old-cross-binutils/gdb/block.c
Doug Evans 43f3e411c4 Split struct symtab into two: struct symtab and compunit_symtab.
Currently "symtabs" in gdb are stored as a single linked list of
struct symtab that contains both symbol symtabs (the blockvectors)
and file symtabs (the linetables).

This has led to confusion, bugs, and performance issues.

This patch is conceptually very simple: split struct symtab into
two pieces: one part containing things common across the entire
compilation unit, and one part containing things specific to each
source file.

Example.
For the case of a program built out of these files:

foo.c
  foo1.h
  foo2.h
bar.c
  foo1.h
  bar.h

Today we have a single list of struct symtabs:

objfile -> foo.c -> foo1.h -> foo2.h -> bar.c -> foo1.h -> bar.h -> NULL

where "->" means the "next" pointer in struct symtab.

With this patch, that turns into:

objfile -> foo.c(cu) -> bar.c(cu) -> NULL
            |            |
            v            v
           foo.c        bar.c
            |            |
            v            v
           foo1.h       foo1.h
            |            |
            v            v
           foo2.h       bar.h
            |            |
            v            v
           NULL         NULL

where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
and the files foo.c, etc. are struct symtab objects.

So now, for example, when we want to iterate over all blockvectors
we can now just iterate over the compunit_symtab list.

Plus a lot of the data that was either unused or replicated for each
symtab in a compilation unit now lives in struct compunit_symtab.
E.g., the objfile pointer, the producer string, etc.
I thought of moving "language" out of struct symtab but there is
logic to try to compute the language based on previously seen files,
and I think that's best left as is for now.
With my standard monster benchmark with -readnow (which I can't actually
do, but based on my calculations), whereas today the list requires
77MB to store all the struct symtabs, it now only requires 37MB.
A modest space savings given the gigabytes needed for all the debug info,
etc.  Still, it's nice.  Plus, whereas today we create a copy of dirname
for each source file symtab in a compilation unit, we now only create one
for the compunit.

So this patch is basically just a data structure reorg,
I don't expect significant performance improvements from it.

Notes:

1) A followup patch can do a similar split for struct partial_symtab.
I have left that until after I get the changes I want in to
better utilize .gdb_index (it may affect how we do partial syms).

2) Another followup patch *could* rename struct symtab.
The term "symtab" is ambiguous and has been a source of confusion.
In this patch I'm leaving it alone, calling it the "historical" name
of "filetabs", which is what they are now: just the file-name + line-table.

gdb/ChangeLog:

	Split struct symtab into two: struct symtab and compunit_symtab.
	* amd64-tdep.c (amd64_skip_xmm_prologue): Fetch producer from compunit.
	* block.c (blockvector_for_pc_sect): Change "struct symtab *" argument
	to "struct compunit_symtab *".  All callers updated.
	(set_block_compunit_symtab): Renamed from set_block_symtab.  Change
	"struct symtab *" argument to "struct compunit_symtab *".
	All callers updated.
	(get_block_compunit_symtab): Renamed from get_block_symtab.  Change
	result to "struct compunit_symtab *".  All callers updated.
	(find_iterator_compunit_symtab): Renamed from find_iterator_symtab.
	Change result to "struct compunit_symtab *".  All callers updated.
	* block.h (struct global_block) <compunit_symtab>: Renamed from symtab.
	hange type to "struct compunit_symtab *".  All uses updated.
	(struct block_iterator) <d.compunit_symtab>: Renamed from "d.symtab".
	Change type to "struct compunit_symtab *".  All uses updated.
	* buildsym.c (struct buildsym_compunit): New struct.
	(subfiles, buildsym_compdir, buildsym_objfile, main_subfile): Delete.
	(buildsym_compunit): New static global.
	(finish_block_internal): Update to fetch objfile from
	buildsym_compunit.
	(make_blockvector): Delete objfile argument.
	(start_subfile): Rewrite to use buildsym_compunit.  Don't initialize
	debugformat, producer.
	(start_buildsym_compunit): New function.
	(free_buildsym_compunit): Renamed from free_subfiles_list.
	All callers updated.
	(patch_subfile_names): Rewrite to use buildsym_compunit.
	(get_compunit_symtab): New function.
	(get_macro_table): Delete argument comp_dir.  All callers updated.
	(start_symtab): Change result to "struct compunit_symtab *".
	All callers updated.  Create the subfile of the main source file.
	(watch_main_source_file_lossage): Rewrite to use buildsym_compunit.
	(reset_symtab_globals): Update.
	(end_symtab_get_static_block): Update to use buildsym_compunit.
	(end_symtab_without_blockvector): Rewrite.
	(end_symtab_with_blockvector): Change result to
	"struct compunit_symtab *".  All callers updated.
	Update to use buildsym_compunit.  Don't set symtab->dirname,
	instead set it in the compunit.
	Explicitly make sure main symtab is first in its list.
	Set debugformat, producer, blockvector, block_line_section, and
	macrotable in the compunit.
	(end_symtab_from_static_block): Change result to
	"struct compunit_symtab *".  All callers updated.
	(end_symtab, end_expandable_symtab): Ditto.
	(set_missing_symtab): Change symtab argument to
	"struct compunit_symtab *".  All callers updated.
	(augment_type_symtab): Ditto.
	(record_debugformat): Update to use buildsym_compunit.
	(record_producer): Update to use buildsym_compunit.
	* buildsym.h (struct subfile) <dirname>: Delete.
	<producer, debugformat>: Delete.
	<buildsym_compunit>: New member.
	(get_compunit_symtab): Declare.
	* dwarf2read.c (struct type_unit_group) <compunit_symtab>: Renamed
	from primary_symtab.  Change type to "struct compunit_symtab *".
	All uses updated.
	(dwarf2_start_symtab): Change result to "struct compunit_symtab *".
	All callers updated.
	(dwarf_decode_macros): Delete comp_dir argument.  All callers updated.
	(struct dwarf2_per_cu_quick_data) <compunit_symtab>: Renamed from
	symtab.  Change type to "struct compunit_symtab *".  All uses updated.
	(dw2_instantiate_symtab): Change result to "struct compunit_symtab *".
	All callers updated.
	(dw2_find_last_source_symtab): Ditto.
	(dw2_lookup_symbol): Ditto.
	(recursively_find_pc_sect_compunit_symtab): Renamed from
	recursively_find_pc_sect_symtab.  Change result to
	"struct compunit_symtab *".  All callers updated.
	(dw2_find_pc_sect_compunit_symtab): Renamed from
	dw2_find_pc_sect_symtab.  Change result to
	"struct compunit_symtab *".  All callers updated.
	(get_compunit_symtab): Renamed from get_symtab.  Change result to
	"struct compunit_symtab *".  All callers updated.
	(recursively_compute_inclusions): Change type of immediate_parent
	argument to "struct compunit_symtab *".  All callers updated.
	(compute_compunit_symtab_includes): Renamed from
	compute_symtab_includes.  All callers updated.  Rewrite to compute
	includes of compunit_symtabs and not symtabs.
	(process_full_comp_unit): Update to work with struct compunit_symtab.
	(process_full_type_unit): Ditto.
	(dwarf_decode_lines_1): Delete argument comp_dir.  All callers updated.
	(dwarf_decode_lines): Remove special case handling of main subfile.
	(macro_start_file): Delete argument comp_dir.  All callers updated.
	(dwarf_decode_macro_bytes): Ditto.
	* guile/scm-block.c (bkscm_print_block_syms_progress_smob): Update to
	use struct compunit_symtab.
	* i386-tdep.c (i386_skip_prologue): Fetch producer from compunit.
	* jit.c (finalize_symtab): Build compunit_symtab.
	* jv-lang.c (get_java_class_symtab): Change result to
	"struct compunit_symtab *".  All callers updated.
	* macroscope.c (sal_macro_scope): Fetch macro table from compunit.
	* macrotab.c (struct macro_table) <compunit_symtab>: Renamed from
	comp_dir.  Change type to "struct compunit_symtab *".
	All uses updated.
	(new_macro_table): Change comp_dir argument to cust,
	"struct compunit_symtab *".  All callers updated.
	* maint.c (struct cmd_stats) <nr_compunit_symtabs>: Renamed from
	nr_primary_symtabs.  All uses updated.
	(count_symtabs_and_blocks): Update to handle compunits.
	(report_command_stats): Update output, "primary symtabs" renamed to
	"compunits".
	* mdebugread.c (new_symtab): Change result to
	"struct compunit_symtab *".  All callers updated.
	(parse_procedure): Change type of search_symtab argument to
	"struct compunit_symtab *".  All callers updated.
	* objfiles.c (objfile_relocate1): Loop over blockvectors in a
	separate loop.
	* objfiles.h (struct objfile) <compunit_symtabs>: Renamed from
	symtabs.  Change type to "struct compunit_symtab *".  All uses updated.
	(ALL_OBJFILE_FILETABS): Renamed from ALL_OBJFILE_SYMTABS.
	All uses updated.
	(ALL_OBJFILE_COMPUNITS): Renamed from ALL_OBJFILE_PRIMARY_SYMTABS.
	All uses updated.
	(ALL_FILETABS): Renamed from ALL_SYMTABS.  All uses updated.
	(ALL_COMPUNITS): Renamed from ALL_PRIMARY_SYMTABS.  All uses updated.
	* psympriv.h (struct partial_symtab) <compunit_symtab>: Renamed from
	symtab.  Change type to "struct compunit_symtab *".  All uses updated.
	* psymtab.c (psymtab_to_symtab): Change result type to
	"struct compunit_symtab *".  All callers updated.
	(find_pc_sect_compunit_symtab_from_partial): Renamed from
	find_pc_sect_symtab_from_partial.  Change result type to
	"struct compunit_symtab *".  All callers updated.
	(lookup_symbol_aux_psymtabs): Change result type to
	"struct compunit_symtab *".  All callers updated.
	(find_last_source_symtab_from_partial): Ditto.
	* python/py-symtab.c (stpy_get_producer): Fetch producer from compunit.
	* source.c (forget_cached_source_info_for_objfile): Fetch debugformat
	and macro_table from compunit.
	* symfile-debug.c (debug_qf_find_last_source_symtab): Change result
	type to "struct compunit_symtab *".  All callers updated.
	(debug_qf_lookup_symbol): Ditto.
	(debug_qf_find_pc_sect_compunit_symtab): Renamed from
	debug_qf_find_pc_sect_symtab, change result type to
	"struct compunit_symtab *".  All callers updated.
	* symfile.c (allocate_symtab): Delete objfile argument.
	New argument cust.
	(allocate_compunit_symtab): New function.
	(add_compunit_symtab_to_objfile): New function.
	* symfile.h (struct quick_symbol_functions) <lookup_symbol>:
	Change result type to "struct compunit_symtab *".  All uses updated.
	<find_pc_sect_compunit_symtab>: Renamed from find_pc_sect_symtab.
	Change result type to "struct compunit_symtab *".  All uses updated.
	* symmisc.c (print_objfile_statistics): Compute blockvector count in
	separate loop.
	(dump_symtab_1): Update test for primary source symtab.
	(maintenance_info_symtabs): Update to handle compunit symtabs.
	(maintenance_check_symtabs): Ditto.
	* symtab.c (set_primary_symtab): Delete.
	(compunit_primary_filetab): New function.
	(compunit_language): New function.
	(iterate_over_some_symtabs): Change type of arguments "first",
	"after_last" to "struct compunit_symtab *".  All callers updated.
	Update to loop over symtabs in each compunit.
	(error_in_psymtab_expansion): Rename symtab argument to cust,
	and change type to "struct compunit_symtab *".  All callers updated.
	(find_pc_sect_compunit_symtab): Renamed from find_pc_sect_symtab.
	Change result type to "struct compunit_symtab *".  All callers updated.
	(find_pc_compunit_symtab): Renamed from find_pc_symtab.
	Change result type to "struct compunit_symtab *".  All callers updated.
	(find_pc_sect_line): Only loop over symtabs within selected compunit
	instead of all symtabs in the objfile.
	* symtab.h (struct symtab) <blockvector>: Moved to compunit_symtab.
	<compunit_symtab> New member.
	<block_line_section>: Moved to compunit_symtab.
	<locations_valid>: Ditto.
	<epilogue_unwind_valid>: Ditto.
	<macro_table>: Ditto.
	<dirname>: Ditto.
	<debugformat>: Ditto.
	<producer>: Ditto.
	<objfile>: Ditto.
	<call_site_htab>: Ditto.
	<includes>: Ditto.
	<user>: Ditto.
	<primary>: Delete
	(SYMTAB_COMPUNIT): New macro.
	(SYMTAB_BLOCKVECTOR): Update definition.
	(SYMTAB_OBJFILE): Update definition.
	(SYMTAB_DIRNAME): Update definition.
	(struct compunit_symtab): New type.  Common members among all source
	symtabs within a compilation unit moved here.  All uses updated.
	(COMPUNIT_OBJFILE): New macro.
	(COMPUNIT_FILETABS): New macro.
	(COMPUNIT_DEBUGFORMAT): New macro.
	(COMPUNIT_PRODUCER): New macro.
	(COMPUNIT_DIRNAME): New macro.
	(COMPUNIT_BLOCKVECTOR): New macro.
	(COMPUNIT_BLOCK_LINE_SECTION): New macro.
	(COMPUNIT_LOCATIONS_VALID): New macro.
	(COMPUNIT_EPILOGUE_UNWIND_VALID): New macro.
	(COMPUNIT_CALL_SITE_HTAB): New macro.
	(COMPUNIT_MACRO_TABLE): New macro.
	(ALL_COMPUNIT_FILETABS): New macro.
	(compunit_symtab_ptr): New typedef.
	(DEF_VEC_P (compunit_symtab_ptr)): New vector type.

gdb/testsuite/ChangeLog:

	* gdb.base/maint.exp: Update expected output.
2014-11-20 07:47:44 -08:00

748 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Block-related functions for the GNU debugger, GDB.
Copyright (C) 2003-2014 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "block.h"
#include "symtab.h"
#include "symfile.h"
#include "gdb_obstack.h"
#include "cp-support.h"
#include "addrmap.h"
#include "gdbtypes.h"
/* This is used by struct block to store namespace-related info for
C++ files, namely using declarations and the current namespace in
scope. */
struct block_namespace_info
{
const char *scope;
struct using_direct *using;
};
static void block_initialize_namespace (struct block *block,
struct obstack *obstack);
/* Return Nonzero if block a is lexically nested within block b,
or if a and b have the same pc range.
Return zero otherwise. */
int
contained_in (const struct block *a, const struct block *b)
{
if (!a || !b)
return 0;
do
{
if (a == b)
return 1;
/* If A is a function block, then A cannot be contained in B,
except if A was inlined. */
if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
return 0;
a = BLOCK_SUPERBLOCK (a);
}
while (a != NULL);
return 0;
}
/* Return the symbol for the function which contains a specified
lexical block, described by a struct block BL. The return value
will not be an inlined function; the containing function will be
returned instead. */
struct symbol *
block_linkage_function (const struct block *bl)
{
while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
&& BLOCK_SUPERBLOCK (bl) != NULL)
bl = BLOCK_SUPERBLOCK (bl);
return BLOCK_FUNCTION (bl);
}
/* Return the symbol for the function which contains a specified
block, described by a struct block BL. The return value will be
the closest enclosing function, which might be an inline
function. */
struct symbol *
block_containing_function (const struct block *bl)
{
while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
bl = BLOCK_SUPERBLOCK (bl);
return BLOCK_FUNCTION (bl);
}
/* Return one if BL represents an inlined function. */
int
block_inlined_p (const struct block *bl)
{
return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
}
/* A helper function that checks whether PC is in the blockvector BL.
It returns the containing block if there is one, or else NULL. */
static struct block *
find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
{
struct block *b;
int bot, top, half;
/* If we have an addrmap mapping code addresses to blocks, then use
that. */
if (BLOCKVECTOR_MAP (bl))
return addrmap_find (BLOCKVECTOR_MAP (bl), pc);
/* Otherwise, use binary search to find the last block that starts
before PC.
Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
They both have the same START,END values.
Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
fact that this choice was made was subtle, now we make it explicit. */
gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
bot = STATIC_BLOCK;
top = BLOCKVECTOR_NBLOCKS (bl);
while (top - bot > 1)
{
half = (top - bot + 1) >> 1;
b = BLOCKVECTOR_BLOCK (bl, bot + half);
if (BLOCK_START (b) <= pc)
bot += half;
else
top = bot + half;
}
/* Now search backward for a block that ends after PC. */
while (bot >= STATIC_BLOCK)
{
b = BLOCKVECTOR_BLOCK (bl, bot);
if (BLOCK_END (b) > pc)
return b;
bot--;
}
return NULL;
}
/* Return the blockvector immediately containing the innermost lexical
block containing the specified pc value and section, or 0 if there
is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
don't pass this information back to the caller. */
const struct blockvector *
blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
const struct block **pblock,
struct compunit_symtab *cust)
{
const struct blockvector *bl;
struct block *b;
if (cust == NULL)
{
/* First search all symtabs for one whose file contains our pc */
cust = find_pc_sect_compunit_symtab (pc, section);
if (cust == NULL)
return 0;
}
bl = COMPUNIT_BLOCKVECTOR (cust);
/* Then search that symtab for the smallest block that wins. */
b = find_block_in_blockvector (bl, pc);
if (b == NULL)
return NULL;
if (pblock)
*pblock = b;
return bl;
}
/* Return true if the blockvector BV contains PC, false otherwise. */
int
blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
{
return find_block_in_blockvector (bv, pc) != NULL;
}
/* Return call_site for specified PC in GDBARCH. PC must match exactly, it
must be the next instruction after call (or after tail call jump). Throw
NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
struct call_site *
call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct compunit_symtab *cust;
void **slot = NULL;
/* -1 as tail call PC can be already after the compilation unit range. */
cust = find_pc_compunit_symtab (pc - 1);
if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
if (slot == NULL)
{
struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
/* DW_TAG_gnu_call_site will be missing just if GCC could not determine
the call target. */
throw_error (NO_ENTRY_VALUE_ERROR,
_("DW_OP_GNU_entry_value resolving cannot find "
"DW_TAG_GNU_call_site %s in %s"),
paddress (gdbarch, pc),
(msym.minsym == NULL ? "???"
: MSYMBOL_PRINT_NAME (msym.minsym)));
}
return *slot;
}
/* Return the blockvector immediately containing the innermost lexical block
containing the specified pc value, or 0 if there is none.
Backward compatibility, no section. */
const struct blockvector *
blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
{
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
pblock, NULL);
}
/* Return the innermost lexical block containing the specified pc value
in the specified section, or 0 if there is none. */
const struct block *
block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
{
const struct blockvector *bl;
const struct block *b;
bl = blockvector_for_pc_sect (pc, section, &b, NULL);
if (bl)
return b;
return 0;
}
/* Return the innermost lexical block containing the specified pc value,
or 0 if there is none. Backward compatibility, no section. */
const struct block *
block_for_pc (CORE_ADDR pc)
{
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
}
/* Now come some functions designed to deal with C++ namespace issues.
The accessors are safe to use even in the non-C++ case. */
/* This returns the namespace that BLOCK is enclosed in, or "" if it
isn't enclosed in a namespace at all. This travels the chain of
superblocks looking for a scope, if necessary. */
const char *
block_scope (const struct block *block)
{
for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
{
if (BLOCK_NAMESPACE (block) != NULL
&& BLOCK_NAMESPACE (block)->scope != NULL)
return BLOCK_NAMESPACE (block)->scope;
}
return "";
}
/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
OBSTACK. (It won't make a copy of SCOPE, however, so that already
has to be allocated correctly.) */
void
block_set_scope (struct block *block, const char *scope,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->scope = scope;
}
/* This returns the using directives list associated with BLOCK, if
any. */
struct using_direct *
block_using (const struct block *block)
{
if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
return NULL;
else
return BLOCK_NAMESPACE (block)->using;
}
/* Set BLOCK's using member to USING; if needed, allocate memory via
OBSTACK. (It won't make a copy of USING, however, so that already
has to be allocated correctly.) */
void
block_set_using (struct block *block,
struct using_direct *using,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->using = using;
}
/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
ititialize its members to zero. */
static void
block_initialize_namespace (struct block *block, struct obstack *obstack)
{
if (BLOCK_NAMESPACE (block) == NULL)
{
BLOCK_NAMESPACE (block)
= obstack_alloc (obstack, sizeof (struct block_namespace_info));
BLOCK_NAMESPACE (block)->scope = NULL;
BLOCK_NAMESPACE (block)->using = NULL;
}
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL or if block is a global block. */
const struct block *
block_static_block (const struct block *block)
{
if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL. */
const struct block *
block_global_block (const struct block *block)
{
if (block == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (block) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Allocate a block on OBSTACK, and initialize its elements to
zero/NULL. This is useful for creating "dummy" blocks that don't
correspond to actual source files.
Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
valid value. If you really don't want the block to have a
dictionary, then you should subsequently set its BLOCK_DICT to
dict_create_linear (obstack, NULL). */
struct block *
allocate_block (struct obstack *obstack)
{
struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
return bl;
}
/* Allocate a global block. */
struct block *
allocate_global_block (struct obstack *obstack)
{
struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
return &bl->block;
}
/* Set the compunit of the global block. */
void
set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
{
struct global_block *gb;
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
gb = (struct global_block *) block;
gdb_assert (gb->compunit_symtab == NULL);
gb->compunit_symtab = cu;
}
/* Return the compunit of the global block. */
static struct compunit_symtab *
get_block_compunit_symtab (const struct block *block)
{
struct global_block *gb;
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
gb = (struct global_block *) block;
gdb_assert (gb->compunit_symtab != NULL);
return gb->compunit_symtab;
}
/* Initialize a block iterator, either to iterate over a single block,
or, for static and global blocks, all the included symtabs as
well. */
static void
initialize_block_iterator (const struct block *block,
struct block_iterator *iter)
{
enum block_enum which;
struct compunit_symtab *cu;
iter->idx = -1;
if (BLOCK_SUPERBLOCK (block) == NULL)
{
which = GLOBAL_BLOCK;
cu = get_block_compunit_symtab (block);
}
else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
{
which = STATIC_BLOCK;
cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
}
else
{
iter->d.block = block;
/* A signal value meaning that we're iterating over a single
block. */
iter->which = FIRST_LOCAL_BLOCK;
return;
}
/* If this is an included symtab, find the canonical includer and
use it instead. */
while (cu->user != NULL)
cu = cu->user;
/* Putting this check here simplifies the logic of the iterator
functions. If there are no included symtabs, we only need to
search a single block, so we might as well just do that
directly. */
if (cu->includes == NULL)
{
iter->d.block = block;
/* A signal value meaning that we're iterating over a single
block. */
iter->which = FIRST_LOCAL_BLOCK;
}
else
{
iter->d.compunit_symtab = cu;
iter->which = which;
}
}
/* A helper function that finds the current compunit over whose static
or global block we should iterate. */
static struct compunit_symtab *
find_iterator_compunit_symtab (struct block_iterator *iterator)
{
if (iterator->idx == -1)
return iterator->d.compunit_symtab;
return iterator->d.compunit_symtab->includes[iterator->idx];
}
/* Perform a single step for a plain block iterator, iterating across
symbol tables as needed. Returns the next symbol, or NULL when
iteration is complete. */
static struct symbol *
block_iterator_step (struct block_iterator *iterator, int first)
{
struct symbol *sym;
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
while (1)
{
if (first)
{
struct compunit_symtab *cust
= find_iterator_compunit_symtab (iterator);
const struct block *block;
/* Iteration is complete. */
if (cust == NULL)
return NULL;
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
iterator->which);
sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
}
else
sym = dict_iterator_next (&iterator->dict_iter);
if (sym != NULL)
return sym;
/* We have finished iterating the appropriate block of one
symtab. Now advance to the next symtab and begin iteration
there. */
++iterator->idx;
first = 1;
}
}
/* See block.h. */
struct symbol *
block_iterator_first (const struct block *block,
struct block_iterator *iterator)
{
initialize_block_iterator (block, iterator);
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iterator_first (block->dict, &iterator->dict_iter);
return block_iterator_step (iterator, 1);
}
/* See block.h. */
struct symbol *
block_iterator_next (struct block_iterator *iterator)
{
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iterator_next (&iterator->dict_iter);
return block_iterator_step (iterator, 0);
}
/* Perform a single step for a "name" block iterator, iterating across
symbol tables as needed. Returns the next symbol, or NULL when
iteration is complete. */
static struct symbol *
block_iter_name_step (struct block_iterator *iterator, const char *name,
int first)
{
struct symbol *sym;
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
while (1)
{
if (first)
{
struct compunit_symtab *cust
= find_iterator_compunit_symtab (iterator);
const struct block *block;
/* Iteration is complete. */
if (cust == NULL)
return NULL;
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
iterator->which);
sym = dict_iter_name_first (BLOCK_DICT (block), name,
&iterator->dict_iter);
}
else
sym = dict_iter_name_next (name, &iterator->dict_iter);
if (sym != NULL)
return sym;
/* We have finished iterating the appropriate block of one
symtab. Now advance to the next symtab and begin iteration
there. */
++iterator->idx;
first = 1;
}
}
/* See block.h. */
struct symbol *
block_iter_name_first (const struct block *block,
const char *name,
struct block_iterator *iterator)
{
initialize_block_iterator (block, iterator);
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
return block_iter_name_step (iterator, name, 1);
}
/* See block.h. */
struct symbol *
block_iter_name_next (const char *name, struct block_iterator *iterator)
{
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iter_name_next (name, &iterator->dict_iter);
return block_iter_name_step (iterator, name, 0);
}
/* Perform a single step for a "match" block iterator, iterating
across symbol tables as needed. Returns the next symbol, or NULL
when iteration is complete. */
static struct symbol *
block_iter_match_step (struct block_iterator *iterator,
const char *name,
symbol_compare_ftype *compare,
int first)
{
struct symbol *sym;
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
while (1)
{
if (first)
{
struct compunit_symtab *cust
= find_iterator_compunit_symtab (iterator);
const struct block *block;
/* Iteration is complete. */
if (cust == NULL)
return NULL;
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
iterator->which);
sym = dict_iter_match_first (BLOCK_DICT (block), name,
compare, &iterator->dict_iter);
}
else
sym = dict_iter_match_next (name, compare, &iterator->dict_iter);
if (sym != NULL)
return sym;
/* We have finished iterating the appropriate block of one
symtab. Now advance to the next symtab and begin iteration
there. */
++iterator->idx;
first = 1;
}
}
/* See block.h. */
struct symbol *
block_iter_match_first (const struct block *block,
const char *name,
symbol_compare_ftype *compare,
struct block_iterator *iterator)
{
initialize_block_iterator (block, iterator);
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iter_match_first (block->dict, name, compare,
&iterator->dict_iter);
return block_iter_match_step (iterator, name, compare, 1);
}
/* See block.h. */
struct symbol *
block_iter_match_next (const char *name,
symbol_compare_ftype *compare,
struct block_iterator *iterator)
{
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iter_match_next (name, compare, &iterator->dict_iter);
return block_iter_match_step (iterator, name, compare, 0);
}
/* See block.h.
Note that if NAME is the demangled form of a C++ symbol, we will fail
to find a match during the binary search of the non-encoded names, but
for now we don't worry about the slight inefficiency of looking for
a match we'll never find, since it will go pretty quick. Once the
binary search terminates, we drop through and do a straight linear
search on the symbols. Each symbol which is marked as being a ObjC/C++
symbol (language_cplus or language_objc set) has both the encoded and
non-encoded names tested for a match. */
struct symbol *
block_lookup_symbol (const struct block *block, const char *name,
const domain_enum domain)
{
struct block_iterator iter;
struct symbol *sym;
if (!BLOCK_FUNCTION (block))
{
ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
{
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
SYMBOL_DOMAIN (sym), domain))
return sym;
}
return NULL;
}
else
{
/* Note that parameter symbols do not always show up last in the
list; this loop makes sure to take anything else other than
parameter symbols first; it only uses parameter symbols as a
last resort. Note that this only takes up extra computation
time on a match. */
struct symbol *sym_found = NULL;
ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
{
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
SYMBOL_DOMAIN (sym), domain))
{
sym_found = sym;
if (!SYMBOL_IS_ARGUMENT (sym))
{
break;
}
}
}
return (sym_found); /* Will be NULL if not found. */
}
}