layout*);
// Create a PLT entry for a global symbol.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
// Create a PLT entry for a local IFUNC symbol.
void
make_local_ifunc_plt_entry(Symbol_table*, Layout*,
Sized_relobj_file<size, big_endian>*,
unsigned int);
// Create a GOT entry for local dynamic __tls_get_addr.
unsigned int
tlsld_got_offset(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* object);
unsigned int
tlsld_got_offset() const
{
return this->tlsld_got_offset_;
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rela_dyn_section(Layout*);
// Similarly, but for ifunc symbols get the one for ifunc.
Reloc_section*
rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
// Copy a relocation against a global symbol.
void
copy_reloc(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int shndx, Output_section* output_section,
Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
{
this->copy_relocs_.copy_reloc(symtab, layout,
symtab->get_sized_symbol<size>(sym),
object, shndx, output_section,
reloc, this->rela_dyn_section(layout));
}
// Look over all the input sections, deciding where to place stubs.
void
group_sections(Layout*, const Task*);
// Sort output sections by address.
struct Sort_sections
{
bool
operator()(const Output_section* sec1, const Output_section* sec2)
{ return sec1->address() < sec2->address(); }
};
class Branch_info
{
public:
Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
unsigned int data_shndx,
Address r_offset,
unsigned int r_type,
unsigned int r_sym,
Address addend)
: object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
r_type_(r_type), r_sym_(r_sym), addend_(addend)
{ }
~Branch_info()
{ }
// If this branch needs a plt call stub, or a long branch stub, make one.
void
make_stub(Stub_table<size, big_endian>*,
Stub_table<size, big_endian>*,
Symbol_table*) const;
private:
// The branch location..
Powerpc_relobj<size, big_endian>* object_;
unsigned int shndx_;
Address offset_;
// ..and the branch type and destination.
unsigned int r_type_;
unsigned int r_sym_;
Address addend_;
};
// Information about this specific target which we pass to the
// general Target structure.
static Target::Target_info powerpc_info;
// The types of GOT entries needed for this platform.
// These values are exposed to the ABI in an incremental link.
// Do not renumber existing values without changing the version
// number of the .gnu_incremental_inputs section.
enum Got_type
{
GOT_TYPE_STANDARD,
GOT_TYPE_TLSGD, // double entry for @got@tlsgd
GOT_TYPE_DTPREL, // entry for @got@dtprel
GOT_TYPE_TPREL // entry for @got@tprel
};
// The GOT section.
Output_data_got_powerpc<size, big_endian>* got_;
// The PLT section. This is a container for a table of addresses,
// and their relocations. Each address in the PLT has a dynamic
// relocation (R_*_JMP_SLOT) and each address will have a
// corresponding entry in .glink for lazy resolution of the PLT.
// ppc32 initialises the PLT to point at the .glink entry, while
// ppc64 leaves this to ld.so. To make a call via the PLT, the
// linker adds a stub that loads the PLT entry into ctr then
// branches to ctr. There may be more than one stub for each PLT
// entry. DT_JMPREL points at the first PLT dynamic relocation and
// DT_PLTRELSZ gives the total size of PLT dynamic relocations.
Output_data_plt_powerpc<size, big_endian>* plt_;
// The IPLT section. Like plt_, this is a container for a table of
// addresses and their relocations, specifically for STT_GNU_IFUNC
// functions that resolve locally (STT_GNU_IFUNC functions that
// don't resolve locally go in PLT). Unlike plt_, these have no
// entry in .glink for lazy resolution, and the relocation section
// does not have a 1-1 correspondence with IPLT addresses. In fact,
// the relocation section may contain relocations against
// STT_GNU_IFUNC symbols at locations outside of IPLT. The
// relocation section will appear at the end of other dynamic
// relocations, so that ld.so applies these relocations after other
// dynamic relocations. In a static executable, the relocation
// section is emitted and marked with __rela_iplt_start and
// __rela_iplt_end symbols.
Output_data_plt_powerpc<size, big_endian>* iplt_;
// Section holding long branch destinations.
Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
// The .glink section.
Output_data_glink<size, big_endian>* glink_;
// The dynamic reloc section.
Reloc_section* rela_dyn_;
// Relocs saved to avoid a COPY reloc.
Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
// Space for variables copied with a COPY reloc.
Output_data_space* dynbss_;
// Offset of the GOT entry for local dynamic __tls_get_addr calls.
unsigned int tlsld_got_offset_;
Stub_tables stub_tables_;
typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
Branch_lookup_table branch_lookup_table_;
typedef std::vector<Branch_info> Branches;
Branches branch_info_;
bool plt_thread_safe_;
};
template<>
Target::Target_info Target_powerpc<32, true>::powerpc_info =
{
32, // size
true, // is_big_endian
elfcpp::EM_PPC, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
4 * 1024, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start" // entry_symbol_name
};
template<>
Target::Target_info Target_powerpc<32, false>::powerpc_info =
{
32, // size
false, // is_big_endian
elfcpp::EM_PPC, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
4 * 1024, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start" // entry_symbol_name
};
template<>
Target::Target_info Target_powerpc<64, true>::powerpc_info =
{
64, // size
true, // is_big_endian
elfcpp::EM_PPC64, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
4 * 1024, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start" // entry_symbol_name
};
template<>
Target::Target_info Target_powerpc<64, false>::powerpc_info =
{
64, // size
false, // is_big_endian
elfcpp::EM_PPC64, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
4 * 1024, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start" // entry_symbol_name
};
inline bool
is_branch_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_POWERPC_REL24
|| r_type == elfcpp::R_PPC_PLTREL24
|| r_type == elfcpp::R_PPC_LOCAL24PC
|| r_type == elfcpp::R_POWERPC_REL14
|| r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
|| r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
|| r_type == elfcpp::R_POWERPC_ADDR24
|| r_type == elfcpp::R_POWERPC_ADDR14
|| r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
|| r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
}
// If INSN is an opcode that may be used with an @tls operand, return
// the transformed insn for TLS optimisation, otherwise return 0. If
// REG is non-zero only match an insn with RB or RA equal to REG.
uint32_t
at_tls_transform(uint32_t insn, unsigned int reg)
{
if ((insn & (0x3f << 26)) != 31 << 26)
return 0;
unsigned int rtra;
if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
rtra = insn & ((1 << 26) - (1 << 16));
else if (((insn >> 16) & 0x1f) == reg)
rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
else
return 0;
if ((insn & (0x3ff << 1)) == 266 << 1)
// add -> addi
insn = 14 << 26;
else if ((insn & (0x1f << 1)) == 23 << 1
&& ((insn & (0x1f << 6)) < 14 << 6
|| ((insn & (0x1f << 6)) >= 16 << 6
&& (insn & (0x1f << 6)) < 24 << 6)))
// load and store indexed -> dform
insn = (32 | ((insn >> 6) & 0x1f)) << 26;
else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
// ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
// lwax -> lwa
insn = (58 << 26) | 2;
else
return 0;
insn |= rtra;
return insn;
}
// Modified version of symtab.h class Symbol member
// Given a direct absolute or pc-relative static relocation against
// the global symbol, this function returns whether a dynamic relocation
// is needed.
template<int size>
bool
needs_dynamic_reloc(const Symbol* gsym, int flags)
{
// No dynamic relocations in a static link!
if (parameters->doing_static_link())
return false;
// A reference to an undefined symbol from an executable should be
// statically resolved to 0, and does not need a dynamic relocation.
// This matches gnu ld behavior.
if (gsym->is_undefined() && !parameters->options().shared())
return false;
// A reference to an absolute symbol does not need a dynamic relocation.
if (gsym->is_absolute())
return false;
// An absolute reference within a position-independent output file
// will need a dynamic relocation.
if ((flags & Symbol::ABSOLUTE_REF)
&& parameters->options().output_is_position_independent())
return true;
// A function call that can branch to a local PLT entry does not need
// a dynamic relocation.
if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
return false;
// A reference to any PLT entry in a non-position-independent executable
// does not need a dynamic relocation.
// Except due to having function descriptors on powerpc64 we don't define
// functions to their plt code in an executable, so this doesn't apply.
if (size == 32
&& !parameters->options().output_is_position_independent()
&& gsym->has_plt_offset())
return false;
// A reference to a symbol defined in a dynamic object or to a
// symbol that is preemptible will need a dynamic relocation.
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible())
return true;
// For all other cases, return FALSE.
return false;
}
// Modified version of symtab.h class Symbol member
// Whether we should use the PLT offset associated with a symbol for
// a relocation. FLAGS is a set of Reference_flags.
template<int size>
bool
use_plt_offset(const Symbol* gsym, int flags)
{
// If the symbol doesn't have a PLT offset, then naturally we
// don't want to use it.
if (!gsym->has_plt_offset())
return false;
// For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
if (gsym->type() == elfcpp::STT_GNU_IFUNC)
return true;
// If we are going to generate a dynamic relocation, then we will
// wind up using that, so no need to use the PLT entry.
if (needs_dynamic_reloc<size>(gsym, flags))
return false;
// If the symbol is from a dynamic object, we need to use the PLT
// entry.
if (gsym->is_from_dynobj())
return true;
// If we are generating a shared object, and this symbol is
// undefined or preemptible, we need to use the PLT entry.
if (parameters->options().shared()
&& (gsym->is_undefined() || gsym->is_preemptible()))
return true;
// If this is a call to a weak undefined symbol, we need to use
// the PLT entry; the symbol may be defined by a library loaded
// at runtime.
if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
return true;
// Otherwise we can use the regular definition.
return false;
}
template<int size, bool big_endian>
class Powerpc_relocate_functions
{
public:
enum Overflow_check
{
CHECK_NONE,
CHECK_SIGNED,
CHECK_BITFIELD
};
enum Status
{
STATUS_OK,
STATUS_OVERFLOW
};
private:
typedef Powerpc_relocate_functions<size, big_endian> This;
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
template<int valsize>
static inline bool
has_overflow_signed(Address value)
{
// limit = 1 << (valsize - 1) without shift count exceeding size of type
Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
limit <<= ((valsize - 1) >> 1);
limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
return value + limit > (limit << 1) - 1;
}
template<int valsize>
static inline bool
has_overflow_bitfield(Address value)
{
Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
limit <<= ((valsize - 1) >> 1);
limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
}
template<int valsize>
static inline Status
overflowed(Address value, Overflow_check overflow)
{
if (overflow == CHECK_SIGNED)
{
if (has_overflow_signed<valsize>(value))
return STATUS_OVERFLOW;
}
else if (overflow == CHECK_BITFIELD)
{
if (has_overflow_bitfield<valsize>(value))
return STATUS_OVERFLOW;
}
return STATUS_OK;
}
// Do a simple RELA relocation
template<int valsize>
static inline Status
rela(unsigned char* view, Address value, Overflow_check overflow)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
return overflowed<valsize>(value, overflow);
}
template<int valsize>
static inline Status
rela(unsigned char* view,
unsigned int right_shift,
typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
Address value,
Overflow_check overflow)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = value >> right_shift;
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
return overflowed<valsize>(value >> right_shift, overflow);
}
// Do a simple RELA relocation, unaligned.
template<int valsize>
static inline Status
rela_ua(unsigned char* view, Address value, Overflow_check overflow)
{
elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
return overflowed<valsize>(value, overflow);
}
template<int valsize>
static inline Status
rela_ua(unsigned char* view,
unsigned int right_shift,
typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
Address value,
Overflow_check overflow)
{
typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
Valtype;
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
Valtype reloc = value >> right_shift;
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
return overflowed<valsize>(value >> right_shift, overflow);
}
public:
// R_PPC64_ADDR64: (Symbol + Addend)
static inline void
addr64(unsigned char* view, Address value)
{ This::template rela<64>(view, value, CHECK_NONE); }
// R_PPC64_UADDR64: (Symbol + Addend) unaligned
static inline void
addr64_u(unsigned char* view, Address value)
{ This::template rela_ua<64>(view, value, CHECK_NONE); }
// R_POWERPC_ADDR32: (Symbol + Addend)
static inline Status
addr32(unsigned char* view, Address value, Overflow_check overflow)
{ return This::template rela<32>(view, value, overflow); }
// R_POWERPC_UADDR32: (Symbol + Addend) unaligned
static inline Status
addr32_u(unsigned char* view, Address value, Overflow_check overflow)
{ return This::template rela_ua<32>(view, value, overflow); }
// R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
static inline Status
addr24(unsigned char* view, Address value, Overflow_check overflow)
{
Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
if (overflow != CHECK_NONE && (value & 3) != 0)
stat = STATUS_OVERFLOW;
return stat;
}
// R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
static inline Status
addr16(unsigned char* view, Address value, Overflow_check overflow)
{ return This::template rela<16>(view, value, overflow); }
// R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
static inline Status
addr16_u(unsigned char* view, Address value, Overflow_check overflow)
{ return This::template rela_ua<16>(view, value, overflow); }
// R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
static inline Status
addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
{
Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
if (overflow != CHECK_NONE && (value & 3) != 0)
stat = STATUS_OVERFLOW;
return stat;
}
// R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
static inline void
addr16_hi(unsigned char* view, Address value)
{ This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
// R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
static inline void
addr16_ha(unsigned char* view, Address value)
{ This::addr16_hi(view, value + 0x8000); }
// R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
static inline void
addr16_hi2(unsigned char* view, Address value)
{ This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
// R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
static inline void
addr16_ha2(unsigned char* view, Address value)
{ This::addr16_hi2(view, value + 0x8000); }
// R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
static inline void
addr16_hi3(unsigned char* view, Address value)
{ This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
// R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
static inline void
addr16_ha3(unsigned char* view, Address value)
{ This::addr16_hi3(view, value + 0x8000); }
// R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
static inline Status
addr14(unsigned char* view, Address value, Overflow_check overflow)
{
Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
if (overflow != CHECK_NONE && (value & 3) != 0)
stat = STATUS_OVERFLOW;
return stat;
}
};
// Stash away the index of .got2 or .opd in a relocatable object, if
// such a section exists.
template<int size, bool big_endian>
bool
Powerpc_relobj<size, big_endian>::do_find_special_sections(
Read_symbols_data* sd)
{
const unsigned char* const pshdrs = sd->section_headers->data();
const unsigned char* namesu = sd->section_names->data();
const char* names = reinterpret_cast<const char*>(namesu);
section_size_type names_size = sd->section_names_size;
const unsigned char* s;
s = this->template find_shdr<size, big_endian>(pshdrs,
size == 32 ? ".got2" : ".opd",
names, names_size, NULL);
if (s != NULL)
{
unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
this->special_ = ndx;
}
return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
}
// Examine .rela.opd to build info about function entry points.
template<int size, bool big_endian>
void
Powerpc_relobj<size, big_endian>::scan_opd_relocs(
size_t reloc_count,
const unsigned char* prelocs,
const unsigned char* plocal_syms)
{
if (size == 64)
{
typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
Reltype;
const int reloc_size
= Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
Address expected_off = 0;
bool regular = true;
unsigned int opd_ent_size = 0;
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
{
Reltype reloc(prelocs);
typename elfcpp::Elf_types<size>::Elf_WXword r_info
= reloc.get_r_info();
unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
if (r_type == elfcpp::R_PPC64_ADDR64)
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
typename elfcpp::Elf_types<size>::Elf_Addr value;
bool is_ordinary;
unsigned int shndx;
if (r_sym < this->local_symbol_count())
{
typename elfcpp::Sym<size, big_endian>
lsym(plocal_syms + r_sym * sym_size);
shndx = lsym.get_st_shndx();
shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
value = lsym.get_st_value();
}
else
shndx = this->symbol_section_and_value(r_sym, &value,
&is_ordinary);
this->set_opd_ent(reloc.get_r_offset(), shndx,
value + reloc.get_r_addend());
if (i == 2)
{
expected_off = reloc.get_r_offset();
opd_ent_size = expected_off;
}
else if (expected_off != reloc.get_r_offset())
regular = false;
expected_off += opd_ent_size;
}
else if (r_type == elfcpp::R_PPC64_TOC)
{
if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
regular = false;
}
else
{
gold_warning(_("%s: unexpected reloc type %u in .opd section"),
this->name().c_str(), r_type);
regular = false;
}
}
if (reloc_count <= 2)
opd_ent_size = this->section_size(this->opd_shndx());
if (opd_ent_size != 24 && opd_ent_size != 16)
regular = false;
if (!regular)
{
gold_warning(_("%s: .opd is not a regular array of opd entries"),
this->name().c_str());
opd_ent_size = 0;
}
}
}
template<int size, bool big_endian>
void
Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
{
Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
if (size == 64)
{
for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
p != rd->relocs.end();
++p)
{
if (p->data_shndx == this->opd_shndx())
{
uint64_t opd_size = this->section_size(this->opd_shndx());
gold_assert(opd_size == static_cast<size_t>(opd_size));
if (opd_size != 0)
{
this->init_opd(opd_size);
this->scan_opd_relocs(p->reloc_count, p->contents->data(),
rd->local_symbols->data());
}
break;
}
}
}
}
// Call Sized_dynobj::do_read_symbols to read the symbols then
// read .opd from a dynamic object, filling in opd_ent_ vector,
template<int size, bool big_endian>
void
Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
{
Sized_dynobj<size, big_endian>::do_read_symbols(sd);
if (size == 64)
{
const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
const unsigned char* const pshdrs = sd->section_headers->data();
const unsigned char* namesu = sd->section_names->data();
const char* names = reinterpret_cast<const char*>(namesu);
const unsigned char* s = NULL;
const unsigned char* opd;
section_size_type opd_size;
// Find and read .opd section.
while (1)
{
s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
sd->section_names_size,
s);
if (s == NULL)
return;
typename elfcpp::Shdr<size, big_endian> shdr(s);
if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
&& (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
{
this->opd_shndx_ = (s - pshdrs) / shdr_size;
this->opd_address_ = shdr.get_sh_addr();
opd_size = convert_to_section_size_type(shdr.get_sh_size());
opd = this->get_view(shdr.get_sh_offset(), opd_size,
true, false);
break;
}
}
// Build set of executable sections.
// Using a set is probably overkill. There is likely to be only
// a few executable sections, typically .init, .text and .fini,
// and they are generally grouped together.
typedef std::set<Sec_info> Exec_sections;
Exec_sections exec_sections;
s = pshdrs;
for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
{
typename elfcpp::Shdr<size, big_endian> shdr(s);
if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
&& ((shdr.get_sh_flags()
& (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
&& shdr.get_sh_size() != 0)
{
exec_sections.insert(Sec_info(shdr.get_sh_addr(),
shdr.get_sh_size(), i));
}
}
if (exec_sections.empty())
return;
// Look over the OPD entries. This is complicated by the fact
// that some binaries will use two-word entries while others
// will use the standard three-word entries. In most cases
// the third word (the environment pointer for languages like
// Pascal) is unused and will be zero. If the third word is
// used it should not be pointing into executable sections,
// I think.
this->init_opd(opd_size);
for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
{
typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
const Valtype* valp = reinterpret_cast<const Valtype*>(p);
Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
if (val == 0)
// Chances are that this is the third word of an OPD entry.
continue;
typename Exec_sections::const_iterator e
= exec_sections.upper_bound(Sec_info(val, 0, 0));
if (e != exec_sections.begin())
{
--e;
if (e->start <= val && val < e->start + e->len)
{
// We have an address in an executable section.
// VAL ought to be the function entry, set it up.
this->set_opd_ent(p - opd, e->shndx, val);
// Skip second word of OPD entry, the TOC pointer.
p += 8;
}
}
// If we didn't match any executable sections, we likely
// have a non-zero third word in the OPD entry.
}
}
}
// Set up some symbols.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::do_define_standard_symbols(
Symbol_table* symtab,
Layout* layout)
{
if (size == 32)
{
// Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
// undefined when scanning relocs (and thus requires
// non-relative dynamic relocs). The proper value will be
// updated later.
Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
if (gotsym != NULL && gotsym->is_undefined())
{
Target_powerpc<size, big_endian>* target =
static_cast<Target_powerpc<size, big_endian>*>(
parameters->sized_target<size, big_endian>());
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
got, 0, 0,
elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
// Define _SDA_BASE_ at the start of the .sdata section + 32768.
Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
if (sdasym != NULL && sdasym->is_undefined())
{
Output_data_space* sdata = new Output_data_space(4, "** sdata");
Output_section* os
= layout->add_output_section_data(".sdata", 0,
elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE,
sdata, ORDER_SMALL_DATA, false);
symtab->define_in_output_data("_SDA_BASE_", NULL,
Symbol_table::PREDEFINED,
os, 32768, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
0, false, false);
}
}
}
// Set up PowerPC target specific relobj.
template<int size, bool big_endian>
Object*
Target_powerpc<size, big_endian>::do_make_elf_object(
const std::string& name,
Input_file* input_file,
off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
int et = ehdr.get_e_type();
// ET_EXEC files are valid input for --just-symbols/-R,
// and we treat them as relocatable objects.
if (et == elfcpp::ET_REL
|| (et == elfcpp::ET_EXEC && input_file->just_symbols()))
{
Powerpc_relobj<size, big_endian>* obj =
new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
obj->setup();
return obj;
}
else if (et == elfcpp::ET_DYN)
{
Powerpc_dynobj<size, big_endian>* obj =
new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
obj->setup();
return obj;
}
else
{
gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
return NULL;
}
}
template<int size, bool big_endian>
class Output_data_got_powerpc : public Output_data_got<size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
: Output_data_got<size, big_endian>(),
symtab_(symtab), layout_(layout),
header_ent_cnt_(size == 32 ? 3 : 1),
header_index_(size == 32 ? 0x2000 : 0)
{ }
class Got_entry;
// Create a new GOT entry and return its offset.
unsigned int
add_got_entry(Got_entry got_entry)
{
this->reserve_ent();
return Output_data_got<size, big_endian>::add_got_entry(got_entry);
}
// Create a pair of new GOT entries and return the offset of the first.
unsigned int
add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
{
this->reserve_ent(2);
return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
got_entry_2);
}
unsigned int
add_constant_pair(Valtype c1, Valtype c2)
{
this->reserve_ent(2);
unsigned int got_offset = this->add_constant(c1);
this->add_constant(c2);
return got_offset;
}
// Offset of _GLOBAL_OFFSET_TABLE_.
unsigned int
g_o_t() const
{
return this->got_offset(this->header_index_);
}
// Offset of base used to access the GOT/TOC.
// The got/toc pointer reg will be set to this value.
Valtype
got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
{
if (size == 32)
return this->g_o_t();
else
return (this->output_section()->address()
+ object->toc_base_offset()
- this->address());
}
// Ensure our GOT has a header.
void
set_final_data_size()
{
if (this->header_ent_cnt_ != 0)
this->make_header();
Output_data_got<size, big_endian>::set_final_data_size();
}
// First word of GOT header needs some values that are not
// handled by Output_data_got so poke them in here.
// For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
void
do_write(Output_file* of)
{
Valtype val = 0;
if (size == 32 && this->layout_->dynamic_data() != NULL)
val = this->layout_->dynamic_section()->address();
if (size == 64)
val = this->output_section()->address() + 0x8000;
this->replace_constant(this->header_index_, val);
Output_data_got<size, big_endian>::do_write(of);
}
private:
void
reserve_ent(unsigned int cnt = 1)
{
if (this->header_ent_cnt_ == 0)
return;
if (this->num_entries() + cnt > this->header_index_)
this->make_header();
}
void
make_header()
{
this->header_ent_cnt_ = 0;
this->header_index_ = this->num_entries();
if (size == 32)
{
Output_data_got<size, big_endian>::add_constant(0);
Output_data_got<size, big_endian>::add_constant(0);
Output_data_got<size, big_endian>::add_constant(0);
// Define _GLOBAL_OFFSET_TABLE_ at the header
Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
if (gotsym != NULL)
{
Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
sym->set_value(this->g_o_t());
}
else
this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
this, this->g_o_t(), 0,
elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
else
Output_data_got<size, big_endian>::add_constant(0);
}
// Stashed pointers.
Symbol_table* symtab_;
Layout* layout_;
// GOT header size.
unsigned int header_ent_cnt_;
// GOT header index.
unsigned int header_index_;
};
// Get the GOT section, creating it if necessary.
template<int size, bool big_endian>
Output_data_got_powerpc<size, big_endian>*
Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
this->got_
= new Output_data_got_powerpc<size, big_endian>(symtab, layout);
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
this->got_, ORDER_DATA, false);
}
return this->got_;
}
// Get the dynamic reloc section, creating it if necessary.
template<int size, bool big_endian>
typename Target_powerpc<size, big_endian>::Reloc_section*
Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
{
if (this->rela_dyn_ == NULL)
{
gold_assert(layout != NULL);
this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rela_dyn_,
ORDER_DYNAMIC_RELOCS, false);
}
return this->rela_dyn_;
}
// Similarly, but for ifunc symbols get the one for ifunc.
template<int size, bool big_endian>
typename Target_powerpc<size, big_endian>::Reloc_section*
Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
Layout* layout,
bool for_ifunc)
{
if (!for_ifunc)
return this->rela_dyn_section(layout);
if (this->iplt_ == NULL)
this->make_iplt_section(symtab, layout);
return this->iplt_->rel_plt();
}
class Stub_control
{
public:
// Determine the stub group size. The group size is the absolute
// value of the parameter --stub-group-size. If --stub-group-size
// is passed a negative value, we restrict stubs to be always before
// the stubbed branches.
Stub_control(int32_t size)
: state_(NO_GROUP), stub_group_size_(abs(size)),
stub14_group_size_(abs(size)),
stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
group_end_addr_(0), owner_(NULL), output_section_(NULL)
{
if (stub_group_size_ == 1)
{
// Default values.
if (stubs_always_before_branch_)
{
stub_group_size_ = 0x1e00000;
stub14_group_size_ = 0x7800;
}
else
{
stub_group_size_ = 0x1c00000;
stub14_group_size_ = 0x7000;
}
suppress_size_errors_ = true;
}
}
// Return true iff input section can be handled by current stub
// group.
bool
can_add_to_stub_group(Output_section* o,
const Output_section::Input_section* i,
bool has14);
const Output_section::Input_section*
owner()
{ return owner_; }
Output_section*
output_section()
{ return output_section_; }
private:
typedef enum
{
NO_GROUP,
FINDING_STUB_SECTION,
HAS_STUB_SECTION
} State;
State state_;
uint32_t stub_group_size_;
uint32_t stub14_group_size_;
bool stubs_always_before_branch_;
bool suppress_size_errors_;
uint64_t group_end_addr_;
const Output_section::Input_section* owner_;
Output_section* output_section_;
};
// Return true iff input section can be handled by current stub
// group.
bool
Stub_control::can_add_to_stub_group(Output_section* o,
const Output_section::Input_section* i,
bool has14)
{
uint32_t group_size
= has14 ? this->stub14_group_size_ : this->stub_group_size_;
bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
uint64_t this_size;
uint64_t start_addr = o->address();
if (whole_sec)
// .init and .fini sections are pasted together to form a single
// function. We can't be adding stubs in the middle of the function.
this_size = o->data_size();
else
{
start_addr += i->relobj()->output_section_offset(i->shndx());
this_size = i->data_size();
}
uint64_t end_addr = start_addr + this_size;
bool toobig = this_size > group_size;
if (toobig && !this->suppress_size_errors_)
gold_warning(_("%s:%s exceeds group size"),
i->relobj()->name().c_str(),
i->relobj()->section_name(i->shndx()).c_str());
if (this->state_ != HAS_STUB_SECTION
&& (!whole_sec || this->output_section_ != o)
&& (this->state_ == NO_GROUP
|| this->group_end_addr_ - end_addr < group_size))
{
this->owner_ = i;
this->output_section_ = o;
}
if (this->state_ == NO_GROUP)
{
this->state_ = FINDING_STUB_SECTION;
this->group_end_addr_ = end_addr;
}
else if (this->group_end_addr_ - start_addr < group_size)
;
// Adding this section would make the group larger than GROUP_SIZE.
else if (this->state_ == FINDING_STUB_SECTION
&& !this->stubs_always_before_branch_
&& !toobig)
{
// But wait, there's more! Input sections up to GROUP_SIZE
// bytes before the stub table can be handled by it too.
this->state_ = HAS_STUB_SECTION;
this->group_end_addr_ = end_addr;
}
else
{
this->state_ = NO_GROUP;
return false;
}
return true;
}
// Look over all the input sections, deciding where to place stubs.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::group_sections(Layout* layout,
const Task*)
{
Stub_control stub_control(parameters->options().stub_group_size());
// Group input sections and insert stub table
Stub_table<size, big_endian>* stub_table = NULL;
Layout::Section_list section_list;
layout->get_executable_sections(&section_list);
std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
o != section_list.rend();
++o)
{
typedef Output_section::Input_section_list Input_section_list;
for (Input_section_list::const_reverse_iterator i
= (*o)->input_sections().rbegin();
i != (*o)->input_sections().rend();
++i)
{
if (i->is_input_section())
{
Powerpc_relobj<size, big_endian>* ppcobj = static_cast
<Powerpc_relobj<size, big_endian>*>(i->relobj());
bool has14 = ppcobj->has_14bit_branch(i->shndx());
if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
{
stub_table->init(stub_control.owner(),
stub_control.output_section());
stub_table = NULL;
}
if (stub_table == NULL)
stub_table = this->new_stub_table();
ppcobj->set_stub_table(i->shndx(), stub_table);
}
}
}
if (stub_table != NULL)
{
const Output_section::Input_section* i = stub_control.owner();
if (!i->is_input_section())
{
// Corner case. A new stub group was made for the first
// section (last one looked at here) for some reason, but
// the first section is already being used as the owner for
// a stub table for following sections. Force it into that
// stub group.
gold_assert(this->stub_tables_.size() >= 2);
this->stub_tables_.pop_back();
delete stub_table;
Powerpc_relobj<size, big_endian>* ppcobj = static_cast
<Powerpc_relobj<size, big_endian>*>(i->relobj());
ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
}
else
stub_table->init(i, stub_control.output_section());
}
}
// If this branch needs a plt call stub, or a long branch stub, make one.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::Branch_info::make_stub(
Stub_table<size, big_endian>* stub_table,
Stub_table<size, big_endian>* ifunc_stub_table,
Symbol_table* symtab) const
{
Symbol* sym = this->object_->global_symbol(this->r_sym_);
if (sym != NULL && sym->is_forwarder())
sym = symtab->resolve_forwards(sym);
const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
if (gsym != NULL
? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
: this->object_->local_has_plt_offset(this->r_sym_))
{
if (stub_table == NULL)
stub_table = this->object_->stub_table(this->shndx_);
if (stub_table == NULL)
{
// This is a ref from a data section to an ifunc symbol.
stub_table = ifunc_stub_table;
}
gold_assert(stub_table != NULL);
if (gsym != NULL)
stub_table->add_plt_call_entry(this->object_, gsym,
this->r_type_, this->addend_);
else
stub_table->add_plt_call_entry(this->object_, this->r_sym_,
this->r_type_, this->addend_);
}
else
{
unsigned int max_branch_offset;
if (this->r_type_ == elfcpp::R_POWERPC_REL14
|| this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
|| this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
max_branch_offset = 1 << 15;
else if (this->r_type_ == elfcpp::R_POWERPC_REL24
|| this->r_type_ == elfcpp::R_PPC_PLTREL24
|| this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
max_branch_offset = 1 << 25;
else
return;
Address from = this->object_->get_output_section_offset(this->shndx_);
gold_assert(from != invalid_address);
from += (this->object_->output_section(this->shndx_)->address()
+ this->offset_);
Address to;
if (gsym != NULL)
{
switch (gsym->source())
{
case Symbol::FROM_OBJECT:
{
Object* symobj = gsym->object();
if (symobj->is_dynamic()
|| symobj->pluginobj() != NULL)
return;
bool is_ordinary;
unsigned int shndx = gsym->shndx(&is_ordinary);
if (shndx == elfcpp::SHN_UNDEF)
return;
}
break;
case Symbol::IS_UNDEFINED:
return;
default:
break;
}
Symbol_table::Compute_final_value_status status;
to = symtab->compute_final_value<size>(gsym, &status);
if (status != Symbol_table::CFVS_OK)
return;
}
else
{
const Symbol_value<size>* psymval
= this->object_->local_symbol(this->r_sym_);
Symbol_value<size> symval;
typedef Sized_relobj_file<size, big_endian> ObjType;
typename ObjType::Compute_final_local_value_status status
= this->object_->compute_final_local_value(this->r_sym_, psymval,
&symval, symtab);
if (status != ObjType::CFLV_OK
|| !symval.has_output_value())
return;
to = symval.value(this->object_, 0);
}
to += this->addend_;
if (stub_table == NULL)
stub_table = this->object_->stub_table(this->shndx_);
if (size == 64 && is_branch_reloc(this->r_type_))
{
unsigned int dest_shndx;
Target_powerpc<size, big_endian>* target =
static_cast<Target_powerpc<size, big_endian>*>(
parameters->sized_target<size, big_endian>());
to = target->symval_for_branch(symtab, to, gsym,
this->object_, &dest_shndx);
}
Address delta = to - from;
if (delta + max_branch_offset >= 2 * max_branch_offset)
{
if (stub_table == NULL)
{
gold_warning(_("%s:%s: branch in non-executable section,"
" no long branch stub for you"),
this->object_->name().c_str(),
this->object_->section_name(this->shndx_).c_str());
return;
}
stub_table->add_long_branch_entry(this->object_, to);
}
}
}
// Relaxation hook. This is where we do stub generation.
template<int size, bool big_endian>
bool
Target_powerpc<size, big_endian>::do_relax(int pass,
const Input_objects*,
Symbol_table* symtab,
Layout* layout,
const Task* task)
{
unsigned int prev_brlt_size = 0;
if (pass == 1)
{
bool thread_safe = parameters->options().plt_thread_safe();
if (size == 64 && !parameters->options().user_set_plt_thread_safe())
{
static const char* const thread_starter[] =
{
"pthread_create",
/* libstdc++ */
"_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
/* librt */
"aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
"mq_notify", "create_timer",
/* libanl */
"getaddrinfo_a",
/* libgomp */
"GOMP_parallel_start",
"GOMP_parallel_loop_static_start",
"GOMP_parallel_loop_dynamic_start",
"GOMP_parallel_loop_guided_start",
"GOMP_parallel_loop_runtime_start",
"GOMP_parallel_sections_start",
};
if (parameters->options().shared())
thread_safe = true;
else
{
for (unsigned int i = 0;
i < sizeof(thread_starter) / sizeof(thread_starter[0]);
i++)
{
Symbol* sym = symtab->lookup(thread_starter[i], NULL);
thread_safe = (sym != NULL
&& sym->in_reg()
&& sym->in_real_elf());
if (thread_safe)
break;
}
}
}
this->plt_thread_safe_ = thread_safe;
this->group_sections(layout, task);
}
// We need address of stub tables valid for make_stub.
for (typename Stub_tables::iterator p = this->stub_tables_.begin();
p != this->stub_tables_.end();
++p)
{
const Powerpc_relobj<size, big_endian>* object
= static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
Address off = object->get_output_section_offset((*p)->shndx());
gold_assert(off != invalid_address);
Output_section* os = (*p)->output_section();
(*p)->set_address_and_size(os, off);
}
if (pass != 1)
{
// Clear plt call stubs, long branch stubs and branch lookup table.
prev_brlt_size = this->branch_lookup_table_.size();
this->branch_lookup_table_.clear();
for (typename Stub_tables::iterator p = this->stub_tables_.begin();
p != this->stub_tables_.end();
++p)
{
(*p)->clear_stubs();
}
}
// Build all the stubs.
Stub_table<size, big_endian>* ifunc_stub_table
= this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
Stub_table<size, big_endian>* one_stub_table
= this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
for (typename Branches::const_iterator b = this->branch_info_.begin();
b != this->branch_info_.end();
b++)
{
b->make_stub(one_stub_table, ifunc_stub_table, symtab);
}
// Did anything change size?
unsigned int num_huge_branches = this->branch_lookup_table_.size();
bool again = num_huge_branches != prev_brlt_size;
if (size == 64 && num_huge_branches != 0)
this->make_brlt_section(layout);
if (size == 64 && again)
this->brlt_section_->set_current_size(num_huge_branches);
typedef Unordered_set<Output_section*> Output_sections;
Output_sections os_need_update;
for (typename Stub_tables::iterator p = this->stub_tables_.begin();
p != this->stub_tables_.end();
++p)
{
if ((*p)->size_update())
{
again = true;
(*p)->add_eh_frame(layout);
os_need_update.insert((*p)->output_section());
}
}
// Set output section offsets for all input sections in an output
// section that just changed size. Anything past the stubs will
// need updating.
for (typename Output_sections::iterator p = os_need_update.begin();
p != os_need_update.end();
p++)
{
Output_section* os = *p;
Address off = 0;
typedef Output_section::Input_section_list Input_section_list;
for (Input_section_list::const_iterator i = os->input_sections().begin();
i != os->input_sections().end();
++i)
{
off = align_address(off, i->addralign());
if (i->is_input_section() || i->is_relaxed_input_section())
i->relobj()->set_section_offset(i->shndx(), off);
if (i->is_relaxed_input_section())
{
Stub_table<size, big_endian>* stub_table
= static_cast<Stub_table<size, big_endian>*>(
i->relaxed_input_section());
off += stub_table->set_address_and_size(os, off);
}
else
off += i->data_size();
}
// If .branch_lt is part of this output section, then we have
// just done the offset adjustment.
os->clear_section_offsets_need_adjustment();
}
if (size == 64
&& !again
&& num_huge_branches != 0
&& parameters->options().output_is_position_independent())
{
// Fill in the BRLT relocs.
this->brlt_section_->reset_brlt_sizes();
for (typename Branch_lookup_table::const_iterator p
= this->branch_lookup_table_.begin();
p != this->branch_lookup_table_.end();
++p)
{
this->brlt_section_->add_reloc(p->first, p->second);
}
this->brlt_section_->finalize_brlt_sizes();
}
return again;
}
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
unsigned char* oview,
uint64_t* paddress,
off_t* plen) const
{
uint64_t address = plt->address();
off_t len = plt->data_size();
if (plt == this->glink_)
{
// See Output_data_glink::do_write() for glink contents.
if (size == 64)
{
// There is one word before __glink_PLTresolve
address += 8;
len -= 8;
}
else if (parameters->options().output_is_position_independent())
{
// There are two FDEs for a position independent glink.
// The first covers the branch table, the second
// __glink_PLTresolve at the end of glink.
off_t resolve_size = this->glink_->pltresolve_size;
if (oview[9] == 0)
len -= resolve_size;
else
{
address += len - resolve_size;
len = resolve_size;
}
}
}
else
{
// Must be a stub table.
const Stub_table<size, big_endian>* stub_table
= static_cast<const Stub_table<size, big_endian>*>(plt);
uint64_t stub_address = stub_table->stub_address();
len -= stub_address - address;
address = stub_address;
}
*paddress = address;
*plen = len;
}
// A class to handle the PLT data.
template<int size, bool big_endian>
class Output_data_plt_powerpc : public Output_section_data_build
{
public:
typedef Output_data_reloc<elfcpp::SHT_RELA, true,
size, big_endian> Reloc_section;
Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
Reloc_section* plt_rel,
unsigned int reserved_size,
const char* name)
: Output_section_data_build(size == 32 ? 4 : 8),
rel_(plt_rel),
targ_(targ),
initial_plt_entry_size_(reserved_size),
name_(name)
{ }
// Add an entry to the PLT.
void
add_entry(Symbol*);
void
add_ifunc_entry(Symbol*);
void
add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
// Return the .rela.plt section data.
Reloc_section*
rel_plt() const
{
return this->rel_;
}
// Return the number of PLT entries.
unsigned int
entry_count() const
{
if (this->current_data_size() == 0)
return 0;
return ((this->current_data_size() - this->initial_plt_entry_size_)
/ plt_entry_size);
}
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset()
{ return this->initial_plt_entry_size_; }
// Return the size of a PLT entry.
static unsigned int
get_plt_entry_size()
{ return plt_entry_size; }
protected:
void
do_adjust_output_section(Output_section* os)
{
os->set_entsize(0);
}
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, this->name_); }
private:
// The size of an entry in the PLT.
static const int plt_entry_size = size == 32 ? 4 : 24;
// Write out the PLT data.
void
do_write(Output_file*);
// The reloc section.
Reloc_section* rel_;
// Allows access to .glink for do_write.
Target_powerpc<size, big_endian>* targ_;
// The size of the first reserved entry.
int initial_plt_entry_size_;
// What to report in map file.
const char *name_;
};
// Add an entry to the PLT.
template<int size, bool big_endian>
void
Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
{
if (!gsym->has_plt_offset())
{
section_size_type off = this->current_data_size();
if (off == 0)
off += this->first_plt_entry_offset();
gsym->set_plt_offset(off);
gsym->set_needs_dynsym_entry();
unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
this->rel_->add_global(gsym, dynrel, this, off, 0);
off += plt_entry_size;
this->set_current_data_size(off);
}
}
// Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
template<int size, bool big_endian>
void
Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
{
if (!gsym->has_plt_offset())
{
section_size_type off = this->current_data_size();
gsym->set_plt_offset(off);
unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
if (size == 64)
dynrel = elfcpp::R_PPC64_JMP_IREL;
this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
off += plt_entry_size;
this->set_current_data_size(off);
}
}
// Add an entry for a local ifunc symbol to the IPLT.
template<int size, bool big_endian>
void
Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
Sized_relobj_file<size, big_endian>* relobj,
unsigned int local_sym_index)
{
if (!relobj->local_has_plt_offset(local_sym_index))
{
section_size_type off = this->current_data_size();
relobj->set_local_plt_offset(local_sym_index, off);
unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
if (size == 64)
dynrel = elfcpp::R_PPC64_JMP_IREL;
this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
this, off, 0);
off += plt_entry_size;
this->set_current_data_size(off);
}
}
static const uint32_t add_0_11_11 = 0x7c0b5a14;
static const uint32_t add_2_2_11 = 0x7c425a14;
static const uint32_t add_3_3_2 = 0x7c631214;
static const uint32_t add_3_3_13 = 0x7c636a14;
static const uint32_t add_11_0_11 = 0x7d605a14;
static const uint32_t add_12_2_11 = 0x7d825a14;
static const uint32_t add_12_12_11 = 0x7d8c5a14;
static const uint32_t addi_11_11 = 0x396b0000;
static const uint32_t addi_12_12 = 0x398c0000;
static const uint32_t addi_2_2 = 0x38420000;
static const uint32_t addi_3_2 = 0x38620000;
static const uint32_t addi_3_3 = 0x38630000;
static const uint32_t addis_0_2 = 0x3c020000;
static const uint32_t addis_0_13 = 0x3c0d0000;
static const uint32_t addis_11_11 = 0x3d6b0000;
static const uint32_t addis_11_30 = 0x3d7e0000;
static const uint32_t addis_12_12 = 0x3d8c0000;
static const uint32_t addis_12_2 = 0x3d820000;
static const uint32_t addis_3_2 = 0x3c620000;
static const uint32_t addis_3_13 = 0x3c6d0000;
static const uint32_t b = 0x48000000;
static const uint32_t bcl_20_31 = 0x429f0005;
static const uint32_t bctr = 0x4e800420;
static const uint32_t blr = 0x4e800020;
static const uint32_t blrl = 0x4e800021;
static const uint32_t bnectr_p4 = 0x4ce20420;
static const uint32_t cmpldi_2_0 = 0x28220000;
static const uint32_t cror_15_15_15 = 0x4def7b82;
static const uint32_t cror_31_31_31 = 0x4ffffb82;
static const uint32_t ld_0_1 = 0xe8010000;
static const uint32_t ld_0_12 = 0xe80c0000;
static const uint32_t ld_11_12 = 0xe96c0000;
static const uint32_t ld_11_2 = 0xe9620000;
static const uint32_t ld_2_1 = 0xe8410000;
static const uint32_t ld_2_11 = 0xe84b0000;
static const uint32_t ld_2_12 = 0xe84c0000;
static const uint32_t ld_2_2 = 0xe8420000;
static const uint32_t lfd_0_1 = 0xc8010000;
static const uint32_t li_0_0 = 0x38000000;
static const uint32_t li_12_0 = 0x39800000;
static const uint32_t lis_0_0 = 0x3c000000;
static const uint32_t lis_11 = 0x3d600000;
static const uint32_t lis_12 = 0x3d800000;
static const uint32_t lwz_0_12 = 0x800c0000;
static const uint32_t lwz_11_11 = 0x816b0000;
static const uint32_t lwz_11_30 = 0x817e0000;
static const uint32_t lwz_12_12 = 0x818c0000;
static const uint32_t lwzu_0_12 = 0x840c0000;
static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
static const uint32_t mflr_0 = 0x7c0802a6;
static const uint32_t mflr_11 = 0x7d6802a6;
static const uint32_t mflr_12 = 0x7d8802a6;
static const uint32_t mtctr_0 = 0x7c0903a6;
static const uint32_t mtctr_11 = 0x7d6903a6;
static const uint32_t mtctr_12 = 0x7d8903a6;
static const uint32_t mtlr_0 = 0x7c0803a6;
static const uint32_t mtlr_12 = 0x7d8803a6;
static const uint32_t nop = 0x60000000;
static const uint32_t ori_0_0_0 = 0x60000000;
static const uint32_t std_0_1 = 0xf8010000;
static const uint32_t std_0_12 = 0xf80c0000;
static const uint32_t std_2_1 = 0xf8410000;
static const uint32_t stfd_0_1 = 0xd8010000;
static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
static const uint32_t sub_11_11_12 = 0x7d6c5850;
static const uint32_t xor_11_11_11 = 0x7d6b5a78;
// Write out the PLT.
template<int size, bool big_endian>
void
Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
{
if (size == 32 && this->name_[3] != 'I')
{
const section_size_type offset = this->offset();
const section_size_type oview_size
= convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
unsigned char* pov = oview;
unsigned char* endpov = oview + oview_size;
// The address of the .glink branch table
const Output_data_glink<size, big_endian>* glink
= this->targ_->glink_section();
elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
while (pov < endpov)
{
elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
pov += 4;
branch_tab += 4;
}
of->write_output_view(offset, oview_size, oview);
}
}
// Create the PLT section.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
Layout* layout)
{
if (this->plt_ == NULL)
{
if (this->got_ == NULL)
this->got_section(symtab, layout);
if (this->glink_ == NULL)
make_glink_section(layout);
// Ensure that .rela.dyn always appears before .rela.plt This is
// necessary due to how, on PowerPC and some other targets, .rela.dyn
// needs to include .rela.plt in its range.
this->rela_dyn_section(layout);
Reloc_section* plt_rel = new Reloc_section(false);
layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, plt_rel,
ORDER_DYNAMIC_PLT_RELOCS, false);
this->plt_
= new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
size == 32 ? 0 : 24,
"** PLT");
layout->add_output_section_data(".plt",
(size == 32
? elfcpp::SHT_PROGBITS
: elfcpp::SHT_NOBITS),
elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
this->plt_,
(size == 32
? ORDER_SMALL_DATA
: ORDER_SMALL_BSS),
false);
}
}
// Create the IPLT section.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
Layout* layout)
{
if (this->iplt_ == NULL)
{
this->make_plt_section(symtab, layout);
Reloc_section* iplt_rel = new Reloc_section(false);
this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
this->iplt_
= new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
0, "** IPLT");
this->plt_->output_section()->add_output_section_data(this->iplt_);
}
}
// A section for huge long branch addresses, similar to plt section.
template<int size, bool big_endian>
class Output_data_brlt_powerpc : public Output_section_data_build
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef Output_data_reloc<elfcpp::SHT_RELA, true,
size, big_endian> Reloc_section;
Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
Reloc_section* brlt_rel)
: Output_section_data_build(size == 32 ? 4 : 8),
rel_(brlt_rel),
targ_(targ)
{ }
void
reset_brlt_sizes()
{
this->reset_data_size();
this->rel_->reset_data_size();
}
void
finalize_brlt_sizes()
{
this->finalize_data_size();
this->rel_->finalize_data_size();
}
// Add a reloc for an entry in the BRLT.
void
add_reloc(Address to, unsigned int off)
{ this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
// Update section and reloc section size.
void
set_current_size(unsigned int num_branches)
{
this->reset_address_and_file_offset();
this->set_current_data_size(num_branches * 16);
this->finalize_data_size();
Output_section* os = this->output_section();
os->set_section_offsets_need_adjustment();
if (this->rel_ != NULL)
{
unsigned int reloc_size
= Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
this->rel_->reset_address_and_file_offset();
this->rel_->set_current_data_size(num_branches * reloc_size);
this->rel_->finalize_data_size();
Output_section* os = this->rel_->output_section();
os->set_section_offsets_need_adjustment();
}
}
protected:
void
do_adjust_output_section(Output_section* os)
{
os->set_entsize(0);
}
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, "** BRLT"); }
private:
// Write out the BRLT data.
void
do_write(Output_file*);
// The reloc section.
Reloc_section* rel_;
Target_powerpc<size, big_endian>* targ_;
};
// Make the branch lookup table section.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
{
if (size == 64 && this->brlt_section_ == NULL)
{
Reloc_section* brlt_rel = NULL;
bool is_pic = parameters->options().output_is_position_independent();
if (is_pic)
{
// When PIC we can't fill in .branch_lt (like .plt it can be
// a bss style section) but must initialise at runtime via
// dynamic relocats.
this->rela_dyn_section(layout);
brlt_rel = new Reloc_section(false);
this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
}
this->brlt_section_
= new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
if (this->plt_ && is_pic)
this->plt_->output_section()
->add_output_section_data(this->brlt_section_);
else
layout->add_output_section_data(".branch_lt",
(is_pic ? elfcpp::SHT_NOBITS
: elfcpp::SHT_PROGBITS),
elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
this->brlt_section_,
(is_pic ? ORDER_SMALL_BSS
: ORDER_SMALL_DATA),
false);
}
}
// Write out .branch_lt when non-PIC.
template<int size, bool big_endian>
void
Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
{
if (size == 64 && !parameters->options().output_is_position_independent())
{
const section_size_type offset = this->offset();
const section_size_type oview_size
= convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
this->targ_->write_branch_lookup_table(oview);
of->write_output_view(offset, oview_size, oview);
}
}
static inline uint32_t
l(uint32_t a)
{
return a & 0xffff;
}
static inline uint32_t
hi(uint32_t a)
{
return l(a >> 16);
}
static inline uint32_t
ha(uint32_t a)
{
return hi(a + 0x8000);
}
template<int size>
struct Eh_cie
{
static const unsigned char eh_frame_cie[12];
};
template<int size>
const unsigned char Eh_cie<size>::eh_frame_cie[] =
{
1, // CIE version.
'z', 'R', 0, // Augmentation string.
4, // Code alignment.
0x80 - size / 8 , // Data alignment.
65, // RA reg.
1, // Augmentation size.
(elfcpp::DW_EH_PE_pcrel
| elfcpp::DW_EH_PE_sdata4), // FDE encoding.
elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
};
// Describe __glink_PLTresolve use of LR, 64-bit version.
static const unsigned char glink_eh_frame_fde_64[] =
{
0, 0, 0, 0, // Replaced with offset to .glink.
0, 0, 0, 0, // Replaced with size of .glink.
0, // Augmentation size.
elfcpp::DW_CFA_advance_loc + 1,
elfcpp::DW_CFA_register, 65, 12,
elfcpp::DW_CFA_advance_loc + 4,
elfcpp::DW_CFA_restore_extended, 65
};
// Describe __glink_PLTresolve use of LR, 32-bit version.
static const unsigned char glink_eh_frame_fde_32[] =
{
0, 0, 0, 0, // Replaced with offset to .glink.
0, 0, 0, 0, // Replaced with size of .glink.
0, // Augmentation size.
elfcpp::DW_CFA_advance_loc + 2,
elfcpp::DW_CFA_register, 65, 0,
elfcpp::DW_CFA_advance_loc + 4,
elfcpp::DW_CFA_restore_extended, 65
};
static const unsigned char default_fde[] =
{
0, 0, 0, 0, // Replaced with offset to stubs.
0, 0, 0, 0, // Replaced with size of stubs.
0, // Augmentation size.
elfcpp::DW_CFA_nop, // Pad.
elfcpp::DW_CFA_nop,
elfcpp::DW_CFA_nop
};
template<bool big_endian>
static inline void
write_insn(unsigned char* p, uint32_t v)
{
elfcpp::Swap<32, big_endian>::writeval(p, v);
}
// Stub_table holds information about plt and long branch stubs.
// Stubs are built in an area following some input section determined
// by group_sections(). This input section is converted to a relaxed
// input section allowing it to be resized to accommodate the stubs
template<int size, bool big_endian>
class Stub_table : public Output_relaxed_input_section
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
static const Address invalid_address = static_cast<Address>(0) - 1;
Stub_table(Target_powerpc<size, big_endian>* targ)
: Output_relaxed_input_section(NULL, 0, 0),
targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
orig_data_size_(0), plt_size_(0), last_plt_size_(0),
branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
{ }
// Delayed Output_relaxed_input_section init.
void
init(const Output_section::Input_section*, Output_section*);
// Add a plt call stub.
void
add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
const Symbol*,
unsigned int,
Address);
void
add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
unsigned int,
unsigned int,
Address);
// Find a given plt call stub.
Address
find_plt_call_entry(const Symbol*) const;
Address
find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
unsigned int) const;
Address
find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
const Symbol*,
unsigned int,
Address) const;
Address
find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
unsigned int,
unsigned int,
Address) const;
// Add a long branch stub.
void
add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
Address
find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
Address) const;
void
clear_stubs()
{
this->plt_call_stubs_.clear();
this->plt_size_ = 0;
this->long_branch_stubs_.clear();
this->branch_size_ = 0;
}
Address
set_address_and_size(const Output_section* os, Address off)
{
Address start_off = off;
off += this->orig_data_size_;
Address my_size = this->plt_size_ + this->branch_size_;
if (my_size != 0)
off = align_address(off, this->stub_align());
// Include original section size and alignment padding in size
my_size += off - start_off;
this->reset_address_and_file_offset();
this->set_current_data_size(my_size);
this->set_address_and_file_offset(os->address() + start_off,
os->offset() + start_off);
return my_size;
}
Address
stub_address() const
{
return align_address(this->address() + this->orig_data_size_,
this->stub_align());
}
Address
stub_offset() const
{
return align_address(this->offset() + this->orig_data_size_,
this->stub_align());
}
section_size_type
plt_size() const
{ return this->plt_size_; }
bool
size_update()
{
Output_section* os = this->output_section();
if (os->addralign() < this->stub_align())
{
os->set_addralign(this->stub_align());
// FIXME: get rid of the insane checkpointing.
// We can't increase alignment of the input section to which
// stubs are attached; The input section may be .init which
// is pasted together with other .init sections to form a
// function. Aligning might insert zero padding resulting in
// sigill. However we do need to increase alignment of the
// output section so that the align_address() on offset in
// set_address_and_size() adds the same padding as the
// align_address() on address in stub_address().
// What's more, we need this alignment for the layout done in
// relaxation_loop_body() so that the output section starts at
// a suitably aligned address.
os->checkpoint_set_addralign(this->stub_align());
}
if (this->last_plt_size_ != this->plt_size_
|| this->last_branch_size_ != this->branch_size_)
{
this->last_plt_size_ = this->plt_size_;
this->last_branch_size_ = this->branch_size_;
return true;
}
return false;
}
// Add .eh_frame info for this stub section. Unlike other linker
// generated .eh_frame this is added late in the link, because we
// only want the .eh_frame info if this particular stub section is
// non-empty.
void
add_eh_frame(Layout* layout)
{
if (!this->eh_frame_added_)
{
if (!parameters->options().ld_generated_unwind_info())
return;
// Since we add stub .eh_frame info late, it must be placed
// after all other linker generated .eh_frame info so that
// merge mapping need not be updated for input sections.
// There is no provision to use a different CIE to that used
// by .glink.
if (!this->targ_->has_glink())
return;
layout->add_eh_frame_for_plt(this,
Eh_cie<size>::eh_frame_cie,
sizeof (Eh_cie<size>::eh_frame_cie),
default_fde,
sizeof (default_fde));
this->eh_frame_added_ = true;
}
}
Target_powerpc<size, big_endian>*
targ() const
{ return targ_; }
private:
class Plt_stub_ent;
class Plt_stub_ent_hash;
typedef Unordered_map<Plt_stub_ent, unsigned int,
Plt_stub_ent_hash> Plt_stub_entries;
// Alignment of stub section.
unsigned int
stub_align() const
{
if (size == 32)
return 16;
unsigned int min_align = 32;
unsigned int user_align = 1 << parameters->options().plt_align();
return std::max(user_align, min_align);
}
// Return the plt offset for the given call stub.
Address
plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
{
const Symbol* gsym = p->first.sym_;
if (gsym != NULL)
{
*is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false));
return gsym->plt_offset();
}
else
{
*is_iplt = true;
const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
unsigned int local_sym_index = p->first.locsym_;
return relobj->local_plt_offset(local_sym_index);
}
}
// Size of a given plt call stub.
unsigned int
plt_call_size(typename Plt_stub_entries::const_iterator p) const
{
if (size == 32)
return 16;
bool is_iplt;
Address plt_addr = this->plt_off(p, &is_iplt);
if (is_iplt)
plt_addr += this->targ_->iplt_section()->address();
else
plt_addr += this->targ_->plt_section()->address();
Address got_addr = this->targ_->got_section()->output_section()->address();
const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
<const Powerpc_relobj<size, big_endian>*>(p->first.object_);
got_addr += ppcobj->toc_base_offset();
Address off = plt_addr - got_addr;
bool static_chain = parameters->options().plt_static_chain();
bool thread_safe = this->targ_->plt_thread_safe();
unsigned int bytes = (4 * 5
+ 4 * static_chain
+ 8 * thread_safe
+ 4 * (ha(off) != 0)
+ 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
unsigned int align = 1 << parameters->options().plt_align();
if (align > 1)
bytes = (bytes + align - 1) & -align;
return bytes;
}
// Return long branch stub size.
unsigned int
branch_stub_size(Address to)
{
Address loc
= this->stub_address() + this->last_plt_size_ + this->branch_size_;
if (to - loc + (1 << 25) < 2 << 25)
return 4;
if (size == 64 || !parameters->options().output_is_position_independent())
return 16;
return 32;
}
// Write out stubs.
void
do_write(Output_file*);
// Plt call stub keys.
class Plt_stub_ent
{
public:
Plt_stub_ent(const Symbol* sym)
: sym_(sym), object_(0), addend_(0), locsym_(0)
{ }
Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
unsigned int locsym_index)
: sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
{ }
Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
const Symbol* sym,
unsigned int r_type,
Address addend)
: sym_(sym), object_(0), addend_(0), locsym_(0)
{
if (size != 32)
this->addend_ = addend;
else if (parameters->options().output_is_position_independent()
&& r_type == elfcpp::R_PPC_PLTREL24)
{
this->addend_ = addend;
if (this->addend_ >= 32768)
this->object_ = object;
}
}
Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
unsigned int locsym_index,
unsigned int r_type,
Address addend)
: sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
{
if (size != 32)
this->addend_ = addend;
else if (parameters->options().output_is_position_independent()
&& r_type == elfcpp::R_PPC_PLTREL24)
this->addend_ = addend;
}
bool operator==(const Plt_stub_ent& that) const
{
return (this->sym_ == that.sym_
&& this->object_ == that.object_
&& this->addend_ == that.addend_
&& this->locsym_ == that.locsym_);
}
const Symbol* sym_;
const Sized_relobj_file<size, big_endian>* object_;
typename elfcpp::Elf_types<size>::Elf_Addr addend_;
unsigned int locsym_;
};
class Plt_stub_ent_hash
{
public:
size_t operator()(const Plt_stub_ent& ent) const
{
return (reinterpret_cast<uintptr_t>(ent.sym_)
^ reinterpret_cast<uintptr_t>(ent.object_)
^ ent.addend_
^ ent.locsym_);
}
};
// Long branch stub keys.
class Branch_stub_ent
{
public:
Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
: dest_(to), toc_base_off_(0)
{
if (size == 64)
toc_base_off_ = obj->toc_base_offset();
}
bool operator==(const Branch_stub_ent& that) const
{
return (this->dest_ == that.dest_
&& (size == 32
|| this->toc_base_off_ == that.toc_base_off_));
}
Address dest_;
unsigned int toc_base_off_;
};
class Branch_stub_ent_hash
{
public:
size_t operator()(const Branch_stub_ent& ent) const
{ return ent.dest_ ^ ent.toc_base_off_; }
};
// In a sane world this would be a global.
Target_powerpc<size, big_endian>* targ_;
// Map sym/object/addend to stub offset.
Plt_stub_entries plt_call_stubs_;
// Map destination address to stub offset.
typedef Unordered_map<Branch_stub_ent, unsigned int,
Branch_stub_ent_hash> Branch_stub_entries;
Branch_stub_entries long_branch_stubs_;
// size of input section
section_size_type orig_data_size_;
// size of stubs
section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
// Whether .eh_frame info has been created for this stub section.
bool eh_frame_added_;
};
// Make a new stub table, and record.
template<int size, bool big_endian>
Stub_table<size, big_endian>*
Target_powerpc<size, big_endian>::new_stub_table()
{
Stub_table<size, big_endian>* stub_table
= new Stub_table<size, big_endian>(this);
this->stub_tables_.push_back(stub_table);
return stub_table;
}
// Delayed stub table initialisation, because we create the stub table
// before we know to which section it will be attached.
template<int size, bool big_endian>
void
Stub_table<size, big_endian>::init(
const Output_section::Input_section* owner,
Output_section* output_section)
{
this->set_relobj(owner->relobj());
this->set_shndx(owner->shndx());
this->set_addralign(this->relobj()->section_addralign(this->shndx()));
this->set_output_section(output_section);
this->orig_data_size_ = owner->current_data_size();
std::vector<Output_relaxed_input_section*> new_relaxed;
new_relaxed.push_back(this);
output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
}
// Add a plt call stub, if we do not already have one for this
// sym/object/addend combo.
template<int size, bool big_endian>
void
Stub_table<size, big_endian>::add_plt_call_entry(
const Sized_relobj_file<size, big_endian>* object,
const Symbol* gsym,
unsigned int r_type,
Address addend)
{
Plt_stub_ent ent(object, gsym, r_type, addend);
Address off = this->plt_size_;
std::pair<typename Plt_stub_entries::iterator, bool> p
= this->plt_call_stubs_.insert(std::make_pair(ent, off));
if (p.second)
this->plt_size_ = off + this->plt_call_size(p.first);
}
template<int size, bool big_endian>
void
Stub_table<size, big_endian>::add_plt_call_entry(
const Sized_relobj_file<size, big_endian>* object,
unsigned int locsym_index,
unsigned int r_type,
Address addend)
{
Plt_stub_ent ent(object, locsym_index, r_type, addend);
Address off = this->plt_size_;
std::pair<typename Plt_stub_entries::iterator, bool> p
= this->plt_call_stubs_.insert(std::make_pair(ent, off));
if (p.second)
this->plt_size_ = off + this->plt_call_size(p.first);
}
// Find a plt call stub.
template<int size, bool big_endian>
typename Stub_table<size, big_endian>::Address
Stub_table<size, big_endian>::find_plt_call_entry(
const Sized_relobj_file<size, big_endian>* object,
const Symbol* gsym,
unsigned int r_type,
Address addend) const
{
Plt_stub_ent ent(object, gsym, r_type, addend);
typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
}
template<int size, bool big_endian>
typename Stub_table<size, big_endian>::Address
Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
{
Plt_stub_ent ent(gsym);
typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
}
template<int size, bool big_endian>
typename Stub_table<size, big_endian>::Address
Stub_table<size, big_endian>::find_plt_call_entry(
const Sized_relobj_file<size, big_endian>* object,
unsigned int locsym_index,
unsigned int r_type,
Address addend) const
{
Plt_stub_ent ent(object, locsym_index, r_type, addend);
typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
}
template<int size, bool big_endian>
typename Stub_table<size, big_endian>::Address
Stub_table<size, big_endian>::find_plt_call_entry(
const Sized_relobj_file<size, big_endian>* object,
unsigned int locsym_index) const
{
Plt_stub_ent ent(object, locsym_index);
typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
}
// Add a long branch stub if we don't already have one to given
// destination.
template<int size, bool big_endian>
void
Stub_table<size, big_endian>::add_long_branch_entry(
const Powerpc_relobj<size, big_endian>* object,
Address to)
{
Branch_stub_ent ent(object, to);
Address off = this->branch_size_;
if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
{
unsigned int stub_size = this->branch_stub_size(to);
this->branch_size_ = off + stub_size;
if (size == 64 && stub_size != 4)
this->targ_->add_branch_lookup_table(to);
}
}
// Find long branch stub.
template<int size, bool big_endian>
typename Stub_table<size, big_endian>::Address
Stub_table<size, big_endian>::find_long_branch_entry(
const Powerpc_relobj<size, big_endian>* object,
Address to) const
{
Branch_stub_ent ent(object, to);
typename Branch_stub_entries::const_iterator p
= this->long_branch_stubs_.find(ent);
return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
}
// A class to handle .glink.
template<int size, bool big_endian>
class Output_data_glink : public Output_section_data
{
public:
static const int pltresolve_size = 16*4;
Output_data_glink(Target_powerpc<size, big_endian>* targ)
: Output_section_data(16), targ_(targ)
{ }
void
add_eh_frame(Layout* layout)
{
if (!parameters->options().ld_generated_unwind_info())
return;
if (size == 64)
layout->add_eh_frame_for_plt(this,
Eh_cie<64>::eh_frame_cie,
sizeof (Eh_cie<64>::eh_frame_cie),
glink_eh_frame_fde_64,
sizeof (glink_eh_frame_fde_64));
else
{
// 32-bit .glink can use the default since the CIE return
// address reg, LR, is valid.
layout->add_eh_frame_for_plt(this,
Eh_cie<32>::eh_frame_cie,
sizeof (Eh_cie<32>::eh_frame_cie),
default_fde,
sizeof (default_fde));
// Except where LR is used in a PIC __glink_PLTresolve.
if (parameters->options().output_is_position_independent())
layout->add_eh_frame_for_plt(this,
Eh_cie<32>::eh_frame_cie,
sizeof (Eh_cie<32>::eh_frame_cie),
glink_eh_frame_fde_32,
sizeof (glink_eh_frame_fde_32));
}
}
protected:
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** glink")); }
private:
void
set_final_data_size();
// Write out .glink
void
do_write(Output_file*);
// Allows access to .got and .plt for do_write.
Target_powerpc<size, big_endian>* targ_;
};
template<int size, bool big_endian>
void
Output_data_glink<size, big_endian>::set_final_data_size()
{
unsigned int count = this->targ_->plt_entry_count();
section_size_type total = 0;
if (count != 0)
{
if (size == 32)
{
// space for branch table
total += 4 * (count - 1);
total += -total & 15;
total += this->pltresolve_size;
}
else
{
total += this->pltresolve_size;
// space for branch table
total += 8 * count;
if (count > 0x8000)
total += 4 * (count - 0x8000);
}
}
this->set_data_size(total);
}
// Write out plt and long branch stub code.
template<int size, bool big_endian>
void
Stub_table<size, big_endian>::do_write(Output_file* of)
{
if (this->plt_call_stubs_.empty()
&& this->long_branch_stubs_.empty())
return;
const section_size_type start_off = this->offset();
const section_size_type off = this->stub_offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size() - (off - start_off));
unsigned char* const oview = of->get_output_view(off, oview_size);
unsigned char* p;
if (size == 64)
{
const Output_data_got_powerpc<size, big_endian>* got
= this->targ_->got_section();
Address got_os_addr = got->output_section()->address();
if (!this->plt_call_stubs_.empty())
{
// The base address of the .plt section.
Address plt_base = this->targ_->plt_section()->address();
Address iplt_base = invalid_address;
// Write out plt call stubs.
typename Plt_stub_entries::const_iterator cs;
for (cs = this->plt_call_stubs_.begin();
cs != this->plt_call_stubs_.end();
++cs)
{
bool is_iplt;
Address pltoff = this->plt_off(cs, &is_iplt);
Address plt_addr = pltoff;
if (is_iplt)
{
if (iplt_base == invalid_address)
iplt_base = this->targ_->iplt_section()->address();
plt_addr += iplt_base;
}
else
plt_addr += plt_base;
const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
<const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
Address got_addr = got_os_addr + ppcobj->toc_base_offset();
Address off = plt_addr - got_addr;
if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
gold_error(_("%s: linkage table error against `%s'"),
cs->first.object_->name().c_str(),
cs->first.sym_->demangled_name().c_str());
bool static_chain = parameters->options().plt_static_chain();
bool thread_safe = this->targ_->plt_thread_safe();
bool use_fake_dep = false;
Address cmp_branch_off = 0;
if (thread_safe)
{
unsigned int pltindex
= ((pltoff - this->targ_->first_plt_entry_offset())
/ this->targ_->plt_entry_size());
Address glinkoff
= (this->targ_->glink_section()->pltresolve_size
+ pltindex * 8);
if (pltindex > 32768)
glinkoff += (pltindex - 32768) * 4;
Address to
= this->targ_->glink_section()->address() + glinkoff;
Address from
= (this->stub_address() + cs->second + 24
+ 4 * (ha(off) != 0)
+ 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
+ 4 * static_chain);
cmp_branch_off = to - from;
use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
}
p = oview + cs->second;
if (ha(off) != 0)
{
write_insn<big_endian>(p, std_2_1 + 40), p += 4;
write_insn<big_endian>(p, addis_12_2 + ha(off)), p += 4;
write_insn<big_endian>(p, ld_11_12 + l(off)), p += 4;
if (ha(off + 8 + 8 * static_chain) != ha(off))
{
write_insn<big_endian>(p, addi_12_12 + l(off)), p += 4;
off = 0;
}
write_insn<big_endian>(p, mtctr_11), p += 4;
if (use_fake_dep)
{
write_insn<big_endian>(p, xor_11_11_11), p += 4;
write_insn<big_endian>(p, add_12_12_11), p += 4;
}
write_insn<big_endian>(p, ld_2_12 + l(off + 8)), p += 4;
if (static_chain)
write_insn<big_endian>(p, ld_11_12 + l(off + 16)), p += 4;
}
else
{
write_insn<big_endian>(p, std_2_1 + 40), p += 4;
write_insn<big_endian>(p, ld_11_2 + l(off)), p += 4;
if (ha(off + 8 + 8 * static_chain) != ha(off))
{
write_insn<big_endian>(p, addi_2_2 + l(off)), p += 4;
off = 0;
}
write_insn<big_endian>(p, mtctr_11), p += 4;
if (use_fake_dep)
{
write_insn<big_endian>(p, xor_11_11_11), p += 4;
write_insn<big_endian>(p, add_2_2_11), p += 4;
}
if (static_chain)
write_insn<big_endian>(p, ld_11_2 + l(off + 16)), p += 4;
write_insn<big_endian>(p, ld_2_2 + l(off + 8)), p += 4;
}
if (thread_safe && !use_fake_dep)
{
write_insn<big_endian>(p, cmpldi_2_0), p += 4;
write_insn<big_endian>(p, bnectr_p4), p += 4;
write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
}
else
write_insn<big_endian>(p, bctr);
}
}
// Write out long branch stubs.
typename Branch_stub_entries::const_iterator bs;
for (bs = this->long_branch_stubs_.begin();
bs != this->long_branch_stubs_.end();
++bs)
{
p = oview + this->plt_size_ + bs->second;
Address loc = this->stub_address() + this->plt_size_ + bs->second;
Address delta = bs->first.dest_ - loc;
if (delta + (1 << 25) < 2 << 25)
write_insn<big_endian>(p, b | (delta & 0x3fffffc));
else
{
Address brlt_addr
= this->targ_->find_branch_lookup_table(bs->first.dest_);
gold_assert(brlt_addr != invalid_address);
brlt_addr += this->targ_->brlt_section()->address();
Address got_addr = got_os_addr + bs->first.toc_base_off_;
Address brltoff = brlt_addr - got_addr;
if (ha(brltoff) == 0)
{
write_insn<big_endian>(p, ld_11_2 + l(brltoff)), p += 4;
}
else
{
write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
write_insn<big_endian>(p, ld_11_12 + l(brltoff)), p += 4;
}
write_insn<big_endian>(p, mtctr_11), p += 4;
write_insn<big_endian>(p, bctr);
}
}
}
else
{
if (!this->plt_call_stubs_.empty())
{
// The base address of the .plt section.
Address plt_base = this->targ_->plt_section()->address();
Address iplt_base = invalid_address;
// The address of _GLOBAL_OFFSET_TABLE_.
Address g_o_t = invalid_address;
// Write out plt call stubs.
typename Plt_stub_entries::const_iterator cs;
for (cs = this->plt_call_stubs_.begin();
cs != this->plt_call_stubs_.end();
++cs)
{
bool is_iplt;
Address plt_addr = this->plt_off(cs, &is_iplt);
if (is_iplt)
{
if (iplt_base == invalid_address)
iplt_base = this->targ_->iplt_section()->address();
plt_addr += iplt_base;
}
else
plt_addr += plt_base;
p = oview + cs->second;
if (parameters->options().output_is_position_independent())
{
Address got_addr;
const Powerpc_relobj<size, big_endian>* ppcobj
= (static_cast<const Powerpc_relobj<size, big_endian>*>
(cs->first.object_));
if (ppcobj != NULL && cs->first.addend_ >= 32768)
{
unsigned int got2 = ppcobj->got2_shndx();
got_addr = ppcobj->get_output_section_offset(got2);
gold_assert(got_addr != invalid_address);
got_addr += (ppcobj->output_section(got2)->address()
+ cs->first.addend_);
}
else
{
if (g_o_t == invalid_address)
{
const Output_data_got_powerpc<size, big_endian>* got
= this->targ_->got_section();
g_o_t = got->address() + got->g_o_t();
}
got_addr = g_o_t;
}
Address off = plt_addr - got_addr;
if (ha(off) == 0)
{
write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
write_insn<big_endian>(p + 4, mtctr_11);
write_insn<big_endian>(p + 8, bctr);
}
else
{
write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
write_insn<big_endian>(p + 8, mtctr_11);
write_insn<big_endian>(p + 12, bctr);
}
}
else
{
write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
write_insn<big_endian>(p + 8, mtctr_11);
write_insn<big_endian>(p + 12, bctr);
}
}
}
// Write out long branch stubs.
typename Branch_stub_entries::const_iterator bs;
for (bs = this->long_branch_stubs_.begin();
bs != this->long_branch_stubs_.end();
++bs)
{
p = oview + this->plt_size_ + bs->second;
Address loc = this->stub_address() + this->plt_size_ + bs->second;
Address delta = bs->first.dest_ - loc;
if (delta + (1 << 25) < 2 << 25)
write_insn<big_endian>(p, b | (delta & 0x3fffffc));
else if (!parameters->options().output_is_position_independent())
{
write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
write_insn<big_endian>(p + 8, mtctr_12);
write_insn<big_endian>(p + 12, bctr);
}
else
{
delta -= 8;
write_insn<big_endian>(p + 0, mflr_0);
write_insn<big_endian>(p + 4, bcl_20_31);
write_insn<big_endian>(p + 8, mflr_12);
write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
write_insn<big_endian>(p + 20, mtlr_0);
write_insn<big_endian>(p + 24, mtctr_12);
write_insn<big_endian>(p + 28, bctr);
}
}
}
}
// Write out .glink.
template<int size, bool big_endian>
void
Output_data_glink<size, big_endian>::do_write(Output_file* of)
{
const section_size_type off = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(off, oview_size);
unsigned char* p;
// The base address of the .plt section.
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
Address plt_base = this->targ_->plt_section()->address();
if (size == 64)
{
// Write pltresolve stub.
p = oview;
Address after_bcl = this->address() + 16;
Address pltoff = plt_base - after_bcl;
elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
write_insn<big_endian>(p, mflr_12), p += 4;
write_insn<big_endian>(p, bcl_20_31), p += 4;
write_insn<big_endian>(p, mflr_11), p += 4;
write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
write_insn<big_endian>(p, mtlr_12), p += 4;
write_insn<big_endian>(p, add_12_2_11), p += 4;
write_insn<big_endian>(p, ld_11_12 + 0), p += 4;
write_insn<big_endian>(p, ld_2_12 + 8), p += 4;
write_insn<big_endian>(p, mtctr_11), p += 4;
write_insn<big_endian>(p, ld_11_12 + 16), p += 4;
write_insn<big_endian>(p, bctr), p += 4;
while (p < oview + this->pltresolve_size)
write_insn<big_endian>(p, nop), p += 4;
// Write lazy link call stubs.
uint32_t indx = 0;
while (p < oview + oview_size)
{
if (indx < 0x8000)
{
write_insn<big_endian>(p, li_0_0 + indx), p += 4;
}
else
{
write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
}
uint32_t branch_off = 8 - (p - oview);
write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
indx++;
}
}
else
{
const Output_data_got_powerpc<size, big_endian>* got
= this->targ_->got_section();
// The address of _GLOBAL_OFFSET_TABLE_.
Address g_o_t = got->address() + got->g_o_t();
// Write out pltresolve branch table.
p = oview;
unsigned int the_end = oview_size - this->pltresolve_size;
unsigned char* end_p = oview + the_end;
while (p < end_p - 8 * 4)
write_insn<big_endian>(p, b + end_p - p), p += 4;
while (p < end_p)
write_insn<big_endian>(p, nop), p += 4;
// Write out pltresolve call stub.
if (parameters->options().output_is_position_independent())
{
Address res0_off = 0;
Address after_bcl_off = the_end + 12;
Address bcl_res0 = after_bcl_off - res0_off;
write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
write_insn<big_endian>(p + 4, mflr_0);
write_insn<big_endian>(p + 8, bcl_20_31);
write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
write_insn<big_endian>(p + 16, mflr_12);
write_insn<big_endian>(p + 20, mtlr_0);
write_insn<big_endian>(p + 24, sub_11_11_12);
Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
if (ha(got_bcl) == ha(got_bcl + 4))
{
write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
}
else
{
write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
write_insn<big_endian>(p + 36, lwz_12_12 + 4);
}
write_insn<big_endian>(p + 40, mtctr_0);
write_insn<big_endian>(p + 44, add_0_11_11);
write_insn<big_endian>(p + 48, add_11_0_11);
write_insn<big_endian>(p + 52, bctr);
write_insn<big_endian>(p + 56, nop);
write_insn<big_endian>(p + 60, nop);
}
else
{
Address res0 = this->address();
write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
if (ha(g_o_t + 4) == ha(g_o_t + 8))
write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
else
write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
write_insn<big_endian>(p + 16, mtctr_0);
write_insn<big_endian>(p + 20, add_0_11_11);
if (ha(g_o_t + 4) == ha(g_o_t + 8))
write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
else
write_insn<big_endian>(p + 24, lwz_12_12 + 4);
write_insn<big_endian>(p + 28, add_11_0_11);
write_insn<big_endian>(p + 32, bctr);
write_insn<big_endian>(p + 36, nop);
write_insn<big_endian>(p + 40, nop);
write_insn<big_endian>(p + 44, nop);
write_insn<big_endian>(p + 48, nop);
write_insn<big_endian>(p + 52, nop);
write_insn<big_endian>(p + 56, nop);
write_insn<big_endian>(p + 60, nop);
}
p += 64;
}
of->write_output_view(off, oview_size, oview);
}
// A class to handle linker generated save/restore functions.
template<int size, bool big_endian>
class Output_data_save_res : public Output_section_data_build
{
public:
Output_data_save_res(Symbol_table* symtab);
protected:
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** save/restore")); }
void
do_write(Output_file*);
private:
// The maximum size of save/restore contents.
static const unsigned int savres_max = 218*4;
void
savres_define(Symbol_table* symtab,
const char *name,
unsigned int lo, unsigned int hi,
unsigned char* write_ent(unsigned char*, int),
unsigned char* write_tail(unsigned char*, int));
unsigned char *contents_;
};
template<bool big_endian>
static unsigned char*
savegpr0(unsigned char* p, int r)
{
uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savegpr0_tail(unsigned char* p, int r)
{
p = savegpr0<big_endian>(p, r);
uint32_t insn = std_0_1 + 16;
write_insn<big_endian>(p, insn);
p = p + 4;
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restgpr0(unsigned char* p, int r)
{
uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restgpr0_tail(unsigned char* p, int r)
{
uint32_t insn = ld_0_1 + 16;
write_insn<big_endian>(p, insn);
p = p + 4;
p = restgpr0<big_endian>(p, r);
write_insn<big_endian>(p, mtlr_0);
p = p + 4;
if (r == 29)
{
p = restgpr0<big_endian>(p, 30);
p = restgpr0<big_endian>(p, 31);
}
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savegpr1(unsigned char* p, int r)
{
uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savegpr1_tail(unsigned char* p, int r)
{
p = savegpr1<big_endian>(p, r);
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restgpr1(unsigned char* p, int r)
{
uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restgpr1_tail(unsigned char* p, int r)
{
p = restgpr1<big_endian>(p, r);
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savefpr(unsigned char* p, int r)
{
uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savefpr0_tail(unsigned char* p, int r)
{
p = savefpr<big_endian>(p, r);
write_insn<big_endian>(p, std_0_1 + 16);
p = p + 4;
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restfpr(unsigned char* p, int r)
{
uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restfpr0_tail(unsigned char* p, int r)
{
write_insn<big_endian>(p, ld_0_1 + 16);
p = p + 4;
p = restfpr<big_endian>(p, r);
write_insn<big_endian>(p, mtlr_0);
p = p + 4;
if (r == 29)
{
p = restfpr<big_endian>(p, 30);
p = restfpr<big_endian>(p, 31);
}
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savefpr1_tail(unsigned char* p, int r)
{
p = savefpr<big_endian>(p, r);
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restfpr1_tail(unsigned char* p, int r)
{
p = restfpr<big_endian>(p, r);
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savevr(unsigned char* p, int r)
{
uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
write_insn<big_endian>(p, insn);
p = p + 4;
insn = stvx_0_12_0 + (r << 21);
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
savevr_tail(unsigned char* p, int r)
{
p = savevr<big_endian>(p, r);
write_insn<big_endian>(p, blr);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restvr(unsigned char* p, int r)
{
uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
write_insn<big_endian>(p, insn);
p = p + 4;
insn = lvx_0_12_0 + (r << 21);
write_insn<big_endian>(p, insn);
return p + 4;
}
template<bool big_endian>
static unsigned char*
restvr_tail(unsigned char* p, int r)
{
p = restvr<big_endian>(p, r);
write_insn<big_endian>(p, blr);
return p + 4;
}
template<int size, bool big_endian>
Output_data_save_res<size, big_endian>::Output_data_save_res(
Symbol_table* symtab)
: Output_section_data_build(4),
contents_(NULL)
{
this->savres_define(symtab,
"_savegpr0_", 14, 31,
savegpr0<big_endian>, savegpr0_tail<big_endian>);
this->savres_define(symtab,
"_restgpr0_", 14, 29,
restgpr0<big_endian>, restgpr0_tail<big_endian>);
this->savres_define(symtab,
"_restgpr0_", 30, 31,
restgpr0<big_endian>, restgpr0_tail<big_endian>);
this->savres_define(symtab,
"_savegpr1_", 14, 31,
savegpr1<big_endian>, savegpr1_tail<big_endian>);
this->savres_define(symtab,
"_restgpr1_", 14, 31,
restgpr1<big_endian>, restgpr1_tail<big_endian>);
this->savres_define(symtab,
"_savefpr_", 14, 31,
savefpr<big_endian>, savefpr0_tail<big_endian>);
this->savres_define(symtab,
"_restfpr_", 14, 29,
restfpr<big_endian>, restfpr0_tail<big_endian>);
this->savres_define(symtab,
"_restfpr_", 30, 31,
restfpr<big_endian>, restfpr0_tail<big_endian>);
this->savres_define(symtab,
"._savef", 14, 31,
savefpr<big_endian>, savefpr1_tail<big_endian>);
this->savres_define(symtab,
"._restf", 14, 31,
restfpr<big_endian>, restfpr1_tail<big_endian>);
this->savres_define(symtab,
"_savevr_", 20, 31,
savevr<big_endian>, savevr_tail<big_endian>);
this->savres_define(symtab,
"_restvr_", 20, 31,
restvr<big_endian>, restvr_tail<big_endian>);
}
template<int size, bool big_endian>
void
Output_data_save_res<size, big_endian>::savres_define(
Symbol_table* symtab,
const char *name,
unsigned int lo, unsigned int hi,
unsigned char* write_ent(unsigned char*, int),
unsigned char* write_tail(unsigned char*, int))
{
size_t len = strlen(name);
bool writing = false;
char sym[16];
memcpy(sym, name, len);
sym[len + 2] = 0;
for (unsigned int i = lo; i <= hi; i++)
{
sym[len + 0] = i / 10 + '0';
sym[len + 1] = i % 10 + '0';
Symbol* gsym = symtab->lookup(sym);
bool refd = gsym != NULL && gsym->is_undefined();
writing = writing || refd;
if (writing)
{
if (this->contents_ == NULL)
this->contents_ = new unsigned char[this->savres_max];
section_size_type value = this->current_data_size();
unsigned char* p = this->contents_ + value;
if (i != hi)
p = write_ent(p, i);
else
p = write_tail(p, i);
section_size_type cur_size = p - this->contents_;
this->set_current_data_size(cur_size);
if (refd)
symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
this, value, cur_size - value,
elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, false, false);
}
}
}
// Write out save/restore.
template<int size, bool big_endian>
void
Output_data_save_res<size, big_endian>::do_write(Output_file* of)
{
const section_size_type off = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(off, oview_size);
memcpy(oview, this->contents_, oview_size);
of->write_output_view(off, oview_size, oview);
}
// Create the glink section.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
{
if (this->glink_ == NULL)
{
this->glink_ = new Output_data_glink<size, big_endian>(this);
this->glink_->add_eh_frame(layout);
layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
this->glink_, ORDER_TEXT, false);
}
}
// Create a PLT entry for a global symbol.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
Layout* layout,
Symbol* gsym)
{
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
if (this->iplt_ == NULL)
this->make_iplt_section(symtab, layout);
this->iplt_->add_ifunc_entry(gsym);
}
else
{
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
this->plt_->add_entry(gsym);
}
}
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int r_sym)
{
if (this->iplt_ == NULL)
this->make_iplt_section(symtab, layout);
this->iplt_->add_local_ifunc_entry(relobj, r_sym);
}
// Return the number of entries in the PLT.
template<int size, bool big_endian>
unsigned int
Target_powerpc<size, big_endian>::plt_entry_count() const
{
if (this->plt_ == NULL)
return 0;
return this->plt_->entry_count();
}
// Return the offset of the first non-reserved PLT entry.
template<int size, bool big_endian>
unsigned int
Target_powerpc<size, big_endian>::first_plt_entry_offset() const
{
return this->plt_->first_plt_entry_offset();
}
// Return the size of each PLT entry.
template<int size, bool big_endian>
unsigned int
Target_powerpc<size, big_endian>::plt_entry_size() const
{
return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
}
// Create a GOT entry for local dynamic __tls_get_addr calls.
template<int size, bool big_endian>
unsigned int
Target_powerpc<size, big_endian>::tlsld_got_offset(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object)
{
if (this->tlsld_got_offset_ == -1U)
{
gold_assert(symtab != NULL && layout != NULL && object != NULL);
Reloc_section* rela_dyn = this->rela_dyn_section(layout);
Output_data_got_powerpc<size, big_endian>* got
= this->got_section(symtab, layout);
unsigned int got_offset = got->add_constant_pair(0, 0);
rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
got_offset, 0);
this->tlsld_got_offset_ = got_offset;
}
return this->tlsld_got_offset_;
}
// Get the Reference_flags for a particular relocation.
template<int size, bool big_endian>
int
Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_GNU_VTINHERIT:
case elfcpp::R_POWERPC_GNU_VTENTRY:
case elfcpp::R_PPC64_TOC:
// No symbol reference.
return 0;
case elfcpp::R_PPC64_ADDR64:
case elfcpp::R_PPC64_UADDR64:
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_UADDR32:
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_UADDR16:
case elfcpp::R_POWERPC_ADDR16_LO:
case elfcpp::R_POWERPC_ADDR16_HI:
case elfcpp::R_POWERPC_ADDR16_HA:
return Symbol::ABSOLUTE_REF;
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_ADDR14:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
case elfcpp::R_PPC64_REL64:
case elfcpp::R_POWERPC_REL32:
case elfcpp::R_PPC_LOCAL24PC:
case elfcpp::R_POWERPC_REL16:
case elfcpp::R_POWERPC_REL16_LO:
case elfcpp::R_POWERPC_REL16_HI:
case elfcpp::R_POWERPC_REL16_HA:
return Symbol::RELATIVE_REF;
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_PLTREL24:
case elfcpp::R_POWERPC_REL14:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_GOT16_LO_DS:
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
// Absolute in GOT.
return Symbol::ABSOLUTE_REF;
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_TLS:
return Symbol::TLS_REF;
case elfcpp::R_POWERPC_COPY:
case elfcpp::R_POWERPC_GLOB_DAT:
case elfcpp::R_POWERPC_JMP_SLOT:
case elfcpp::R_POWERPC_RELATIVE:
case elfcpp::R_POWERPC_DTPMOD:
default:
// Not expected. We will give an error later.
return 0;
}
}
// Report an unsupported relocation against a local symbol.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// We are about to emit a dynamic relocation of type R_TYPE. If the
// dynamic linker does not support it, issue an error.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
unsigned int r_type)
{
gold_assert(r_type != elfcpp::R_POWERPC_NONE);
// These are the relocation types supported by glibc for both 32-bit
// and 64-bit powerpc.
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_RELATIVE:
case elfcpp::R_POWERPC_GLOB_DAT:
case elfcpp::R_POWERPC_DTPMOD:
case elfcpp::R_POWERPC_DTPREL:
case elfcpp::R_POWERPC_TPREL:
case elfcpp::R_POWERPC_JMP_SLOT:
case elfcpp::R_POWERPC_COPY:
case elfcpp::R_POWERPC_IRELATIVE:
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_UADDR32:
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_UADDR16:
case elfcpp::R_POWERPC_ADDR16_LO:
case elfcpp::R_POWERPC_ADDR16_HI:
case elfcpp::R_POWERPC_ADDR16_HA:
case elfcpp::R_POWERPC_ADDR14:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
case elfcpp::R_POWERPC_REL32:
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_POWERPC_TPREL16:
case elfcpp::R_POWERPC_TPREL16_LO:
case elfcpp::R_POWERPC_TPREL16_HI:
case elfcpp::R_POWERPC_TPREL16_HA:
return;
default:
break;
}
if (size == 64)
{
switch (r_type)
{
// These are the relocation types supported only on 64-bit.
case elfcpp::R_PPC64_ADDR64:
case elfcpp::R_PPC64_UADDR64:
case elfcpp::R_PPC64_JMP_IREL:
case elfcpp::R_PPC64_ADDR16_DS:
case elfcpp::R_PPC64_ADDR16_LO_DS:
case elfcpp::R_PPC64_ADDR16_HIGHER:
case elfcpp::R_PPC64_ADDR16_HIGHEST:
case elfcpp::R_PPC64_ADDR16_HIGHERA:
case elfcpp::R_PPC64_ADDR16_HIGHESTA:
case elfcpp::R_PPC64_REL64:
case elfcpp::R_POWERPC_ADDR30:
case elfcpp::R_PPC64_TPREL16_DS:
case elfcpp::R_PPC64_TPREL16_LO_DS:
case elfcpp::R_PPC64_TPREL16_HIGHER:
case elfcpp::R_PPC64_TPREL16_HIGHEST:
case elfcpp::R_PPC64_TPREL16_HIGHERA:
case elfcpp::R_PPC64_TPREL16_HIGHESTA:
return;
default:
break;
}
}
else
{
switch (r_type)
{
// These are the relocation types supported only on 32-bit.
// ??? glibc ld.so doesn't need to support these.
case elfcpp::R_POWERPC_DTPREL16:
case elfcpp::R_POWERPC_DTPREL16_LO:
case elfcpp::R_POWERPC_DTPREL16_HI:
case elfcpp::R_POWERPC_DTPREL16_HA:
return;
default:
break;
}
}
// This prevents us from issuing more than one error per reloc
// section. But we can still wind up issuing more than one
// error per object file.
if (this->issued_non_pic_error_)
return;
gold_assert(parameters->options().output_is_position_independent());
object->error(_("requires unsupported dynamic reloc; "
"recompile with -fPIC"));
this->issued_non_pic_error_ = true;
return;
}
// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.
template<int size, bool big_endian>
bool
Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type,
bool report_err)
{
// In non-pic code any reference will resolve to the plt call stub
// for the ifunc symbol.
if (size == 32 && !parameters->options().output_is_position_independent())
return true;
switch (r_type)
{
// Word size refs from data sections are OK, but don't need a PLT entry.
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_UADDR32:
if (size == 32)
return false;
break;
case elfcpp::R_PPC64_ADDR64:
case elfcpp::R_PPC64_UADDR64:
if (size == 64)
return false;
break;
// GOT refs are good, but also don't need a PLT entry.
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_GOT16_LO_DS:
return false;
// Function calls are good, and these do need a PLT entry.
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_ADDR14:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_PLTREL24:
case elfcpp::R_POWERPC_REL14:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
return true;
default:
break;
}
// Anything else is a problem.
// If we are building a static executable, the libc startup function
// responsible for applying indirect function relocations is going
// to complain about the reloc type.
// If we are building a dynamic executable, we will have a text
// relocation. The dynamic loader will set the text segment
// writable and non-executable to apply text relocations. So we'll
// segfault when trying to run the indirection function to resolve
// the reloc.
if (report_err)
gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
object->name().c_str(), r_type);
return false;
}
// Scan a relocation for a local symbol.
template<int size, bool big_endian>
inline void
Target_powerpc<size, big_endian>::Scan::local(
Symbol_table* symtab,
Layout* layout,
Target_powerpc<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded)
{
this->maybe_skip_tls_get_addr_call(r_type, NULL);
if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
{
this->expect_tls_get_addr_call();
const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
if (tls_type != tls::TLSOPT_NONE)
this->skip_next_tls_get_addr_call();
}
else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
{
this->expect_tls_get_addr_call();
const tls::Tls_optimization tls_type = target->optimize_tls_ld();
if (tls_type != tls::TLSOPT_NONE)
this->skip_next_tls_get_addr_call();
}
Powerpc_relobj<size, big_endian>* ppc_object
= static_cast<Powerpc_relobj<size, big_endian>*>(object);
if (is_discarded)
{
if (size == 64
&& data_shndx == ppc_object->opd_shndx()
&& r_type == elfcpp::R_PPC64_ADDR64)
ppc_object->set_opd_discard(reloc.get_r_offset());
return;
}
// A local STT_GNU_IFUNC symbol may require a PLT entry.
bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
r_type, r_sym, reloc.get_r_addend());
target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
}
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_GNU_VTINHERIT:
case elfcpp::R_POWERPC_GNU_VTENTRY:
case elfcpp::R_PPC64_TOCSAVE:
case elfcpp::R_PPC_EMB_MRKREF:
case elfcpp::R_POWERPC_TLS:
break;
case elfcpp::R_PPC64_TOC:
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
if (parameters->options().output_is_position_independent())
{
Address off = reloc.get_r_offset();
if (size == 64
&& data_shndx == ppc_object->opd_shndx()
&& ppc_object->get_opd_discard(off - 8))
break;
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
Powerpc_relobj<size, big_endian>* symobj = ppc_object;
rela_dyn->add_output_section_relative(got->output_section(),
elfcpp::R_POWERPC_RELATIVE,
output_section,
object, data_shndx, off,
symobj->toc_base_offset());
}
}
break;
case elfcpp::R_PPC64_ADDR64:
case elfcpp::R_PPC64_UADDR64:
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_UADDR32:
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_ADDR16_LO:
case elfcpp::R_POWERPC_ADDR16_HI:
case elfcpp::R_POWERPC_ADDR16_HA:
case elfcpp::R_POWERPC_UADDR16:
case elfcpp::R_PPC64_ADDR16_HIGHER:
case elfcpp::R_PPC64_ADDR16_HIGHERA:
case elfcpp::R_PPC64_ADDR16_HIGHEST:
case elfcpp::R_PPC64_ADDR16_HIGHESTA:
case elfcpp::R_PPC64_ADDR16_DS:
case elfcpp::R_PPC64_ADDR16_LO_DS:
case elfcpp::R_POWERPC_ADDR14:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location.
if (parameters->options().output_is_position_independent()
|| (size == 64 && is_ifunc))
{
Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
is_ifunc);
if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
|| (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
: elfcpp::R_POWERPC_RELATIVE);
rela_dyn->add_local_relative(object, r_sym, dynrel,
output_section, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend(), false);
}
else
{
check_non_pic(object, r_type);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
rela_dyn->add_local(object, r_sym, r_type, output_section,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
break;
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_PLTREL24:
case elfcpp::R_PPC_LOCAL24PC:
case elfcpp::R_POWERPC_REL14:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
if (!is_ifunc)
target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
reloc.get_r_addend());
break;
case elfcpp::R_PPC64_REL64:
case elfcpp::R_POWERPC_REL32:
case elfcpp::R_POWERPC_REL16:
case elfcpp::R_POWERPC_REL16_LO:
case elfcpp::R_POWERPC_REL16_HI:
case elfcpp::R_POWERPC_REL16_HA:
case elfcpp::R_POWERPC_SECTOFF:
case elfcpp::R_POWERPC_TPREL16:
case elfcpp::R_POWERPC_DTPREL16:
case elfcpp::R_POWERPC_SECTOFF_LO:
case elfcpp::R_POWERPC_TPREL16_LO:
case elfcpp::R_POWERPC_DTPREL16_LO:
case elfcpp::R_POWERPC_SECTOFF_HI:
case elfcpp::R_POWERPC_TPREL16_HI:
case elfcpp::R_POWERPC_DTPREL16_HI:
case elfcpp::R_POWERPC_SECTOFF_HA:
case elfcpp::R_POWERPC_TPREL16_HA:
case elfcpp::R_POWERPC_DTPREL16_HA:
case elfcpp::R_PPC64_DTPREL16_HIGHER:
case elfcpp::R_PPC64_TPREL16_HIGHER:
case elfcpp::R_PPC64_DTPREL16_HIGHERA:
case elfcpp::R_PPC64_TPREL16_HIGHERA:
case elfcpp::R_PPC64_DTPREL16_HIGHEST:
case elfcpp::R_PPC64_TPREL16_HIGHEST:
case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
case elfcpp::R_PPC64_TPREL16_HIGHESTA:
case elfcpp::R_PPC64_TPREL16_DS:
case elfcpp::R_PPC64_TPREL16_LO_DS:
case elfcpp::R_PPC64_DTPREL16_DS:
case elfcpp::R_PPC64_DTPREL16_LO_DS:
case elfcpp::R_PPC64_SECTOFF_DS:
case elfcpp::R_PPC64_SECTOFF_LO_DS:
case elfcpp::R_PPC64_TLSGD:
case elfcpp::R_PPC64_TLSLD:
break;
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_GOT16_LO_DS:
{
// The symbol requires a GOT entry.
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
if (!parameters->options().output_is_position_independent())
{
if (size == 32 && is_ifunc)
got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
else
got->add_local(object, r_sym, GOT_TYPE_STANDARD);
}
else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
{
// If we are generating a shared object or a pie, this
// symbol's GOT entry will be set by a dynamic relocation.
unsigned int off;
off = got->add_constant(0);
object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
is_ifunc);
unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
: elfcpp::R_POWERPC_RELATIVE);
rela_dyn->add_local_relative(object, r_sym, dynrel,
got, off, 0, false);
}
}
break;
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
// We need a GOT section.
target->got_section(symtab, layout);
break;
case elfcpp::R_POWERPC_GOT_TLSGD16:
case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
{
const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
if (tls_type == tls::TLSOPT_NONE)
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
rela_dyn, elfcpp::R_POWERPC_DTPMOD);
}
else if (tls_type == tls::TLSOPT_TO_LE)
{
// no GOT relocs needed for Local Exec.
}
else
gold_unreachable();
}
break;
case elfcpp::R_POWERPC_GOT_TLSLD16:
case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
{
const tls::Tls_optimization tls_type = target->optimize_tls_ld();
if (tls_type == tls::TLSOPT_NONE)
target->tlsld_got_offset(symtab, layout, object);
else if (tls_type == tls::TLSOPT_TO_LE)
{
// no GOT relocs needed for Local Exec.
if (parameters->options().emit_relocs())
{
Output_section* os = layout->tls_segment()->first_section();
gold_assert(os != NULL);
os->set_needs_symtab_index();
}
}
else
gold_unreachable();
}
break;
case elfcpp::R_POWERPC_GOT_DTPREL16:
case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
}
break;
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_GOT_TPREL16_LO:
case elfcpp::R_POWERPC_GOT_TPREL16_HI:
case elfcpp::R_POWERPC_GOT_TPREL16_HA:
{
const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
if (tls_type == tls::TLSOPT_NONE)
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
unsigned int off = got->add_constant(0);
object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_symbolless_local_addend(object, r_sym,
elfcpp::R_POWERPC_TPREL,
got, off, 0);
}
}
else if (tls_type == tls::TLSOPT_TO_LE)
{
// no GOT relocs needed for Local Exec.
}
else
gold_unreachable();
}
break;
default:
unsupported_reloc_local(object, r_type);
break;
}
switch (r_type)
{
case elfcpp::R_POWERPC_GOT_TLSLD16:
case elfcpp::R_POWERPC_GOT_TLSGD16:
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_GOT_DTPREL16:
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_DS:
ppc_object->set_has_small_toc_reloc();
default:
break;
}
}
// Report an unsupported relocation against a global symbol.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
// Scan a relocation for a global symbol.
template<int size, bool big_endian>
inline void
Target_powerpc<size, big_endian>::Scan::global(
Symbol_table* symtab,
Layout* layout,
Target_powerpc<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
Symbol* gsym)
{
if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
return;
if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
{
this->expect_tls_get_addr_call();
const bool final = gsym->final_value_is_known();
const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
if (tls_type != tls::TLSOPT_NONE)
this->skip_next_tls_get_addr_call();
}
else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
{
this->expect_tls_get_addr_call();
const tls::Tls_optimization tls_type = target->optimize_tls_ld();
if (tls_type != tls::TLSOPT_NONE)
this->skip_next_tls_get_addr_call();
}
Powerpc_relobj<size, big_endian>* ppc_object
= static_cast<Powerpc_relobj<size, big_endian>*>(object);
// A STT_GNU_IFUNC symbol may require a PLT entry.
bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
{
target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
reloc.get_r_addend());
target->make_plt_entry(symtab, layout, gsym);
}
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_GNU_VTINHERIT:
case elfcpp::R_POWERPC_GNU_VTENTRY:
case elfcpp::R_PPC_LOCAL24PC:
case elfcpp::R_PPC_EMB_MRKREF:
case elfcpp::R_POWERPC_TLS:
break;
case elfcpp::R_PPC64_TOC:
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
if (parameters->options().output_is_position_independent())
{
Address off = reloc.get_r_offset();
if (size == 64
&& data_shndx == ppc_object->opd_shndx()
&& ppc_object->get_opd_discard(off - 8))
break;
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
Powerpc_relobj<size, big_endian>* symobj = ppc_object;
if (data_shndx != ppc_object->opd_shndx())
symobj = static_cast
<Powerpc_relobj<size, big_endian>*>(gsym->object());
rela_dyn->add_output_section_relative(got->output_section(),
elfcpp::R_POWERPC_RELATIVE,
output_section,
object, data_shndx, off,
symobj->toc_base_offset());
}
}
break;
case elfcpp::R_PPC64_ADDR64:
if (size == 64
&& data_shndx == ppc_object->opd_shndx()
&& (gsym->is_defined_in_discarded_section()
|| gsym->object() != object))
{
ppc_object->set_opd_discard(reloc.get_r_offset());
break;
}
// Fall thru
case elfcpp::R_PPC64_UADDR64:
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_UADDR32:
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_ADDR16_LO:
case elfcpp::R_POWERPC_ADDR16_HI:
case elfcpp::R_POWERPC_ADDR16_HA:
case elfcpp::R_POWERPC_UADDR16:
case elfcpp::R_PPC64_ADDR16_HIGHER:
case elfcpp::R_PPC64_ADDR16_HIGHERA:
case elfcpp::R_PPC64_ADDR16_HIGHEST:
case elfcpp::R_PPC64_ADDR16_HIGHESTA:
case elfcpp::R_PPC64_ADDR16_DS:
case elfcpp::R_PPC64_ADDR16_LO_DS:
case elfcpp::R_POWERPC_ADDR14:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
{
// Make a PLT entry if necessary.
if (gsym->needs_plt_entry())
{
if (!is_ifunc)
{
target->push_branch(ppc_object, data_shndx,
reloc.get_r_offset(), r_type,
elfcpp::elf_r_sym<size>(reloc.get_r_info()),
reloc.get_r_addend());
target->make_plt_entry(symtab, layout, gsym);
}
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT call stub.
if (size == 32
&& gsym->is_from_dynobj()
&& !parameters->options().output_is_position_independent())
gsym->set_needs_dynsym_value();
}
// Make a dynamic relocation if necessary.
if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
|| (size == 64 && is_ifunc))
{
if (gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else if ((size == 32
&& r_type == elfcpp::R_POWERPC_ADDR32
&& gsym->can_use_relative_reloc(false)
&& !(gsym->visibility() == elfcpp::STV_PROTECTED
&& parameters->options().shared()))
|| (size == 64
&& r_type == elfcpp::R_PPC64_ADDR64
&& (gsym->can_use_relative_reloc(false)
|| data_shndx == ppc_object->opd_shndx())))
{
Reloc_section* rela_dyn
= target->rela_dyn_section(symtab, layout, is_ifunc);
unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
: elfcpp::R_POWERPC_RELATIVE);
rela_dyn->add_symbolless_global_addend(
gsym, dynrel, output_section, object, data_shndx,
reloc.get_r_offset(), reloc.get_r_addend());
}
else
{
Reloc_section* rela_dyn
= target->rela_dyn_section(symtab, layout, is_ifunc);
check_non_pic(object, r_type);
rela_dyn->add_global(gsym, r_type, output_section,
object, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_PPC_PLTREL24:
case elfcpp::R_POWERPC_REL24:
if (!is_ifunc)
{
target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
r_type,
elfcpp::elf_r_sym<size>(reloc.get_r_info()),
reloc.get_r_addend());
if (gsym->needs_plt_entry()
|| (!gsym->final_value_is_known()
&& (gsym->is_undefined()
|| gsym->is_from_dynobj()
|| gsym->is_preemptible())))
target->make_plt_entry(symtab, layout, gsym);
}
// Fall thru
case elfcpp::R_PPC64_REL64:
case elfcpp::R_POWERPC_REL32:
// Make a dynamic relocation if necessary.
if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
{
if (gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym,
reloc);
}
else
{
Reloc_section* rela_dyn
= target->rela_dyn_section(symtab, layout, is_ifunc);
check_non_pic(object, r_type);
rela_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
break;
case elfcpp::R_POWERPC_REL14:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
if (!is_ifunc)
target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
reloc.get_r_addend());
break;
case elfcpp::R_POWERPC_REL16:
case elfcpp::R_POWERPC_REL16_LO:
case elfcpp::R_POWERPC_REL16_HI:
case elfcpp::R_POWERPC_REL16_HA:
case elfcpp::R_POWERPC_SECTOFF:
case elfcpp::R_POWERPC_TPREL16:
case elfcpp::R_POWERPC_DTPREL16:
case elfcpp::R_POWERPC_SECTOFF_LO:
case elfcpp::R_POWERPC_TPREL16_LO:
case elfcpp::R_POWERPC_DTPREL16_LO:
case elfcpp::R_POWERPC_SECTOFF_HI:
case elfcpp::R_POWERPC_TPREL16_HI:
case elfcpp::R_POWERPC_DTPREL16_HI:
case elfcpp::R_POWERPC_SECTOFF_HA:
case elfcpp::R_POWERPC_TPREL16_HA:
case elfcpp::R_POWERPC_DTPREL16_HA:
case elfcpp::R_PPC64_DTPREL16_HIGHER:
case elfcpp::R_PPC64_TPREL16_HIGHER:
case elfcpp::R_PPC64_DTPREL16_HIGHERA:
case elfcpp::R_PPC64_TPREL16_HIGHERA:
case elfcpp::R_PPC64_DTPREL16_HIGHEST:
case elfcpp::R_PPC64_TPREL16_HIGHEST:
case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
case elfcpp::R_PPC64_TPREL16_HIGHESTA:
case elfcpp::R_PPC64_TPREL16_DS:
case elfcpp::R_PPC64_TPREL16_LO_DS:
case elfcpp::R_PPC64_DTPREL16_DS:
case elfcpp::R_PPC64_DTPREL16_LO_DS:
case elfcpp::R_PPC64_SECTOFF_DS:
case elfcpp::R_PPC64_SECTOFF_LO_DS:
case elfcpp::R_PPC64_TLSGD:
case elfcpp::R_PPC64_TLSLD:
break;
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_GOT16_LO_DS:
{
// The symbol requires a GOT entry.
Output_data_got_powerpc<size, big_endian>* got;
got = target->got_section(symtab, layout);
if (gsym->final_value_is_known())
{
if (size == 32 && is_ifunc)
got->add_global_plt(gsym, GOT_TYPE_STANDARD);
else
got->add_global(gsym, GOT_TYPE_STANDARD);
}
else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
{
// If we are generating a shared object or a pie, this
// symbol's GOT entry will be set by a dynamic relocation.
unsigned int off = got->add_constant(0);
gsym->set_got_offset(GOT_TYPE_STANDARD, off);
Reloc_section* rela_dyn
= target->rela_dyn_section(symtab, layout, is_ifunc);
if (gsym->can_use_relative_reloc(false)
&& !(size == 32
&& gsym->visibility() == elfcpp::STV_PROTECTED
&& parameters->options().shared()))
{
unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
: elfcpp::R_POWERPC_RELATIVE);
rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
}
else
{
unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
rela_dyn->add_global(gsym, dynrel, got, off, 0);
}
}
}
break;
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
// We need a GOT section.
target->got_section(symtab, layout);
break;
case elfcpp::R_POWERPC_GOT_TLSGD16:
case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
{
const bool final = gsym->final_value_is_known();
const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
if (tls_type == tls::TLSOPT_NONE)
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
elfcpp::R_POWERPC_DTPMOD,
elfcpp::R_POWERPC_DTPREL);
}
else if (tls_type == tls::TLSOPT_TO_IE)
{
if (!gsym->has_got_offset(GOT_TYPE_TPREL))
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
if (gsym->is_undefined()
|| gsym->is_from_dynobj())
{
got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
elfcpp::R_POWERPC_TPREL);
}
else
{
unsigned int off = got->add_constant(0);
gsym->set_got_offset(GOT_TYPE_TPREL, off);
unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
rela_dyn->add_symbolless_global_addend(gsym, dynrel,
got, off, 0);
}
}
}
else if (tls_type == tls::TLSOPT_TO_LE)
{
// no GOT relocs needed for Local Exec.
}
else
gold_unreachable();
}
break;
case elfcpp::R_POWERPC_GOT_TLSLD16:
case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
{
const tls::Tls_optimization tls_type = target->optimize_tls_ld();
if (tls_type == tls::TLSOPT_NONE)
target->tlsld_got_offset(symtab, layout, object);
else if (tls_type == tls::TLSOPT_TO_LE)
{
// no GOT relocs needed for Local Exec.
if (parameters->options().emit_relocs())
{
Output_section* os = layout->tls_segment()->first_section();
gold_assert(os != NULL);
os->set_needs_symtab_index();
}
}
else
gold_unreachable();
}
break;
case elfcpp::R_POWERPC_GOT_DTPREL16:
case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
if (!gsym->final_value_is_known()
&& (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible()))
got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
target->rela_dyn_section(layout),
elfcpp::R_POWERPC_DTPREL);
else
got->add_global_tls(gsym, GOT_TYPE_DTPREL);
}
break;
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_GOT_TPREL16_LO:
case elfcpp::R_POWERPC_GOT_TPREL16_HI:
case elfcpp::R_POWERPC_GOT_TPREL16_HA:
{
const bool final = gsym->final_value_is_known();
const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
if (tls_type == tls::TLSOPT_NONE)
{
if (!gsym->has_got_offset(GOT_TYPE_TPREL))
{
Output_data_got_powerpc<size, big_endian>* got
= target->got_section(symtab, layout);
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
if (gsym->is_undefined()
|| gsym->is_from_dynobj())
{
got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
elfcpp::R_POWERPC_TPREL);
}
else
{
unsigned int off = got->add_constant(0);
gsym->set_got_offset(GOT_TYPE_TPREL, off);
unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
rela_dyn->add_symbolless_global_addend(gsym, dynrel,
got, off, 0);
}
}
}
else if (tls_type == tls::TLSOPT_TO_LE)
{
// no GOT relocs needed for Local Exec.
}
else
gold_unreachable();
}
break;
default:
unsupported_reloc_global(object, r_type, gsym);
break;
}
switch (r_type)
{
case elfcpp::R_POWERPC_GOT_TLSLD16:
case elfcpp::R_POWERPC_GOT_TLSGD16:
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_GOT_DTPREL16:
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_DS:
ppc_object->set_has_small_toc_reloc();
default:
break;
}
}
// Process relocations for gc.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::gc_process_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_powerpc<size, big_endian> Powerpc;
typedef typename Target_powerpc<size, big_endian>::Scan Scan;
Powerpc_relobj<size, big_endian>* ppc_object
= static_cast<Powerpc_relobj<size, big_endian>*>(object);
if (size == 64)
ppc_object->set_opd_valid();
if (size == 64 && data_shndx == ppc_object->opd_shndx())
{
typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
for (p = ppc_object->access_from_map()->begin();
p != ppc_object->access_from_map()->end();
++p)
{
Address dst_off = p->first;
unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
for (s = p->second.begin(); s != p->second.end(); ++s)
{
Object* src_obj = s->first;
unsigned int src_indx = s->second;
symtab->gc()->add_reference(src_obj, src_indx,
ppc_object, dst_indx);
}
p->second.clear();
}
ppc_object->access_from_map()->clear();
ppc_object->process_gc_mark(symtab);
// Don't look at .opd relocs as .opd will reference everything.
return;
}
gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
typename Target_powerpc::Relocatable_size_for_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Handle target specific gc actions when adding a gc reference from
// SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
// and DST_OFF. For powerpc64, this adds a referenc to the code
// section of a function descriptor.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::do_gc_add_reference(
Symbol_table* symtab,
Object* src_obj,
unsigned int src_shndx,
Object* dst_obj,
unsigned int dst_shndx,
Address dst_off) const
{
if (size != 64 || dst_obj->is_dynamic())
return;
Powerpc_relobj<size, big_endian>* ppc_object
= static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
{
if (ppc_object->opd_valid())
{
dst_shndx = ppc_object->get_opd_ent(dst_off);
symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
}
else
{
// If we haven't run scan_opd_relocs, we must delay
// processing this function descriptor reference.
ppc_object->add_reference(src_obj, src_shndx, dst_off);
}
}
}
// Add any special sections for this symbol to the gc work list.
// For powerpc64, this adds the code section of a function
// descriptor.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::do_gc_mark_symbol(
Symbol_table* symtab,
Symbol* sym) const
{
if (size == 64)
{
Powerpc_relobj<size, big_endian>* ppc_object
= static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
bool is_ordinary;
unsigned int shndx = sym->shndx(&is_ordinary);
if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
{
Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
Address dst_off = gsym->value();
if (ppc_object->opd_valid())
{
unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
}
else
ppc_object->add_gc_mark(dst_off);
}
}
}
// For a symbol location in .opd, set LOC to the location of the
// function entry.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::do_function_location(
Symbol_location* loc) const
{
if (size == 64 && loc->shndx != 0)
{
if (loc->object->is_dynamic())
{
Powerpc_dynobj<size, big_endian>* ppc_object
= static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
if (loc->shndx == ppc_object->opd_shndx())
{
Address dest_off;
Address off = loc->offset - ppc_object->opd_address();
loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
loc->offset = dest_off;
}
}
else
{
const Powerpc_relobj<size, big_endian>* ppc_object
= static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
if (loc->shndx == ppc_object->opd_shndx())
{
Address dest_off;
loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
loc->offset = dest_off;
}
}
}
}
// Scan relocations for a section.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::scan_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_powerpc<size, big_endian> Powerpc;
typedef typename Target_powerpc<size, big_endian>::Scan Scan;
if (sh_type == elfcpp::SHT_REL)
{
gold_error(_("%s: unsupported REL reloc section"),
object->name().c_str());
return;
}
gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Functor class for processing the global symbol table.
// Removes symbols defined on discarded opd entries.
template<bool big_endian>
class Global_symbol_visitor_opd
{
public:
Global_symbol_visitor_opd()
{ }
void
operator()(Sized_symbol<64>* sym)
{
if (sym->has_symtab_index()
|| sym->source() != Symbol::FROM_OBJECT
|| !sym->in_real_elf())
return;
if (sym->object()->is_dynamic())
return;
Powerpc_relobj<64, big_endian>* symobj
= static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
if (symobj->opd_shndx() == 0)
return;
bool is_ordinary;
unsigned int shndx = sym->shndx(&is_ordinary);
if (shndx == symobj->opd_shndx()
&& symobj->get_opd_discard(sym->value()))
sym->set_symtab_index(-1U);
}
};
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::define_save_restore_funcs(
Layout* layout,
Symbol_table* symtab)
{
if (size == 64)
{
Output_data_save_res<64, big_endian>* savres
= new Output_data_save_res<64, big_endian>(symtab);
layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
savres, ORDER_TEXT, false);
}
}
// Sort linker created .got section first (for the header), then input
// sections belonging to files using small model code.
template<bool big_endian>
class Sort_toc_sections
{
public:
bool
operator()(const Output_section::Input_section& is1,
const Output_section::Input_section& is2) const
{
if (!is1.is_input_section() && is2.is_input_section())
return true;
bool small1
= (is1.is_input_section()
&& (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
->has_small_toc_reloc()));
bool small2
= (is2.is_input_section()
&& (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
->has_small_toc_reloc()));
return small1 && !small2;
}
};
// Finalize the sections.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::do_finalize_sections(
Layout* layout,
const Input_objects*,
Symbol_table* symtab)
{
if (parameters->doing_static_link())
{
// At least some versions of glibc elf-init.o have a strong
// reference to __rela_iplt marker syms. A weak ref would be
// better..
if (this->iplt_ != NULL)
{
Reloc_section* rel = this->iplt_->rel_plt();
symtab->define_in_output_data("__rela_iplt_start", NULL,
Symbol_table::PREDEFINED, rel, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, false, true);
symtab->define_in_output_data("__rela_iplt_end", NULL,
Symbol_table::PREDEFINED, rel, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, true, true);
}
else
{
symtab->define_as_constant("__rela_iplt_start", NULL,
Symbol_table::PREDEFINED, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, true, false);
symtab->define_as_constant("__rela_iplt_end", NULL,
Symbol_table::PREDEFINED, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, true, false);
}
}
if (size == 64)
{
typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
if (!parameters->options().relocatable())
{
this->define_save_restore_funcs(layout, symtab);
// Annoyingly, we need to make these sections now whether or
// not we need them. If we delay until do_relax then we
// need to mess with the relaxation machinery checkpointing.
this->got_section(symtab, layout);
this->make_brlt_section(layout);
if (parameters->options().toc_sort())
{
Output_section* os = this->got_->output_section();
if (os != NULL && os->input_sections().size() > 1)
std::stable_sort(os->input_sections().begin(),
os->input_sections().end(),
Sort_toc_sections<big_endian>());
}
}
}
// Fill in some more dynamic tags.
Output_data_dynamic* odyn = layout->dynamic_data();
if (odyn != NULL)
{
const Reloc_section* rel_plt = (this->plt_ == NULL
? NULL
: this->plt_->rel_plt());
layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
this->rela_dyn_, true, size == 32);
if (size == 32)
{
if (this->got_ != NULL)
{
this->got_->finalize_data_size();
odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
this->got_, this->got_->g_o_t());
}
}
else
{
if (this->glink_ != NULL)
{
this->glink_->finalize_data_size();
odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
this->glink_,
(this->glink_->pltresolve_size
- 32));
}
}
}
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_.any_saved_relocs())
this->copy_relocs_.emit(this->rela_dyn_section(layout));
}
// Return TRUE iff INSN is one we expect on a _LO variety toc/got
// reloc.
static bool
ok_lo_toc_insn(uint32_t insn)
{
return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
|| (insn & (0x3f << 26)) == 32u << 26 /* lwz */
|| (insn & (0x3f << 26)) == 34u << 26 /* lbz */
|| (insn & (0x3f << 26)) == 36u << 26 /* stw */
|| (insn & (0x3f << 26)) == 38u << 26 /* stb */
|| (insn & (0x3f << 26)) == 40u << 26 /* lhz */
|| (insn & (0x3f << 26)) == 42u << 26 /* lha */
|| (insn & (0x3f << 26)) == 44u << 26 /* sth */
|| (insn & (0x3f << 26)) == 46u << 26 /* lmw */
|| (insn & (0x3f << 26)) == 47u << 26 /* stmw */
|| (insn & (0x3f << 26)) == 48u << 26 /* lfs */
|| (insn & (0x3f << 26)) == 50u << 26 /* lfd */
|| (insn & (0x3f << 26)) == 52u << 26 /* stfs */
|| (insn & (0x3f << 26)) == 54u << 26 /* stfd */
|| ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
&& (insn & 3) != 1)
|| ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
&& ((insn & 3) == 0 || (insn & 3) == 3))
|| (insn & (0x3f << 26)) == 12u << 26 /* addic */);
}
// Return the value to use for a branch relocation.
template<int size, bool big_endian>
typename Target_powerpc<size, big_endian>::Address
Target_powerpc<size, big_endian>::symval_for_branch(
const Symbol_table* symtab,
Address value,
const Sized_symbol<size>* gsym,
Powerpc_relobj<size, big_endian>* object,
unsigned int *dest_shndx)
{
*dest_shndx = 0;
if (size == 32)
return value;
// If the symbol is defined in an opd section, ie. is a function
// descriptor, use the function descriptor code entry address
Powerpc_relobj<size, big_endian>* symobj = object;
if (gsym != NULL
&& gsym->source() != Symbol::FROM_OBJECT)
return value;
if (gsym != NULL)
symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
unsigned int shndx = symobj->opd_shndx();
if (shndx == 0)
return value;
Address opd_addr = symobj->get_output_section_offset(shndx);
if (opd_addr == invalid_address)
return value;
opd_addr += symobj->output_section_address(shndx);
if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
{
Address sec_off;
*dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
if (symtab->is_section_folded(symobj, *dest_shndx))
{
Section_id folded
= symtab->icf()->get_folded_section(symobj, *dest_shndx);
symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
*dest_shndx = folded.second;
}
Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
gold_assert(sec_addr != invalid_address);
sec_addr += symobj->output_section(*dest_shndx)->address();
value = sec_addr + sec_off;
}
return value;
}
// Perform a relocation.
template<int size, bool big_endian>
inline bool
Target_powerpc<size, big_endian>::Relocate::relocate(
const Relocate_info<size, big_endian>* relinfo,
Target_powerpc* target,
Output_section* os,
size_t relnum,
const elfcpp::Rela<size, big_endian>& rela,
unsigned int r_type,
const Sized_symbol<size>* gsym,
const Symbol_value<size>* psymval,
unsigned char* view,
Address address,
section_size_type view_size)
{
if (view == NULL)
return true;
switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
{
case Track_tls::NOT_EXPECTED:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("__tls_get_addr call lacks marker reloc"));
break;
case Track_tls::EXPECTED:
// We have already complained.
break;
case Track_tls::SKIP:
return true;
case Track_tls::NORMAL:
break;
}
typedef Powerpc_relocate_functions<size, big_endian> Reloc;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
Powerpc_relobj<size, big_endian>* const object
= static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
Address value = 0;
bool has_plt_value = false;
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
if ((gsym != NULL
? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
: object->local_has_plt_offset(r_sym))
&& (!psymval->is_ifunc_symbol()
|| Scan::reloc_needs_plt_for_ifunc(object, r_type, false)))
{
Stub_table<size, big_endian>* stub_table
= object->stub_table(relinfo->data_shndx);
if (stub_table == NULL)
{
// This is a ref from a data section to an ifunc symbol.
if (target->stub_tables().size() != 0)
stub_table = target->stub_tables()[0];
}
gold_assert(stub_table != NULL);
Address off;
if (gsym != NULL)
off = stub_table->find_plt_call_entry(object, gsym, r_type,
rela.get_r_addend());
else
off = stub_table->find_plt_call_entry(object, r_sym, r_type,
rela.get_r_addend());
gold_assert(off != invalid_address);
value = stub_table->stub_address() + off;
has_plt_value = true;
}
if (r_type == elfcpp::R_POWERPC_GOT16
|| r_type == elfcpp::R_POWERPC_GOT16_LO
|| r_type == elfcpp::R_POWERPC_GOT16_HI
|| r_type == elfcpp::R_POWERPC_GOT16_HA
|| r_type == elfcpp::R_PPC64_GOT16_DS
|| r_type == elfcpp::R_PPC64_GOT16_LO_DS)
{
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
value = gsym->got_offset(GOT_TYPE_STANDARD);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
}
value -= target->got_section()->got_base_offset(object);
}
else if (r_type == elfcpp::R_PPC64_TOC)
{
value = (target->got_section()->output_section()->address()
+ object->toc_base_offset());
}
else if (gsym != NULL
&& (r_type == elfcpp::R_POWERPC_REL24
|| r_type == elfcpp::R_PPC_PLTREL24)
&& has_plt_value)
{
if (size == 64)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
bool can_plt_call = false;
if (rela.get_r_offset() + 8 <= view_size)
{
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
if ((insn & 1) != 0
&& (insn2 == nop
|| insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
{
elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
can_plt_call = true;
}
}
if (!can_plt_call)
{
// If we don't have a branch and link followed by a nop,
// we can't go via the plt because there is no place to
// put a toc restoring instruction.
// Unless we know we won't be returning.
if (strcmp(gsym->name(), "__libc_start_main") == 0)
can_plt_call = true;
}
if (!can_plt_call)
{
// g++ as of 20130507 emits self-calls without a
// following nop. This is arguably wrong since we have
// conflicting information. On the one hand a global
// symbol and on the other a local call sequence, but
// don't error for this special case.
// It isn't possible to cheaply verify we have exactly
// such a call. Allow all calls to the same section.
bool ok = false;
Address code = value;
if (gsym->source() == Symbol::FROM_OBJECT
&& gsym->object() == object)
{
Address addend = rela.get_r_addend();
unsigned int dest_shndx;
Address opdent = psymval->value(object, addend);
code = target->symval_for_branch(relinfo->symtab, opdent,
gsym, object, &dest_shndx);
bool is_ordinary;
if (dest_shndx == 0)
dest_shndx = gsym->shndx(&is_ordinary);
ok = dest_shndx == relinfo->data_shndx;
}
if (!ok)
{
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("call lacks nop, can't restore toc; "
"recompile with -fPIC"));
value = code;
}
}
}
}
else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
{
// First instruction of a global dynamic sequence, arg setup insn.
const bool final = gsym == NULL || gsym->final_value_is_known();
const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
enum Got_type got_type = GOT_TYPE_STANDARD;
if (tls_type == tls::TLSOPT_NONE)
got_type = GOT_TYPE_TLSGD;
else if (tls_type == tls::TLSOPT_TO_IE)
got_type = GOT_TYPE_TPREL;
if (got_type != GOT_TYPE_STANDARD)
{
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
value = gsym->got_offset(got_type);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
value = object->local_got_offset(r_sym, got_type);
}
value -= target->got_section()->got_base_offset(object);
}
if (tls_type == tls::TLSOPT_TO_IE)
{
if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
if (size == 32)
insn |= 32 << 26; // lwz
else
insn |= 58 << 26; // ld
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
}
r_type += (elfcpp::R_POWERPC_GOT_TPREL16
- elfcpp::R_POWERPC_GOT_TLSGD16);
}
else if (tls_type == tls::TLSOPT_TO_LE)
{
if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = addis_3_13;
if (size == 32)
insn = addis_3_2;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_TPREL16_HA;
value = psymval->value(object, rela.get_r_addend());
}
else
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = nop;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_NONE;
}
}
}
else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
{
// First instruction of a local dynamic sequence, arg setup insn.
const tls::Tls_optimization tls_type = target->optimize_tls_ld();
if (tls_type == tls::TLSOPT_NONE)
{
value = target->tlsld_got_offset();
value -= target->got_section()->got_base_offset(object);
}
else
{
gold_assert(tls_type == tls::TLSOPT_TO_LE);
if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = addis_3_13;
if (size == 32)
insn = addis_3_2;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_TPREL16_HA;
value = dtp_offset;
}
else
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = nop;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_NONE;
}
}
}
else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
|| r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
|| r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
|| r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
{
// Accesses relative to a local dynamic sequence address,
// no optimisation here.
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
value = gsym->got_offset(GOT_TYPE_DTPREL);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
}
value -= target->got_section()->got_base_offset(object);
}
else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
{
// First instruction of initial exec sequence.
const bool final = gsym == NULL || gsym->final_value_is_known();
const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
if (tls_type == tls::TLSOPT_NONE)
{
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
value = gsym->got_offset(GOT_TYPE_TPREL);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
}
value -= target->got_section()->got_base_offset(object);
}
else
{
gold_assert(tls_type == tls::TLSOPT_TO_LE);
if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
insn &= (1 << 26) - (1 << 21); // extract rt from ld
if (size == 32)
insn |= addis_0_2;
else
insn |= addis_0_13;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_TPREL16_HA;
value = psymval->value(object, rela.get_r_addend());
}
else
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = nop;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_NONE;
}
}
}
else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
{
// Second instruction of a global dynamic sequence,
// the __tls_get_addr call
this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
const bool final = gsym == NULL || gsym->final_value_is_known();
const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
if (tls_type != tls::TLSOPT_NONE)
{
if (tls_type == tls::TLSOPT_TO_IE)
{
Insn* iview = reinterpret_cast<Insn*>(view);
Insn insn = add_3_3_13;
if (size == 32)
insn = add_3_3_2;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_NONE;
}
else
{
Insn* iview = reinterpret_cast<Insn*>(view);
Insn insn = addi_3_3;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_TPREL16_LO;
view += 2 * big_endian;
value = psymval->value(object, rela.get_r_addend());
}
this->skip_next_tls_get_addr_call();
}
}
else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
{
// Second instruction of a local dynamic sequence,
// the __tls_get_addr call
this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
const tls::Tls_optimization tls_type = target->optimize_tls_ld();
if (tls_type == tls::TLSOPT_TO_LE)
{
Insn* iview = reinterpret_cast<Insn*>(view);
Insn insn = addi_3_3;
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
this->skip_next_tls_get_addr_call();
r_type = elfcpp::R_POWERPC_TPREL16_LO;
view += 2 * big_endian;
value = dtp_offset;
}
}
else if (r_type == elfcpp::R_POWERPC_TLS)
{
// Second instruction of an initial exec sequence
const bool final = gsym == NULL || gsym->final_value_is_known();
const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
if (tls_type == tls::TLSOPT_TO_LE)
{
Insn* iview = reinterpret_cast<Insn*>(view);
Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
unsigned int reg = size == 32 ? 2 : 13;
insn = at_tls_transform(insn, reg);
gold_assert(insn != 0);
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
r_type = elfcpp::R_POWERPC_TPREL16_LO;
view += 2 * big_endian;
value = psymval->value(object, rela.get_r_addend());
}
}
else if (!has_plt_value)
{
Address addend = 0;
unsigned int dest_shndx;
if (r_type != elfcpp::R_PPC_PLTREL24)
addend = rela.get_r_addend();
value = psymval->value(object, addend);
if (size == 64 && is_branch_reloc(r_type))
value = target->symval_for_branch(relinfo->symtab, value,
gsym, object, &dest_shndx);
unsigned int max_branch_offset = 0;
if (r_type == elfcpp::R_POWERPC_REL24
|| r_type == elfcpp::R_PPC_PLTREL24
|| r_type == elfcpp::R_PPC_LOCAL24PC)
max_branch_offset = 1 << 25;
else if (r_type == elfcpp::R_POWERPC_REL14
|| r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
|| r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
max_branch_offset = 1 << 15;
if (max_branch_offset != 0
&& value - address + max_branch_offset >= 2 * max_branch_offset)
{
Stub_table<size, big_endian>* stub_table
= object->stub_table(relinfo->data_shndx);
if (stub_table != NULL)
{
Address off = stub_table->find_long_branch_entry(object, value);
if (off != invalid_address)
value = (stub_table->stub_address() + stub_table->plt_size()
+ off);
}
}
}
switch (r_type)
{
case elfcpp::R_PPC64_REL64:
case elfcpp::R_POWERPC_REL32:
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_PLTREL24:
case elfcpp::R_PPC_LOCAL24PC:
case elfcpp::R_POWERPC_REL16:
case elfcpp::R_POWERPC_REL16_LO:
case elfcpp::R_POWERPC_REL16_HI:
case elfcpp::R_POWERPC_REL16_HA:
case elfcpp::R_POWERPC_REL14:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
value -= address;
break;
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
// Subtract the TOC base address.
value -= (target->got_section()->output_section()->address()
+ object->toc_base_offset());
break;
case elfcpp::R_POWERPC_SECTOFF:
case elfcpp::R_POWERPC_SECTOFF_LO:
case elfcpp::R_POWERPC_SECTOFF_HI:
case elfcpp::R_POWERPC_SECTOFF_HA:
case elfcpp::R_PPC64_SECTOFF_DS:
case elfcpp::R_PPC64_SECTOFF_LO_DS:
if (os != NULL)
value -= os->address();
break;
case elfcpp::R_PPC64_TPREL16_DS:
case elfcpp::R_PPC64_TPREL16_LO_DS:
if (size != 64)
// R_PPC_TLSGD and R_PPC_TLSLD
break;
case elfcpp::R_POWERPC_TPREL16:
case elfcpp::R_POWERPC_TPREL16_LO:
case elfcpp::R_POWERPC_TPREL16_HI:
case elfcpp::R_POWERPC_TPREL16_HA:
case elfcpp::R_POWERPC_TPREL:
case elfcpp::R_PPC64_TPREL16_HIGHER:
case elfcpp::R_PPC64_TPREL16_HIGHERA:
case elfcpp::R_PPC64_TPREL16_HIGHEST:
case elfcpp::R_PPC64_TPREL16_HIGHESTA:
// tls symbol values are relative to tls_segment()->vaddr()
value -= tp_offset;
break;
case elfcpp::R_PPC64_DTPREL16_DS:
case elfcpp::R_PPC64_DTPREL16_LO_DS:
case elfcpp::R_PPC64_DTPREL16_HIGHER:
case elfcpp::R_PPC64_DTPREL16_HIGHERA:
case elfcpp::R_PPC64_DTPREL16_HIGHEST:
case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
if (size != 64)
// R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
// R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
break;
case elfcpp::R_POWERPC_DTPREL16:
case elfcpp::R_POWERPC_DTPREL16_LO:
case elfcpp::R_POWERPC_DTPREL16_HI:
case elfcpp::R_POWERPC_DTPREL16_HA:
case elfcpp::R_POWERPC_DTPREL:
// tls symbol values are relative to tls_segment()->vaddr()
value -= dtp_offset;
break;
default:
break;
}
Insn branch_bit = 0;
switch (r_type)
{
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
branch_bit = 1 << 21;
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
{
Insn* iview = reinterpret_cast<Insn*>(view);
Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
insn &= ~(1 << 21);
insn |= branch_bit;
if (this->is_isa_v2)
{
// Set 'a' bit. This is 0b00010 in BO field for branch
// on CR(BI) insns (BO == 001at or 011at), and 0b01000
// for branch on CTR insns (BO == 1a00t or 1a01t).
if ((insn & (0x14 << 21)) == (0x04 << 21))
insn |= 0x02 << 21;
else if ((insn & (0x14 << 21)) == (0x10 << 21))
insn |= 0x08 << 21;
else
break;
}
else
{
// Invert 'y' bit if not the default.
if (static_cast<Signed_address>(value) < 0)
insn ^= 1 << 21;
}
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
}
break;
default:
break;
}
if (size == 64)
{
// Multi-instruction sequences that access the TOC can be
// optimized, eg. addis ra,r2,0; addi rb,ra,x;
// to nop; addi rb,r2,x;
switch (r_type)
{
default:
break;
case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
case elfcpp::R_POWERPC_GOT_TPREL16_HA:
case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_TOC16_HA:
if (parameters->options().toc_optimize())
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
if ((insn & ((0x3f << 26) | 0x1f << 16))
!= ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("toc optimization is not supported "
"for %#08x instruction"), insn);
else if (value + 0x8000 < 0x10000)
{
elfcpp::Swap<32, big_endian>::writeval(iview, nop);
return true;
}
}
break;
case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
case elfcpp::R_POWERPC_GOT_TPREL16_LO:
case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_PPC64_GOT16_LO_DS:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_LO_DS:
if (parameters->options().toc_optimize())
{
Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
if (!ok_lo_toc_insn(insn))
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("toc optimization is not supported "
"for %#08x instruction"), insn);
else if (value + 0x8000 < 0x10000)
{
if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
{
// Transform addic to addi when we change reg.
insn &= ~((0x3f << 26) | (0x1f << 16));
insn |= (14u << 26) | (2 << 16);
}
else
{
insn &= ~(0x1f << 16);
insn |= 2 << 16;
}
elfcpp::Swap<32, big_endian>::writeval(iview, insn);
}
}
break;
}
}
typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
switch (r_type)
{
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_UADDR32:
if (size == 64)
overflow = Reloc::CHECK_BITFIELD;
break;
case elfcpp::R_POWERPC_REL32:
if (size == 64)
overflow = Reloc::CHECK_SIGNED;
break;
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_UADDR16:
case elfcpp::R_PPC64_ADDR16_DS:
case elfcpp::R_POWERPC_ADDR14:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
overflow = Reloc::CHECK_BITFIELD;
break;
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_PLTREL24:
case elfcpp::R_PPC_LOCAL24PC:
case elfcpp::R_POWERPC_REL16:
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_SECTOFF:
case elfcpp::R_POWERPC_TPREL16:
case elfcpp::R_POWERPC_DTPREL16:
case elfcpp::R_PPC64_TPREL16_DS:
case elfcpp::R_PPC64_DTPREL16_DS:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_SECTOFF_DS:
case elfcpp::R_POWERPC_REL14:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
case elfcpp::R_POWERPC_GOT_TLSGD16:
case elfcpp::R_POWERPC_GOT_TLSLD16:
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_GOT_DTPREL16:
overflow = Reloc::CHECK_SIGNED;
break;
}
typename Powerpc_relocate_functions<size, big_endian>::Status status
= Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_TLS:
case elfcpp::R_POWERPC_GNU_VTINHERIT:
case elfcpp::R_POWERPC_GNU_VTENTRY:
case elfcpp::R_PPC_EMB_MRKREF:
break;
case elfcpp::R_PPC64_ADDR64:
case elfcpp::R_PPC64_REL64:
case elfcpp::R_PPC64_TOC:
Reloc::addr64(view, value);
break;
case elfcpp::R_POWERPC_TPREL:
case elfcpp::R_POWERPC_DTPREL:
if (size == 64)
Reloc::addr64(view, value);
else
status = Reloc::addr32(view, value, overflow);
break;
case elfcpp::R_PPC64_UADDR64:
Reloc::addr64_u(view, value);
break;
case elfcpp::R_POWERPC_ADDR32:
status = Reloc::addr32(view, value, overflow);
break;
case elfcpp::R_POWERPC_REL32:
case elfcpp::R_POWERPC_UADDR32:
status = Reloc::addr32_u(view, value, overflow);
break;
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_PLTREL24:
case elfcpp::R_PPC_LOCAL24PC:
status = Reloc::addr24(view, value, overflow);
break;
case elfcpp::R_POWERPC_GOT_DTPREL16:
case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
if (size == 64)
{
status = Reloc::addr16_ds(view, value, overflow);
break;
}
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_REL16:
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_SECTOFF:
case elfcpp::R_POWERPC_TPREL16:
case elfcpp::R_POWERPC_DTPREL16:
case elfcpp::R_POWERPC_GOT_TLSGD16:
case elfcpp::R_POWERPC_GOT_TLSLD16:
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_ADDR16_LO:
case elfcpp::R_POWERPC_REL16_LO:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_SECTOFF_LO:
case elfcpp::R_POWERPC_TPREL16_LO:
case elfcpp::R_POWERPC_DTPREL16_LO:
case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
case elfcpp::R_POWERPC_GOT_TPREL16_LO:
status = Reloc::addr16(view, value, overflow);
break;
case elfcpp::R_POWERPC_UADDR16:
status = Reloc::addr16_u(view, value, overflow);
break;
case elfcpp::R_POWERPC_ADDR16_HI:
case elfcpp::R_POWERPC_REL16_HI:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_SECTOFF_HI:
case elfcpp::R_POWERPC_TPREL16_HI:
case elfcpp::R_POWERPC_DTPREL16_HI:
case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
case elfcpp::R_POWERPC_GOT_TPREL16_HI:
case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
Reloc::addr16_hi(view, value);
break;
case elfcpp::R_POWERPC_ADDR16_HA:
case elfcpp::R_POWERPC_REL16_HA:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_POWERPC_SECTOFF_HA:
case elfcpp::R_POWERPC_TPREL16_HA:
case elfcpp::R_POWERPC_DTPREL16_HA:
case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
case elfcpp::R_POWERPC_GOT_TPREL16_HA:
case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
Reloc::addr16_ha(view, value);
break;
case elfcpp::R_PPC64_DTPREL16_HIGHER:
if (size == 32)
// R_PPC_EMB_NADDR16_LO
goto unsupp;
case elfcpp::R_PPC64_ADDR16_HIGHER:
case elfcpp::R_PPC64_TPREL16_HIGHER:
Reloc::addr16_hi2(view, value);
break;
case elfcpp::R_PPC64_DTPREL16_HIGHERA:
if (size == 32)
// R_PPC_EMB_NADDR16_HI
goto unsupp;
case elfcpp::R_PPC64_ADDR16_HIGHERA:
case elfcpp::R_PPC64_TPREL16_HIGHERA:
Reloc::addr16_ha2(view, value);
break;
case elfcpp::R_PPC64_DTPREL16_HIGHEST:
if (size == 32)
// R_PPC_EMB_NADDR16_HA
goto unsupp;
case elfcpp::R_PPC64_ADDR16_HIGHEST:
case elfcpp::R_PPC64_TPREL16_HIGHEST:
Reloc::addr16_hi3(view, value);
break;
case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
if (size == 32)
// R_PPC_EMB_SDAI16
goto unsupp;
case elfcpp::R_PPC64_ADDR16_HIGHESTA:
case elfcpp::R_PPC64_TPREL16_HIGHESTA:
Reloc::addr16_ha3(view, value);
break;
case elfcpp::R_PPC64_DTPREL16_DS:
case elfcpp::R_PPC64_DTPREL16_LO_DS:
if (size == 32)
// R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
goto unsupp;
case elfcpp::R_PPC64_TPREL16_DS:
case elfcpp::R_PPC64_TPREL16_LO_DS:
if (size == 32)
// R_PPC_TLSGD, R_PPC_TLSLD
break;
case elfcpp::R_PPC64_ADDR16_DS:
case elfcpp::R_PPC64_ADDR16_LO_DS:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_GOT16_LO_DS:
case elfcpp::R_PPC64_SECTOFF_DS:
case elfcpp::R_PPC64_SECTOFF_LO_DS:
status = Reloc::addr16_ds(view, value, overflow);
break;
case elfcpp::R_POWERPC_ADDR14:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
case elfcpp::R_POWERPC_REL14:
case elfcpp::R_POWERPC_REL14_BRTAKEN:
case elfcpp::R_POWERPC_REL14_BRNTAKEN:
status = Reloc::addr14(view, value, overflow);
break;
case elfcpp::R_POWERPC_COPY:
case elfcpp::R_POWERPC_GLOB_DAT:
case elfcpp::R_POWERPC_JMP_SLOT:
case elfcpp::R_POWERPC_RELATIVE:
case elfcpp::R_POWERPC_DTPMOD:
case elfcpp::R_PPC64_JMP_IREL:
case elfcpp::R_POWERPC_IRELATIVE:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unexpected reloc %u in object file"),
r_type);
break;
case elfcpp::R_PPC_EMB_SDA21:
if (size == 32)
goto unsupp;
else
{
// R_PPC64_TOCSAVE. For the time being this can be ignored.
}
break;
case elfcpp::R_PPC_EMB_SDA2I16:
case elfcpp::R_PPC_EMB_SDA2REL:
if (size == 32)
goto unsupp;
// R_PPC64_TLSGD, R_PPC64_TLSLD
break;
case elfcpp::R_POWERPC_PLT32:
case elfcpp::R_POWERPC_PLTREL32:
case elfcpp::R_POWERPC_PLT16_LO:
case elfcpp::R_POWERPC_PLT16_HI:
case elfcpp::R_POWERPC_PLT16_HA:
case elfcpp::R_PPC_SDAREL16:
case elfcpp::R_POWERPC_ADDR30:
case elfcpp::R_PPC64_PLT64:
case elfcpp::R_PPC64_PLTREL64:
case elfcpp::R_PPC64_PLTGOT16:
case elfcpp::R_PPC64_PLTGOT16_LO:
case elfcpp::R_PPC64_PLTGOT16_HI:
case elfcpp::R_PPC64_PLTGOT16_HA:
case elfcpp::R_PPC64_PLT16_LO_DS:
case elfcpp::R_PPC64_PLTGOT16_DS:
case elfcpp::R_PPC64_PLTGOT16_LO_DS:
case elfcpp::R_PPC_EMB_RELSEC16:
case elfcpp::R_PPC_EMB_RELST_LO:
case elfcpp::R_PPC_EMB_RELST_HI:
case elfcpp::R_PPC_EMB_RELST_HA:
case elfcpp::R_PPC_EMB_BIT_FLD:
case elfcpp::R_PPC_EMB_RELSDA:
case elfcpp::R_PPC_TOC16:
default:
unsupp:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
}
if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("relocation overflow"));
return true;
}
// Relocate section data.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::relocate_section(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Address address,
section_size_type view_size,
const Reloc_symbol_changes* reloc_symbol_changes)
{
typedef Target_powerpc<size, big_endian> Powerpc;
typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
Powerpc_comdat_behavior;
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
Powerpc_relocate, Powerpc_comdat_behavior>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
class Powerpc_scan_relocatable_reloc
{
public:
// Return the strategy to use for a local symbol which is not a
// section symbol, given the relocation type.
inline Relocatable_relocs::Reloc_strategy
local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
{
if (r_type == 0 && r_sym == 0)
return Relocatable_relocs::RELOC_DISCARD;
return Relocatable_relocs::RELOC_COPY;
}
// Return the strategy to use for a local symbol which is a section
// symbol, given the relocation type.
inline Relocatable_relocs::Reloc_strategy
local_section_strategy(unsigned int, Relobj*)
{
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
}
// Return the strategy to use for a global symbol, given the
// relocation type, the object, and the symbol index.
inline Relocatable_relocs::Reloc_strategy
global_strategy(unsigned int r_type, Relobj*, unsigned int)
{
if (r_type == elfcpp::R_PPC_PLTREL24)
return Relocatable_relocs::RELOC_SPECIAL;
return Relocatable_relocs::RELOC_COPY;
}
};
// Scan the relocs during a relocatable link.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::scan_relocatable_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
Powerpc_scan_relocatable_reloc>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
// Emit relocations for a section.
// This is a modified version of the function by the same name in
// target-reloc.h. Using relocate_special_relocatable for
// R_PPC_PLTREL24 would require duplication of the entire body of the
// loop, so we may as well duplicate the whole thing.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::relocate_relocs(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
const Relocatable_relocs* rr,
unsigned char*,
Address view_address,
section_size_type,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
Reltype;
typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
Reltype_write;
const int reloc_size
= Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
Powerpc_relobj<size, big_endian>* const object
= static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
const unsigned int local_count = object->local_symbol_count();
unsigned int got2_shndx = object->got2_shndx();
Address got2_addend = 0;
if (got2_shndx != 0)
{
got2_addend = object->get_output_section_offset(got2_shndx);
gold_assert(got2_addend != invalid_address);
}
unsigned char* pwrite = reloc_view;
bool zap_next = false;
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
{
Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
if (strategy == Relocatable_relocs::RELOC_DISCARD)
continue;
Reltype reloc(prelocs);
Reltype_write reloc_write(pwrite);
Address offset = reloc.get_r_offset();
typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
const unsigned int orig_r_sym = r_sym;
typename elfcpp::Elf_types<size>::Elf_Swxword addend
= reloc.get_r_addend();
const Symbol* gsym = NULL;
if (zap_next)
{
// We could arrange to discard these and other relocs for
// tls optimised sequences in the strategy methods, but for
// now do as BFD ld does.
r_type = elfcpp::R_POWERPC_NONE;
zap_next = false;
}
// Get the new symbol index.
if (r_sym < local_count)
{
switch (strategy)
{
case Relocatable_relocs::RELOC_COPY:
case Relocatable_relocs::RELOC_SPECIAL:
if (r_sym != 0)
{
r_sym = object->symtab_index(r_sym);
gold_assert(r_sym != -1U);
}
break;
case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
{
// We are adjusting a section symbol. We need to find
// the symbol table index of the section symbol for
// the output section corresponding to input section
// in which this symbol is defined.
gold_assert(r_sym < local_count);
bool is_ordinary;
unsigned int shndx =
object->local_symbol_input_shndx(r_sym, &is_ordinary);
gold_assert(is_ordinary);
Output_section* os = object->output_section(shndx);
gold_assert(os != NULL);
gold_assert(os->needs_symtab_index());
r_sym = os->symtab_index();
}
break;
default:
gold_unreachable();
}
}
else
{
gsym = object->global_symbol(r_sym);
gold_assert(gsym != NULL);
if (gsym->is_forwarder())
gsym = relinfo->symtab->resolve_forwards(gsym);
gold_assert(gsym->has_symtab_index());
r_sym = gsym->symtab_index();
}
// Get the new offset--the location in the output section where
// this relocation should be applied.
if (static_cast<Address>(offset_in_output_section) != invalid_address)
offset += offset_in_output_section;
else
{
section_offset_type sot_offset =
convert_types<section_offset_type, Address>(offset);
section_offset_type new_sot_offset =
output_section->output_offset(object, relinfo->data_shndx,
sot_offset);
gold_assert(new_sot_offset != -1);
offset = new_sot_offset;
}
// In an object file, r_offset is an offset within the section.
// In an executable or dynamic object, generated by
// --emit-relocs, r_offset is an absolute address.
if (!parameters->options().relocatable())
{
offset += view_address;
if (static_cast<Address>(offset_in_output_section) != invalid_address)
offset -= offset_in_output_section;
}
// Handle the reloc addend based on the strategy.
if (strategy == Relocatable_relocs::RELOC_COPY)
;
else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
{
const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
addend = psymval->value(object, addend);
}
else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
{
if (addend >= 32768)
addend += got2_addend;
}
else
gold_unreachable();
if (!parameters->options().relocatable())
{
if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
{
// First instruction of a global dynamic sequence,
// arg setup insn.
const bool final = gsym == NULL || gsym->final_value_is_known();
switch (this->optimize_tls_gd(final))
{
case tls::TLSOPT_TO_IE:
r_type += (elfcpp::R_POWERPC_GOT_TPREL16
- elfcpp::R_POWERPC_GOT_TLSGD16);
break;
case tls::TLSOPT_TO_LE:
if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
r_type = elfcpp::R_POWERPC_TPREL16_HA;
else
{
r_type = elfcpp::R_POWERPC_NONE;
offset -= 2 * big_endian;
}
break;
default:
break;
}
}
else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
{
// First instruction of a local dynamic sequence,
// arg setup insn.
if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
{
if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
|| r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
{
r_type = elfcpp::R_POWERPC_TPREL16_HA;
const Output_section* os = relinfo->layout->tls_segment()
->first_section();
gold_assert(os != NULL);
gold_assert(os->needs_symtab_index());
r_sym = os->symtab_index();
addend = dtp_offset;
}
else
{
r_type = elfcpp::R_POWERPC_NONE;
offset -= 2 * big_endian;
}
}
}
else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
{
// First instruction of initial exec sequence.
const bool final = gsym == NULL || gsym->final_value_is_known();
if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
{
if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
|| r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
r_type = elfcpp::R_POWERPC_TPREL16_HA;
else
{
r_type = elfcpp::R_POWERPC_NONE;
offset -= 2 * big_endian;
}
}
}
else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
{
// Second instruction of a global dynamic sequence,
// the __tls_get_addr call
const bool final = gsym == NULL || gsym->final_value_is_known();
switch (this->optimize_tls_gd(final))
{
case tls::TLSOPT_TO_IE:
r_type = elfcpp::R_POWERPC_NONE;
zap_next = true;
break;
case tls::TLSOPT_TO_LE:
r_type = elfcpp::R_POWERPC_TPREL16_LO;
offset += 2 * big_endian;
zap_next = true;
break;
default:
break;
}
}
else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
|| (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
{
// Second instruction of a local dynamic sequence,
// the __tls_get_addr call
if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
{
const Output_section* os = relinfo->layout->tls_segment()
->first_section();
gold_assert(os != NULL);
gold_assert(os->needs_symtab_index());
r_sym = os->symtab_index();
addend = dtp_offset;
r_type = elfcpp::R_POWERPC_TPREL16_LO;
offset += 2 * big_endian;
zap_next = true;
}
}
else if (r_type == elfcpp::R_POWERPC_TLS)
{
// Second instruction of an initial exec sequence
const bool final = gsym == NULL || gsym->final_value_is_known();
if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
{
r_type = elfcpp::R_POWERPC_TPREL16_LO;
offset += 2 * big_endian;
}
}
}
reloc_write.put_r_offset(offset);
reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
reloc_write.put_r_addend(addend);
pwrite += reloc_size;
}
gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
== reloc_view_size);
}
// Return the value to use for a dynamic symbol which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
template<int size, bool big_endian>
uint64_t
Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
if (size == 32)
{
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
p != this->stub_tables_.end();
++p)
{
Address off = (*p)->find_plt_call_entry(gsym);
if (off != invalid_address)
return (*p)->stub_address() + off;
}
}
gold_unreachable();
}
// Return the PLT address to use for a local symbol.
template<int size, bool big_endian>
uint64_t
Target_powerpc<size, big_endian>::do_plt_address_for_local(
const Relobj* object,
unsigned int symndx) const
{
if (size == 32)
{
const Sized_relobj<size, big_endian>* relobj
= static_cast<const Sized_relobj<size, big_endian>*>(object);
for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
p != this->stub_tables_.end();
++p)
{
Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
symndx);
if (off != invalid_address)
return (*p)->stub_address() + off;
}
}
gold_unreachable();
}
// Return the PLT address to use for a global symbol.
template<int size, bool big_endian>
uint64_t
Target_powerpc<size, big_endian>::do_plt_address_for_global(
const Symbol* gsym) const
{
if (size == 32)
{
for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
p != this->stub_tables_.end();
++p)
{
Address off = (*p)->find_plt_call_entry(gsym);
if (off != invalid_address)
return (*p)->stub_address() + off;
}
}
gold_unreachable();
}
// Return the offset to use for the GOT_INDX'th got entry which is
// for a local tls symbol specified by OBJECT, SYMNDX.
template<int size, bool big_endian>
int64_t
Target_powerpc<size, big_endian>::do_tls_offset_for_local(
const Relobj* object,
unsigned int symndx,
unsigned int got_indx) const
{
const Powerpc_relobj<size, big_endian>* ppc_object
= static_cast<const Powerpc_relobj<size, big_endian>*>(object);
if (ppc_object->local_symbol(symndx)->is_tls_symbol())
{
for (Got_type got_type = GOT_TYPE_TLSGD;
got_type <= GOT_TYPE_TPREL;
got_type = Got_type(got_type + 1))
if (ppc_object->local_has_got_offset(symndx, got_type))
{
unsigned int off = ppc_object->local_got_offset(symndx, got_type);
if (got_type == GOT_TYPE_TLSGD)
off += size / 8;
if (off == got_indx * (size / 8))
{
if (got_type == GOT_TYPE_TPREL)
return -tp_offset;
else
return -dtp_offset;
}
}
}
gold_unreachable();
}
// Return the offset to use for the GOT_INDX'th got entry which is
// for global tls symbol GSYM.
template<int size, bool big_endian>
int64_t
Target_powerpc<size, big_endian>::do_tls_offset_for_global(
Symbol* gsym,
unsigned int got_indx) const
{
if (gsym->type() == elfcpp::STT_TLS)
{
for (Got_type got_type = GOT_TYPE_TLSGD;
got_type <= GOT_TYPE_TPREL;
got_type = Got_type(got_type + 1))
if (gsym->has_got_offset(got_type))
{
unsigned int off = gsym->got_offset(got_type);
if (got_type == GOT_TYPE_TLSGD)
off += size / 8;
if (off == got_indx * (size / 8))
{
if (got_type == GOT_TYPE_TPREL)
return -tp_offset;
else
return -dtp_offset;
}
}
}
gold_unreachable();
}
// The selector for powerpc object files.
template<int size, bool big_endian>
class Target_selector_powerpc : public Target_selector
{
public:
Target_selector_powerpc()
: Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
size, big_endian,
(size == 64
? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
: (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
(size == 64
? (big_endian ? "elf64ppc" : "elf64lppc")
: (big_endian ? "elf32ppc" : "elf32lppc")))
{ }
virtual Target*
do_instantiate_target()
{ return new Target_powerpc<size, big_endian>(); }
};
Target_selector_powerpc<32, true> target_selector_ppc32;
Target_selector_powerpc<32, false> target_selector_ppc32le;
Target_selector_powerpc<64, true> target_selector_ppc64;
Target_selector_powerpc<64, false> target_selector_ppc64le;
// Instantiate these constants for -O0
template<int size, bool big_endian>
const int Output_data_glink<size, big_endian>::pltresolve_size;
template<int size, bool big_endian>
const typename Stub_table<size, big_endian>::Address
Stub_table<size, big_endian>::invalid_address;
template<int size, bool big_endian>
const typename Target_powerpc<size, big_endian>::Address
Target_powerpc<size, big_endian>::invalid_address;
} // End anonymous namespace.