1994dc7cfc
* config/m68k/tm-m68k.h (NUM_FREGS): m68k-linux patch. Added NUM_FREGS macro. * config/m68k/xm-linux.h: m68k-linux patch. New file. * config/m68k/tm-linux.h: m68k-linux patch. New file. * config/m68k/nm-linux.h: m68k-linux patch. New file. * config/m68k/linux.mt: m68k-linux patch. New file. * config/m68k/linux.mh: m68k-linux patch. New file. * gdbserver/low-linux.c: m68k-linux patch. Added an ifdef that checks the value of __GLIBC to decide whether or not to include sys/reg.h. * m68klinux-nat.c: m68k-linux patch. New file. Note both m68k-tdep.c and m68klinux-nat.c contain definitions for supply_gregset and supply_fpregset. The definitions in m68k-tdep.c are valid is USE_PROC_FS is defined. Otherwise, the definitions in m68klinux-nat.c will be used. This is a bit of a hack. The supply_* routines do not belong in *_tdep.c files. But, there are several lynx ports that currently depend on these definitions. * configure.tgt: m68k-linux patch. Added m68*-*-linux* gdb_target. * configure.host: m68k-linux patch. Added m68*-*-linux* gdb_host. * Makefile.in: m68k-linux patch. Added compile line for m68klinux-nat.o
393 lines
14 KiB
C
393 lines
14 KiB
C
/* Parameters for execution on a 68000 series machine.
|
||
Copyright 1986, 1987, 1989, 1990, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
/* Generic 68000 stuff, to be included by other tm-*.h files. */
|
||
|
||
#define IEEE_FLOAT 1
|
||
|
||
/* Define the bit, byte, and word ordering of the machine. */
|
||
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. */
|
||
|
||
#if !defined(SKIP_PROLOGUE)
|
||
#define SKIP_PROLOGUE(ip) {(ip) = m68k_skip_prologue(ip);}
|
||
extern CORE_ADDR m68k_skip_prologue PARAMS ((CORE_ADDR ip));
|
||
#endif
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't always go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
#ifdef __STDC__
|
||
struct frame_info;
|
||
struct frame_saved_regs;
|
||
#endif
|
||
|
||
extern CORE_ADDR m68k_saved_pc_after_call PARAMS ((struct frame_info *));
|
||
extern void m68k_find_saved_regs PARAMS ((struct frame_info *, struct frame_saved_regs *));
|
||
|
||
#define SAVED_PC_AFTER_CALL(frame) \
|
||
m68k_saved_pc_after_call(frame)
|
||
|
||
/* Stack grows downward. */
|
||
|
||
#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
|
||
|
||
/* Stack must be kept short aligned when doing function calls. */
|
||
|
||
#define STACK_ALIGN(ADDR) (((ADDR) + 1) & ~1)
|
||
|
||
/* Sequence of bytes for breakpoint instruction.
|
||
This is a TRAP instruction. The last 4 bits (0xf below) is the
|
||
vector. Systems which don't use 0xf should define BPT_VECTOR
|
||
themselves before including this file. */
|
||
|
||
#if !defined (BPT_VECTOR)
|
||
#define BPT_VECTOR 0xf
|
||
#endif
|
||
|
||
#if !defined (BREAKPOINT)
|
||
#define BREAKPOINT {0x4e, (0x40 | BPT_VECTOR)}
|
||
#endif
|
||
|
||
/* We default to vector 1 for the "remote" target, but allow targets
|
||
to override. */
|
||
#if !defined (REMOTE_BPT_VECTOR)
|
||
#define REMOTE_BPT_VECTOR 1
|
||
#endif
|
||
|
||
#if !defined (REMOTE_BREAKPOINT)
|
||
#define REMOTE_BREAKPOINT {0x4e, (0x40 | REMOTE_BPT_VECTOR)}
|
||
#endif
|
||
|
||
/* If your kernel resets the pc after the trap happens you may need to
|
||
define this before including this file. */
|
||
|
||
#if !defined (DECR_PC_AFTER_BREAK)
|
||
#define DECR_PC_AFTER_BREAK 2
|
||
#endif
|
||
|
||
/* Say how long (ordinary) registers are. This is a piece of bogosity
|
||
used in push_word and a few other places; REGISTER_RAW_SIZE is the
|
||
real way to know how big a register is. */
|
||
|
||
#define REGISTER_SIZE 4
|
||
|
||
#define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
|
||
#define REGISTER_BYTES_NOFP (16*4 + 8)
|
||
|
||
#ifndef NUM_REGS
|
||
#define NUM_REGS 29
|
||
#endif
|
||
|
||
#define NUM_FREGS (NUM_REGS-24)
|
||
|
||
#ifndef REGISTER_BYTES_OK
|
||
#define REGISTER_BYTES_OK(b) \
|
||
((b) == REGISTER_BYTES_FP \
|
||
|| (b) == REGISTER_BYTES_NOFP)
|
||
#endif
|
||
|
||
#ifndef REGISTER_BYTES
|
||
#define REGISTER_BYTES (16*4 + 8 + 8*12 + 3*4)
|
||
#endif
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#define REGISTER_BYTE(N) \
|
||
((N) >= FPC_REGNUM ? (((N) - FPC_REGNUM) * 4) + 168 \
|
||
: (N) >= FP0_REGNUM ? (((N) - FP0_REGNUM) * 12) + 72 \
|
||
: (N) * 4)
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On the 68000, all regs are 4 bytes
|
||
except the floating point regs which are 12 bytes. */
|
||
/* Note that the unsigned cast here forces the result of the
|
||
subtraction to very high positive values if N < FP0_REGNUM */
|
||
|
||
#define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 12 : 4)
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. On the 68000, all regs are 4 bytes
|
||
except the floating point regs which are 8-byte doubles. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 8 : 4)
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 12
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
|
||
#define REGISTER_CONVERTIBLE(N) (((unsigned)(N) - FP0_REGNUM) < 8)
|
||
|
||
#include "floatformat.h"
|
||
|
||
/* Convert data from raw format for register REGNUM in buffer FROM
|
||
to virtual format with type TYPE in buffer TO. */
|
||
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
|
||
do \
|
||
{ \
|
||
DOUBLEST dbl_tmp_val; \
|
||
floatformat_to_doublest (&floatformat_m68881_ext, (FROM), &dbl_tmp_val); \
|
||
store_floating ((TO), TYPE_LENGTH (TYPE), dbl_tmp_val); \
|
||
} while (0)
|
||
|
||
/* Convert data from virtual format with type TYPE in buffer FROM
|
||
to raw format for register REGNUM in buffer TO. */
|
||
|
||
#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
|
||
do \
|
||
{ \
|
||
DOUBLEST dbl_tmp_val; \
|
||
dbl_tmp_val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
|
||
floatformat_from_doublest (&floatformat_m68881_ext, &dbl_tmp_val, (TO)); \
|
||
} while (0)
|
||
|
||
/* Return the GDB type object for the "standard" data type of data
|
||
in register N. This should be int for D0-D7, double for FP0-FP7,
|
||
and void pointer for all others (A0-A7, PC, SR, FPCONTROL etc).
|
||
Note, for registers which contain addresses return pointer to void,
|
||
not pointer to char, because we don't want to attempt to print
|
||
the string after printing the address. */
|
||
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
((unsigned) (N) >= FPC_REGNUM ? lookup_pointer_type (builtin_type_void) : \
|
||
(unsigned) (N) >= FP0_REGNUM ? builtin_type_double : \
|
||
(unsigned) (N) >= A0_REGNUM ? lookup_pointer_type (builtin_type_void) : \
|
||
builtin_type_int)
|
||
|
||
/* Initializer for an array of names of registers.
|
||
Entries beyond the first NUM_REGS are ignored. */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
|
||
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", \
|
||
"ps", "pc", \
|
||
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
|
||
"fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags" }
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define D0_REGNUM 0
|
||
#define A0_REGNUM 8
|
||
#define A1_REGNUM 9
|
||
#define FP_REGNUM 14 /* Contains address of executing stack frame */
|
||
#define SP_REGNUM 15 /* Contains address of top of stack */
|
||
#define PS_REGNUM 16 /* Contains processor status */
|
||
#define PC_REGNUM 17 /* Contains program counter */
|
||
#define FP0_REGNUM 18 /* Floating point register 0 */
|
||
#define FPC_REGNUM 26 /* 68881 control register */
|
||
#define FPS_REGNUM 27 /* 68881 status register */
|
||
#define FPI_REGNUM 28 /* 68881 iaddr register */
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
||
{ write_register (A1_REGNUM, (ADDR)); }
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. This is assuming that floating point values are returned
|
||
as doubles in d0/d1. */
|
||
|
||
#if !defined (EXTRACT_RETURN_VALUE)
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
memcpy ((VALBUF), \
|
||
(char *)(REGBUF) + \
|
||
(TYPE_LENGTH(TYPE) >= 4 ? 0 : 4 - TYPE_LENGTH(TYPE)), \
|
||
TYPE_LENGTH(TYPE))
|
||
#endif
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. Assumes floats are passed
|
||
in d0/d1. */
|
||
|
||
#if !defined (STORE_RETURN_VALUE)
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
||
#endif
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address and produces the frame's
|
||
chain-pointer.
|
||
In the case of the 68000, the frame's nominal address
|
||
is the address of a 4-byte word containing the calling frame's address. */
|
||
|
||
/* If we are chaining from sigtramp, then manufacture a sigtramp frame
|
||
(which isn't really on the stack. I'm not sure this is right for anything
|
||
but BSD4.3 on an hp300. */
|
||
#define FRAME_CHAIN(thisframe) \
|
||
(thisframe->signal_handler_caller \
|
||
? thisframe->frame \
|
||
: (!inside_entry_file ((thisframe)->pc) \
|
||
? read_memory_integer ((thisframe)->frame, 4) \
|
||
: 0))
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0. */
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
||
do { \
|
||
if ((FI)->signal_handler_caller) \
|
||
(FRAMELESS) = 0; \
|
||
else \
|
||
(FRAMELESS) = frameless_look_for_prologue(FI); \
|
||
} while (0)
|
||
|
||
/* This was determined by experimentation on hp300 BSD 4.3. Perhaps
|
||
it corresponds to some offset in /usr/include/sys/user.h or
|
||
something like that. Using some system include file would
|
||
have the advantage of probably being more robust in the face
|
||
of OS upgrades, but the disadvantage of being wrong for
|
||
cross-debugging. */
|
||
|
||
#define SIG_PC_FP_OFFSET 530
|
||
|
||
#define FRAME_SAVED_PC(FRAME) \
|
||
(((FRAME)->signal_handler_caller \
|
||
? ((FRAME)->next \
|
||
? read_memory_integer ((FRAME)->next->frame + SIG_PC_FP_OFFSET, 4) \
|
||
: read_memory_integer (read_register (SP_REGNUM) \
|
||
+ SIG_PC_FP_OFFSET - 8, 4) \
|
||
) \
|
||
: read_memory_integer ((FRAME)->frame + 4, 4)) \
|
||
)
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
/* Set VAL to the number of args passed to frame described by FI.
|
||
Can set VAL to -1, meaning no way to tell. */
|
||
|
||
/* We can't tell how many args there are
|
||
now that the C compiler delays popping them. */
|
||
#if !defined (FRAME_NUM_ARGS)
|
||
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
||
#endif
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 8
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
#if !defined (FRAME_FIND_SAVED_REGS)
|
||
#define FRAME_FIND_SAVED_REGS(fi,fsr) m68k_find_saved_regs ((fi), &(fsr))
|
||
#endif /* no FIND_FRAME_SAVED_REGS. */
|
||
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* The CALL_DUMMY macro is the sequence of instructions, as disassembled
|
||
by gdb itself:
|
||
|
||
These instructions exist only so that m68k_find_saved_regs can parse
|
||
them as a "prologue"; they are never executed.
|
||
|
||
fmovemx fp0-fp7,sp@- 0xf227 0xe0ff
|
||
moveml d0-a5,sp@- 0x48e7 0xfffc
|
||
clrw sp@- 0x4267
|
||
movew ccr,sp@- 0x42e7
|
||
|
||
The arguments are pushed at this point by GDB; no code is needed in
|
||
the dummy for this. The CALL_DUMMY_START_OFFSET gives the position
|
||
of the following jsr instruction. That is where we start
|
||
executing.
|
||
|
||
jsr @#0x32323232 0x4eb9 0x3232 0x3232
|
||
addal #0x69696969,sp 0xdffc 0x6969 0x6969
|
||
trap #<your BPT_VECTOR number here> 0x4e4?
|
||
nop 0x4e71
|
||
|
||
Note this is CALL_DUMMY_LENGTH bytes (28 for the above example).
|
||
|
||
The dummy frame always saves the floating-point registers, whether they
|
||
actually exist on this target or not. */
|
||
|
||
/* FIXME: Wrong to hardwire this as BPT_VECTOR when sometimes it
|
||
should be REMOTE_BPT_VECTOR. Best way to fix it would be to define
|
||
CALL_DUMMY_BREAKPOINT_OFFSET. */
|
||
|
||
#define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, (0x4e404e71 | (BPT_VECTOR << 16))}
|
||
#define CALL_DUMMY_LENGTH 28 /* Size of CALL_DUMMY */
|
||
#define CALL_DUMMY_START_OFFSET 12 /* Offset to jsr instruction*/
|
||
#define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + 12)
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME.
|
||
We use the BFD routines to store a big-endian value of known size. */
|
||
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
||
{ bfd_putb32 (fun, (unsigned char *) dummyname + CALL_DUMMY_START_OFFSET + 2); \
|
||
bfd_putb32 (nargs*4, (unsigned char *) dummyname + CALL_DUMMY_START_OFFSET + 8); }
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME { m68k_push_dummy_frame (); }
|
||
|
||
extern void m68k_push_dummy_frame PARAMS ((void));
|
||
|
||
extern void m68k_pop_frame PARAMS ((void));
|
||
|
||
/* Discard from the stack the innermost frame, restoring all registers. */
|
||
|
||
#define POP_FRAME { m68k_pop_frame (); }
|
||
|
||
/* Offset from SP to first arg on stack at first instruction of a function */
|
||
|
||
#define SP_ARG0 (1 * 4)
|
||
|
||
#define TARGET_M68K
|