28a9351183
2013-06-26 Pedro Alves <pedro@codesourcery.com> Yao Qi <yao@codesourcery.com> * ctf.c (ctf_traceframe_info): Push trace state variables present in the trace data into the traceframe info object. * breakpoint.c (DEF_VEC_I): Remove. * common/filestuff.c (DEF_VEC_I): Likewise. * dwarf2loc.c (DEF_VEC_I): Likewise. * mi/mi-main.c (DEF_VEC_I): Likewise. * common/gdb_vecs.h (DEF_VEC_I): Define vector for int. * features/traceframe-info.dtd: Add tvar element and its attributes. * tracepoint.c (free_traceframe_info): Free vector 'tvars'. (build_traceframe_info): Push trace state variables present in the trace data into the traceframe info object. (traceframe_info_start_tvar): New function. (tvar_attributes): New. (traceframe_info_children): Add "tvar" element. * tracepoint.h (struct traceframe_info) <tvars>: New field. * NEWS: Mention the change in GDB and GDBserver. gdb/doc: 2013-06-26 Pedro Alves <pedro@codesourcery.com> * gdb.texinfo (Traceframe Info Format): Document tvar element and its attributes. gdb/gdbserver: 2013-06-26 Pedro Alves <pedro@codesourcery.com> * tracepoint.c (build_traceframe_info_xml): Output trace state variables present in the trace buffer.
2587 lines
66 KiB
C
2587 lines
66 KiB
C
/* MI Command Set.
|
||
|
||
Copyright (C) 2000-2013 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Solutions (a Red Hat company).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "target.h"
|
||
#include "inferior.h"
|
||
#include "gdb_string.h"
|
||
#include "exceptions.h"
|
||
#include "top.h"
|
||
#include "gdbthread.h"
|
||
#include "mi-cmds.h"
|
||
#include "mi-parse.h"
|
||
#include "mi-getopt.h"
|
||
#include "mi-console.h"
|
||
#include "ui-out.h"
|
||
#include "mi-out.h"
|
||
#include "interps.h"
|
||
#include "event-loop.h"
|
||
#include "event-top.h"
|
||
#include "gdbcore.h" /* For write_memory(). */
|
||
#include "value.h"
|
||
#include "regcache.h"
|
||
#include "gdb.h"
|
||
#include "frame.h"
|
||
#include "mi-main.h"
|
||
#include "mi-common.h"
|
||
#include "language.h"
|
||
#include "valprint.h"
|
||
#include "inferior.h"
|
||
#include "osdata.h"
|
||
#include "splay-tree.h"
|
||
#include "tracepoint.h"
|
||
#include "ctf.h"
|
||
#include "ada-lang.h"
|
||
#include "linespec.h"
|
||
#ifdef HAVE_PYTHON
|
||
#include "python/python-internal.h"
|
||
#endif
|
||
|
||
#include <ctype.h>
|
||
#include <sys/time.h>
|
||
|
||
#if defined HAVE_SYS_RESOURCE_H
|
||
#include <sys/resource.h>
|
||
#endif
|
||
|
||
#ifdef HAVE_GETRUSAGE
|
||
struct rusage rusage;
|
||
#endif
|
||
|
||
enum
|
||
{
|
||
FROM_TTY = 0
|
||
};
|
||
|
||
int mi_debug_p;
|
||
|
||
struct ui_file *raw_stdout;
|
||
|
||
/* This is used to pass the current command timestamp down to
|
||
continuation routines. */
|
||
static struct mi_timestamp *current_command_ts;
|
||
|
||
static int do_timings = 0;
|
||
|
||
char *current_token;
|
||
/* Few commands would like to know if options like --thread-group were
|
||
explicitly specified. This variable keeps the current parsed
|
||
command including all option, and make it possible. */
|
||
static struct mi_parse *current_context;
|
||
|
||
int running_result_record_printed = 1;
|
||
|
||
/* Flag indicating that the target has proceeded since the last
|
||
command was issued. */
|
||
int mi_proceeded;
|
||
|
||
extern void _initialize_mi_main (void);
|
||
static void mi_cmd_execute (struct mi_parse *parse);
|
||
|
||
static void mi_execute_cli_command (const char *cmd, int args_p,
|
||
const char *args);
|
||
static void mi_execute_async_cli_command (char *cli_command,
|
||
char **argv, int argc);
|
||
static int register_changed_p (int regnum, struct regcache *,
|
||
struct regcache *);
|
||
static void output_register (struct frame_info *, int regnum, int format,
|
||
int skip_unavailable);
|
||
|
||
/* Command implementations. FIXME: Is this libgdb? No. This is the MI
|
||
layer that calls libgdb. Any operation used in the below should be
|
||
formalized. */
|
||
|
||
static void timestamp (struct mi_timestamp *tv);
|
||
|
||
static void print_diff_now (struct mi_timestamp *start);
|
||
static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
|
||
|
||
void
|
||
mi_cmd_gdb_exit (char *command, char **argv, int argc)
|
||
{
|
||
/* We have to print everything right here because we never return. */
|
||
if (current_token)
|
||
fputs_unfiltered (current_token, raw_stdout);
|
||
fputs_unfiltered ("^exit\n", raw_stdout);
|
||
mi_out_put (current_uiout, raw_stdout);
|
||
gdb_flush (raw_stdout);
|
||
/* FIXME: The function called is not yet a formal libgdb function. */
|
||
quit_force (NULL, FROM_TTY);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_next (char *command, char **argv, int argc)
|
||
{
|
||
/* FIXME: Should call a libgdb function, not a cli wrapper. */
|
||
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
|
||
mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
|
||
else
|
||
mi_execute_async_cli_command ("next", argv, argc);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
|
||
{
|
||
/* FIXME: Should call a libgdb function, not a cli wrapper. */
|
||
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
|
||
mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
|
||
else
|
||
mi_execute_async_cli_command ("nexti", argv, argc);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_step (char *command, char **argv, int argc)
|
||
{
|
||
/* FIXME: Should call a libgdb function, not a cli wrapper. */
|
||
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
|
||
mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
|
||
else
|
||
mi_execute_async_cli_command ("step", argv, argc);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
|
||
{
|
||
/* FIXME: Should call a libgdb function, not a cli wrapper. */
|
||
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
|
||
mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
|
||
else
|
||
mi_execute_async_cli_command ("stepi", argv, argc);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_finish (char *command, char **argv, int argc)
|
||
{
|
||
/* FIXME: Should call a libgdb function, not a cli wrapper. */
|
||
if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
|
||
mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
|
||
else
|
||
mi_execute_async_cli_command ("finish", argv, argc);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_return (char *command, char **argv, int argc)
|
||
{
|
||
/* This command doesn't really execute the target, it just pops the
|
||
specified number of frames. */
|
||
if (argc)
|
||
/* Call return_command with from_tty argument equal to 0 so as to
|
||
avoid being queried. */
|
||
return_command (*argv, 0);
|
||
else
|
||
/* Call return_command with from_tty argument equal to 0 so as to
|
||
avoid being queried. */
|
||
return_command (NULL, 0);
|
||
|
||
/* Because we have called return_command with from_tty = 0, we need
|
||
to print the frame here. */
|
||
print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_jump (char *args, char **argv, int argc)
|
||
{
|
||
/* FIXME: Should call a libgdb function, not a cli wrapper. */
|
||
mi_execute_async_cli_command ("jump", argv, argc);
|
||
}
|
||
|
||
static void
|
||
proceed_thread (struct thread_info *thread, int pid)
|
||
{
|
||
if (!is_stopped (thread->ptid))
|
||
return;
|
||
|
||
if (pid != 0 && PIDGET (thread->ptid) != pid)
|
||
return;
|
||
|
||
switch_to_thread (thread->ptid);
|
||
clear_proceed_status ();
|
||
proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
|
||
}
|
||
|
||
static int
|
||
proceed_thread_callback (struct thread_info *thread, void *arg)
|
||
{
|
||
int pid = *(int *)arg;
|
||
|
||
proceed_thread (thread, pid);
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
exec_continue (char **argv, int argc)
|
||
{
|
||
if (non_stop)
|
||
{
|
||
/* In non-stop mode, 'resume' always resumes a single thread.
|
||
Therefore, to resume all threads of the current inferior, or
|
||
all threads in all inferiors, we need to iterate over
|
||
threads.
|
||
|
||
See comment on infcmd.c:proceed_thread_callback for rationale. */
|
||
if (current_context->all || current_context->thread_group != -1)
|
||
{
|
||
int pid = 0;
|
||
struct cleanup *back_to = make_cleanup_restore_current_thread ();
|
||
|
||
if (!current_context->all)
|
||
{
|
||
struct inferior *inf
|
||
= find_inferior_id (current_context->thread_group);
|
||
|
||
pid = inf->pid;
|
||
}
|
||
iterate_over_threads (proceed_thread_callback, &pid);
|
||
do_cleanups (back_to);
|
||
}
|
||
else
|
||
{
|
||
continue_1 (0);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
|
||
|
||
if (current_context->all)
|
||
{
|
||
sched_multi = 1;
|
||
continue_1 (0);
|
||
}
|
||
else
|
||
{
|
||
/* In all-stop mode, -exec-continue traditionally resumed
|
||
either all threads, or one thread, depending on the
|
||
'scheduler-locking' variable. Let's continue to do the
|
||
same. */
|
||
continue_1 (1);
|
||
}
|
||
do_cleanups (back_to);
|
||
}
|
||
}
|
||
|
||
static void
|
||
exec_direction_forward (void *notused)
|
||
{
|
||
execution_direction = EXEC_FORWARD;
|
||
}
|
||
|
||
static void
|
||
exec_reverse_continue (char **argv, int argc)
|
||
{
|
||
enum exec_direction_kind dir = execution_direction;
|
||
struct cleanup *old_chain;
|
||
|
||
if (dir == EXEC_REVERSE)
|
||
error (_("Already in reverse mode."));
|
||
|
||
if (!target_can_execute_reverse)
|
||
error (_("Target %s does not support this command."), target_shortname);
|
||
|
||
old_chain = make_cleanup (exec_direction_forward, NULL);
|
||
execution_direction = EXEC_REVERSE;
|
||
exec_continue (argv, argc);
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_continue (char *command, char **argv, int argc)
|
||
{
|
||
if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
|
||
exec_reverse_continue (argv + 1, argc - 1);
|
||
else
|
||
exec_continue (argv, argc);
|
||
}
|
||
|
||
static int
|
||
interrupt_thread_callback (struct thread_info *thread, void *arg)
|
||
{
|
||
int pid = *(int *)arg;
|
||
|
||
if (!is_running (thread->ptid))
|
||
return 0;
|
||
|
||
if (PIDGET (thread->ptid) != pid)
|
||
return 0;
|
||
|
||
target_stop (thread->ptid);
|
||
return 0;
|
||
}
|
||
|
||
/* Interrupt the execution of the target. Note how we must play
|
||
around with the token variables, in order to display the current
|
||
token in the result of the interrupt command, and the previous
|
||
execution token when the target finally stops. See comments in
|
||
mi_cmd_execute. */
|
||
|
||
void
|
||
mi_cmd_exec_interrupt (char *command, char **argv, int argc)
|
||
{
|
||
/* In all-stop mode, everything stops, so we don't need to try
|
||
anything specific. */
|
||
if (!non_stop)
|
||
{
|
||
interrupt_target_1 (0);
|
||
return;
|
||
}
|
||
|
||
if (current_context->all)
|
||
{
|
||
/* This will interrupt all threads in all inferiors. */
|
||
interrupt_target_1 (1);
|
||
}
|
||
else if (current_context->thread_group != -1)
|
||
{
|
||
struct inferior *inf = find_inferior_id (current_context->thread_group);
|
||
|
||
iterate_over_threads (interrupt_thread_callback, &inf->pid);
|
||
}
|
||
else
|
||
{
|
||
/* Interrupt just the current thread -- either explicitly
|
||
specified via --thread or whatever was current before
|
||
MI command was sent. */
|
||
interrupt_target_1 (0);
|
||
}
|
||
}
|
||
|
||
static int
|
||
run_one_inferior (struct inferior *inf, void *arg)
|
||
{
|
||
if (inf->pid != 0)
|
||
{
|
||
if (inf->pid != ptid_get_pid (inferior_ptid))
|
||
{
|
||
struct thread_info *tp;
|
||
|
||
tp = any_thread_of_process (inf->pid);
|
||
if (!tp)
|
||
error (_("Inferior has no threads."));
|
||
|
||
switch_to_thread (tp->ptid);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
set_current_inferior (inf);
|
||
switch_to_thread (null_ptid);
|
||
set_current_program_space (inf->pspace);
|
||
}
|
||
mi_execute_cli_command ("run", target_can_async_p (),
|
||
target_can_async_p () ? "&" : NULL);
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
mi_cmd_exec_run (char *command, char **argv, int argc)
|
||
{
|
||
if (current_context->all)
|
||
{
|
||
struct cleanup *back_to = save_current_space_and_thread ();
|
||
|
||
iterate_over_inferiors (run_one_inferior, NULL);
|
||
do_cleanups (back_to);
|
||
}
|
||
else
|
||
{
|
||
mi_execute_cli_command ("run", target_can_async_p (),
|
||
target_can_async_p () ? "&" : NULL);
|
||
}
|
||
}
|
||
|
||
|
||
static int
|
||
find_thread_of_process (struct thread_info *ti, void *p)
|
||
{
|
||
int pid = *(int *)p;
|
||
|
||
if (PIDGET (ti->ptid) == pid && !is_exited (ti->ptid))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
mi_cmd_target_detach (char *command, char **argv, int argc)
|
||
{
|
||
if (argc != 0 && argc != 1)
|
||
error (_("Usage: -target-detach [pid | thread-group]"));
|
||
|
||
if (argc == 1)
|
||
{
|
||
struct thread_info *tp;
|
||
char *end = argv[0];
|
||
int pid;
|
||
|
||
/* First see if we are dealing with a thread-group id. */
|
||
if (*argv[0] == 'i')
|
||
{
|
||
struct inferior *inf;
|
||
int id = strtoul (argv[0] + 1, &end, 0);
|
||
|
||
if (*end != '\0')
|
||
error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
|
||
|
||
inf = find_inferior_id (id);
|
||
if (!inf)
|
||
error (_("Non-existent thread-group id '%d'"), id);
|
||
|
||
pid = inf->pid;
|
||
}
|
||
else
|
||
{
|
||
/* We must be dealing with a pid. */
|
||
pid = strtol (argv[0], &end, 10);
|
||
|
||
if (*end != '\0')
|
||
error (_("Invalid identifier '%s'"), argv[0]);
|
||
}
|
||
|
||
/* Pick any thread in the desired process. Current
|
||
target_detach detaches from the parent of inferior_ptid. */
|
||
tp = iterate_over_threads (find_thread_of_process, &pid);
|
||
if (!tp)
|
||
error (_("Thread group is empty"));
|
||
|
||
switch_to_thread (tp->ptid);
|
||
}
|
||
|
||
detach_command (NULL, 0);
|
||
}
|
||
|
||
void
|
||
mi_cmd_thread_select (char *command, char **argv, int argc)
|
||
{
|
||
enum gdb_rc rc;
|
||
char *mi_error_message;
|
||
|
||
if (argc != 1)
|
||
error (_("-thread-select: USAGE: threadnum."));
|
||
|
||
rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
|
||
|
||
if (rc == GDB_RC_FAIL)
|
||
{
|
||
make_cleanup (xfree, mi_error_message);
|
||
error ("%s", mi_error_message);
|
||
}
|
||
}
|
||
|
||
void
|
||
mi_cmd_thread_list_ids (char *command, char **argv, int argc)
|
||
{
|
||
enum gdb_rc rc;
|
||
char *mi_error_message;
|
||
|
||
if (argc != 0)
|
||
error (_("-thread-list-ids: No arguments required."));
|
||
|
||
rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
|
||
|
||
if (rc == GDB_RC_FAIL)
|
||
{
|
||
make_cleanup (xfree, mi_error_message);
|
||
error ("%s", mi_error_message);
|
||
}
|
||
}
|
||
|
||
void
|
||
mi_cmd_thread_info (char *command, char **argv, int argc)
|
||
{
|
||
if (argc != 0 && argc != 1)
|
||
error (_("Invalid MI command"));
|
||
|
||
print_thread_info (current_uiout, argv[0], -1);
|
||
}
|
||
|
||
struct collect_cores_data
|
||
{
|
||
int pid;
|
||
|
||
VEC (int) *cores;
|
||
};
|
||
|
||
static int
|
||
collect_cores (struct thread_info *ti, void *xdata)
|
||
{
|
||
struct collect_cores_data *data = xdata;
|
||
|
||
if (ptid_get_pid (ti->ptid) == data->pid)
|
||
{
|
||
int core = target_core_of_thread (ti->ptid);
|
||
|
||
if (core != -1)
|
||
VEC_safe_push (int, data->cores, core);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int *
|
||
unique (int *b, int *e)
|
||
{
|
||
int *d = b;
|
||
|
||
while (++b != e)
|
||
if (*d != *b)
|
||
*++d = *b;
|
||
return ++d;
|
||
}
|
||
|
||
struct print_one_inferior_data
|
||
{
|
||
int recurse;
|
||
VEC (int) *inferiors;
|
||
};
|
||
|
||
static int
|
||
print_one_inferior (struct inferior *inferior, void *xdata)
|
||
{
|
||
struct print_one_inferior_data *top_data = xdata;
|
||
struct ui_out *uiout = current_uiout;
|
||
|
||
if (VEC_empty (int, top_data->inferiors)
|
||
|| bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
|
||
VEC_length (int, top_data->inferiors), sizeof (int),
|
||
compare_positive_ints))
|
||
{
|
||
struct collect_cores_data data;
|
||
struct cleanup *back_to
|
||
= make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
|
||
ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
|
||
ui_out_field_string (uiout, "type", "process");
|
||
if (inferior->pid != 0)
|
||
ui_out_field_int (uiout, "pid", inferior->pid);
|
||
|
||
if (inferior->pspace->ebfd)
|
||
{
|
||
ui_out_field_string (uiout, "executable",
|
||
bfd_get_filename (inferior->pspace->ebfd));
|
||
}
|
||
|
||
data.cores = 0;
|
||
if (inferior->pid != 0)
|
||
{
|
||
data.pid = inferior->pid;
|
||
iterate_over_threads (collect_cores, &data);
|
||
}
|
||
|
||
if (!VEC_empty (int, data.cores))
|
||
{
|
||
int *b, *e;
|
||
struct cleanup *back_to_2 =
|
||
make_cleanup_ui_out_list_begin_end (uiout, "cores");
|
||
|
||
qsort (VEC_address (int, data.cores),
|
||
VEC_length (int, data.cores), sizeof (int),
|
||
compare_positive_ints);
|
||
|
||
b = VEC_address (int, data.cores);
|
||
e = b + VEC_length (int, data.cores);
|
||
e = unique (b, e);
|
||
|
||
for (; b != e; ++b)
|
||
ui_out_field_int (uiout, NULL, *b);
|
||
|
||
do_cleanups (back_to_2);
|
||
}
|
||
|
||
if (top_data->recurse)
|
||
print_thread_info (uiout, NULL, inferior->pid);
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Output a field named 'cores' with a list as the value. The
|
||
elements of the list are obtained by splitting 'cores' on
|
||
comma. */
|
||
|
||
static void
|
||
output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
|
||
{
|
||
struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
|
||
field_name);
|
||
char *cores = xstrdup (xcores);
|
||
char *p = cores;
|
||
|
||
make_cleanup (xfree, cores);
|
||
|
||
for (p = strtok (p, ","); p; p = strtok (NULL, ","))
|
||
ui_out_field_string (uiout, NULL, p);
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
static void
|
||
free_vector_of_ints (void *xvector)
|
||
{
|
||
VEC (int) **vector = xvector;
|
||
|
||
VEC_free (int, *vector);
|
||
}
|
||
|
||
static void
|
||
do_nothing (splay_tree_key k)
|
||
{
|
||
}
|
||
|
||
static void
|
||
free_vector_of_osdata_items (splay_tree_value xvalue)
|
||
{
|
||
VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
|
||
|
||
/* We don't free the items itself, it will be done separately. */
|
||
VEC_free (osdata_item_s, value);
|
||
}
|
||
|
||
static int
|
||
splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
|
||
{
|
||
int a = xa;
|
||
int b = xb;
|
||
|
||
return a - b;
|
||
}
|
||
|
||
static void
|
||
free_splay_tree (void *xt)
|
||
{
|
||
splay_tree t = xt;
|
||
splay_tree_delete (t);
|
||
}
|
||
|
||
static void
|
||
list_available_thread_groups (VEC (int) *ids, int recurse)
|
||
{
|
||
struct osdata *data;
|
||
struct osdata_item *item;
|
||
int ix_items;
|
||
struct ui_out *uiout = current_uiout;
|
||
struct cleanup *cleanup;
|
||
|
||
/* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
|
||
The vector contains information about all threads for the given pid.
|
||
This is assigned an initial value to avoid "may be used uninitialized"
|
||
warning from gcc. */
|
||
splay_tree tree = NULL;
|
||
|
||
/* get_osdata will throw if it cannot return data. */
|
||
data = get_osdata ("processes");
|
||
cleanup = make_cleanup_osdata_free (data);
|
||
|
||
if (recurse)
|
||
{
|
||
struct osdata *threads = get_osdata ("threads");
|
||
|
||
make_cleanup_osdata_free (threads);
|
||
tree = splay_tree_new (splay_tree_int_comparator,
|
||
do_nothing,
|
||
free_vector_of_osdata_items);
|
||
make_cleanup (free_splay_tree, tree);
|
||
|
||
for (ix_items = 0;
|
||
VEC_iterate (osdata_item_s, threads->items,
|
||
ix_items, item);
|
||
ix_items++)
|
||
{
|
||
const char *pid = get_osdata_column (item, "pid");
|
||
int pid_i = strtoul (pid, NULL, 0);
|
||
VEC (osdata_item_s) *vec = 0;
|
||
|
||
splay_tree_node n = splay_tree_lookup (tree, pid_i);
|
||
if (!n)
|
||
{
|
||
VEC_safe_push (osdata_item_s, vec, item);
|
||
splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
|
||
}
|
||
else
|
||
{
|
||
vec = (VEC (osdata_item_s) *) n->value;
|
||
VEC_safe_push (osdata_item_s, vec, item);
|
||
n->value = (splay_tree_value) vec;
|
||
}
|
||
}
|
||
}
|
||
|
||
make_cleanup_ui_out_list_begin_end (uiout, "groups");
|
||
|
||
for (ix_items = 0;
|
||
VEC_iterate (osdata_item_s, data->items,
|
||
ix_items, item);
|
||
ix_items++)
|
||
{
|
||
struct cleanup *back_to;
|
||
|
||
const char *pid = get_osdata_column (item, "pid");
|
||
const char *cmd = get_osdata_column (item, "command");
|
||
const char *user = get_osdata_column (item, "user");
|
||
const char *cores = get_osdata_column (item, "cores");
|
||
|
||
int pid_i = strtoul (pid, NULL, 0);
|
||
|
||
/* At present, the target will return all available processes
|
||
and if information about specific ones was required, we filter
|
||
undesired processes here. */
|
||
if (ids && bsearch (&pid_i, VEC_address (int, ids),
|
||
VEC_length (int, ids),
|
||
sizeof (int), compare_positive_ints) == NULL)
|
||
continue;
|
||
|
||
|
||
back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
|
||
ui_out_field_fmt (uiout, "id", "%s", pid);
|
||
ui_out_field_string (uiout, "type", "process");
|
||
if (cmd)
|
||
ui_out_field_string (uiout, "description", cmd);
|
||
if (user)
|
||
ui_out_field_string (uiout, "user", user);
|
||
if (cores)
|
||
output_cores (uiout, "cores", cores);
|
||
|
||
if (recurse)
|
||
{
|
||
splay_tree_node n = splay_tree_lookup (tree, pid_i);
|
||
if (n)
|
||
{
|
||
VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
|
||
struct osdata_item *child;
|
||
int ix_child;
|
||
|
||
make_cleanup_ui_out_list_begin_end (uiout, "threads");
|
||
|
||
for (ix_child = 0;
|
||
VEC_iterate (osdata_item_s, children, ix_child, child);
|
||
++ix_child)
|
||
{
|
||
struct cleanup *back_to_2 =
|
||
make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
const char *tid = get_osdata_column (child, "tid");
|
||
const char *tcore = get_osdata_column (child, "core");
|
||
|
||
ui_out_field_string (uiout, "id", tid);
|
||
if (tcore)
|
||
ui_out_field_string (uiout, "core", tcore);
|
||
|
||
do_cleanups (back_to_2);
|
||
}
|
||
}
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
void
|
||
mi_cmd_list_thread_groups (char *command, char **argv, int argc)
|
||
{
|
||
struct ui_out *uiout = current_uiout;
|
||
struct cleanup *back_to;
|
||
int available = 0;
|
||
int recurse = 0;
|
||
VEC (int) *ids = 0;
|
||
|
||
enum opt
|
||
{
|
||
AVAILABLE_OPT, RECURSE_OPT
|
||
};
|
||
static const struct mi_opt opts[] =
|
||
{
|
||
{"-available", AVAILABLE_OPT, 0},
|
||
{"-recurse", RECURSE_OPT, 1},
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
int oind = 0;
|
||
char *oarg;
|
||
|
||
while (1)
|
||
{
|
||
int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
|
||
&oind, &oarg);
|
||
|
||
if (opt < 0)
|
||
break;
|
||
switch ((enum opt) opt)
|
||
{
|
||
case AVAILABLE_OPT:
|
||
available = 1;
|
||
break;
|
||
case RECURSE_OPT:
|
||
if (strcmp (oarg, "0") == 0)
|
||
;
|
||
else if (strcmp (oarg, "1") == 0)
|
||
recurse = 1;
|
||
else
|
||
error (_("only '0' and '1' are valid values "
|
||
"for the '--recurse' option"));
|
||
break;
|
||
}
|
||
}
|
||
|
||
for (; oind < argc; ++oind)
|
||
{
|
||
char *end;
|
||
int inf;
|
||
|
||
if (*(argv[oind]) != 'i')
|
||
error (_("invalid syntax of group id '%s'"), argv[oind]);
|
||
|
||
inf = strtoul (argv[oind] + 1, &end, 0);
|
||
|
||
if (*end != '\0')
|
||
error (_("invalid syntax of group id '%s'"), argv[oind]);
|
||
VEC_safe_push (int, ids, inf);
|
||
}
|
||
if (VEC_length (int, ids) > 1)
|
||
qsort (VEC_address (int, ids),
|
||
VEC_length (int, ids),
|
||
sizeof (int), compare_positive_ints);
|
||
|
||
back_to = make_cleanup (free_vector_of_ints, &ids);
|
||
|
||
if (available)
|
||
{
|
||
list_available_thread_groups (ids, recurse);
|
||
}
|
||
else if (VEC_length (int, ids) == 1)
|
||
{
|
||
/* Local thread groups, single id. */
|
||
int id = *VEC_address (int, ids);
|
||
struct inferior *inf = find_inferior_id (id);
|
||
|
||
if (!inf)
|
||
error (_("Non-existent thread group id '%d'"), id);
|
||
|
||
print_thread_info (uiout, NULL, inf->pid);
|
||
}
|
||
else
|
||
{
|
||
struct print_one_inferior_data data;
|
||
|
||
data.recurse = recurse;
|
||
data.inferiors = ids;
|
||
|
||
/* Local thread groups. Either no explicit ids -- and we
|
||
print everything, or several explicit ids. In both cases,
|
||
we print more than one group, and have to use 'groups'
|
||
as the top-level element. */
|
||
make_cleanup_ui_out_list_begin_end (uiout, "groups");
|
||
update_thread_list ();
|
||
iterate_over_inferiors (print_one_inferior, &data);
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
void
|
||
mi_cmd_data_list_register_names (char *command, char **argv, int argc)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct ui_out *uiout = current_uiout;
|
||
int regnum, numregs;
|
||
int i;
|
||
struct cleanup *cleanup;
|
||
|
||
/* Note that the test for a valid register must include checking the
|
||
gdbarch_register_name because gdbarch_num_regs may be allocated
|
||
for the union of the register sets within a family of related
|
||
processors. In this case, some entries of gdbarch_register_name
|
||
will change depending upon the particular processor being
|
||
debugged. */
|
||
|
||
gdbarch = get_current_arch ();
|
||
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
||
|
||
cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
|
||
|
||
if (argc == 0) /* No args, just do all the regs. */
|
||
{
|
||
for (regnum = 0;
|
||
regnum < numregs;
|
||
regnum++)
|
||
{
|
||
if (gdbarch_register_name (gdbarch, regnum) == NULL
|
||
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
||
ui_out_field_string (uiout, NULL, "");
|
||
else
|
||
ui_out_field_string (uiout, NULL,
|
||
gdbarch_register_name (gdbarch, regnum));
|
||
}
|
||
}
|
||
|
||
/* Else, list of register #s, just do listed regs. */
|
||
for (i = 0; i < argc; i++)
|
||
{
|
||
regnum = atoi (argv[i]);
|
||
if (regnum < 0 || regnum >= numregs)
|
||
error (_("bad register number"));
|
||
|
||
if (gdbarch_register_name (gdbarch, regnum) == NULL
|
||
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
||
ui_out_field_string (uiout, NULL, "");
|
||
else
|
||
ui_out_field_string (uiout, NULL,
|
||
gdbarch_register_name (gdbarch, regnum));
|
||
}
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
void
|
||
mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
|
||
{
|
||
static struct regcache *this_regs = NULL;
|
||
struct ui_out *uiout = current_uiout;
|
||
struct regcache *prev_regs;
|
||
struct gdbarch *gdbarch;
|
||
int regnum, numregs, changed;
|
||
int i;
|
||
struct cleanup *cleanup;
|
||
|
||
/* The last time we visited this function, the current frame's
|
||
register contents were saved in THIS_REGS. Move THIS_REGS over
|
||
to PREV_REGS, and refresh THIS_REGS with the now-current register
|
||
contents. */
|
||
|
||
prev_regs = this_regs;
|
||
this_regs = frame_save_as_regcache (get_selected_frame (NULL));
|
||
cleanup = make_cleanup_regcache_xfree (prev_regs);
|
||
|
||
/* Note that the test for a valid register must include checking the
|
||
gdbarch_register_name because gdbarch_num_regs may be allocated
|
||
for the union of the register sets within a family of related
|
||
processors. In this case, some entries of gdbarch_register_name
|
||
will change depending upon the particular processor being
|
||
debugged. */
|
||
|
||
gdbarch = get_regcache_arch (this_regs);
|
||
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
||
|
||
make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
|
||
|
||
if (argc == 0)
|
||
{
|
||
/* No args, just do all the regs. */
|
||
for (regnum = 0;
|
||
regnum < numregs;
|
||
regnum++)
|
||
{
|
||
if (gdbarch_register_name (gdbarch, regnum) == NULL
|
||
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
||
continue;
|
||
changed = register_changed_p (regnum, prev_regs, this_regs);
|
||
if (changed < 0)
|
||
error (_("-data-list-changed-registers: "
|
||
"Unable to read register contents."));
|
||
else if (changed)
|
||
ui_out_field_int (uiout, NULL, regnum);
|
||
}
|
||
}
|
||
|
||
/* Else, list of register #s, just do listed regs. */
|
||
for (i = 0; i < argc; i++)
|
||
{
|
||
regnum = atoi (argv[i]);
|
||
|
||
if (regnum >= 0
|
||
&& regnum < numregs
|
||
&& gdbarch_register_name (gdbarch, regnum) != NULL
|
||
&& *gdbarch_register_name (gdbarch, regnum) != '\000')
|
||
{
|
||
changed = register_changed_p (regnum, prev_regs, this_regs);
|
||
if (changed < 0)
|
||
error (_("-data-list-changed-registers: "
|
||
"Unable to read register contents."));
|
||
else if (changed)
|
||
ui_out_field_int (uiout, NULL, regnum);
|
||
}
|
||
else
|
||
error (_("bad register number"));
|
||
}
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
static int
|
||
register_changed_p (int regnum, struct regcache *prev_regs,
|
||
struct regcache *this_regs)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (this_regs);
|
||
gdb_byte prev_buffer[MAX_REGISTER_SIZE];
|
||
gdb_byte this_buffer[MAX_REGISTER_SIZE];
|
||
enum register_status prev_status;
|
||
enum register_status this_status;
|
||
|
||
/* First time through or after gdbarch change consider all registers
|
||
as changed. */
|
||
if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
|
||
return 1;
|
||
|
||
/* Get register contents and compare. */
|
||
prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
|
||
this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
|
||
|
||
if (this_status != prev_status)
|
||
return 1;
|
||
else if (this_status == REG_VALID)
|
||
return memcmp (prev_buffer, this_buffer,
|
||
register_size (gdbarch, regnum)) != 0;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Return a list of register number and value pairs. The valid
|
||
arguments expected are: a letter indicating the format in which to
|
||
display the registers contents. This can be one of: x
|
||
(hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
|
||
(raw). After the format argument there can be a sequence of
|
||
numbers, indicating which registers to fetch the content of. If
|
||
the format is the only argument, a list of all the registers with
|
||
their values is returned. */
|
||
|
||
void
|
||
mi_cmd_data_list_register_values (char *command, char **argv, int argc)
|
||
{
|
||
struct ui_out *uiout = current_uiout;
|
||
struct frame_info *frame;
|
||
struct gdbarch *gdbarch;
|
||
int regnum, numregs, format;
|
||
int i;
|
||
struct cleanup *list_cleanup;
|
||
int skip_unavailable = 0;
|
||
int oind = 0;
|
||
enum opt
|
||
{
|
||
SKIP_UNAVAILABLE,
|
||
};
|
||
static const struct mi_opt opts[] =
|
||
{
|
||
{"-skip-unavailable", SKIP_UNAVAILABLE, 0},
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
/* Note that the test for a valid register must include checking the
|
||
gdbarch_register_name because gdbarch_num_regs may be allocated
|
||
for the union of the register sets within a family of related
|
||
processors. In this case, some entries of gdbarch_register_name
|
||
will change depending upon the particular processor being
|
||
debugged. */
|
||
|
||
while (1)
|
||
{
|
||
char *oarg;
|
||
int opt = mi_getopt ("-data-list-register-values", argc, argv,
|
||
opts, &oind, &oarg);
|
||
|
||
if (opt < 0)
|
||
break;
|
||
switch ((enum opt) opt)
|
||
{
|
||
case SKIP_UNAVAILABLE:
|
||
skip_unavailable = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (argc - oind < 1)
|
||
error (_("-data-list-register-values: Usage: "
|
||
"-data-list-register-values [--skip-unavailable] <format>"
|
||
" [<regnum1>...<regnumN>]"));
|
||
|
||
format = (int) argv[oind][0];
|
||
|
||
frame = get_selected_frame (NULL);
|
||
gdbarch = get_frame_arch (frame);
|
||
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
||
|
||
list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
|
||
|
||
if (argc - oind == 1)
|
||
{
|
||
/* No args, beside the format: do all the regs. */
|
||
for (regnum = 0;
|
||
regnum < numregs;
|
||
regnum++)
|
||
{
|
||
if (gdbarch_register_name (gdbarch, regnum) == NULL
|
||
|| *(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
||
continue;
|
||
|
||
output_register (frame, regnum, format, skip_unavailable);
|
||
}
|
||
}
|
||
|
||
/* Else, list of register #s, just do listed regs. */
|
||
for (i = 1 + oind; i < argc; i++)
|
||
{
|
||
regnum = atoi (argv[i]);
|
||
|
||
if (regnum >= 0
|
||
&& regnum < numregs
|
||
&& gdbarch_register_name (gdbarch, regnum) != NULL
|
||
&& *gdbarch_register_name (gdbarch, regnum) != '\000')
|
||
output_register (frame, regnum, format, skip_unavailable);
|
||
else
|
||
error (_("bad register number"));
|
||
}
|
||
do_cleanups (list_cleanup);
|
||
}
|
||
|
||
/* Output one register REGNUM's contents in the desired FORMAT. If
|
||
SKIP_UNAVAILABLE is true, skip the register if it is
|
||
unavailable. */
|
||
|
||
static void
|
||
output_register (struct frame_info *frame, int regnum, int format,
|
||
int skip_unavailable)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct ui_out *uiout = current_uiout;
|
||
struct value *val = get_frame_register_value (frame, regnum);
|
||
struct cleanup *tuple_cleanup;
|
||
|
||
if (skip_unavailable && !value_entirely_available (val))
|
||
return;
|
||
|
||
tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
ui_out_field_int (uiout, "number", regnum);
|
||
|
||
if (format == 'N')
|
||
format = 0;
|
||
|
||
if (value_optimized_out (val))
|
||
error (_("Optimized out"));
|
||
|
||
if (format == 'r')
|
||
{
|
||
int j;
|
||
char *ptr, buf[1024];
|
||
const gdb_byte *valaddr = value_contents_for_printing (val);
|
||
|
||
strcpy (buf, "0x");
|
||
ptr = buf + 2;
|
||
for (j = 0; j < register_size (gdbarch, regnum); j++)
|
||
{
|
||
int idx = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ?
|
||
j : register_size (gdbarch, regnum) - 1 - j;
|
||
|
||
sprintf (ptr, "%02x", (unsigned char) valaddr[idx]);
|
||
ptr += 2;
|
||
}
|
||
ui_out_field_string (uiout, "value", buf);
|
||
}
|
||
else
|
||
{
|
||
struct value_print_options opts;
|
||
struct ui_file *stb;
|
||
struct cleanup *old_chain;
|
||
|
||
stb = mem_fileopen ();
|
||
old_chain = make_cleanup_ui_file_delete (stb);
|
||
|
||
get_formatted_print_options (&opts, format);
|
||
opts.deref_ref = 1;
|
||
val_print (value_type (val),
|
||
value_contents_for_printing (val),
|
||
value_embedded_offset (val), 0,
|
||
stb, 0, val, &opts, current_language);
|
||
ui_out_field_stream (uiout, "value", stb);
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
do_cleanups (tuple_cleanup);
|
||
}
|
||
|
||
/* Write given values into registers. The registers and values are
|
||
given as pairs. The corresponding MI command is
|
||
-data-write-register-values <format>
|
||
[<regnum1> <value1>...<regnumN> <valueN>] */
|
||
void
|
||
mi_cmd_data_write_register_values (char *command, char **argv, int argc)
|
||
{
|
||
struct regcache *regcache;
|
||
struct gdbarch *gdbarch;
|
||
int numregs, i;
|
||
|
||
/* Note that the test for a valid register must include checking the
|
||
gdbarch_register_name because gdbarch_num_regs may be allocated
|
||
for the union of the register sets within a family of related
|
||
processors. In this case, some entries of gdbarch_register_name
|
||
will change depending upon the particular processor being
|
||
debugged. */
|
||
|
||
regcache = get_current_regcache ();
|
||
gdbarch = get_regcache_arch (regcache);
|
||
numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
||
|
||
if (argc == 0)
|
||
error (_("-data-write-register-values: Usage: -data-write-register-"
|
||
"values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
|
||
|
||
if (!target_has_registers)
|
||
error (_("-data-write-register-values: No registers."));
|
||
|
||
if (!(argc - 1))
|
||
error (_("-data-write-register-values: No regs and values specified."));
|
||
|
||
if ((argc - 1) % 2)
|
||
error (_("-data-write-register-values: "
|
||
"Regs and vals are not in pairs."));
|
||
|
||
for (i = 1; i < argc; i = i + 2)
|
||
{
|
||
int regnum = atoi (argv[i]);
|
||
|
||
if (regnum >= 0 && regnum < numregs
|
||
&& gdbarch_register_name (gdbarch, regnum)
|
||
&& *gdbarch_register_name (gdbarch, regnum))
|
||
{
|
||
LONGEST value;
|
||
|
||
/* Get the value as a number. */
|
||
value = parse_and_eval_address (argv[i + 1]);
|
||
|
||
/* Write it down. */
|
||
regcache_cooked_write_signed (regcache, regnum, value);
|
||
}
|
||
else
|
||
error (_("bad register number"));
|
||
}
|
||
}
|
||
|
||
/* Evaluate the value of the argument. The argument is an
|
||
expression. If the expression contains spaces it needs to be
|
||
included in double quotes. */
|
||
|
||
void
|
||
mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
|
||
{
|
||
struct expression *expr;
|
||
struct cleanup *old_chain;
|
||
struct value *val;
|
||
struct ui_file *stb;
|
||
struct value_print_options opts;
|
||
struct ui_out *uiout = current_uiout;
|
||
|
||
stb = mem_fileopen ();
|
||
old_chain = make_cleanup_ui_file_delete (stb);
|
||
|
||
if (argc != 1)
|
||
error (_("-data-evaluate-expression: "
|
||
"Usage: -data-evaluate-expression expression"));
|
||
|
||
expr = parse_expression (argv[0]);
|
||
|
||
make_cleanup (free_current_contents, &expr);
|
||
|
||
val = evaluate_expression (expr);
|
||
|
||
/* Print the result of the expression evaluation. */
|
||
get_user_print_options (&opts);
|
||
opts.deref_ref = 0;
|
||
common_val_print (val, stb, 0, &opts, current_language);
|
||
|
||
ui_out_field_stream (uiout, "value", stb);
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* This is the -data-read-memory command.
|
||
|
||
ADDR: start address of data to be dumped.
|
||
WORD-FORMAT: a char indicating format for the ``word''. See
|
||
the ``x'' command.
|
||
WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
|
||
NR_ROW: Number of rows.
|
||
NR_COL: The number of colums (words per row).
|
||
ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
|
||
ASCHAR for unprintable characters.
|
||
|
||
Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
|
||
displayes them. Returns:
|
||
|
||
{addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
|
||
|
||
Returns:
|
||
The number of bytes read is SIZE*ROW*COL. */
|
||
|
||
void
|
||
mi_cmd_data_read_memory (char *command, char **argv, int argc)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
struct ui_out *uiout = current_uiout;
|
||
struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
|
||
CORE_ADDR addr;
|
||
long total_bytes, nr_cols, nr_rows;
|
||
char word_format;
|
||
struct type *word_type;
|
||
long word_size;
|
||
char word_asize;
|
||
char aschar;
|
||
gdb_byte *mbuf;
|
||
int nr_bytes;
|
||
long offset = 0;
|
||
int oind = 0;
|
||
char *oarg;
|
||
enum opt
|
||
{
|
||
OFFSET_OPT
|
||
};
|
||
static const struct mi_opt opts[] =
|
||
{
|
||
{"o", OFFSET_OPT, 1},
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
while (1)
|
||
{
|
||
int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
|
||
&oind, &oarg);
|
||
|
||
if (opt < 0)
|
||
break;
|
||
switch ((enum opt) opt)
|
||
{
|
||
case OFFSET_OPT:
|
||
offset = atol (oarg);
|
||
break;
|
||
}
|
||
}
|
||
argv += oind;
|
||
argc -= oind;
|
||
|
||
if (argc < 5 || argc > 6)
|
||
error (_("-data-read-memory: Usage: "
|
||
"ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
|
||
|
||
/* Extract all the arguments. */
|
||
|
||
/* Start address of the memory dump. */
|
||
addr = parse_and_eval_address (argv[0]) + offset;
|
||
/* The format character to use when displaying a memory word. See
|
||
the ``x'' command. */
|
||
word_format = argv[1][0];
|
||
/* The size of the memory word. */
|
||
word_size = atol (argv[2]);
|
||
switch (word_size)
|
||
{
|
||
case 1:
|
||
word_type = builtin_type (gdbarch)->builtin_int8;
|
||
word_asize = 'b';
|
||
break;
|
||
case 2:
|
||
word_type = builtin_type (gdbarch)->builtin_int16;
|
||
word_asize = 'h';
|
||
break;
|
||
case 4:
|
||
word_type = builtin_type (gdbarch)->builtin_int32;
|
||
word_asize = 'w';
|
||
break;
|
||
case 8:
|
||
word_type = builtin_type (gdbarch)->builtin_int64;
|
||
word_asize = 'g';
|
||
break;
|
||
default:
|
||
word_type = builtin_type (gdbarch)->builtin_int8;
|
||
word_asize = 'b';
|
||
}
|
||
/* The number of rows. */
|
||
nr_rows = atol (argv[3]);
|
||
if (nr_rows <= 0)
|
||
error (_("-data-read-memory: invalid number of rows."));
|
||
|
||
/* Number of bytes per row. */
|
||
nr_cols = atol (argv[4]);
|
||
if (nr_cols <= 0)
|
||
error (_("-data-read-memory: invalid number of columns."));
|
||
|
||
/* The un-printable character when printing ascii. */
|
||
if (argc == 6)
|
||
aschar = *argv[5];
|
||
else
|
||
aschar = 0;
|
||
|
||
/* Create a buffer and read it in. */
|
||
total_bytes = word_size * nr_rows * nr_cols;
|
||
mbuf = xcalloc (total_bytes, 1);
|
||
make_cleanup (xfree, mbuf);
|
||
|
||
/* Dispatch memory reads to the topmost target, not the flattened
|
||
current_target. */
|
||
nr_bytes = target_read (current_target.beneath,
|
||
TARGET_OBJECT_MEMORY, NULL, mbuf,
|
||
addr, total_bytes);
|
||
if (nr_bytes <= 0)
|
||
error (_("Unable to read memory."));
|
||
|
||
/* Output the header information. */
|
||
ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
|
||
ui_out_field_int (uiout, "nr-bytes", nr_bytes);
|
||
ui_out_field_int (uiout, "total-bytes", total_bytes);
|
||
ui_out_field_core_addr (uiout, "next-row",
|
||
gdbarch, addr + word_size * nr_cols);
|
||
ui_out_field_core_addr (uiout, "prev-row",
|
||
gdbarch, addr - word_size * nr_cols);
|
||
ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
|
||
ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
|
||
|
||
/* Build the result as a two dimentional table. */
|
||
{
|
||
struct ui_file *stream;
|
||
struct cleanup *cleanup_stream;
|
||
int row;
|
||
int row_byte;
|
||
|
||
stream = mem_fileopen ();
|
||
cleanup_stream = make_cleanup_ui_file_delete (stream);
|
||
|
||
make_cleanup_ui_out_list_begin_end (uiout, "memory");
|
||
for (row = 0, row_byte = 0;
|
||
row < nr_rows;
|
||
row++, row_byte += nr_cols * word_size)
|
||
{
|
||
int col;
|
||
int col_byte;
|
||
struct cleanup *cleanup_tuple;
|
||
struct cleanup *cleanup_list_data;
|
||
struct value_print_options opts;
|
||
|
||
cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
|
||
/* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
|
||
row_byte); */
|
||
cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
|
||
get_formatted_print_options (&opts, word_format);
|
||
for (col = 0, col_byte = row_byte;
|
||
col < nr_cols;
|
||
col++, col_byte += word_size)
|
||
{
|
||
if (col_byte + word_size > nr_bytes)
|
||
{
|
||
ui_out_field_string (uiout, NULL, "N/A");
|
||
}
|
||
else
|
||
{
|
||
ui_file_rewind (stream);
|
||
print_scalar_formatted (mbuf + col_byte, word_type, &opts,
|
||
word_asize, stream);
|
||
ui_out_field_stream (uiout, NULL, stream);
|
||
}
|
||
}
|
||
do_cleanups (cleanup_list_data);
|
||
if (aschar)
|
||
{
|
||
int byte;
|
||
|
||
ui_file_rewind (stream);
|
||
for (byte = row_byte;
|
||
byte < row_byte + word_size * nr_cols; byte++)
|
||
{
|
||
if (byte >= nr_bytes)
|
||
fputc_unfiltered ('X', stream);
|
||
else if (mbuf[byte] < 32 || mbuf[byte] > 126)
|
||
fputc_unfiltered (aschar, stream);
|
||
else
|
||
fputc_unfiltered (mbuf[byte], stream);
|
||
}
|
||
ui_out_field_stream (uiout, "ascii", stream);
|
||
}
|
||
do_cleanups (cleanup_tuple);
|
||
}
|
||
do_cleanups (cleanup_stream);
|
||
}
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
void
|
||
mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
struct ui_out *uiout = current_uiout;
|
||
struct cleanup *cleanups;
|
||
CORE_ADDR addr;
|
||
LONGEST length;
|
||
memory_read_result_s *read_result;
|
||
int ix;
|
||
VEC(memory_read_result_s) *result;
|
||
long offset = 0;
|
||
int oind = 0;
|
||
char *oarg;
|
||
enum opt
|
||
{
|
||
OFFSET_OPT
|
||
};
|
||
static const struct mi_opt opts[] =
|
||
{
|
||
{"o", OFFSET_OPT, 1},
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
while (1)
|
||
{
|
||
int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
|
||
&oind, &oarg);
|
||
if (opt < 0)
|
||
break;
|
||
switch ((enum opt) opt)
|
||
{
|
||
case OFFSET_OPT:
|
||
offset = atol (oarg);
|
||
break;
|
||
}
|
||
}
|
||
argv += oind;
|
||
argc -= oind;
|
||
|
||
if (argc != 2)
|
||
error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
|
||
|
||
addr = parse_and_eval_address (argv[0]) + offset;
|
||
length = atol (argv[1]);
|
||
|
||
result = read_memory_robust (current_target.beneath, addr, length);
|
||
|
||
cleanups = make_cleanup (free_memory_read_result_vector, result);
|
||
|
||
if (VEC_length (memory_read_result_s, result) == 0)
|
||
error (_("Unable to read memory."));
|
||
|
||
make_cleanup_ui_out_list_begin_end (uiout, "memory");
|
||
for (ix = 0;
|
||
VEC_iterate (memory_read_result_s, result, ix, read_result);
|
||
++ix)
|
||
{
|
||
struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
char *data, *p;
|
||
int i;
|
||
|
||
ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
|
||
ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
|
||
- addr);
|
||
ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
|
||
|
||
data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
|
||
|
||
for (i = 0, p = data;
|
||
i < (read_result->end - read_result->begin);
|
||
++i, p += 2)
|
||
{
|
||
sprintf (p, "%02x", read_result->data[i]);
|
||
}
|
||
ui_out_field_string (uiout, "contents", data);
|
||
xfree (data);
|
||
do_cleanups (t);
|
||
}
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
/* Implementation of the -data-write_memory command.
|
||
|
||
COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
|
||
offset from the beginning of the memory grid row where the cell to
|
||
be written is.
|
||
ADDR: start address of the row in the memory grid where the memory
|
||
cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
|
||
the location to write to.
|
||
FORMAT: a char indicating format for the ``word''. See
|
||
the ``x'' command.
|
||
WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
|
||
VALUE: value to be written into the memory address.
|
||
|
||
Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
|
||
|
||
Prints nothing. */
|
||
|
||
void
|
||
mi_cmd_data_write_memory (char *command, char **argv, int argc)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR addr;
|
||
long word_size;
|
||
/* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
|
||
enough when using a compiler other than GCC. */
|
||
LONGEST value;
|
||
void *buffer;
|
||
struct cleanup *old_chain;
|
||
long offset = 0;
|
||
int oind = 0;
|
||
char *oarg;
|
||
enum opt
|
||
{
|
||
OFFSET_OPT
|
||
};
|
||
static const struct mi_opt opts[] =
|
||
{
|
||
{"o", OFFSET_OPT, 1},
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
while (1)
|
||
{
|
||
int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
|
||
&oind, &oarg);
|
||
|
||
if (opt < 0)
|
||
break;
|
||
switch ((enum opt) opt)
|
||
{
|
||
case OFFSET_OPT:
|
||
offset = atol (oarg);
|
||
break;
|
||
}
|
||
}
|
||
argv += oind;
|
||
argc -= oind;
|
||
|
||
if (argc != 4)
|
||
error (_("-data-write-memory: Usage: "
|
||
"[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
|
||
|
||
/* Extract all the arguments. */
|
||
/* Start address of the memory dump. */
|
||
addr = parse_and_eval_address (argv[0]);
|
||
/* The size of the memory word. */
|
||
word_size = atol (argv[2]);
|
||
|
||
/* Calculate the real address of the write destination. */
|
||
addr += (offset * word_size);
|
||
|
||
/* Get the value as a number. */
|
||
value = parse_and_eval_address (argv[3]);
|
||
/* Get the value into an array. */
|
||
buffer = xmalloc (word_size);
|
||
old_chain = make_cleanup (xfree, buffer);
|
||
store_signed_integer (buffer, word_size, byte_order, value);
|
||
/* Write it down to memory. */
|
||
write_memory_with_notification (addr, buffer, word_size);
|
||
/* Free the buffer. */
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* Implementation of the -data-write-memory-bytes command.
|
||
|
||
ADDR: start address
|
||
DATA: string of bytes to write at that address
|
||
COUNT: number of bytes to be filled (decimal integer). */
|
||
|
||
void
|
||
mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
|
||
{
|
||
CORE_ADDR addr;
|
||
char *cdata;
|
||
gdb_byte *data;
|
||
gdb_byte *databuf;
|
||
size_t len, i, steps, remainder;
|
||
long int count, j;
|
||
struct cleanup *back_to;
|
||
|
||
if (argc != 2 && argc != 3)
|
||
error (_("Usage: ADDR DATA [COUNT]."));
|
||
|
||
addr = parse_and_eval_address (argv[0]);
|
||
cdata = argv[1];
|
||
if (strlen (cdata) % 2)
|
||
error (_("Hex-encoded '%s' must have an even number of characters."),
|
||
cdata);
|
||
|
||
len = strlen (cdata)/2;
|
||
if (argc == 3)
|
||
count = strtoul (argv[2], NULL, 10);
|
||
else
|
||
count = len;
|
||
|
||
databuf = xmalloc (len * sizeof (gdb_byte));
|
||
back_to = make_cleanup (xfree, databuf);
|
||
|
||
for (i = 0; i < len; ++i)
|
||
{
|
||
int x;
|
||
if (sscanf (cdata + i * 2, "%02x", &x) != 1)
|
||
error (_("Invalid argument"));
|
||
databuf[i] = (gdb_byte) x;
|
||
}
|
||
|
||
if (len < count)
|
||
{
|
||
/* Pattern is made of less bytes than count:
|
||
repeat pattern to fill memory. */
|
||
data = xmalloc (count);
|
||
make_cleanup (xfree, data);
|
||
|
||
steps = count / len;
|
||
remainder = count % len;
|
||
for (j = 0; j < steps; j++)
|
||
memcpy (data + j * len, databuf, len);
|
||
|
||
if (remainder > 0)
|
||
memcpy (data + steps * len, databuf, remainder);
|
||
}
|
||
else
|
||
{
|
||
/* Pattern is longer than or equal to count:
|
||
just copy len bytes. */
|
||
data = databuf;
|
||
}
|
||
|
||
write_memory_with_notification (addr, data, count);
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
void
|
||
mi_cmd_enable_timings (char *command, char **argv, int argc)
|
||
{
|
||
if (argc == 0)
|
||
do_timings = 1;
|
||
else if (argc == 1)
|
||
{
|
||
if (strcmp (argv[0], "yes") == 0)
|
||
do_timings = 1;
|
||
else if (strcmp (argv[0], "no") == 0)
|
||
do_timings = 0;
|
||
else
|
||
goto usage_error;
|
||
}
|
||
else
|
||
goto usage_error;
|
||
|
||
return;
|
||
|
||
usage_error:
|
||
error (_("-enable-timings: Usage: %s {yes|no}"), command);
|
||
}
|
||
|
||
void
|
||
mi_cmd_list_features (char *command, char **argv, int argc)
|
||
{
|
||
if (argc == 0)
|
||
{
|
||
struct cleanup *cleanup = NULL;
|
||
struct ui_out *uiout = current_uiout;
|
||
|
||
cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
|
||
ui_out_field_string (uiout, NULL, "frozen-varobjs");
|
||
ui_out_field_string (uiout, NULL, "pending-breakpoints");
|
||
ui_out_field_string (uiout, NULL, "thread-info");
|
||
ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
|
||
ui_out_field_string (uiout, NULL, "breakpoint-notifications");
|
||
ui_out_field_string (uiout, NULL, "ada-task-info");
|
||
|
||
#if HAVE_PYTHON
|
||
if (gdb_python_initialized)
|
||
ui_out_field_string (uiout, NULL, "python");
|
||
#endif
|
||
|
||
do_cleanups (cleanup);
|
||
return;
|
||
}
|
||
|
||
error (_("-list-features should be passed no arguments"));
|
||
}
|
||
|
||
void
|
||
mi_cmd_list_target_features (char *command, char **argv, int argc)
|
||
{
|
||
if (argc == 0)
|
||
{
|
||
struct cleanup *cleanup = NULL;
|
||
struct ui_out *uiout = current_uiout;
|
||
|
||
cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
|
||
if (target_can_async_p ())
|
||
ui_out_field_string (uiout, NULL, "async");
|
||
if (target_can_execute_reverse)
|
||
ui_out_field_string (uiout, NULL, "reverse");
|
||
|
||
do_cleanups (cleanup);
|
||
return;
|
||
}
|
||
|
||
error (_("-list-target-features should be passed no arguments"));
|
||
}
|
||
|
||
void
|
||
mi_cmd_add_inferior (char *command, char **argv, int argc)
|
||
{
|
||
struct inferior *inf;
|
||
|
||
if (argc != 0)
|
||
error (_("-add-inferior should be passed no arguments"));
|
||
|
||
inf = add_inferior_with_spaces ();
|
||
|
||
ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
|
||
}
|
||
|
||
/* Callback used to find the first inferior other than the current
|
||
one. */
|
||
|
||
static int
|
||
get_other_inferior (struct inferior *inf, void *arg)
|
||
{
|
||
if (inf == current_inferior ())
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
mi_cmd_remove_inferior (char *command, char **argv, int argc)
|
||
{
|
||
int id;
|
||
struct inferior *inf;
|
||
|
||
if (argc != 1)
|
||
error (_("-remove-inferior should be passed a single argument"));
|
||
|
||
if (sscanf (argv[0], "i%d", &id) != 1)
|
||
error (_("the thread group id is syntactically invalid"));
|
||
|
||
inf = find_inferior_id (id);
|
||
if (!inf)
|
||
error (_("the specified thread group does not exist"));
|
||
|
||
if (inf->pid != 0)
|
||
error (_("cannot remove an active inferior"));
|
||
|
||
if (inf == current_inferior ())
|
||
{
|
||
struct thread_info *tp = 0;
|
||
struct inferior *new_inferior
|
||
= iterate_over_inferiors (get_other_inferior, NULL);
|
||
|
||
if (new_inferior == NULL)
|
||
error (_("Cannot remove last inferior"));
|
||
|
||
set_current_inferior (new_inferior);
|
||
if (new_inferior->pid != 0)
|
||
tp = any_thread_of_process (new_inferior->pid);
|
||
switch_to_thread (tp ? tp->ptid : null_ptid);
|
||
set_current_program_space (new_inferior->pspace);
|
||
}
|
||
|
||
delete_inferior_1 (inf, 1 /* silent */);
|
||
}
|
||
|
||
|
||
|
||
/* Execute a command within a safe environment.
|
||
Return <0 for error; >=0 for ok.
|
||
|
||
args->action will tell mi_execute_command what action
|
||
to perfrom after the given command has executed (display/suppress
|
||
prompt, display error). */
|
||
|
||
static void
|
||
captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
|
||
{
|
||
struct cleanup *cleanup;
|
||
|
||
if (do_timings)
|
||
current_command_ts = context->cmd_start;
|
||
|
||
current_token = xstrdup (context->token);
|
||
cleanup = make_cleanup (free_current_contents, ¤t_token);
|
||
|
||
running_result_record_printed = 0;
|
||
mi_proceeded = 0;
|
||
switch (context->op)
|
||
{
|
||
case MI_COMMAND:
|
||
/* A MI command was read from the input stream. */
|
||
if (mi_debug_p)
|
||
/* FIXME: gdb_???? */
|
||
fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
|
||
context->token, context->command, context->args);
|
||
|
||
mi_cmd_execute (context);
|
||
|
||
/* Print the result if there were no errors.
|
||
|
||
Remember that on the way out of executing a command, you have
|
||
to directly use the mi_interp's uiout, since the command
|
||
could have reset the interpreter, in which case the current
|
||
uiout will most likely crash in the mi_out_* routines. */
|
||
if (!running_result_record_printed)
|
||
{
|
||
fputs_unfiltered (context->token, raw_stdout);
|
||
/* There's no particularly good reason why target-connect results
|
||
in not ^done. Should kill ^connected for MI3. */
|
||
fputs_unfiltered (strcmp (context->command, "target-select") == 0
|
||
? "^connected" : "^done", raw_stdout);
|
||
mi_out_put (uiout, raw_stdout);
|
||
mi_out_rewind (uiout);
|
||
mi_print_timing_maybe ();
|
||
fputs_unfiltered ("\n", raw_stdout);
|
||
}
|
||
else
|
||
/* The command does not want anything to be printed. In that
|
||
case, the command probably should not have written anything
|
||
to uiout, but in case it has written something, discard it. */
|
||
mi_out_rewind (uiout);
|
||
break;
|
||
|
||
case CLI_COMMAND:
|
||
{
|
||
char *argv[2];
|
||
|
||
/* A CLI command was read from the input stream. */
|
||
/* This "feature" will be removed as soon as we have a
|
||
complete set of mi commands. */
|
||
/* Echo the command on the console. */
|
||
fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
|
||
/* Call the "console" interpreter. */
|
||
argv[0] = "console";
|
||
argv[1] = context->command;
|
||
mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
|
||
|
||
/* If we changed interpreters, DON'T print out anything. */
|
||
if (current_interp_named_p (INTERP_MI)
|
||
|| current_interp_named_p (INTERP_MI1)
|
||
|| current_interp_named_p (INTERP_MI2)
|
||
|| current_interp_named_p (INTERP_MI3))
|
||
{
|
||
if (!running_result_record_printed)
|
||
{
|
||
fputs_unfiltered (context->token, raw_stdout);
|
||
fputs_unfiltered ("^done", raw_stdout);
|
||
mi_out_put (uiout, raw_stdout);
|
||
mi_out_rewind (uiout);
|
||
mi_print_timing_maybe ();
|
||
fputs_unfiltered ("\n", raw_stdout);
|
||
}
|
||
else
|
||
mi_out_rewind (uiout);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* Print a gdb exception to the MI output stream. */
|
||
|
||
static void
|
||
mi_print_exception (const char *token, struct gdb_exception exception)
|
||
{
|
||
fputs_unfiltered (token, raw_stdout);
|
||
fputs_unfiltered ("^error,msg=\"", raw_stdout);
|
||
if (exception.message == NULL)
|
||
fputs_unfiltered ("unknown error", raw_stdout);
|
||
else
|
||
fputstr_unfiltered (exception.message, '"', raw_stdout);
|
||
fputs_unfiltered ("\"\n", raw_stdout);
|
||
}
|
||
|
||
void
|
||
mi_execute_command (const char *cmd, int from_tty)
|
||
{
|
||
char *token;
|
||
struct mi_parse *command = NULL;
|
||
volatile struct gdb_exception exception;
|
||
|
||
/* This is to handle EOF (^D). We just quit gdb. */
|
||
/* FIXME: we should call some API function here. */
|
||
if (cmd == 0)
|
||
quit_force (NULL, from_tty);
|
||
|
||
target_log_command (cmd);
|
||
|
||
TRY_CATCH (exception, RETURN_MASK_ALL)
|
||
{
|
||
command = mi_parse (cmd, &token);
|
||
}
|
||
if (exception.reason < 0)
|
||
{
|
||
mi_print_exception (token, exception);
|
||
xfree (token);
|
||
}
|
||
else
|
||
{
|
||
volatile struct gdb_exception result;
|
||
ptid_t previous_ptid = inferior_ptid;
|
||
|
||
command->token = token;
|
||
|
||
if (do_timings)
|
||
{
|
||
command->cmd_start = (struct mi_timestamp *)
|
||
xmalloc (sizeof (struct mi_timestamp));
|
||
timestamp (command->cmd_start);
|
||
}
|
||
|
||
TRY_CATCH (result, RETURN_MASK_ALL)
|
||
{
|
||
captured_mi_execute_command (current_uiout, command);
|
||
}
|
||
if (result.reason < 0)
|
||
{
|
||
/* The command execution failed and error() was called
|
||
somewhere. */
|
||
mi_print_exception (command->token, result);
|
||
mi_out_rewind (current_uiout);
|
||
}
|
||
|
||
bpstat_do_actions ();
|
||
|
||
if (/* The notifications are only output when the top-level
|
||
interpreter (specified on the command line) is MI. */
|
||
ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
|
||
/* Don't try report anything if there are no threads --
|
||
the program is dead. */
|
||
&& thread_count () != 0
|
||
/* -thread-select explicitly changes thread. If frontend uses that
|
||
internally, we don't want to emit =thread-selected, since
|
||
=thread-selected is supposed to indicate user's intentions. */
|
||
&& strcmp (command->command, "thread-select") != 0)
|
||
{
|
||
struct mi_interp *mi = top_level_interpreter_data ();
|
||
int report_change = 0;
|
||
|
||
if (command->thread == -1)
|
||
{
|
||
report_change = (!ptid_equal (previous_ptid, null_ptid)
|
||
&& !ptid_equal (inferior_ptid, previous_ptid)
|
||
&& !ptid_equal (inferior_ptid, null_ptid));
|
||
}
|
||
else if (!ptid_equal (inferior_ptid, null_ptid))
|
||
{
|
||
struct thread_info *ti = inferior_thread ();
|
||
|
||
report_change = (ti->num != command->thread);
|
||
}
|
||
|
||
if (report_change)
|
||
{
|
||
struct thread_info *ti = inferior_thread ();
|
||
|
||
target_terminal_ours ();
|
||
fprintf_unfiltered (mi->event_channel,
|
||
"thread-selected,id=\"%d\"",
|
||
ti->num);
|
||
gdb_flush (mi->event_channel);
|
||
}
|
||
}
|
||
|
||
mi_parse_free (command);
|
||
}
|
||
}
|
||
|
||
static void
|
||
mi_cmd_execute (struct mi_parse *parse)
|
||
{
|
||
struct cleanup *cleanup;
|
||
|
||
cleanup = prepare_execute_command ();
|
||
|
||
if (parse->all && parse->thread_group != -1)
|
||
error (_("Cannot specify --thread-group together with --all"));
|
||
|
||
if (parse->all && parse->thread != -1)
|
||
error (_("Cannot specify --thread together with --all"));
|
||
|
||
if (parse->thread_group != -1 && parse->thread != -1)
|
||
error (_("Cannot specify --thread together with --thread-group"));
|
||
|
||
if (parse->frame != -1 && parse->thread == -1)
|
||
error (_("Cannot specify --frame without --thread"));
|
||
|
||
if (parse->thread_group != -1)
|
||
{
|
||
struct inferior *inf = find_inferior_id (parse->thread_group);
|
||
struct thread_info *tp = 0;
|
||
|
||
if (!inf)
|
||
error (_("Invalid thread group for the --thread-group option"));
|
||
|
||
set_current_inferior (inf);
|
||
/* This behaviour means that if --thread-group option identifies
|
||
an inferior with multiple threads, then a random one will be
|
||
picked. This is not a problem -- frontend should always
|
||
provide --thread if it wishes to operate on a specific
|
||
thread. */
|
||
if (inf->pid != 0)
|
||
tp = any_live_thread_of_process (inf->pid);
|
||
switch_to_thread (tp ? tp->ptid : null_ptid);
|
||
set_current_program_space (inf->pspace);
|
||
}
|
||
|
||
if (parse->thread != -1)
|
||
{
|
||
struct thread_info *tp = find_thread_id (parse->thread);
|
||
|
||
if (!tp)
|
||
error (_("Invalid thread id: %d"), parse->thread);
|
||
|
||
if (is_exited (tp->ptid))
|
||
error (_("Thread id: %d has terminated"), parse->thread);
|
||
|
||
switch_to_thread (tp->ptid);
|
||
}
|
||
|
||
if (parse->frame != -1)
|
||
{
|
||
struct frame_info *fid;
|
||
int frame = parse->frame;
|
||
|
||
fid = find_relative_frame (get_current_frame (), &frame);
|
||
if (frame == 0)
|
||
/* find_relative_frame was successful */
|
||
select_frame (fid);
|
||
else
|
||
error (_("Invalid frame id: %d"), frame);
|
||
}
|
||
|
||
current_context = parse;
|
||
|
||
if (parse->cmd->suppress_notification != NULL)
|
||
{
|
||
make_cleanup_restore_integer (parse->cmd->suppress_notification);
|
||
*parse->cmd->suppress_notification = 1;
|
||
}
|
||
|
||
if (parse->cmd->argv_func != NULL)
|
||
{
|
||
parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
|
||
}
|
||
else if (parse->cmd->cli.cmd != 0)
|
||
{
|
||
/* FIXME: DELETE THIS. */
|
||
/* The operation is still implemented by a cli command. */
|
||
/* Must be a synchronous one. */
|
||
mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
|
||
parse->args);
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: DELETE THIS. */
|
||
struct ui_file *stb;
|
||
|
||
stb = mem_fileopen ();
|
||
|
||
fputs_unfiltered ("Undefined mi command: ", stb);
|
||
fputstr_unfiltered (parse->command, '"', stb);
|
||
fputs_unfiltered (" (missing implementation)", stb);
|
||
|
||
make_cleanup_ui_file_delete (stb);
|
||
error_stream (stb);
|
||
}
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* FIXME: This is just a hack so we can get some extra commands going.
|
||
We don't want to channel things through the CLI, but call libgdb directly.
|
||
Use only for synchronous commands. */
|
||
|
||
void
|
||
mi_execute_cli_command (const char *cmd, int args_p, const char *args)
|
||
{
|
||
if (cmd != 0)
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
char *run;
|
||
|
||
if (args_p)
|
||
run = xstrprintf ("%s %s", cmd, args);
|
||
else
|
||
run = xstrdup (cmd);
|
||
if (mi_debug_p)
|
||
/* FIXME: gdb_???? */
|
||
fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
|
||
cmd, run);
|
||
old_cleanups = make_cleanup (xfree, run);
|
||
execute_command (run, 0 /* from_tty */ );
|
||
do_cleanups (old_cleanups);
|
||
return;
|
||
}
|
||
}
|
||
|
||
void
|
||
mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
char *run;
|
||
|
||
if (target_can_async_p ())
|
||
run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
|
||
else
|
||
run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
|
||
old_cleanups = make_cleanup (xfree, run);
|
||
|
||
execute_command (run, 0 /* from_tty */ );
|
||
|
||
/* Do this before doing any printing. It would appear that some
|
||
print code leaves garbage around in the buffer. */
|
||
do_cleanups (old_cleanups);
|
||
}
|
||
|
||
void
|
||
mi_load_progress (const char *section_name,
|
||
unsigned long sent_so_far,
|
||
unsigned long total_section,
|
||
unsigned long total_sent,
|
||
unsigned long grand_total)
|
||
{
|
||
struct timeval time_now, delta, update_threshold;
|
||
static struct timeval last_update;
|
||
static char *previous_sect_name = NULL;
|
||
int new_section;
|
||
struct ui_out *saved_uiout;
|
||
struct ui_out *uiout;
|
||
|
||
/* This function is called through deprecated_show_load_progress
|
||
which means uiout may not be correct. Fix it for the duration
|
||
of this function. */
|
||
saved_uiout = current_uiout;
|
||
|
||
if (current_interp_named_p (INTERP_MI)
|
||
|| current_interp_named_p (INTERP_MI2))
|
||
current_uiout = mi_out_new (2);
|
||
else if (current_interp_named_p (INTERP_MI1))
|
||
current_uiout = mi_out_new (1);
|
||
else if (current_interp_named_p (INTERP_MI3))
|
||
current_uiout = mi_out_new (3);
|
||
else
|
||
return;
|
||
|
||
uiout = current_uiout;
|
||
|
||
update_threshold.tv_sec = 0;
|
||
update_threshold.tv_usec = 500000;
|
||
gettimeofday (&time_now, NULL);
|
||
|
||
delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
|
||
delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
|
||
|
||
if (delta.tv_usec < 0)
|
||
{
|
||
delta.tv_sec -= 1;
|
||
delta.tv_usec += 1000000L;
|
||
}
|
||
|
||
new_section = (previous_sect_name ?
|
||
strcmp (previous_sect_name, section_name) : 1);
|
||
if (new_section)
|
||
{
|
||
struct cleanup *cleanup_tuple;
|
||
|
||
xfree (previous_sect_name);
|
||
previous_sect_name = xstrdup (section_name);
|
||
|
||
if (current_token)
|
||
fputs_unfiltered (current_token, raw_stdout);
|
||
fputs_unfiltered ("+download", raw_stdout);
|
||
cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
ui_out_field_string (uiout, "section", section_name);
|
||
ui_out_field_int (uiout, "section-size", total_section);
|
||
ui_out_field_int (uiout, "total-size", grand_total);
|
||
do_cleanups (cleanup_tuple);
|
||
mi_out_put (uiout, raw_stdout);
|
||
fputs_unfiltered ("\n", raw_stdout);
|
||
gdb_flush (raw_stdout);
|
||
}
|
||
|
||
if (delta.tv_sec >= update_threshold.tv_sec &&
|
||
delta.tv_usec >= update_threshold.tv_usec)
|
||
{
|
||
struct cleanup *cleanup_tuple;
|
||
|
||
last_update.tv_sec = time_now.tv_sec;
|
||
last_update.tv_usec = time_now.tv_usec;
|
||
if (current_token)
|
||
fputs_unfiltered (current_token, raw_stdout);
|
||
fputs_unfiltered ("+download", raw_stdout);
|
||
cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
|
||
ui_out_field_string (uiout, "section", section_name);
|
||
ui_out_field_int (uiout, "section-sent", sent_so_far);
|
||
ui_out_field_int (uiout, "section-size", total_section);
|
||
ui_out_field_int (uiout, "total-sent", total_sent);
|
||
ui_out_field_int (uiout, "total-size", grand_total);
|
||
do_cleanups (cleanup_tuple);
|
||
mi_out_put (uiout, raw_stdout);
|
||
fputs_unfiltered ("\n", raw_stdout);
|
||
gdb_flush (raw_stdout);
|
||
}
|
||
|
||
xfree (uiout);
|
||
current_uiout = saved_uiout;
|
||
}
|
||
|
||
static void
|
||
timestamp (struct mi_timestamp *tv)
|
||
{
|
||
gettimeofday (&tv->wallclock, NULL);
|
||
#ifdef HAVE_GETRUSAGE
|
||
getrusage (RUSAGE_SELF, &rusage);
|
||
tv->utime.tv_sec = rusage.ru_utime.tv_sec;
|
||
tv->utime.tv_usec = rusage.ru_utime.tv_usec;
|
||
tv->stime.tv_sec = rusage.ru_stime.tv_sec;
|
||
tv->stime.tv_usec = rusage.ru_stime.tv_usec;
|
||
#else
|
||
{
|
||
long usec = get_run_time ();
|
||
|
||
tv->utime.tv_sec = usec/1000000L;
|
||
tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
|
||
tv->stime.tv_sec = 0;
|
||
tv->stime.tv_usec = 0;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
print_diff_now (struct mi_timestamp *start)
|
||
{
|
||
struct mi_timestamp now;
|
||
|
||
timestamp (&now);
|
||
print_diff (start, &now);
|
||
}
|
||
|
||
void
|
||
mi_print_timing_maybe (void)
|
||
{
|
||
/* If the command is -enable-timing then do_timings may be true
|
||
whilst current_command_ts is not initialized. */
|
||
if (do_timings && current_command_ts)
|
||
print_diff_now (current_command_ts);
|
||
}
|
||
|
||
static long
|
||
timeval_diff (struct timeval start, struct timeval end)
|
||
{
|
||
return ((end.tv_sec - start.tv_sec) * 1000000L)
|
||
+ (end.tv_usec - start.tv_usec);
|
||
}
|
||
|
||
static void
|
||
print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
|
||
{
|
||
fprintf_unfiltered
|
||
(raw_stdout,
|
||
",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
|
||
timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
|
||
timeval_diff (start->utime, end->utime) / 1000000.0,
|
||
timeval_diff (start->stime, end->stime) / 1000000.0);
|
||
}
|
||
|
||
void
|
||
mi_cmd_trace_define_variable (char *command, char **argv, int argc)
|
||
{
|
||
struct expression *expr;
|
||
LONGEST initval = 0;
|
||
struct trace_state_variable *tsv;
|
||
char *name = 0;
|
||
|
||
if (argc != 1 && argc != 2)
|
||
error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
|
||
|
||
name = argv[0];
|
||
if (*name++ != '$')
|
||
error (_("Name of trace variable should start with '$'"));
|
||
|
||
validate_trace_state_variable_name (name);
|
||
|
||
tsv = find_trace_state_variable (name);
|
||
if (!tsv)
|
||
tsv = create_trace_state_variable (name);
|
||
|
||
if (argc == 2)
|
||
initval = value_as_long (parse_and_eval (argv[1]));
|
||
|
||
tsv->initial_value = initval;
|
||
}
|
||
|
||
void
|
||
mi_cmd_trace_list_variables (char *command, char **argv, int argc)
|
||
{
|
||
if (argc != 0)
|
||
error (_("-trace-list-variables: no arguments allowed"));
|
||
|
||
tvariables_info_1 ();
|
||
}
|
||
|
||
void
|
||
mi_cmd_trace_find (char *command, char **argv, int argc)
|
||
{
|
||
char *mode;
|
||
|
||
if (argc == 0)
|
||
error (_("trace selection mode is required"));
|
||
|
||
mode = argv[0];
|
||
|
||
if (strcmp (mode, "none") == 0)
|
||
{
|
||
tfind_1 (tfind_number, -1, 0, 0, 0);
|
||
return;
|
||
}
|
||
|
||
if (current_trace_status ()->running)
|
||
error (_("May not look at trace frames while trace is running."));
|
||
|
||
if (strcmp (mode, "frame-number") == 0)
|
||
{
|
||
if (argc != 2)
|
||
error (_("frame number is required"));
|
||
tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
|
||
}
|
||
else if (strcmp (mode, "tracepoint-number") == 0)
|
||
{
|
||
if (argc != 2)
|
||
error (_("tracepoint number is required"));
|
||
tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
|
||
}
|
||
else if (strcmp (mode, "pc") == 0)
|
||
{
|
||
if (argc != 2)
|
||
error (_("PC is required"));
|
||
tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
|
||
}
|
||
else if (strcmp (mode, "pc-inside-range") == 0)
|
||
{
|
||
if (argc != 3)
|
||
error (_("Start and end PC are required"));
|
||
tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
|
||
parse_and_eval_address (argv[2]), 0);
|
||
}
|
||
else if (strcmp (mode, "pc-outside-range") == 0)
|
||
{
|
||
if (argc != 3)
|
||
error (_("Start and end PC are required"));
|
||
tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
|
||
parse_and_eval_address (argv[2]), 0);
|
||
}
|
||
else if (strcmp (mode, "line") == 0)
|
||
{
|
||
struct symtabs_and_lines sals;
|
||
struct symtab_and_line sal;
|
||
static CORE_ADDR start_pc, end_pc;
|
||
struct cleanup *back_to;
|
||
|
||
if (argc != 2)
|
||
error (_("Line is required"));
|
||
|
||
sals = decode_line_with_current_source (argv[1],
|
||
DECODE_LINE_FUNFIRSTLINE);
|
||
back_to = make_cleanup (xfree, sals.sals);
|
||
|
||
sal = sals.sals[0];
|
||
|
||
if (sal.symtab == 0)
|
||
error (_("Could not find the specified line"));
|
||
|
||
if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
|
||
tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
|
||
else
|
||
error (_("Could not find the specified line"));
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
else
|
||
error (_("Invalid mode '%s'"), mode);
|
||
|
||
if (has_stack_frames () || get_traceframe_number () >= 0)
|
||
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
|
||
}
|
||
|
||
void
|
||
mi_cmd_trace_save (char *command, char **argv, int argc)
|
||
{
|
||
int target_saves = 0;
|
||
int generate_ctf = 0;
|
||
char *filename;
|
||
int oind = 0;
|
||
char *oarg;
|
||
|
||
enum opt
|
||
{
|
||
TARGET_SAVE_OPT, CTF_OPT
|
||
};
|
||
static const struct mi_opt opts[] =
|
||
{
|
||
{"r", TARGET_SAVE_OPT, 0},
|
||
{"ctf", CTF_OPT, 0},
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
while (1)
|
||
{
|
||
int opt = mi_getopt ("-trace-save", argc, argv, opts,
|
||
&oind, &oarg);
|
||
|
||
if (opt < 0)
|
||
break;
|
||
switch ((enum opt) opt)
|
||
{
|
||
case TARGET_SAVE_OPT:
|
||
target_saves = 1;
|
||
break;
|
||
case CTF_OPT:
|
||
generate_ctf = 1;
|
||
break;
|
||
}
|
||
}
|
||
filename = argv[oind];
|
||
|
||
if (generate_ctf)
|
||
trace_save_ctf (filename, target_saves);
|
||
else
|
||
trace_save_tfile (filename, target_saves);
|
||
}
|
||
|
||
void
|
||
mi_cmd_trace_start (char *command, char **argv, int argc)
|
||
{
|
||
start_tracing (NULL);
|
||
}
|
||
|
||
void
|
||
mi_cmd_trace_status (char *command, char **argv, int argc)
|
||
{
|
||
trace_status_mi (0);
|
||
}
|
||
|
||
void
|
||
mi_cmd_trace_stop (char *command, char **argv, int argc)
|
||
{
|
||
stop_tracing (NULL);
|
||
trace_status_mi (1);
|
||
}
|
||
|
||
/* Implement the "-ada-task-info" command. */
|
||
|
||
void
|
||
mi_cmd_ada_task_info (char *command, char **argv, int argc)
|
||
{
|
||
if (argc != 0 && argc != 1)
|
||
error (_("Invalid MI command"));
|
||
|
||
print_ada_task_info (current_uiout, argv[0], current_inferior ());
|
||
}
|