old-cross-binutils/gdb/f-valprint.c
Pedro Alves 492d29ea1c Split TRY_CATCH into TRY + CATCH
This patch splits the TRY_CATCH macro into three, so that we go from
this:

~~~
  volatile gdb_exception ex;

  TRY_CATCH (ex, RETURN_MASK_ERROR)
    {
    }
  if (ex.reason < 0)
    {
    }
~~~

to this:

~~~
  TRY
    {
    }
  CATCH (ex, RETURN_MASK_ERROR)
    {
    }
  END_CATCH
~~~

Thus, we'll be getting rid of the local volatile exception object, and
declaring the caught exception in the catch block.

This allows reimplementing TRY/CATCH in terms of C++ exceptions when
building in C++ mode, while still allowing to build GDB in C mode
(using setjmp/longjmp), as a transition step.

TBC, after this patch, is it _not_ valid to have code between the TRY
and the CATCH blocks, like:

  TRY
    {
    }

  // some code here.

  CATCH (ex, RETURN_MASK_ERROR)
    {
    }
  END_CATCH

Just like it isn't valid to do that with C++'s native try/catch.

By switching to creating the exception object inside the CATCH block
scope, we can get rid of all the explicitly allocated volatile
exception objects all over the tree, and map the CATCH block more
directly to C++'s catch blocks.

The majority of the TRY_CATCH -> TRY+CATCH+END_CATCH conversion was
done with a script, rerun from scratch at every rebase, no manual
editing involved.  After the mechanical conversion, a few places
needed manual intervention, to fix preexisting cases where we were
using the exception object outside of the TRY_CATCH block, and cases
where we were using "else" after a 'if (ex.reason) < 0)' [a CATCH
after this patch].  The result was folded into this patch so that GDB
still builds at each incremental step.

END_CATCH is necessary for two reasons:

First, because we name the exception object in the CATCH block, which
requires creating a scope, which in turn must be closed somewhere.
Declaring the exception variable in the initializer field of a for
block, like:

  #define CATCH(EXCEPTION, mask) \
    for (struct gdb_exception EXCEPTION; \
         exceptions_state_mc_catch (&EXCEPTION, MASK); \
	 EXCEPTION = exception_none)

would avoid needing END_CATCH, but alas, in C mode, we build with C90,
which doesn't allow mixed declarations and code.

Second, because when TRY/CATCH are wired to real C++ try/catch, as
long as we need to handle cleanup chains, even if there's no CATCH
block that wants to catch the exception, we need for stop at every
frame in the unwind chain and run cleanups, then rethrow.  That will
be done in END_CATCH.

After we require C++, we'll still need TRY/CATCH/END_CATCH until
cleanups are completely phased out -- TRY/CATCH in C++ mode will
save/restore the current cleanup chain, like in C mode, and END_CATCH
catches otherwise uncaugh exceptions, runs cleanups and rethrows, so
that C++ cleanups and exceptions can coexist.

IMO, this still makes the TRY/CATCH code look a bit more like a
newcomer would expect, so IMO worth it even if we weren't considering
C++.

gdb/ChangeLog.
2015-03-07  Pedro Alves  <palves@redhat.com>

	* common/common-exceptions.c (struct catcher) <exception>: No
	longer a pointer to volatile exception.  Now an exception value.
	<mask>: Delete field.
	(exceptions_state_mc_init): Remove all parameters.  Adjust.
	(exceptions_state_mc): No longer pop the catcher here.
	(exceptions_state_mc_catch): New function.
	(throw_exception): Adjust.
	* common/common-exceptions.h (exceptions_state_mc_init): Remove
	all parameters.
	(exceptions_state_mc_catch): Declare.
	(TRY_CATCH): Rename to ...
	(TRY): ... this.  Remove EXCEPTION and MASK parameters.
	(CATCH, END_CATCH): New.
	All callers adjusted.

gdb/gdbserver/ChangeLog:
2015-03-07  Pedro Alves  <palves@redhat.com>

	Adjust all callers of TRY_CATCH to use TRY/CATCH/END_CATCH
	instead.
2015-03-07 15:14:14 +00:00

522 lines
15 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Support for printing Fortran values for GDB, the GNU debugger.
Copyright (C) 1993-2015 Free Software Foundation, Inc.
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "value.h"
#include "valprint.h"
#include "language.h"
#include "f-lang.h"
#include "frame.h"
#include "gdbcore.h"
#include "command.h"
#include "block.h"
#include "dictionary.h"
extern void _initialize_f_valprint (void);
static void info_common_command (char *, int);
static void f77_create_arrayprint_offset_tbl (struct type *,
struct ui_file *);
static void f77_get_dynamic_length_of_aggregate (struct type *);
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
/* Array which holds offsets to be applied to get a row's elements
for a given array. Array also holds the size of each subarray. */
/* The following macro gives us the size of the nth dimension, Where
n is 1 based. */
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
/* The following gives us the offset for row n where n is 1-based. */
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
int
f77_get_lowerbound (struct type *type)
{
if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
error (_("Lower bound may not be '*' in F77"));
return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
}
int
f77_get_upperbound (struct type *type)
{
if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
{
/* We have an assumed size array on our hands. Assume that
upper_bound == lower_bound so that we show at least 1 element.
If the user wants to see more elements, let him manually ask for 'em
and we'll subscript the array and show him. */
return f77_get_lowerbound (type);
}
return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
}
/* Obtain F77 adjustable array dimensions. */
static void
f77_get_dynamic_length_of_aggregate (struct type *type)
{
int upper_bound = -1;
int lower_bound = 1;
/* Recursively go all the way down into a possibly multi-dimensional
F77 array and get the bounds. For simple arrays, this is pretty
easy but when the bounds are dynamic, we must be very careful
to add up all the lengths correctly. Not doing this right
will lead to horrendous-looking arrays in parameter lists.
This function also works for strings which behave very
similarly to arrays. */
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
/* Recursion ends here, start setting up lengths. */
lower_bound = f77_get_lowerbound (type);
upper_bound = f77_get_upperbound (type);
/* Patch in a valid length value. */
TYPE_LENGTH (type) =
(upper_bound - lower_bound + 1)
* TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
}
/* Function that sets up the array offset,size table for the array
type "type". */
static void
f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
{
struct type *tmp_type;
int eltlen;
int ndimen = 1;
int upper, lower;
tmp_type = type;
while (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
{
upper = f77_get_upperbound (tmp_type);
lower = f77_get_lowerbound (tmp_type);
F77_DIM_SIZE (ndimen) = upper - lower + 1;
tmp_type = TYPE_TARGET_TYPE (tmp_type);
ndimen++;
}
/* Now we multiply eltlen by all the offsets, so that later we
can print out array elements correctly. Up till now we
know an offset to apply to get the item but we also
have to know how much to add to get to the next item. */
ndimen--;
eltlen = TYPE_LENGTH (tmp_type);
F77_DIM_OFFSET (ndimen) = eltlen;
while (--ndimen > 0)
{
eltlen *= F77_DIM_SIZE (ndimen + 1);
F77_DIM_OFFSET (ndimen) = eltlen;
}
}
/* Actual function which prints out F77 arrays, Valaddr == address in
the superior. Address == the address in the inferior. */
static void
f77_print_array_1 (int nss, int ndimensions, struct type *type,
const gdb_byte *valaddr,
int embedded_offset, CORE_ADDR address,
struct ui_file *stream, int recurse,
const struct value *val,
const struct value_print_options *options,
int *elts)
{
int i;
if (nss != ndimensions)
{
for (i = 0;
(i < F77_DIM_SIZE (nss) && (*elts) < options->print_max);
i++)
{
fprintf_filtered (stream, "( ");
f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
valaddr,
embedded_offset + i * F77_DIM_OFFSET (nss),
address,
stream, recurse, val, options, elts);
fprintf_filtered (stream, ") ");
}
if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
fprintf_filtered (stream, "...");
}
else
{
for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
i++, (*elts)++)
{
val_print (TYPE_TARGET_TYPE (type),
valaddr,
embedded_offset + i * F77_DIM_OFFSET (ndimensions),
address, stream, recurse,
val, options, current_language);
if (i != (F77_DIM_SIZE (nss) - 1))
fprintf_filtered (stream, ", ");
if ((*elts == options->print_max - 1)
&& (i != (F77_DIM_SIZE (nss) - 1)))
fprintf_filtered (stream, "...");
}
}
}
/* This function gets called to print an F77 array, we set up some
stuff and then immediately call f77_print_array_1(). */
static void
f77_print_array (struct type *type, const gdb_byte *valaddr,
int embedded_offset,
CORE_ADDR address, struct ui_file *stream,
int recurse,
const struct value *val,
const struct value_print_options *options)
{
int ndimensions;
int elts = 0;
ndimensions = calc_f77_array_dims (type);
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
error (_("\
Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
ndimensions, MAX_FORTRAN_DIMS);
/* Since F77 arrays are stored column-major, we set up an
offset table to get at the various row's elements. The
offset table contains entries for both offset and subarray size. */
f77_create_arrayprint_offset_tbl (type, stream);
f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
address, stream, recurse, val, options, &elts);
}
/* Decorations for Fortran. */
static const struct generic_val_print_decorations f_decorations =
{
"(",
",",
")",
".TRUE.",
".FALSE.",
"VOID",
};
/* See val_print for a description of the various parameters of this
function; they are identical. */
void
f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
CORE_ADDR address, struct ui_file *stream, int recurse,
const struct value *original_value,
const struct value_print_options *options)
{
struct gdbarch *gdbarch = get_type_arch (type);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
unsigned int i = 0; /* Number of characters printed. */
struct type *elttype;
CORE_ADDR addr;
int index;
CHECK_TYPEDEF (type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRING:
f77_get_dynamic_length_of_aggregate (type);
LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
valaddr + embedded_offset,
TYPE_LENGTH (type), NULL, 0, options);
break;
case TYPE_CODE_ARRAY:
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
{
fprintf_filtered (stream, "(");
f77_print_array (type, valaddr, embedded_offset,
address, stream, recurse, original_value, options);
fprintf_filtered (stream, ")");
}
else
{
struct type *ch_type = TYPE_TARGET_TYPE (type);
f77_get_dynamic_length_of_aggregate (type);
LA_PRINT_STRING (stream, ch_type,
valaddr + embedded_offset,
TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
NULL, 0, options);
}
break;
case TYPE_CODE_PTR:
if (options->format && options->format != 's')
{
val_print_scalar_formatted (type, valaddr, embedded_offset,
original_value, options, 0, stream);
break;
}
else
{
int want_space = 0;
addr = unpack_pointer (type, valaddr + embedded_offset);
elttype = check_typedef (TYPE_TARGET_TYPE (type));
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
{
/* Try to print what function it points to. */
print_function_pointer_address (options, gdbarch, addr, stream);
return;
}
if (options->symbol_print)
want_space = print_address_demangle (options, gdbarch, addr,
stream, demangle);
else if (options->addressprint && options->format != 's')
{
fputs_filtered (paddress (gdbarch, addr), stream);
want_space = 1;
}
/* For a pointer to char or unsigned char, also print the string
pointed to, unless pointer is null. */
if (TYPE_LENGTH (elttype) == 1
&& TYPE_CODE (elttype) == TYPE_CODE_INT
&& (options->format == 0 || options->format == 's')
&& addr != 0)
{
if (want_space)
fputs_filtered (" ", stream);
i = val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
stream, options);
}
return;
}
break;
case TYPE_CODE_INT:
if (options->format || options->output_format)
{
struct value_print_options opts = *options;
opts.format = (options->format ? options->format
: options->output_format);
val_print_scalar_formatted (type, valaddr, embedded_offset,
original_value, &opts, 0, stream);
}
else
{
val_print_type_code_int (type, valaddr + embedded_offset, stream);
/* C and C++ has no single byte int type, char is used instead.
Since we don't know whether the value is really intended to
be used as an integer or a character, print the character
equivalent as well. */
if (TYPE_LENGTH (type) == 1)
{
LONGEST c;
fputs_filtered (" ", stream);
c = unpack_long (type, valaddr + embedded_offset);
LA_PRINT_CHAR ((unsigned char) c, type, stream);
}
}
break;
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
/* Starting from the Fortran 90 standard, Fortran supports derived
types. */
fprintf_filtered (stream, "( ");
for (index = 0; index < TYPE_NFIELDS (type); index++)
{
int offset = TYPE_FIELD_BITPOS (type, index) / 8;
val_print (TYPE_FIELD_TYPE (type, index), valaddr,
embedded_offset + offset,
address, stream, recurse + 1,
original_value, options, current_language);
if (index != TYPE_NFIELDS (type) - 1)
fputs_filtered (", ", stream);
}
fprintf_filtered (stream, " )");
break;
case TYPE_CODE_REF:
case TYPE_CODE_FUNC:
case TYPE_CODE_FLAGS:
case TYPE_CODE_FLT:
case TYPE_CODE_VOID:
case TYPE_CODE_ERROR:
case TYPE_CODE_RANGE:
case TYPE_CODE_UNDEF:
case TYPE_CODE_COMPLEX:
case TYPE_CODE_BOOL:
case TYPE_CODE_CHAR:
default:
generic_val_print (type, valaddr, embedded_offset, address,
stream, recurse, original_value, options,
&f_decorations);
break;
}
gdb_flush (stream);
}
static void
info_common_command_for_block (const struct block *block, const char *comname,
int *any_printed)
{
struct block_iterator iter;
struct symbol *sym;
const char *name;
struct value_print_options opts;
get_user_print_options (&opts);
ALL_BLOCK_SYMBOLS (block, iter, sym)
if (SYMBOL_DOMAIN (sym) == COMMON_BLOCK_DOMAIN)
{
const struct common_block *common = SYMBOL_VALUE_COMMON_BLOCK (sym);
size_t index;
gdb_assert (SYMBOL_CLASS (sym) == LOC_COMMON_BLOCK);
if (comname && (!SYMBOL_LINKAGE_NAME (sym)
|| strcmp (comname, SYMBOL_LINKAGE_NAME (sym)) != 0))
continue;
if (*any_printed)
putchar_filtered ('\n');
else
*any_printed = 1;
if (SYMBOL_PRINT_NAME (sym))
printf_filtered (_("Contents of F77 COMMON block '%s':\n"),
SYMBOL_PRINT_NAME (sym));
else
printf_filtered (_("Contents of blank COMMON block:\n"));
for (index = 0; index < common->n_entries; index++)
{
struct value *val = NULL;
printf_filtered ("%s = ",
SYMBOL_PRINT_NAME (common->contents[index]));
TRY
{
val = value_of_variable (common->contents[index], block);
value_print (val, gdb_stdout, &opts);
}
CATCH (except, RETURN_MASK_ERROR)
{
printf_filtered ("<error reading variable: %s>", except.message);
}
END_CATCH
putchar_filtered ('\n');
}
}
}
/* This function is used to print out the values in a given COMMON
block. It will always use the most local common block of the
given name. */
static void
info_common_command (char *comname, int from_tty)
{
struct frame_info *fi;
const struct block *block;
int values_printed = 0;
/* We have been told to display the contents of F77 COMMON
block supposedly visible in this function. Let us
first make sure that it is visible and if so, let
us display its contents. */
fi = get_selected_frame (_("No frame selected"));
/* The following is generally ripped off from stack.c's routine
print_frame_info(). */
block = get_frame_block (fi, 0);
if (block == NULL)
{
printf_filtered (_("No symbol table info available.\n"));
return;
}
while (block)
{
info_common_command_for_block (block, comname, &values_printed);
/* After handling the function's top-level block, stop. Don't
continue to its superblock, the block of per-file symbols. */
if (BLOCK_FUNCTION (block))
break;
block = BLOCK_SUPERBLOCK (block);
}
if (!values_printed)
{
if (comname)
printf_filtered (_("No common block '%s'.\n"), comname);
else
printf_filtered (_("No common blocks.\n"));
}
}
void
_initialize_f_valprint (void)
{
add_info ("common", info_common_command,
_("Print out the values contained in a Fortran COMMON block."));
if (xdb_commands)
add_com ("lc", class_info, info_common_command,
_("Print out the values contained in a Fortran COMMON block."));
}