1095 lines
29 KiB
C
1095 lines
29 KiB
C
/* Native support code for HPUX PA-RISC.
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998
|
||
Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include <sys/ptrace.h>
|
||
#include "gdbcore.h"
|
||
#include <wait.h>
|
||
|
||
extern CORE_ADDR text_end;
|
||
|
||
static void fetch_register PARAMS ((int));
|
||
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
if (regno == -1)
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
fetch_register (regno);
|
||
else
|
||
fetch_register (regno);
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
register unsigned int regaddr;
|
||
char buf[80];
|
||
extern char registers[];
|
||
register int i;
|
||
unsigned int offset = U_REGS_OFFSET;
|
||
int scratch;
|
||
|
||
if (regno >= 0)
|
||
{
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
return;
|
||
regaddr = register_addr (regno, offset);
|
||
errno = 0;
|
||
if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
|
||
{
|
||
scratch = *(int *) ®isters[REGISTER_BYTE (regno)] | 0x3;
|
||
call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
||
scratch);
|
||
if (errno != 0)
|
||
{
|
||
/* Error, even if attached. Failing to write these two
|
||
registers is pretty serious. */
|
||
sprintf (buf, "writing register number %d", regno);
|
||
perror_with_name (buf);
|
||
}
|
||
}
|
||
else
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
|
||
{
|
||
errno = 0;
|
||
call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
||
*(int *) ®isters[REGISTER_BYTE (regno) + i]);
|
||
if (errno != 0)
|
||
{
|
||
/* Warning, not error, in case we are attached; sometimes the
|
||
kernel doesn't let us at the registers. */
|
||
char *err = safe_strerror (errno);
|
||
char *msg = alloca (strlen (err) + 128);
|
||
sprintf (msg, "writing register %s: %s",
|
||
REGISTER_NAME (regno), err);
|
||
warning (msg);
|
||
return;
|
||
}
|
||
regaddr += sizeof(int);
|
||
}
|
||
}
|
||
else
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
store_inferior_registers (regno);
|
||
}
|
||
|
||
/* Fetch one register. */
|
||
|
||
static void
|
||
fetch_register (regno)
|
||
int regno;
|
||
{
|
||
register unsigned int regaddr;
|
||
char buf[MAX_REGISTER_RAW_SIZE];
|
||
register int i;
|
||
|
||
/* Offset of registers within the u area. */
|
||
unsigned int offset;
|
||
|
||
offset = U_REGS_OFFSET;
|
||
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
*(int *) &buf[i] = call_ptrace (PT_RUREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) regaddr, 0);
|
||
regaddr += sizeof (int);
|
||
if (errno != 0)
|
||
{
|
||
/* Warning, not error, in case we are attached; sometimes the
|
||
* kernel doesn't let us at the registers.
|
||
*/
|
||
char *err = safe_strerror (errno);
|
||
char *msg = alloca (strlen (err) + 128);
|
||
sprintf (msg, "reading register %s: %s", REGISTER_NAME (regno), err);
|
||
warning (msg);
|
||
goto error_exit;
|
||
}
|
||
}
|
||
if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
|
||
buf[3] &= ~0x3;
|
||
supply_register (regno, buf);
|
||
error_exit:;
|
||
}
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero.
|
||
|
||
Returns the length copied, which is either the LEN argument or zero.
|
||
This xfer function does not do partial moves, since child_ops
|
||
doesn't allow memory operations to cross below us in the target stack
|
||
anyway. */
|
||
|
||
int
|
||
child_xfer_memory (memaddr, myaddr, len, write, target)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
int write;
|
||
struct target_ops *target; /* ignored */
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & - sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
|
||
/* Allocate buffer of that many longwords. */
|
||
/* Note (RT) - This code formerly used alloca, which I have
|
||
* replaced with xmalloc and a matching free() at the end.
|
||
* The problem with alloca() is that there is no guarantee of
|
||
* when it'll be freed, and we were seeing cases of memory
|
||
* leaks on:
|
||
* (gdb) watch x
|
||
* (gdb) cont
|
||
* where the piled-up alloca's for the child_xfer_memory buffers
|
||
* were not getting freed.
|
||
*/
|
||
register int *buffer = (int *) xmalloc (count * sizeof (int));
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
if (addr != memaddr || len < (int)sizeof (int)) {
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
|
||
inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary */
|
||
{
|
||
buffer[count - 1]
|
||
= call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
|
||
0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
int pt_status;
|
||
int pt_request;
|
||
/* The HP-UX kernel crashes if you use PT_WDUSER to write into the text
|
||
segment. FIXME -- does it work to write into the data segment using
|
||
WIUSER, or do these idiots really expect us to figure out which segment
|
||
the address is in, so we can use a separate system call for it??! */
|
||
errno = 0;
|
||
pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER;
|
||
pt_status = call_ptrace (pt_request,
|
||
inferior_pid,
|
||
(PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
|
||
/* Did we fail? Might we've guessed wrong about which
|
||
segment this address resides in? Try the other request,
|
||
and see if that works...
|
||
*/
|
||
if ((pt_status == -1) && errno) {
|
||
errno = 0;
|
||
pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER;
|
||
pt_status = call_ptrace (pt_request,
|
||
inferior_pid,
|
||
(PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
|
||
/* No, we still fail. Okay, time to punt. */
|
||
if ((pt_status == -1) && errno)
|
||
{
|
||
free(buffer);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
|
||
inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
|
||
if (errno) {
|
||
free(buffer);
|
||
return 0;
|
||
}
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
|
||
}
|
||
free(buffer);
|
||
return len;
|
||
}
|
||
|
||
|
||
void
|
||
child_post_follow_inferior_by_clone ()
|
||
{
|
||
int status;
|
||
|
||
/* This function is used when following both the parent and child
|
||
of a fork. In this case, the debugger clones itself. The original
|
||
debugger follows the parent, the clone follows the child. The
|
||
original detaches from the child, delivering a SIGSTOP to it to
|
||
keep it from running away until the clone can attach itself.
|
||
|
||
At this point, the clone has attached to the child. Because of
|
||
the SIGSTOP, we must now deliver a SIGCONT to the child, or it
|
||
won't behave properly. */
|
||
status = kill (inferior_pid, SIGCONT);
|
||
}
|
||
|
||
|
||
void
|
||
child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child)
|
||
int parent_pid;
|
||
int followed_parent;
|
||
int child_pid;
|
||
int followed_child;
|
||
{
|
||
|
||
/* Are we a debugger that followed the parent of a vfork? If so,
|
||
then recall that the child's vfork event was delivered to us
|
||
first. And, that the parent was suspended by the OS until the
|
||
child's exec or exit events were received.
|
||
|
||
Upon receiving that child vfork, then, we were forced to remove
|
||
all breakpoints in the child and continue it so that it could
|
||
reach the exec or exit point.
|
||
|
||
But also recall that the parent and child of a vfork share the
|
||
same address space. Thus, removing bp's in the child also
|
||
removed them from the parent.
|
||
|
||
Now that the child has safely exec'd or exited, we must restore
|
||
the parent's breakpoints before we continue it. Else, we may
|
||
cause it run past expected stopping points. */
|
||
if (followed_parent)
|
||
{
|
||
reattach_breakpoints (parent_pid);
|
||
}
|
||
|
||
/* Are we a debugger that followed the child of a vfork? If so,
|
||
then recall that we don't actually acquire control of the child
|
||
until after it has exec'd or exited.
|
||
*/
|
||
if (followed_child)
|
||
{
|
||
/* If the child has exited, then there's nothing for us to do.
|
||
In the case of an exec event, we'll let that be handled by
|
||
the normal mechanism that notices and handles exec events, in
|
||
resume(). */
|
||
|
||
}
|
||
}
|
||
|
||
/* Format a process id, given a pid. Be sure to terminate
|
||
* this with a null--it's going to be printed via a "%s".
|
||
*/
|
||
char *
|
||
hppa_pid_to_str( pid )
|
||
pid_t pid;
|
||
{
|
||
static char buf[30]; /* Static because address returned */
|
||
|
||
sprintf( buf, "process %d\0\0\0\0", pid );
|
||
/* Extra NULLs for paranoia's sake */
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* Format a thread id, given a tid. Be sure to terminate
|
||
* this with a null--it's going to be printed via a "%s".
|
||
*
|
||
* Note: This is a core-gdb tid, not the actual system tid.
|
||
* See infttrace.c for details.
|
||
*/
|
||
char *
|
||
hppa_tid_to_str( tid )
|
||
pid_t tid;
|
||
{
|
||
static char buf[30]; /* Static because address returned */
|
||
|
||
sprintf( buf, "system thread %d\0\0\0\0", tid );
|
||
/* Extra NULLs for paranoia's sake */
|
||
|
||
return buf;
|
||
}
|
||
|
||
#if !defined (GDB_NATIVE_HPUX_11)
|
||
|
||
/* The following code is a substitute for the infttrace.c versions used
|
||
with ttrace() in HPUX 11. */
|
||
|
||
/* This value is an arbitrary integer. */
|
||
#define PT_VERSION 123456
|
||
|
||
/* This semaphore is used to coordinate the child and parent processes
|
||
after a fork(), and before an exec() by the child. See
|
||
parent_attach_all for details. */
|
||
|
||
typedef struct {
|
||
int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */
|
||
int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */
|
||
} startup_semaphore_t;
|
||
|
||
#define SEM_TALK (1)
|
||
#define SEM_LISTEN (0)
|
||
|
||
static startup_semaphore_t startup_semaphore;
|
||
|
||
extern int parent_attach_all PARAMS ((int, PTRACE_ARG3_TYPE, int));
|
||
|
||
#ifdef PT_SETTRC
|
||
/* This function causes the caller's process to be traced by its
|
||
parent. This is intended to be called after GDB forks itself,
|
||
and before the child execs the target.
|
||
|
||
Note that HP-UX ptrace is rather funky in how this is done.
|
||
If the parent wants to get the initial exec event of a child,
|
||
it must set the ptrace event mask of the child to include execs.
|
||
(The child cannot do this itself.) This must be done after the
|
||
child is forked, but before it execs.
|
||
|
||
To coordinate the parent and child, we implement a semaphore using
|
||
pipes. After SETTRC'ing itself, the child tells the parent that
|
||
it is now traceable by the parent, and waits for the parent's
|
||
acknowledgement. The parent can then set the child's event mask,
|
||
and notify the child that it can now exec.
|
||
|
||
(The acknowledgement by parent happens as a result of a call to
|
||
child_acknowledge_created_inferior.) */
|
||
|
||
int
|
||
parent_attach_all (pid, addr, data)
|
||
int pid;
|
||
PTRACE_ARG3_TYPE addr;
|
||
int data;
|
||
{
|
||
int pt_status = 0;
|
||
|
||
/* We need a memory home for a constant. */
|
||
int tc_magic_child = PT_VERSION;
|
||
int tc_magic_parent = 0;
|
||
|
||
/* The remainder of this function is only useful for HPUX 10.0 and
|
||
later, as it depends upon the ability to request notification
|
||
of specific kinds of events by the kernel. */
|
||
#if defined(PT_SET_EVENT_MASK)
|
||
|
||
/* Notify the parent that we're potentially ready to exec(). */
|
||
write (startup_semaphore.child_channel[SEM_TALK],
|
||
&tc_magic_child,
|
||
sizeof (tc_magic_child));
|
||
|
||
/* Wait for acknowledgement from the parent. */
|
||
read (startup_semaphore.parent_channel[SEM_LISTEN],
|
||
&tc_magic_parent,
|
||
sizeof (tc_magic_parent));
|
||
if (tc_magic_child != tc_magic_parent)
|
||
warning ("mismatched semaphore magic");
|
||
|
||
/* Discard our copy of the semaphore. */
|
||
(void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.parent_channel[SEM_TALK]);
|
||
(void) close (startup_semaphore.child_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.child_channel[SEM_TALK]);
|
||
#endif
|
||
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
int
|
||
hppa_require_attach (pid)
|
||
int pid;
|
||
{
|
||
int pt_status;
|
||
CORE_ADDR pc;
|
||
CORE_ADDR pc_addr;
|
||
unsigned int regs_offset;
|
||
|
||
/* Are we already attached? There appears to be no explicit way to
|
||
answer this via ptrace, so we try something which should be
|
||
innocuous if we are attached. If that fails, then we assume
|
||
we're not attached, and so attempt to make it so. */
|
||
|
||
errno = 0;
|
||
regs_offset = U_REGS_OFFSET;
|
||
pc_addr = register_addr (PC_REGNUM, regs_offset);
|
||
pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0);
|
||
|
||
if (errno)
|
||
{
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
|
||
if (errno)
|
||
return -1;
|
||
|
||
/* Now we really are attached. */
|
||
errno = 0;
|
||
}
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
int
|
||
hppa_require_detach (pid, signal)
|
||
int pid;
|
||
int signal;
|
||
{
|
||
errno = 0;
|
||
call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
errno = 0; /* Ignore any errors. */
|
||
return pid;
|
||
}
|
||
|
||
/* Since ptrace doesn't support memory page-protection events, which
|
||
are used to implement "hardware" watchpoints on HP-UX, these are
|
||
dummy versions, which perform no useful work. */
|
||
|
||
void
|
||
hppa_enable_page_protection_events (pid)
|
||
int pid;
|
||
{
|
||
}
|
||
|
||
void
|
||
hppa_disable_page_protection_events (pid)
|
||
int pid;
|
||
{
|
||
}
|
||
|
||
int
|
||
hppa_insert_hw_watchpoint (pid, start, len, type)
|
||
int pid;
|
||
CORE_ADDR start;
|
||
LONGEST len;
|
||
int type;
|
||
{
|
||
error ("Hardware watchpoints not implemented on this platform.");
|
||
}
|
||
|
||
int
|
||
hppa_remove_hw_watchpoint (pid, start, len, type)
|
||
int pid;
|
||
CORE_ADDR start;
|
||
LONGEST len;
|
||
enum bptype type;
|
||
{
|
||
error ("Hardware watchpoints not implemented on this platform.");
|
||
}
|
||
|
||
int
|
||
hppa_can_use_hw_watchpoint (type, cnt, ot)
|
||
enum bptype type;
|
||
int cnt;
|
||
enum bptype ot;
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
hppa_range_profitable_for_hw_watchpoint (pid, start, len)
|
||
int pid;
|
||
CORE_ADDR start;
|
||
LONGEST len;
|
||
{
|
||
error ("Hardware watchpoints not implemented on this platform.");
|
||
}
|
||
|
||
char *
|
||
hppa_pid_or_tid_to_str (id)
|
||
pid_t id;
|
||
{
|
||
/* In the ptrace world, there are only processes. */
|
||
return hppa_pid_to_str (id);
|
||
}
|
||
|
||
/* This function has no meaning in a non-threaded world. Thus, we
|
||
return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in
|
||
hppa-tdep.c. */
|
||
|
||
pid_t
|
||
hppa_switched_threads (pid)
|
||
pid_t pid;
|
||
{
|
||
return (pid_t) 0;
|
||
}
|
||
|
||
void
|
||
hppa_ensure_vforking_parent_remains_stopped (pid)
|
||
int pid;
|
||
{
|
||
/* This assumes that the vforked parent is presently stopped, and
|
||
that the vforked child has just delivered its first exec event.
|
||
Calling kill() this way will cause the SIGTRAP to be delivered as
|
||
soon as the parent is resumed, which happens as soon as the
|
||
vforked child is resumed. See wait_for_inferior for the use of
|
||
this function. */
|
||
kill (pid, SIGTRAP);
|
||
}
|
||
|
||
int
|
||
hppa_resume_execd_vforking_child_to_get_parent_vfork ()
|
||
{
|
||
return 1; /* Yes, the child must be resumed. */
|
||
}
|
||
|
||
#if defined(HPPA_GET_PROCESS_EVENTS)
|
||
process_event_vector
|
||
hppa_get_process_events (pid, wait_status, must_continue_pid_after)
|
||
int pid;
|
||
int wait_status;
|
||
int * must_continue_pid_after;
|
||
{
|
||
int pt_status;
|
||
ptrace_state_t ptrace_state;
|
||
process_event_vector events = PEVT_NONE;
|
||
|
||
/* This is always TRUE with ptrace. */
|
||
*must_continue_pid_after = 1;
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_GET_PROCESS_STATE,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) &ptrace_state,
|
||
sizeof (ptrace_state));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return events;
|
||
|
||
if (ptrace_state.pe_report_event & PTRACE_SIGNAL)
|
||
events |= PEVT_SIGNAL;
|
||
if (ptrace_state.pe_report_event & PTRACE_FORK)
|
||
events |= PEVT_FORK;
|
||
if (ptrace_state.pe_report_event & PTRACE_VFORK)
|
||
events |= PEVT_VFORK;
|
||
if (ptrace_state.pe_report_event & PTRACE_EXEC)
|
||
events |= PEVT_EXEC;
|
||
if (ptrace_state.pe_report_event & PTRACE_EXIT)
|
||
events |= PEVT_EXIT;
|
||
|
||
return events;
|
||
}
|
||
#endif /* HPPA_GET_PROCESS_EVENTS */
|
||
|
||
void
|
||
require_notification_of_events (pid)
|
||
int pid;
|
||
{
|
||
#if defined(PT_SET_EVENT_MASK)
|
||
int pt_status;
|
||
ptrace_event_t ptrace_events;
|
||
|
||
/* Instruct the kernel as to the set of events we wish to be
|
||
informed of. (This support does not exist before HPUX 10.0.
|
||
We'll assume if PT_SET_EVENT_MASK has not been defined by
|
||
<sys/ptrace.h>, then we're being built on pre-10.0.)
|
||
*/
|
||
memset (&ptrace_events, 0, sizeof (ptrace_events));
|
||
|
||
/* Note: By default, all signals are visible to us. If we wish
|
||
the kernel to keep certain signals hidden from us, we do it
|
||
by calling sigdelset (ptrace_events.pe_signals, signal) for
|
||
each such signal here, before doing PT_SET_EVENT_MASK.
|
||
*/
|
||
sigemptyset (&ptrace_events.pe_signals);
|
||
|
||
ptrace_events.pe_set_event = 0;
|
||
|
||
ptrace_events.pe_set_event |= PTRACE_SIGNAL;
|
||
ptrace_events.pe_set_event |= PTRACE_EXEC;
|
||
ptrace_events.pe_set_event |= PTRACE_FORK;
|
||
ptrace_events.pe_set_event |= PTRACE_VFORK;
|
||
/* ??rehrauer: Add this one when we're prepared to catch it...
|
||
ptrace_events.pe_set_event |= PTRACE_EXIT;
|
||
*/
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_SET_EVENT_MASK,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) &ptrace_events,
|
||
sizeof (ptrace_events));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return;
|
||
#endif
|
||
}
|
||
|
||
void
|
||
require_notification_of_exec_events (pid)
|
||
int pid;
|
||
{
|
||
#if defined(PT_SET_EVENT_MASK)
|
||
int pt_status;
|
||
ptrace_event_t ptrace_events;
|
||
|
||
/* Instruct the kernel as to the set of events we wish to be
|
||
informed of. (This support does not exist before HPUX 10.0.
|
||
We'll assume if PT_SET_EVENT_MASK has not been defined by
|
||
<sys/ptrace.h>, then we're being built on pre-10.0.)
|
||
*/
|
||
memset (&ptrace_events, 0, sizeof (ptrace_events));
|
||
|
||
/* Note: By default, all signals are visible to us. If we wish
|
||
the kernel to keep certain signals hidden from us, we do it
|
||
by calling sigdelset (ptrace_events.pe_signals, signal) for
|
||
each such signal here, before doing PT_SET_EVENT_MASK.
|
||
*/
|
||
sigemptyset (&ptrace_events.pe_signals);
|
||
|
||
ptrace_events.pe_set_event = 0;
|
||
|
||
ptrace_events.pe_set_event |= PTRACE_EXEC;
|
||
/* ??rehrauer: Add this one when we're prepared to catch it...
|
||
ptrace_events.pe_set_event |= PTRACE_EXIT;
|
||
*/
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_SET_EVENT_MASK,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) &ptrace_events,
|
||
sizeof (ptrace_events));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return;
|
||
#endif
|
||
}
|
||
|
||
/* This function is called by the parent process, with pid being the
|
||
ID of the child process, after the debugger has forked. */
|
||
|
||
void
|
||
child_acknowledge_created_inferior (pid)
|
||
int pid;
|
||
{
|
||
/* We need a memory home for a constant. */
|
||
int tc_magic_parent = PT_VERSION;
|
||
int tc_magic_child = 0;
|
||
|
||
/* Wait for the child to tell us that it has forked. */
|
||
read (startup_semaphore.child_channel[SEM_LISTEN],
|
||
&tc_magic_child,
|
||
sizeof(tc_magic_child));
|
||
|
||
/* Notify the child that it can exec.
|
||
|
||
In the infttrace.c variant of this function, we set the child's
|
||
event mask after the fork but before the exec. In the ptrace
|
||
world, it seems we can't set the event mask until after the exec. */
|
||
|
||
write (startup_semaphore.parent_channel[SEM_TALK],
|
||
&tc_magic_parent,
|
||
sizeof (tc_magic_parent));
|
||
|
||
/* We'd better pause a bit before trying to set the event mask,
|
||
though, to ensure that the exec has happened. We don't want to
|
||
wait() on the child, because that'll screw up the upper layers
|
||
of gdb's execution control that expect to see the exec event.
|
||
|
||
After an exec, the child is no longer executing gdb code. Hence,
|
||
we can't have yet another synchronization via the pipes. We'll
|
||
just sleep for a second, and hope that's enough delay... */
|
||
|
||
sleep (1);
|
||
|
||
/* Instruct the kernel as to the set of events we wish to be
|
||
informed of. */
|
||
|
||
require_notification_of_exec_events (pid);
|
||
|
||
/* Discard our copy of the semaphore. */
|
||
(void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.parent_channel[SEM_TALK]);
|
||
(void) close (startup_semaphore.child_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.child_channel[SEM_TALK]);
|
||
}
|
||
|
||
void
|
||
child_post_startup_inferior (pid)
|
||
int pid;
|
||
|
||
{
|
||
require_notification_of_events (pid);
|
||
}
|
||
|
||
void
|
||
child_post_attach (pid)
|
||
int pid;
|
||
{
|
||
require_notification_of_events (pid);
|
||
}
|
||
|
||
int
|
||
child_insert_fork_catchpoint (pid)
|
||
int pid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch forks prior to HPUX 10.0");
|
||
#else
|
||
/* Enable reporting of fork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them.
|
||
*/
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_remove_fork_catchpoint (pid)
|
||
int pid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch forks prior to HPUX 10.0");
|
||
#else
|
||
/* Disable reporting of fork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_insert_vfork_catchpoint (pid)
|
||
int pid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch vforks prior to HPUX 10.0");
|
||
#else
|
||
/* Enable reporting of vfork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_remove_vfork_catchpoint (pid)
|
||
int pid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch vforks prior to HPUX 10.0");
|
||
#else
|
||
/* Disable reporting of vfork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_has_forked (pid, childpid)
|
||
int pid;
|
||
int * childpid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_GET_PROCESS_STATE)
|
||
*childpid = 0;
|
||
return 0;
|
||
#else
|
||
int pt_status;
|
||
ptrace_state_t ptrace_state;
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_GET_PROCESS_STATE,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) &ptrace_state,
|
||
sizeof (ptrace_state));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return 0;
|
||
|
||
if (ptrace_state.pe_report_event & PTRACE_FORK)
|
||
{
|
||
*childpid = ptrace_state.pe_other_pid;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_has_vforked (pid, childpid)
|
||
int pid;
|
||
int * childpid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_GET_PROCESS_STATE)
|
||
*childpid = 0;
|
||
return 0;
|
||
|
||
#else
|
||
int pt_status;
|
||
ptrace_state_t ptrace_state;
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_GET_PROCESS_STATE,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) &ptrace_state,
|
||
sizeof (ptrace_state));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return 0;
|
||
|
||
if (ptrace_state.pe_report_event & PTRACE_VFORK)
|
||
{
|
||
*childpid = ptrace_state.pe_other_pid;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_can_follow_vfork_prior_to_exec ()
|
||
{
|
||
/* ptrace doesn't allow this. */
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
child_insert_exec_catchpoint (pid)
|
||
int pid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later.
|
||
*/
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch execs prior to HPUX 10.0");
|
||
|
||
#else
|
||
/* Enable reporting of exec events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them.
|
||
*/
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_remove_exec_catchpoint (pid)
|
||
int pid;
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later.
|
||
*/
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch execs prior to HPUX 10.0");
|
||
|
||
#else
|
||
/* Disable reporting of exec events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them.
|
||
*/
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_has_execd (pid, execd_pathname)
|
||
int pid;
|
||
char ** execd_pathname;
|
||
{
|
||
|
||
/* This request is only available on HPUX 10.0 and later.
|
||
*/
|
||
#if !defined(PT_GET_PROCESS_STATE)
|
||
*execd_pathname = NULL;
|
||
return 0;
|
||
|
||
#else
|
||
int pt_status;
|
||
ptrace_state_t ptrace_state;
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_GET_PROCESS_STATE,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) &ptrace_state,
|
||
sizeof (ptrace_state));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return 0;
|
||
|
||
if (ptrace_state.pe_report_event & PTRACE_EXEC)
|
||
{
|
||
char * exec_file = target_pid_to_exec_file (pid);
|
||
*execd_pathname = savestring (exec_file, strlen (exec_file));
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_reported_exec_events_per_exec_call ()
|
||
{
|
||
return 2; /* ptrace reports the event twice per call. */
|
||
}
|
||
|
||
int
|
||
child_has_syscall_event (pid, kind, syscall_id)
|
||
int pid;
|
||
enum target_waitkind *kind;
|
||
int *syscall_id;
|
||
{
|
||
/* This request is only available on HPUX 10.30 and later, via
|
||
the ttrace interface. */
|
||
|
||
*kind = TARGET_WAITKIND_SPURIOUS;
|
||
*syscall_id = -1;
|
||
return 0;
|
||
}
|
||
|
||
char *
|
||
child_pid_to_exec_file (pid)
|
||
int pid;
|
||
{
|
||
static char exec_file_buffer[1024];
|
||
int pt_status;
|
||
CORE_ADDR top_of_stack;
|
||
char four_chars[4];
|
||
int name_index;
|
||
int i;
|
||
int saved_inferior_pid;
|
||
boolean done;
|
||
|
||
/* As of 10.x HP-UX, there's an explicit request to get the pathname. */
|
||
pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) exec_file_buffer,
|
||
sizeof (exec_file_buffer) - 1);
|
||
if (pt_status == 0)
|
||
return exec_file_buffer;
|
||
|
||
/* It appears that this request is broken prior to 10.30.
|
||
If it fails, try a really, truly amazingly gross hack
|
||
that DDE uses, of pawing through the process' data
|
||
segment to find the pathname. */
|
||
|
||
top_of_stack = 0x7b03a000;
|
||
name_index = 0;
|
||
done = 0;
|
||
|
||
/* On the chance that pid != inferior_pid, set inferior_pid
|
||
to pid, so that (grrrr!) implicit uses of inferior_pid get
|
||
the right id. */
|
||
|
||
saved_inferior_pid = inferior_pid;
|
||
inferior_pid = pid;
|
||
|
||
/* Try to grab a null-terminated string. */
|
||
while (! done)
|
||
{
|
||
if (target_read_memory (top_of_stack, four_chars, 4) != 0)
|
||
{
|
||
inferior_pid = saved_inferior_pid;
|
||
return NULL;
|
||
}
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
exec_file_buffer[name_index++] = four_chars[i];
|
||
done = (four_chars[i] == '\0');
|
||
if (done)
|
||
break;
|
||
}
|
||
top_of_stack += 4;
|
||
}
|
||
|
||
if (exec_file_buffer[0] == '\0')
|
||
{
|
||
inferior_pid = saved_inferior_pid;
|
||
return NULL;
|
||
}
|
||
|
||
inferior_pid = saved_inferior_pid;
|
||
return exec_file_buffer;
|
||
}
|
||
|
||
void
|
||
pre_fork_inferior ()
|
||
{
|
||
int status;
|
||
|
||
status = pipe (startup_semaphore.parent_channel);
|
||
if (status < 0)
|
||
{
|
||
warning ("error getting parent pipe for startup semaphore");
|
||
return;
|
||
}
|
||
|
||
status = pipe (startup_semaphore.child_channel);
|
||
if (status < 0)
|
||
{
|
||
warning ("error getting child pipe for startup semaphore");
|
||
return;
|
||
}
|
||
}
|
||
|
||
|
||
/* Check to see if the given thread is alive.
|
||
|
||
This is a no-op, as ptrace doesn't support threads, so we just
|
||
return "TRUE". */
|
||
|
||
int
|
||
child_thread_alive (pid)
|
||
int pid;
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
#endif /* ! GDB_NATIVE_HPUX_11 */
|