old-cross-binutils/bfd/elf.c
H.J. Lu 60b89a1878 2001-08-23 H.J. Lu <hjl@gnu.org>
* syms.c (bfd_print_symbol_vandf): Add abfd to arg.
	* bfd-in2.h (bfd_print_symbol_vandf): Regenerated.

	* aoutx.h (NAME(aout,print_symbol)): Pass abfd to
	bfd_print_symbol_vandf.
	* coffgen.c (coff_print_symbol): Likewise.
	* elf.c (bfd_elf_print_symbol): Likewise.
	* ieee.c (ieee_print_symbol): Likewise.
	* nlmcode.h (nlm_print_symbol): Likewise.
	* oasys.c (oasys_print_symbol): Likewise.
	* pdp11.c (NAME(aout,print_symbol)): Likewise.
	* som.c (som_print_symbol): Likewise.
	* srec.c (srec_print_symbol): Likewise.
	* tekhex.c (tekhex_print_symbol): Likewise.
	* versados.c (versados_print_symbol): Likewise.
	* vms.c (vms_print_symbol): Likewise.

	* elf.c (_bfd_elf_print_private_bfd_data): Replace fprintf_vma
	with bfd_fprintf_vma.
	(bfd_elf_print_symbol): Likewise.
	* syms.c (bfd_print_symbol_vandf): Likewise.
2001-08-23 15:45:19 +00:00

6062 lines
163 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ELF executable support for BFD.
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/*
SECTION
ELF backends
BFD support for ELF formats is being worked on.
Currently, the best supported back ends are for sparc and i386
(running svr4 or Solaris 2).
Documentation of the internals of the support code still needs
to be written. The code is changing quickly enough that we
haven't bothered yet.
*/
/* For sparc64-cross-sparc32. */
#define _SYSCALL32
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#define ARCH_SIZE 0
#include "elf-bfd.h"
static INLINE struct elf_segment_map *make_mapping
PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
static boolean map_sections_to_segments PARAMS ((bfd *));
static int elf_sort_sections PARAMS ((const PTR, const PTR));
static boolean assign_file_positions_for_segments PARAMS ((bfd *));
static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
static boolean prep_headers PARAMS ((bfd *));
static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
static char *elf_read PARAMS ((bfd *, long, unsigned int));
static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
static boolean assign_section_numbers PARAMS ((bfd *));
static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
static boolean elf_map_symbols PARAMS ((bfd *));
static bfd_size_type get_program_header_size PARAMS ((bfd *));
static boolean elfcore_read_notes PARAMS ((bfd *, bfd_vma, bfd_vma));
static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **,
bfd_vma, const char **,
const char **));
static int elfcore_make_pid PARAMS ((bfd *));
static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *));
static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *,
Elf_Internal_Note *));
static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *));
static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *));
static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *));
/* Swap version information in and out. The version information is
currently size independent. If that ever changes, this code will
need to move into elfcode.h. */
/* Swap in a Verdef structure. */
void
_bfd_elf_swap_verdef_in (abfd, src, dst)
bfd *abfd;
const Elf_External_Verdef *src;
Elf_Internal_Verdef *dst;
{
dst->vd_version = bfd_h_get_16 (abfd, src->vd_version);
dst->vd_flags = bfd_h_get_16 (abfd, src->vd_flags);
dst->vd_ndx = bfd_h_get_16 (abfd, src->vd_ndx);
dst->vd_cnt = bfd_h_get_16 (abfd, src->vd_cnt);
dst->vd_hash = bfd_h_get_32 (abfd, src->vd_hash);
dst->vd_aux = bfd_h_get_32 (abfd, src->vd_aux);
dst->vd_next = bfd_h_get_32 (abfd, src->vd_next);
}
/* Swap out a Verdef structure. */
void
_bfd_elf_swap_verdef_out (abfd, src, dst)
bfd *abfd;
const Elf_Internal_Verdef *src;
Elf_External_Verdef *dst;
{
bfd_h_put_16 (abfd, src->vd_version, dst->vd_version);
bfd_h_put_16 (abfd, src->vd_flags, dst->vd_flags);
bfd_h_put_16 (abfd, src->vd_ndx, dst->vd_ndx);
bfd_h_put_16 (abfd, src->vd_cnt, dst->vd_cnt);
bfd_h_put_32 (abfd, src->vd_hash, dst->vd_hash);
bfd_h_put_32 (abfd, src->vd_aux, dst->vd_aux);
bfd_h_put_32 (abfd, src->vd_next, dst->vd_next);
}
/* Swap in a Verdaux structure. */
void
_bfd_elf_swap_verdaux_in (abfd, src, dst)
bfd *abfd;
const Elf_External_Verdaux *src;
Elf_Internal_Verdaux *dst;
{
dst->vda_name = bfd_h_get_32 (abfd, src->vda_name);
dst->vda_next = bfd_h_get_32 (abfd, src->vda_next);
}
/* Swap out a Verdaux structure. */
void
_bfd_elf_swap_verdaux_out (abfd, src, dst)
bfd *abfd;
const Elf_Internal_Verdaux *src;
Elf_External_Verdaux *dst;
{
bfd_h_put_32 (abfd, src->vda_name, dst->vda_name);
bfd_h_put_32 (abfd, src->vda_next, dst->vda_next);
}
/* Swap in a Verneed structure. */
void
_bfd_elf_swap_verneed_in (abfd, src, dst)
bfd *abfd;
const Elf_External_Verneed *src;
Elf_Internal_Verneed *dst;
{
dst->vn_version = bfd_h_get_16 (abfd, src->vn_version);
dst->vn_cnt = bfd_h_get_16 (abfd, src->vn_cnt);
dst->vn_file = bfd_h_get_32 (abfd, src->vn_file);
dst->vn_aux = bfd_h_get_32 (abfd, src->vn_aux);
dst->vn_next = bfd_h_get_32 (abfd, src->vn_next);
}
/* Swap out a Verneed structure. */
void
_bfd_elf_swap_verneed_out (abfd, src, dst)
bfd *abfd;
const Elf_Internal_Verneed *src;
Elf_External_Verneed *dst;
{
bfd_h_put_16 (abfd, src->vn_version, dst->vn_version);
bfd_h_put_16 (abfd, src->vn_cnt, dst->vn_cnt);
bfd_h_put_32 (abfd, src->vn_file, dst->vn_file);
bfd_h_put_32 (abfd, src->vn_aux, dst->vn_aux);
bfd_h_put_32 (abfd, src->vn_next, dst->vn_next);
}
/* Swap in a Vernaux structure. */
void
_bfd_elf_swap_vernaux_in (abfd, src, dst)
bfd *abfd;
const Elf_External_Vernaux *src;
Elf_Internal_Vernaux *dst;
{
dst->vna_hash = bfd_h_get_32 (abfd, src->vna_hash);
dst->vna_flags = bfd_h_get_16 (abfd, src->vna_flags);
dst->vna_other = bfd_h_get_16 (abfd, src->vna_other);
dst->vna_name = bfd_h_get_32 (abfd, src->vna_name);
dst->vna_next = bfd_h_get_32 (abfd, src->vna_next);
}
/* Swap out a Vernaux structure. */
void
_bfd_elf_swap_vernaux_out (abfd, src, dst)
bfd *abfd;
const Elf_Internal_Vernaux *src;
Elf_External_Vernaux *dst;
{
bfd_h_put_32 (abfd, src->vna_hash, dst->vna_hash);
bfd_h_put_16 (abfd, src->vna_flags, dst->vna_flags);
bfd_h_put_16 (abfd, src->vna_other, dst->vna_other);
bfd_h_put_32 (abfd, src->vna_name, dst->vna_name);
bfd_h_put_32 (abfd, src->vna_next, dst->vna_next);
}
/* Swap in a Versym structure. */
void
_bfd_elf_swap_versym_in (abfd, src, dst)
bfd *abfd;
const Elf_External_Versym *src;
Elf_Internal_Versym *dst;
{
dst->vs_vers = bfd_h_get_16 (abfd, src->vs_vers);
}
/* Swap out a Versym structure. */
void
_bfd_elf_swap_versym_out (abfd, src, dst)
bfd *abfd;
const Elf_Internal_Versym *src;
Elf_External_Versym *dst;
{
bfd_h_put_16 (abfd, src->vs_vers, dst->vs_vers);
}
/* Standard ELF hash function. Do not change this function; you will
cause invalid hash tables to be generated. */
unsigned long
bfd_elf_hash (namearg)
const char *namearg;
{
const unsigned char *name = (const unsigned char *) namearg;
unsigned long h = 0;
unsigned long g;
int ch;
while ((ch = *name++) != '\0')
{
h = (h << 4) + ch;
if ((g = (h & 0xf0000000)) != 0)
{
h ^= g >> 24;
/* The ELF ABI says `h &= ~g', but this is equivalent in
this case and on some machines one insn instead of two. */
h ^= g;
}
}
return h;
}
/* Read a specified number of bytes at a specified offset in an ELF
file, into a newly allocated buffer, and return a pointer to the
buffer. */
static char *
elf_read (abfd, offset, size)
bfd *abfd;
long offset;
unsigned int size;
{
char *buf;
if ((buf = bfd_alloc (abfd, size)) == NULL)
return NULL;
if (bfd_seek (abfd, offset, SEEK_SET) == -1)
return NULL;
if (bfd_read ((PTR) buf, size, 1, abfd) != size)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_file_truncated);
return NULL;
}
return buf;
}
boolean
bfd_elf_mkobject (abfd)
bfd *abfd;
{
/* This just does initialization. */
/* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
elf_tdata (abfd) = (struct elf_obj_tdata *)
bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
if (elf_tdata (abfd) == 0)
return false;
/* Since everything is done at close time, do we need any
initialization? */
return true;
}
boolean
bfd_elf_mkcorefile (abfd)
bfd *abfd;
{
/* I think this can be done just like an object file. */
return bfd_elf_mkobject (abfd);
}
char *
bfd_elf_get_str_section (abfd, shindex)
bfd *abfd;
unsigned int shindex;
{
Elf_Internal_Shdr **i_shdrp;
char *shstrtab = NULL;
unsigned int offset;
unsigned int shstrtabsize;
i_shdrp = elf_elfsections (abfd);
if (i_shdrp == 0 || i_shdrp[shindex] == 0)
return 0;
shstrtab = (char *) i_shdrp[shindex]->contents;
if (shstrtab == NULL)
{
/* No cached one, attempt to read, and cache what we read. */
offset = i_shdrp[shindex]->sh_offset;
shstrtabsize = i_shdrp[shindex]->sh_size;
shstrtab = elf_read (abfd, offset, shstrtabsize);
i_shdrp[shindex]->contents = (PTR) shstrtab;
}
return shstrtab;
}
char *
bfd_elf_string_from_elf_section (abfd, shindex, strindex)
bfd *abfd;
unsigned int shindex;
unsigned int strindex;
{
Elf_Internal_Shdr *hdr;
if (strindex == 0)
return "";
hdr = elf_elfsections (abfd)[shindex];
if (hdr->contents == NULL
&& bfd_elf_get_str_section (abfd, shindex) == NULL)
return NULL;
if (strindex >= hdr->sh_size)
{
(*_bfd_error_handler)
(_("%s: invalid string offset %u >= %lu for section `%s'"),
bfd_get_filename (abfd), strindex, (unsigned long) hdr->sh_size,
((shindex == elf_elfheader(abfd)->e_shstrndx
&& strindex == hdr->sh_name)
? ".shstrtab"
: elf_string_from_elf_strtab (abfd, hdr->sh_name)));
return "";
}
return ((char *) hdr->contents) + strindex;
}
/* Make a BFD section from an ELF section. We store a pointer to the
BFD section in the bfd_section field of the header. */
boolean
_bfd_elf_make_section_from_shdr (abfd, hdr, name)
bfd *abfd;
Elf_Internal_Shdr *hdr;
const char *name;
{
asection *newsect;
flagword flags;
struct elf_backend_data *bed;
if (hdr->bfd_section != NULL)
{
BFD_ASSERT (strcmp (name,
bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
return true;
}
newsect = bfd_make_section_anyway (abfd, name);
if (newsect == NULL)
return false;
newsect->filepos = hdr->sh_offset;
if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
|| ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
|| ! bfd_set_section_alignment (abfd, newsect,
bfd_log2 (hdr->sh_addralign)))
return false;
flags = SEC_NO_FLAGS;
if (hdr->sh_type != SHT_NOBITS)
flags |= SEC_HAS_CONTENTS;
if ((hdr->sh_flags & SHF_ALLOC) != 0)
{
flags |= SEC_ALLOC;
if (hdr->sh_type != SHT_NOBITS)
flags |= SEC_LOAD;
}
if ((hdr->sh_flags & SHF_WRITE) == 0)
flags |= SEC_READONLY;
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
flags |= SEC_CODE;
else if ((flags & SEC_LOAD) != 0)
flags |= SEC_DATA;
if ((hdr->sh_flags & SHF_MERGE) != 0)
{
flags |= SEC_MERGE;
newsect->entsize = hdr->sh_entsize;
if ((hdr->sh_flags & SHF_STRINGS) != 0)
flags |= SEC_STRINGS;
}
/* The debugging sections appear to be recognized only by name, not
any sort of flag. */
{
static const char *debug_sec_names [] =
{
".debug",
".gnu.linkonce.wi.",
".line",
".stab"
};
int i;
for (i = sizeof (debug_sec_names) / sizeof (debug_sec_names[0]); i--;)
if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
break;
if (i >= 0)
flags |= SEC_DEBUGGING;
}
/* As a GNU extension, if the name begins with .gnu.linkonce, we
only link a single copy of the section. This is used to support
g++. g++ will emit each template expansion in its own section.
The symbols will be defined as weak, so that multiple definitions
are permitted. The GNU linker extension is to actually discard
all but one of the sections. */
if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0)
flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_section_flags)
if (! bed->elf_backend_section_flags (&flags, hdr))
return false;
if (! bfd_set_section_flags (abfd, newsect, flags))
return false;
if ((flags & SEC_ALLOC) != 0)
{
Elf_Internal_Phdr *phdr;
unsigned int i;
/* Look through the phdrs to see if we need to adjust the lma.
If all the p_paddr fields are zero, we ignore them, since
some ELF linkers produce such output. */
phdr = elf_tdata (abfd)->phdr;
for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
{
if (phdr->p_paddr != 0)
break;
}
if (i < elf_elfheader (abfd)->e_phnum)
{
phdr = elf_tdata (abfd)->phdr;
for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
{
if (phdr->p_type == PT_LOAD
&& phdr->p_vaddr != phdr->p_paddr
&& phdr->p_vaddr <= hdr->sh_addr
&& (phdr->p_vaddr + phdr->p_memsz
>= hdr->sh_addr + hdr->sh_size)
&& ((flags & SEC_LOAD) == 0
|| (phdr->p_offset <= (bfd_vma) hdr->sh_offset
&& (phdr->p_offset + phdr->p_filesz
>= hdr->sh_offset + hdr->sh_size))))
{
newsect->lma += phdr->p_paddr - phdr->p_vaddr;
break;
}
}
}
}
hdr->bfd_section = newsect;
elf_section_data (newsect)->this_hdr = *hdr;
return true;
}
/*
INTERNAL_FUNCTION
bfd_elf_find_section
SYNOPSIS
struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
DESCRIPTION
Helper functions for GDB to locate the string tables.
Since BFD hides string tables from callers, GDB needs to use an
internal hook to find them. Sun's .stabstr, in particular,
isn't even pointed to by the .stab section, so ordinary
mechanisms wouldn't work to find it, even if we had some.
*/
struct elf_internal_shdr *
bfd_elf_find_section (abfd, name)
bfd *abfd;
char *name;
{
Elf_Internal_Shdr **i_shdrp;
char *shstrtab;
unsigned int max;
unsigned int i;
i_shdrp = elf_elfsections (abfd);
if (i_shdrp != NULL)
{
shstrtab = bfd_elf_get_str_section
(abfd, elf_elfheader (abfd)->e_shstrndx);
if (shstrtab != NULL)
{
max = elf_elfheader (abfd)->e_shnum;
for (i = 1; i < max; i++)
if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
return i_shdrp[i];
}
}
return 0;
}
const char *const bfd_elf_section_type_names[] = {
"SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
"SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
"SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
};
/* ELF relocs are against symbols. If we are producing relocateable
output, and the reloc is against an external symbol, and nothing
has given us any additional addend, the resulting reloc will also
be against the same symbol. In such a case, we don't want to
change anything about the way the reloc is handled, since it will
all be done at final link time. Rather than put special case code
into bfd_perform_relocation, all the reloc types use this howto
function. It just short circuits the reloc if producing
relocateable output against an external symbol. */
bfd_reloc_status_type
bfd_elf_generic_reloc (abfd,
reloc_entry,
symbol,
data,
input_section,
output_bfd,
error_message)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *reloc_entry;
asymbol *symbol;
PTR data ATTRIBUTE_UNUSED;
asection *input_section;
bfd *output_bfd;
char **error_message ATTRIBUTE_UNUSED;
{
if (output_bfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& (! reloc_entry->howto->partial_inplace
|| reloc_entry->addend == 0))
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
return bfd_reloc_continue;
}
/* Finish SHF_MERGE section merging. */
boolean
_bfd_elf_merge_sections (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
if (elf_hash_table (info)->merge_info)
_bfd_merge_sections (abfd, elf_hash_table (info)->merge_info);
return true;
}
/* Print out the program headers. */
boolean
_bfd_elf_print_private_bfd_data (abfd, farg)
bfd *abfd;
PTR farg;
{
FILE *f = (FILE *) farg;
Elf_Internal_Phdr *p;
asection *s;
bfd_byte *dynbuf = NULL;
p = elf_tdata (abfd)->phdr;
if (p != NULL)
{
unsigned int i, c;
fprintf (f, _("\nProgram Header:\n"));
c = elf_elfheader (abfd)->e_phnum;
for (i = 0; i < c; i++, p++)
{
const char *s;
char buf[20];
switch (p->p_type)
{
case PT_NULL: s = "NULL"; break;
case PT_LOAD: s = "LOAD"; break;
case PT_DYNAMIC: s = "DYNAMIC"; break;
case PT_INTERP: s = "INTERP"; break;
case PT_NOTE: s = "NOTE"; break;
case PT_SHLIB: s = "SHLIB"; break;
case PT_PHDR: s = "PHDR"; break;
default: sprintf (buf, "0x%lx", p->p_type); s = buf; break;
}
fprintf (f, "%8s off 0x", s);
bfd_fprintf_vma (abfd, f, p->p_offset);
fprintf (f, " vaddr 0x");
bfd_fprintf_vma (abfd, f, p->p_vaddr);
fprintf (f, " paddr 0x");
bfd_fprintf_vma (abfd, f, p->p_paddr);
fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
fprintf (f, " filesz 0x");
bfd_fprintf_vma (abfd, f, p->p_filesz);
fprintf (f, " memsz 0x");
bfd_fprintf_vma (abfd, f, p->p_memsz);
fprintf (f, " flags %c%c%c",
(p->p_flags & PF_R) != 0 ? 'r' : '-',
(p->p_flags & PF_W) != 0 ? 'w' : '-',
(p->p_flags & PF_X) != 0 ? 'x' : '-');
if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0)
fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X));
fprintf (f, "\n");
}
}
s = bfd_get_section_by_name (abfd, ".dynamic");
if (s != NULL)
{
int elfsec;
unsigned long link;
bfd_byte *extdyn, *extdynend;
size_t extdynsize;
void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
fprintf (f, _("\nDynamic Section:\n"));
dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
if (dynbuf == NULL)
goto error_return;
if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
s->_raw_size))
goto error_return;
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
if (elfsec == -1)
goto error_return;
link = elf_elfsections (abfd)[elfsec]->sh_link;
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
extdyn = dynbuf;
extdynend = extdyn + s->_raw_size;
for (; extdyn < extdynend; extdyn += extdynsize)
{
Elf_Internal_Dyn dyn;
const char *name;
char ab[20];
boolean stringp;
(*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
if (dyn.d_tag == DT_NULL)
break;
stringp = false;
switch (dyn.d_tag)
{
default:
sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
name = ab;
break;
case DT_NEEDED: name = "NEEDED"; stringp = true; break;
case DT_PLTRELSZ: name = "PLTRELSZ"; break;
case DT_PLTGOT: name = "PLTGOT"; break;
case DT_HASH: name = "HASH"; break;
case DT_STRTAB: name = "STRTAB"; break;
case DT_SYMTAB: name = "SYMTAB"; break;
case DT_RELA: name = "RELA"; break;
case DT_RELASZ: name = "RELASZ"; break;
case DT_RELAENT: name = "RELAENT"; break;
case DT_STRSZ: name = "STRSZ"; break;
case DT_SYMENT: name = "SYMENT"; break;
case DT_INIT: name = "INIT"; break;
case DT_FINI: name = "FINI"; break;
case DT_SONAME: name = "SONAME"; stringp = true; break;
case DT_RPATH: name = "RPATH"; stringp = true; break;
case DT_SYMBOLIC: name = "SYMBOLIC"; break;
case DT_REL: name = "REL"; break;
case DT_RELSZ: name = "RELSZ"; break;
case DT_RELENT: name = "RELENT"; break;
case DT_PLTREL: name = "PLTREL"; break;
case DT_DEBUG: name = "DEBUG"; break;
case DT_TEXTREL: name = "TEXTREL"; break;
case DT_JMPREL: name = "JMPREL"; break;
case DT_BIND_NOW: name = "BIND_NOW"; break;
case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
case DT_FLAGS: name = "FLAGS"; break;
case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
case DT_CHECKSUM: name = "CHECKSUM"; break;
case DT_PLTPADSZ: name = "PLTPADSZ"; break;
case DT_MOVEENT: name = "MOVEENT"; break;
case DT_MOVESZ: name = "MOVESZ"; break;
case DT_FEATURE: name = "FEATURE"; break;
case DT_POSFLAG_1: name = "POSFLAG_1"; break;
case DT_SYMINSZ: name = "SYMINSZ"; break;
case DT_SYMINENT: name = "SYMINENT"; break;
case DT_CONFIG: name = "CONFIG"; stringp = true; break;
case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
case DT_AUDIT: name = "AUDIT"; stringp = true; break;
case DT_PLTPAD: name = "PLTPAD"; break;
case DT_MOVETAB: name = "MOVETAB"; break;
case DT_SYMINFO: name = "SYMINFO"; break;
case DT_RELACOUNT: name = "RELACOUNT"; break;
case DT_RELCOUNT: name = "RELCOUNT"; break;
case DT_FLAGS_1: name = "FLAGS_1"; break;
case DT_VERSYM: name = "VERSYM"; break;
case DT_VERDEF: name = "VERDEF"; break;
case DT_VERDEFNUM: name = "VERDEFNUM"; break;
case DT_VERNEED: name = "VERNEED"; break;
case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
case DT_USED: name = "USED"; break;
case DT_FILTER: name = "FILTER"; stringp = true; break;
}
fprintf (f, " %-11s ", name);
if (! stringp)
fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
else
{
const char *string;
string = bfd_elf_string_from_elf_section (abfd, link,
dyn.d_un.d_val);
if (string == NULL)
goto error_return;
fprintf (f, "%s", string);
}
fprintf (f, "\n");
}
free (dynbuf);
dynbuf = NULL;
}
if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
|| (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
{
if (! _bfd_elf_slurp_version_tables (abfd))
return false;
}
if (elf_dynverdef (abfd) != 0)
{
Elf_Internal_Verdef *t;
fprintf (f, _("\nVersion definitions:\n"));
for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
{
fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
t->vd_flags, t->vd_hash, t->vd_nodename);
if (t->vd_auxptr->vda_nextptr != NULL)
{
Elf_Internal_Verdaux *a;
fprintf (f, "\t");
for (a = t->vd_auxptr->vda_nextptr;
a != NULL;
a = a->vda_nextptr)
fprintf (f, "%s ", a->vda_nodename);
fprintf (f, "\n");
}
}
}
if (elf_dynverref (abfd) != 0)
{
Elf_Internal_Verneed *t;
fprintf (f, _("\nVersion References:\n"));
for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
{
Elf_Internal_Vernaux *a;
fprintf (f, _(" required from %s:\n"), t->vn_filename);
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
a->vna_flags, a->vna_other, a->vna_nodename);
}
}
return true;
error_return:
if (dynbuf != NULL)
free (dynbuf);
return false;
}
/* Display ELF-specific fields of a symbol. */
void
bfd_elf_print_symbol (abfd, filep, symbol, how)
bfd *abfd;
PTR filep;
asymbol *symbol;
bfd_print_symbol_type how;
{
FILE *file = (FILE *) filep;
switch (how)
{
case bfd_print_symbol_name:
fprintf (file, "%s", symbol->name);
break;
case bfd_print_symbol_more:
fprintf (file, "elf ");
bfd_fprintf_vma (abfd, file, symbol->value);
fprintf (file, " %lx", (long) symbol->flags);
break;
case bfd_print_symbol_all:
{
const char *section_name;
const char *name = NULL;
struct elf_backend_data *bed;
unsigned char st_other;
section_name = symbol->section ? symbol->section->name : "(*none*)";
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_print_symbol_all)
name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
if (name == NULL)
{
name = symbol->name;
bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
}
fprintf (file, " %s\t", section_name);
/* Print the "other" value for a symbol. For common symbols,
we've already printed the size; now print the alignment.
For other symbols, we have no specified alignment, and
we've printed the address; now print the size. */
bfd_fprintf_vma (abfd, file,
(bfd_is_com_section (symbol->section)
? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value
: ((elf_symbol_type *) symbol)->internal_elf_sym.st_size));
/* If we have version information, print it. */
if (elf_tdata (abfd)->dynversym_section != 0
&& (elf_tdata (abfd)->dynverdef_section != 0
|| elf_tdata (abfd)->dynverref_section != 0))
{
unsigned int vernum;
const char *version_string;
vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
if (vernum == 0)
version_string = "";
else if (vernum == 1)
version_string = "Base";
else if (vernum <= elf_tdata (abfd)->cverdefs)
version_string =
elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
else
{
Elf_Internal_Verneed *t;
version_string = "";
for (t = elf_tdata (abfd)->verref;
t != NULL;
t = t->vn_nextref)
{
Elf_Internal_Vernaux *a;
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
{
if (a->vna_other == vernum)
{
version_string = a->vna_nodename;
break;
}
}
}
}
if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
fprintf (file, " %-11s", version_string);
else
{
int i;
fprintf (file, " (%s)", version_string);
for (i = 10 - strlen (version_string); i > 0; --i)
putc (' ', file);
}
}
/* If the st_other field is not zero, print it. */
st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
switch (st_other)
{
case 0: break;
case STV_INTERNAL: fprintf (file, " .internal"); break;
case STV_HIDDEN: fprintf (file, " .hidden"); break;
case STV_PROTECTED: fprintf (file, " .protected"); break;
default:
/* Some other non-defined flags are also present, so print
everything hex. */
fprintf (file, " 0x%02x", (unsigned int) st_other);
}
fprintf (file, " %s", name);
}
break;
}
}
/* Create an entry in an ELF linker hash table. */
struct bfd_hash_entry *
_bfd_elf_link_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == (struct elf_link_hash_entry *) NULL)
ret = ((struct elf_link_hash_entry *)
bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)));
if (ret == (struct elf_link_hash_entry *) NULL)
return (struct bfd_hash_entry *) ret;
/* Call the allocation method of the superclass. */
ret = ((struct elf_link_hash_entry *)
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
table, string));
if (ret != (struct elf_link_hash_entry *) NULL)
{
/* Set local fields. */
ret->indx = -1;
ret->size = 0;
ret->dynindx = -1;
ret->dynstr_index = 0;
ret->weakdef = NULL;
ret->got.offset = (bfd_vma) -1;
ret->plt.offset = (bfd_vma) -1;
ret->linker_section_pointer = (elf_linker_section_pointers_t *)0;
ret->verinfo.verdef = NULL;
ret->vtable_entries_used = NULL;
ret->vtable_entries_size = 0;
ret->vtable_parent = NULL;
ret->type = STT_NOTYPE;
ret->other = 0;
/* Assume that we have been called by a non-ELF symbol reader.
This flag is then reset by the code which reads an ELF input
file. This ensures that a symbol created by a non-ELF symbol
reader will have the flag set correctly. */
ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
}
return (struct bfd_hash_entry *) ret;
}
/* Copy data from an indirect symbol to its direct symbol, hiding the
old indirect symbol. */
void
_bfd_elf_link_hash_copy_indirect (dir, ind)
struct elf_link_hash_entry *dir, *ind;
{
/* Copy down any references that we may have already seen to the
symbol which just became indirect. */
dir->elf_link_hash_flags |=
(ind->elf_link_hash_flags
& (ELF_LINK_HASH_REF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
| ELF_LINK_HASH_REF_REGULAR_NONWEAK
| ELF_LINK_NON_GOT_REF));
/* Copy over the global and procedure linkage table offset entries.
These may have been already set up by a check_relocs routine. */
if (dir->got.offset == (bfd_vma) -1)
{
dir->got.offset = ind->got.offset;
ind->got.offset = (bfd_vma) -1;
}
BFD_ASSERT (ind->got.offset == (bfd_vma) -1);
if (dir->plt.offset == (bfd_vma) -1)
{
dir->plt.offset = ind->plt.offset;
ind->plt.offset = (bfd_vma) -1;
}
BFD_ASSERT (ind->plt.offset == (bfd_vma) -1);
if (dir->dynindx == -1)
{
dir->dynindx = ind->dynindx;
dir->dynstr_index = ind->dynstr_index;
ind->dynindx = -1;
ind->dynstr_index = 0;
}
BFD_ASSERT (ind->dynindx == -1);
}
void
_bfd_elf_link_hash_hide_symbol (info, h)
struct bfd_link_info *info ATTRIBUTE_UNUSED;
struct elf_link_hash_entry *h;
{
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
h->plt.offset = (bfd_vma) -1;
if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
h->dynindx = -1;
}
/* Initialize an ELF linker hash table. */
boolean
_bfd_elf_link_hash_table_init (table, abfd, newfunc)
struct elf_link_hash_table *table;
bfd *abfd;
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
struct bfd_hash_table *,
const char *));
{
table->dynamic_sections_created = false;
table->dynobj = NULL;
/* The first dynamic symbol is a dummy. */
table->dynsymcount = 1;
table->dynstr = NULL;
table->bucketcount = 0;
table->needed = NULL;
table->runpath = NULL;
table->hgot = NULL;
table->stab_info = NULL;
table->merge_info = NULL;
table->dynlocal = NULL;
return _bfd_link_hash_table_init (&table->root, abfd, newfunc);
}
/* Create an ELF linker hash table. */
struct bfd_link_hash_table *
_bfd_elf_link_hash_table_create (abfd)
bfd *abfd;
{
struct elf_link_hash_table *ret;
ret = ((struct elf_link_hash_table *)
bfd_alloc (abfd, sizeof (struct elf_link_hash_table)));
if (ret == (struct elf_link_hash_table *) NULL)
return NULL;
if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
{
bfd_release (abfd, ret);
return NULL;
}
return &ret->root;
}
/* This is a hook for the ELF emulation code in the generic linker to
tell the backend linker what file name to use for the DT_NEEDED
entry for a dynamic object. The generic linker passes name as an
empty string to indicate that no DT_NEEDED entry should be made. */
void
bfd_elf_set_dt_needed_name (abfd, name)
bfd *abfd;
const char *name;
{
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
&& bfd_get_format (abfd) == bfd_object)
elf_dt_name (abfd) = name;
}
void
bfd_elf_set_dt_needed_soname (abfd, name)
bfd *abfd;
const char *name;
{
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
&& bfd_get_format (abfd) == bfd_object)
elf_dt_soname (abfd) = name;
}
/* Get the list of DT_NEEDED entries for a link. This is a hook for
the linker ELF emulation code. */
struct bfd_link_needed_list *
bfd_elf_get_needed_list (abfd, info)
bfd *abfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
{
if (info->hash->creator->flavour != bfd_target_elf_flavour)
return NULL;
return elf_hash_table (info)->needed;
}
/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
hook for the linker ELF emulation code. */
struct bfd_link_needed_list *
bfd_elf_get_runpath_list (abfd, info)
bfd *abfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
{
if (info->hash->creator->flavour != bfd_target_elf_flavour)
return NULL;
return elf_hash_table (info)->runpath;
}
/* Get the name actually used for a dynamic object for a link. This
is the SONAME entry if there is one. Otherwise, it is the string
passed to bfd_elf_set_dt_needed_name, or it is the filename. */
const char *
bfd_elf_get_dt_soname (abfd)
bfd *abfd;
{
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
&& bfd_get_format (abfd) == bfd_object)
return elf_dt_name (abfd);
return NULL;
}
/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
the ELF linker emulation code. */
boolean
bfd_elf_get_bfd_needed_list (abfd, pneeded)
bfd *abfd;
struct bfd_link_needed_list **pneeded;
{
asection *s;
bfd_byte *dynbuf = NULL;
int elfsec;
unsigned long link;
bfd_byte *extdyn, *extdynend;
size_t extdynsize;
void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
*pneeded = NULL;
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
|| bfd_get_format (abfd) != bfd_object)
return true;
s = bfd_get_section_by_name (abfd, ".dynamic");
if (s == NULL || s->_raw_size == 0)
return true;
dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
if (dynbuf == NULL)
goto error_return;
if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
s->_raw_size))
goto error_return;
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
if (elfsec == -1)
goto error_return;
link = elf_elfsections (abfd)[elfsec]->sh_link;
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
extdyn = dynbuf;
extdynend = extdyn + s->_raw_size;
for (; extdyn < extdynend; extdyn += extdynsize)
{
Elf_Internal_Dyn dyn;
(*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
if (dyn.d_tag == DT_NULL)
break;
if (dyn.d_tag == DT_NEEDED)
{
const char *string;
struct bfd_link_needed_list *l;
string = bfd_elf_string_from_elf_section (abfd, link,
dyn.d_un.d_val);
if (string == NULL)
goto error_return;
l = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof *l);
if (l == NULL)
goto error_return;
l->by = abfd;
l->name = string;
l->next = *pneeded;
*pneeded = l;
}
}
free (dynbuf);
return true;
error_return:
if (dynbuf != NULL)
free (dynbuf);
return false;
}
/* Allocate an ELF string table--force the first byte to be zero. */
struct bfd_strtab_hash *
_bfd_elf_stringtab_init ()
{
struct bfd_strtab_hash *ret;
ret = _bfd_stringtab_init ();
if (ret != NULL)
{
bfd_size_type loc;
loc = _bfd_stringtab_add (ret, "", true, false);
BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
if (loc == (bfd_size_type) -1)
{
_bfd_stringtab_free (ret);
ret = NULL;
}
}
return ret;
}
/* ELF .o/exec file reading */
/* Create a new bfd section from an ELF section header. */
boolean
bfd_section_from_shdr (abfd, shindex)
bfd *abfd;
unsigned int shindex;
{
Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
struct elf_backend_data *bed = get_elf_backend_data (abfd);
char *name;
name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
switch (hdr->sh_type)
{
case SHT_NULL:
/* Inactive section. Throw it away. */
return true;
case SHT_PROGBITS: /* Normal section with contents. */
case SHT_DYNAMIC: /* Dynamic linking information. */
case SHT_NOBITS: /* .bss section. */
case SHT_HASH: /* .hash section. */
case SHT_NOTE: /* .note section. */
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
case SHT_SYMTAB: /* A symbol table */
if (elf_onesymtab (abfd) == shindex)
return true;
BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
BFD_ASSERT (elf_onesymtab (abfd) == 0);
elf_onesymtab (abfd) = shindex;
elf_tdata (abfd)->symtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
abfd->flags |= HAS_SYMS;
/* Sometimes a shared object will map in the symbol table. If
SHF_ALLOC is set, and this is a shared object, then we also
treat this section as a BFD section. We can not base the
decision purely on SHF_ALLOC, because that flag is sometimes
set in a relocateable object file, which would confuse the
linker. */
if ((hdr->sh_flags & SHF_ALLOC) != 0
&& (abfd->flags & DYNAMIC) != 0
&& ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
return false;
return true;
case SHT_DYNSYM: /* A dynamic symbol table */
if (elf_dynsymtab (abfd) == shindex)
return true;
BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
BFD_ASSERT (elf_dynsymtab (abfd) == 0);
elf_dynsymtab (abfd) = shindex;
elf_tdata (abfd)->dynsymtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
abfd->flags |= HAS_SYMS;
/* Besides being a symbol table, we also treat this as a regular
section, so that objcopy can handle it. */
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
case SHT_STRTAB: /* A string table */
if (hdr->bfd_section != NULL)
return true;
if (ehdr->e_shstrndx == shindex)
{
elf_tdata (abfd)->shstrtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
return true;
}
{
unsigned int i;
for (i = 1; i < ehdr->e_shnum; i++)
{
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
if (hdr2->sh_link == shindex)
{
if (! bfd_section_from_shdr (abfd, i))
return false;
if (elf_onesymtab (abfd) == i)
{
elf_tdata (abfd)->strtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] =
&elf_tdata (abfd)->strtab_hdr;
return true;
}
if (elf_dynsymtab (abfd) == i)
{
elf_tdata (abfd)->dynstrtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = hdr =
&elf_tdata (abfd)->dynstrtab_hdr;
/* We also treat this as a regular section, so
that objcopy can handle it. */
break;
}
#if 0 /* Not handling other string tables specially right now. */
hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
/* We have a strtab for some random other section. */
newsect = (asection *) hdr2->bfd_section;
if (!newsect)
break;
hdr->bfd_section = newsect;
hdr2 = &elf_section_data (newsect)->str_hdr;
*hdr2 = *hdr;
elf_elfsections (abfd)[shindex] = hdr2;
#endif
}
}
}
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
case SHT_REL:
case SHT_RELA:
/* *These* do a lot of work -- but build no sections! */
{
asection *target_sect;
Elf_Internal_Shdr *hdr2;
/* Check for a bogus link to avoid crashing. */
if (hdr->sh_link >= ehdr->e_shnum)
{
((*_bfd_error_handler)
(_("%s: invalid link %lu for reloc section %s (index %u)"),
bfd_get_filename (abfd), hdr->sh_link, name, shindex));
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
}
/* For some incomprehensible reason Oracle distributes
libraries for Solaris in which some of the objects have
bogus sh_link fields. It would be nice if we could just
reject them, but, unfortunately, some people need to use
them. We scan through the section headers; if we find only
one suitable symbol table, we clobber the sh_link to point
to it. I hope this doesn't break anything. */
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
&& elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
{
int scan;
int found;
found = 0;
for (scan = 1; scan < ehdr->e_shnum; scan++)
{
if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
|| elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
{
if (found != 0)
{
found = 0;
break;
}
found = scan;
}
}
if (found != 0)
hdr->sh_link = found;
}
/* Get the symbol table. */
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
&& ! bfd_section_from_shdr (abfd, hdr->sh_link))
return false;
/* If this reloc section does not use the main symbol table we
don't treat it as a reloc section. BFD can't adequately
represent such a section, so at least for now, we don't
try. We just present it as a normal section. We also
can't use it as a reloc section if it points to the null
section. */
if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
if (! bfd_section_from_shdr (abfd, hdr->sh_info))
return false;
target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
if (target_sect == NULL)
return false;
if ((target_sect->flags & SEC_RELOC) == 0
|| target_sect->reloc_count == 0)
hdr2 = &elf_section_data (target_sect)->rel_hdr;
else
{
BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
elf_section_data (target_sect)->rel_hdr2 = hdr2;
}
*hdr2 = *hdr;
elf_elfsections (abfd)[shindex] = hdr2;
target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
target_sect->flags |= SEC_RELOC;
target_sect->relocation = NULL;
target_sect->rel_filepos = hdr->sh_offset;
/* In the section to which the relocations apply, mark whether
its relocations are of the REL or RELA variety. */
if (hdr->sh_size != 0)
elf_section_data (target_sect)->use_rela_p
= (hdr->sh_type == SHT_RELA);
abfd->flags |= HAS_RELOC;
return true;
}
break;
case SHT_GNU_verdef:
elf_dynverdef (abfd) = shindex;
elf_tdata (abfd)->dynverdef_hdr = *hdr;
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
break;
case SHT_GNU_versym:
elf_dynversym (abfd) = shindex;
elf_tdata (abfd)->dynversym_hdr = *hdr;
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
break;
case SHT_GNU_verneed:
elf_dynverref (abfd) = shindex;
elf_tdata (abfd)->dynverref_hdr = *hdr;
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
break;
case SHT_SHLIB:
return true;
default:
/* Check for any processor-specific section types. */
{
if (bed->elf_backend_section_from_shdr)
(*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
}
break;
}
return true;
}
/* Given an ELF section number, retrieve the corresponding BFD
section. */
asection *
bfd_section_from_elf_index (abfd, index)
bfd *abfd;
unsigned int index;
{
BFD_ASSERT (index > 0 && index < SHN_LORESERVE);
if (index >= elf_elfheader (abfd)->e_shnum)
return NULL;
return elf_elfsections (abfd)[index]->bfd_section;
}
boolean
_bfd_elf_new_section_hook (abfd, sec)
bfd *abfd;
asection *sec;
{
struct bfd_elf_section_data *sdata;
sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, sizeof (*sdata));
if (!sdata)
return false;
sec->used_by_bfd = (PTR) sdata;
/* Indicate whether or not this section should use RELA relocations. */
sdata->use_rela_p
= get_elf_backend_data (abfd)->default_use_rela_p;
return true;
}
/* Create a new bfd section from an ELF program header.
Since program segments have no names, we generate a synthetic name
of the form segment<NUM>, where NUM is generally the index in the
program header table. For segments that are split (see below) we
generate the names segment<NUM>a and segment<NUM>b.
Note that some program segments may have a file size that is different than
(less than) the memory size. All this means is that at execution the
system must allocate the amount of memory specified by the memory size,
but only initialize it with the first "file size" bytes read from the
file. This would occur for example, with program segments consisting
of combined data+bss.
To handle the above situation, this routine generates TWO bfd sections
for the single program segment. The first has the length specified by
the file size of the segment, and the second has the length specified
by the difference between the two sizes. In effect, the segment is split
into it's initialized and uninitialized parts.
*/
boolean
_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
bfd *abfd;
Elf_Internal_Phdr *hdr;
int index;
const char *typename;
{
asection *newsect;
char *name;
char namebuf[64];
int split;
split = ((hdr->p_memsz > 0)
&& (hdr->p_filesz > 0)
&& (hdr->p_memsz > hdr->p_filesz));
sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
name = bfd_alloc (abfd, strlen (namebuf) + 1);
if (!name)
return false;
strcpy (name, namebuf);
newsect = bfd_make_section (abfd, name);
if (newsect == NULL)
return false;
newsect->vma = hdr->p_vaddr;
newsect->lma = hdr->p_paddr;
newsect->_raw_size = hdr->p_filesz;
newsect->filepos = hdr->p_offset;
newsect->flags |= SEC_HAS_CONTENTS;
if (hdr->p_type == PT_LOAD)
{
newsect->flags |= SEC_ALLOC;
newsect->flags |= SEC_LOAD;
if (hdr->p_flags & PF_X)
{
/* FIXME: all we known is that it has execute PERMISSION,
may be data. */
newsect->flags |= SEC_CODE;
}
}
if (!(hdr->p_flags & PF_W))
{
newsect->flags |= SEC_READONLY;
}
if (split)
{
sprintf (namebuf, "%s%db", typename, index);
name = bfd_alloc (abfd, strlen (namebuf) + 1);
if (!name)
return false;
strcpy (name, namebuf);
newsect = bfd_make_section (abfd, name);
if (newsect == NULL)
return false;
newsect->vma = hdr->p_vaddr + hdr->p_filesz;
newsect->lma = hdr->p_paddr + hdr->p_filesz;
newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
if (hdr->p_type == PT_LOAD)
{
newsect->flags |= SEC_ALLOC;
if (hdr->p_flags & PF_X)
newsect->flags |= SEC_CODE;
}
if (!(hdr->p_flags & PF_W))
newsect->flags |= SEC_READONLY;
}
return true;
}
boolean
bfd_section_from_phdr (abfd, hdr, index)
bfd *abfd;
Elf_Internal_Phdr *hdr;
int index;
{
struct elf_backend_data *bed;
switch (hdr->p_type)
{
case PT_NULL:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
case PT_LOAD:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
case PT_DYNAMIC:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
case PT_INTERP:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
case PT_NOTE:
if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
return false;
if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
return false;
return true;
case PT_SHLIB:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
case PT_PHDR:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
default:
/* Check for any processor-specific program segment types.
If no handler for them, default to making "segment" sections. */
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_section_from_phdr)
return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
else
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
}
}
/* Initialize REL_HDR, the section-header for new section, containing
relocations against ASECT. If USE_RELA_P is true, we use RELA
relocations; otherwise, we use REL relocations. */
boolean
_bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
bfd *abfd;
Elf_Internal_Shdr *rel_hdr;
asection *asect;
boolean use_rela_p;
{
char *name;
struct elf_backend_data *bed;
bed = get_elf_backend_data (abfd);
name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name));
if (name == NULL)
return false;
sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
rel_hdr->sh_name =
(unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name,
true, false);
if (rel_hdr->sh_name == (unsigned int) -1)
return false;
rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
rel_hdr->sh_entsize = (use_rela_p
? bed->s->sizeof_rela
: bed->s->sizeof_rel);
rel_hdr->sh_addralign = bed->s->file_align;
rel_hdr->sh_flags = 0;
rel_hdr->sh_addr = 0;
rel_hdr->sh_size = 0;
rel_hdr->sh_offset = 0;
return true;
}
/* Set up an ELF internal section header for a section. */
static void
elf_fake_sections (abfd, asect, failedptrarg)
bfd *abfd;
asection *asect;
PTR failedptrarg;
{
struct elf_backend_data *bed = get_elf_backend_data (abfd);
boolean *failedptr = (boolean *) failedptrarg;
Elf_Internal_Shdr *this_hdr;
if (*failedptr)
{
/* We already failed; just get out of the bfd_map_over_sections
loop. */
return;
}
this_hdr = &elf_section_data (asect)->this_hdr;
this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd),
asect->name,
true, false);
if (this_hdr->sh_name == (unsigned long) -1)
{
*failedptr = true;
return;
}
this_hdr->sh_flags = 0;
if ((asect->flags & SEC_ALLOC) != 0
|| asect->user_set_vma)
this_hdr->sh_addr = asect->vma;
else
this_hdr->sh_addr = 0;
this_hdr->sh_offset = 0;
this_hdr->sh_size = asect->_raw_size;
this_hdr->sh_link = 0;
this_hdr->sh_addralign = 1 << asect->alignment_power;
/* The sh_entsize and sh_info fields may have been set already by
copy_private_section_data. */
this_hdr->bfd_section = asect;
this_hdr->contents = NULL;
/* FIXME: This should not be based on section names. */
if (strcmp (asect->name, ".dynstr") == 0)
this_hdr->sh_type = SHT_STRTAB;
else if (strcmp (asect->name, ".hash") == 0)
{
this_hdr->sh_type = SHT_HASH;
this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
}
else if (strcmp (asect->name, ".dynsym") == 0)
{
this_hdr->sh_type = SHT_DYNSYM;
this_hdr->sh_entsize = bed->s->sizeof_sym;
}
else if (strcmp (asect->name, ".dynamic") == 0)
{
this_hdr->sh_type = SHT_DYNAMIC;
this_hdr->sh_entsize = bed->s->sizeof_dyn;
}
else if (strncmp (asect->name, ".rela", 5) == 0
&& get_elf_backend_data (abfd)->may_use_rela_p)
{
this_hdr->sh_type = SHT_RELA;
this_hdr->sh_entsize = bed->s->sizeof_rela;
}
else if (strncmp (asect->name, ".rel", 4) == 0
&& get_elf_backend_data (abfd)->may_use_rel_p)
{
this_hdr->sh_type = SHT_REL;
this_hdr->sh_entsize = bed->s->sizeof_rel;
}
else if (strncmp (asect->name, ".note", 5) == 0)
this_hdr->sh_type = SHT_NOTE;
else if (strncmp (asect->name, ".stab", 5) == 0
&& strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
this_hdr->sh_type = SHT_STRTAB;
else if (strcmp (asect->name, ".gnu.version") == 0)
{
this_hdr->sh_type = SHT_GNU_versym;
this_hdr->sh_entsize = sizeof (Elf_External_Versym);
}
else if (strcmp (asect->name, ".gnu.version_d") == 0)
{
this_hdr->sh_type = SHT_GNU_verdef;
this_hdr->sh_entsize = 0;
/* objcopy or strip will copy over sh_info, but may not set
cverdefs. The linker will set cverdefs, but sh_info will be
zero. */
if (this_hdr->sh_info == 0)
this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
else
BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
|| this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
}
else if (strcmp (asect->name, ".gnu.version_r") == 0)
{
this_hdr->sh_type = SHT_GNU_verneed;
this_hdr->sh_entsize = 0;
/* objcopy or strip will copy over sh_info, but may not set
cverrefs. The linker will set cverrefs, but sh_info will be
zero. */
if (this_hdr->sh_info == 0)
this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
else
BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
|| this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
}
else if ((asect->flags & SEC_ALLOC) != 0
&& ((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0))
this_hdr->sh_type = SHT_NOBITS;
else
this_hdr->sh_type = SHT_PROGBITS;
if ((asect->flags & SEC_ALLOC) != 0)
this_hdr->sh_flags |= SHF_ALLOC;
if ((asect->flags & SEC_READONLY) == 0)
this_hdr->sh_flags |= SHF_WRITE;
if ((asect->flags & SEC_CODE) != 0)
this_hdr->sh_flags |= SHF_EXECINSTR;
if ((asect->flags & SEC_MERGE) != 0)
{
this_hdr->sh_flags |= SHF_MERGE;
this_hdr->sh_entsize = asect->entsize;
if ((asect->flags & SEC_STRINGS) != 0)
this_hdr->sh_flags |= SHF_STRINGS;
}
/* Check for processor-specific section types. */
if (bed->elf_backend_fake_sections)
(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect);
/* If the section has relocs, set up a section header for the
SHT_REL[A] section. If two relocation sections are required for
this section, it is up to the processor-specific back-end to
create the other. */
if ((asect->flags & SEC_RELOC) != 0
&& !_bfd_elf_init_reloc_shdr (abfd,
&elf_section_data (asect)->rel_hdr,
asect,
elf_section_data (asect)->use_rela_p))
*failedptr = true;
}
/* Assign all ELF section numbers. The dummy first section is handled here
too. The link/info pointers for the standard section types are filled
in here too, while we're at it. */
static boolean
assign_section_numbers (abfd)
bfd *abfd;
{
struct elf_obj_tdata *t = elf_tdata (abfd);
asection *sec;
unsigned int section_number;
Elf_Internal_Shdr **i_shdrp;
section_number = 1;
for (sec = abfd->sections; sec; sec = sec->next)
{
struct bfd_elf_section_data *d = elf_section_data (sec);
d->this_idx = section_number++;
if ((sec->flags & SEC_RELOC) == 0)
d->rel_idx = 0;
else
d->rel_idx = section_number++;
if (d->rel_hdr2)
d->rel_idx2 = section_number++;
else
d->rel_idx2 = 0;
}
t->shstrtab_section = section_number++;
elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
if (bfd_get_symcount (abfd) > 0)
{
t->symtab_section = section_number++;
t->strtab_section = section_number++;
}
elf_elfheader (abfd)->e_shnum = section_number;
/* Set up the list of section header pointers, in agreement with the
indices. */
i_shdrp = ((Elf_Internal_Shdr **)
bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *)));
if (i_shdrp == NULL)
return false;
i_shdrp[0] = ((Elf_Internal_Shdr *)
bfd_alloc (abfd, sizeof (Elf_Internal_Shdr)));
if (i_shdrp[0] == NULL)
{
bfd_release (abfd, i_shdrp);
return false;
}
memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
elf_elfsections (abfd) = i_shdrp;
i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
if (bfd_get_symcount (abfd) > 0)
{
i_shdrp[t->symtab_section] = &t->symtab_hdr;
i_shdrp[t->strtab_section] = &t->strtab_hdr;
t->symtab_hdr.sh_link = t->strtab_section;
}
for (sec = abfd->sections; sec; sec = sec->next)
{
struct bfd_elf_section_data *d = elf_section_data (sec);
asection *s;
const char *name;
i_shdrp[d->this_idx] = &d->this_hdr;
if (d->rel_idx != 0)
i_shdrp[d->rel_idx] = &d->rel_hdr;
if (d->rel_idx2 != 0)
i_shdrp[d->rel_idx2] = d->rel_hdr2;
/* Fill in the sh_link and sh_info fields while we're at it. */
/* sh_link of a reloc section is the section index of the symbol
table. sh_info is the section index of the section to which
the relocation entries apply. */
if (d->rel_idx != 0)
{
d->rel_hdr.sh_link = t->symtab_section;
d->rel_hdr.sh_info = d->this_idx;
}
if (d->rel_idx2 != 0)
{
d->rel_hdr2->sh_link = t->symtab_section;
d->rel_hdr2->sh_info = d->this_idx;
}
switch (d->this_hdr.sh_type)
{
case SHT_REL:
case SHT_RELA:
/* A reloc section which we are treating as a normal BFD
section. sh_link is the section index of the symbol
table. sh_info is the section index of the section to
which the relocation entries apply. We assume that an
allocated reloc section uses the dynamic symbol table.
FIXME: How can we be sure? */
s = bfd_get_section_by_name (abfd, ".dynsym");
if (s != NULL)
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
/* We look up the section the relocs apply to by name. */
name = sec->name;
if (d->this_hdr.sh_type == SHT_REL)
name += 4;
else
name += 5;
s = bfd_get_section_by_name (abfd, name);
if (s != NULL)
d->this_hdr.sh_info = elf_section_data (s)->this_idx;
break;
case SHT_STRTAB:
/* We assume that a section named .stab*str is a stabs
string section. We look for a section with the same name
but without the trailing ``str'', and set its sh_link
field to point to this section. */
if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
&& strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
{
size_t len;
char *alc;
len = strlen (sec->name);
alc = (char *) bfd_malloc (len - 2);
if (alc == NULL)
return false;
strncpy (alc, sec->name, len - 3);
alc[len - 3] = '\0';
s = bfd_get_section_by_name (abfd, alc);
free (alc);
if (s != NULL)
{
elf_section_data (s)->this_hdr.sh_link = d->this_idx;
/* This is a .stab section. */
elf_section_data (s)->this_hdr.sh_entsize =
4 + 2 * bfd_get_arch_size (abfd) / 8;
}
}
break;
case SHT_DYNAMIC:
case SHT_DYNSYM:
case SHT_GNU_verneed:
case SHT_GNU_verdef:
/* sh_link is the section header index of the string table
used for the dynamic entries, or the symbol table, or the
version strings. */
s = bfd_get_section_by_name (abfd, ".dynstr");
if (s != NULL)
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
break;
case SHT_HASH:
case SHT_GNU_versym:
/* sh_link is the section header index of the symbol table
this hash table or version table is for. */
s = bfd_get_section_by_name (abfd, ".dynsym");
if (s != NULL)
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
break;
}
}
return true;
}
/* Map symbol from it's internal number to the external number, moving
all local symbols to be at the head of the list. */
static INLINE int
sym_is_global (abfd, sym)
bfd *abfd;
asymbol *sym;
{
/* If the backend has a special mapping, use it. */
if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
(abfd, sym));
return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|| bfd_is_und_section (bfd_get_section (sym))
|| bfd_is_com_section (bfd_get_section (sym)));
}
static boolean
elf_map_symbols (abfd)
bfd *abfd;
{
int symcount = bfd_get_symcount (abfd);
asymbol **syms = bfd_get_outsymbols (abfd);
asymbol **sect_syms;
int num_locals = 0;
int num_globals = 0;
int num_locals2 = 0;
int num_globals2 = 0;
int max_index = 0;
int num_sections = 0;
int idx;
asection *asect;
asymbol **new_syms;
asymbol *sym;
#ifdef DEBUG
fprintf (stderr, "elf_map_symbols\n");
fflush (stderr);
#endif
/* Add a section symbol for each BFD section. FIXME: Is this really
necessary? */
for (asect = abfd->sections; asect; asect = asect->next)
{
if (max_index < asect->index)
max_index = asect->index;
}
max_index++;
sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *));
if (sect_syms == NULL)
return false;
elf_section_syms (abfd) = sect_syms;
elf_num_section_syms (abfd) = max_index;
for (idx = 0; idx < symcount; idx++)
{
sym = syms[idx];
if ((sym->flags & BSF_SECTION_SYM) != 0
&& sym->value == 0)
{
asection *sec;
sec = sym->section;
if (sec->owner != NULL)
{
if (sec->owner != abfd)
{
if (sec->output_offset != 0)
continue;
sec = sec->output_section;
/* Empty sections in the input files may have had a section
symbol created for them. (See the comment near the end of
_bfd_generic_link_output_symbols in linker.c). If the linker
script discards such sections then we will reach this point.
Since we know that we cannot avoid this case, we detect it
and skip the abort and the assignment to the sect_syms array.
To reproduce this particular case try running the linker
testsuite test ld-scripts/weak.exp for an ELF port that uses
the generic linker. */
if (sec->owner == NULL)
continue;
BFD_ASSERT (sec->owner == abfd);
}
sect_syms[sec->index] = syms[idx];
}
}
}
for (asect = abfd->sections; asect; asect = asect->next)
{
if (sect_syms[asect->index] != NULL)
continue;
sym = bfd_make_empty_symbol (abfd);
if (sym == NULL)
return false;
sym->the_bfd = abfd;
sym->name = asect->name;
sym->value = 0;
/* Set the flags to 0 to indicate that this one was newly added. */
sym->flags = 0;
sym->section = asect;
sect_syms[asect->index] = sym;
num_sections++;
#ifdef DEBUG
fprintf (stderr,
_("creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n"),
asect->name, (long) asect->vma, asect->index, (long) asect);
#endif
}
/* Classify all of the symbols. */
for (idx = 0; idx < symcount; idx++)
{
if (!sym_is_global (abfd, syms[idx]))
num_locals++;
else
num_globals++;
}
for (asect = abfd->sections; asect; asect = asect->next)
{
if (sect_syms[asect->index] != NULL
&& sect_syms[asect->index]->flags == 0)
{
sect_syms[asect->index]->flags = BSF_SECTION_SYM;
if (!sym_is_global (abfd, sect_syms[asect->index]))
num_locals++;
else
num_globals++;
sect_syms[asect->index]->flags = 0;
}
}
/* Now sort the symbols so the local symbols are first. */
new_syms = ((asymbol **)
bfd_alloc (abfd,
(num_locals + num_globals) * sizeof (asymbol *)));
if (new_syms == NULL)
return false;
for (idx = 0; idx < symcount; idx++)
{
asymbol *sym = syms[idx];
int i;
if (!sym_is_global (abfd, sym))
i = num_locals2++;
else
i = num_locals + num_globals2++;
new_syms[i] = sym;
sym->udata.i = i + 1;
}
for (asect = abfd->sections; asect; asect = asect->next)
{
if (sect_syms[asect->index] != NULL
&& sect_syms[asect->index]->flags == 0)
{
asymbol *sym = sect_syms[asect->index];
int i;
sym->flags = BSF_SECTION_SYM;
if (!sym_is_global (abfd, sym))
i = num_locals2++;
else
i = num_locals + num_globals2++;
new_syms[i] = sym;
sym->udata.i = i + 1;
}
}
bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
elf_num_locals (abfd) = num_locals;
elf_num_globals (abfd) = num_globals;
return true;
}
/* Align to the maximum file alignment that could be required for any
ELF data structure. */
static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
static INLINE file_ptr
align_file_position (off, align)
file_ptr off;
int align;
{
return (off + align - 1) & ~(align - 1);
}
/* Assign a file position to a section, optionally aligning to the
required section alignment. */
INLINE file_ptr
_bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
Elf_Internal_Shdr *i_shdrp;
file_ptr offset;
boolean align;
{
if (align)
{
unsigned int al;
al = i_shdrp->sh_addralign;
if (al > 1)
offset = BFD_ALIGN (offset, al);
}
i_shdrp->sh_offset = offset;
if (i_shdrp->bfd_section != NULL)
i_shdrp->bfd_section->filepos = offset;
if (i_shdrp->sh_type != SHT_NOBITS)
offset += i_shdrp->sh_size;
return offset;
}
/* Compute the file positions we are going to put the sections at, and
otherwise prepare to begin writing out the ELF file. If LINK_INFO
is not NULL, this is being called by the ELF backend linker. */
boolean
_bfd_elf_compute_section_file_positions (abfd, link_info)
bfd *abfd;
struct bfd_link_info *link_info;
{
struct elf_backend_data *bed = get_elf_backend_data (abfd);
boolean failed;
struct bfd_strtab_hash *strtab;
Elf_Internal_Shdr *shstrtab_hdr;
if (abfd->output_has_begun)
return true;
/* Do any elf backend specific processing first. */
if (bed->elf_backend_begin_write_processing)
(*bed->elf_backend_begin_write_processing) (abfd, link_info);
if (! prep_headers (abfd))
return false;
/* Post process the headers if necessary. */
if (bed->elf_backend_post_process_headers)
(*bed->elf_backend_post_process_headers) (abfd, link_info);
failed = false;
bfd_map_over_sections (abfd, elf_fake_sections, &failed);
if (failed)
return false;
if (!assign_section_numbers (abfd))
return false;
/* The backend linker builds symbol table information itself. */
if (link_info == NULL && bfd_get_symcount (abfd) > 0)
{
/* Non-zero if doing a relocatable link. */
int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
if (! swap_out_syms (abfd, &strtab, relocatable_p))
return false;
}
shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
/* sh_name was set in prep_headers. */
shstrtab_hdr->sh_type = SHT_STRTAB;
shstrtab_hdr->sh_flags = 0;
shstrtab_hdr->sh_addr = 0;
shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
shstrtab_hdr->sh_entsize = 0;
shstrtab_hdr->sh_link = 0;
shstrtab_hdr->sh_info = 0;
/* sh_offset is set in assign_file_positions_except_relocs. */
shstrtab_hdr->sh_addralign = 1;
if (!assign_file_positions_except_relocs (abfd))
return false;
if (link_info == NULL && bfd_get_symcount (abfd) > 0)
{
file_ptr off;
Elf_Internal_Shdr *hdr;
off = elf_tdata (abfd)->next_file_pos;
hdr = &elf_tdata (abfd)->symtab_hdr;
off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
hdr = &elf_tdata (abfd)->strtab_hdr;
off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
elf_tdata (abfd)->next_file_pos = off;
/* Now that we know where the .strtab section goes, write it
out. */
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|| ! _bfd_stringtab_emit (abfd, strtab))
return false;
_bfd_stringtab_free (strtab);
}
abfd->output_has_begun = true;
return true;
}
/* Create a mapping from a set of sections to a program segment. */
static INLINE struct elf_segment_map *
make_mapping (abfd, sections, from, to, phdr)
bfd *abfd;
asection **sections;
unsigned int from;
unsigned int to;
boolean phdr;
{
struct elf_segment_map *m;
unsigned int i;
asection **hdrpp;
m = ((struct elf_segment_map *)
bfd_zalloc (abfd,
(sizeof (struct elf_segment_map)
+ (to - from - 1) * sizeof (asection *))));
if (m == NULL)
return NULL;
m->next = NULL;
m->p_type = PT_LOAD;
for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
m->sections[i - from] = *hdrpp;
m->count = to - from;
if (from == 0 && phdr)
{
/* Include the headers in the first PT_LOAD segment. */
m->includes_filehdr = 1;
m->includes_phdrs = 1;
}
return m;
}
/* Set up a mapping from BFD sections to program segments. */
static boolean
map_sections_to_segments (abfd)
bfd *abfd;
{
asection **sections = NULL;
asection *s;
unsigned int i;
unsigned int count;
struct elf_segment_map *mfirst;
struct elf_segment_map **pm;
struct elf_segment_map *m;
asection *last_hdr;
unsigned int phdr_index;
bfd_vma maxpagesize;
asection **hdrpp;
boolean phdr_in_segment = true;
boolean writable;
asection *dynsec;
if (elf_tdata (abfd)->segment_map != NULL)
return true;
if (bfd_count_sections (abfd) == 0)
return true;
/* Select the allocated sections, and sort them. */
sections = (asection **) bfd_malloc (bfd_count_sections (abfd)
* sizeof (asection *));
if (sections == NULL)
goto error_return;
i = 0;
for (s = abfd->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_ALLOC) != 0)
{
sections[i] = s;
++i;
}
}
BFD_ASSERT (i <= bfd_count_sections (abfd));
count = i;
qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
/* Build the mapping. */
mfirst = NULL;
pm = &mfirst;
/* If we have a .interp section, then create a PT_PHDR segment for
the program headers and a PT_INTERP segment for the .interp
section. */
s = bfd_get_section_by_name (abfd, ".interp");
if (s != NULL && (s->flags & SEC_LOAD) != 0)
{
m = ((struct elf_segment_map *)
bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_PHDR;
/* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
m->p_flags = PF_R | PF_X;
m->p_flags_valid = 1;
m->includes_phdrs = 1;
*pm = m;
pm = &m->next;
m = ((struct elf_segment_map *)
bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_INTERP;
m->count = 1;
m->sections[0] = s;
*pm = m;
pm = &m->next;
}
/* Look through the sections. We put sections in the same program
segment when the start of the second section can be placed within
a few bytes of the end of the first section. */
last_hdr = NULL;
phdr_index = 0;
maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
writable = false;
dynsec = bfd_get_section_by_name (abfd, ".dynamic");
if (dynsec != NULL
&& (dynsec->flags & SEC_LOAD) == 0)
dynsec = NULL;
/* Deal with -Ttext or something similar such that the first section
is not adjacent to the program headers. This is an
approximation, since at this point we don't know exactly how many
program headers we will need. */
if (count > 0)
{
bfd_size_type phdr_size;
phdr_size = elf_tdata (abfd)->program_header_size;
if (phdr_size == 0)
phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
if ((abfd->flags & D_PAGED) == 0
|| sections[0]->lma < phdr_size
|| sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
phdr_in_segment = false;
}
for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
{
asection *hdr;
boolean new_segment;
hdr = *hdrpp;
/* See if this section and the last one will fit in the same
segment. */
if (last_hdr == NULL)
{
/* If we don't have a segment yet, then we don't need a new
one (we build the last one after this loop). */
new_segment = false;
}
else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
{
/* If this section has a different relation between the
virtual address and the load address, then we need a new
segment. */
new_segment = true;
}
else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
< BFD_ALIGN (hdr->lma, maxpagesize))
{
/* If putting this section in this segment would force us to
skip a page in the segment, then we need a new segment. */
new_segment = true;
}
else if ((last_hdr->flags & SEC_LOAD) == 0
&& (hdr->flags & SEC_LOAD) != 0)
{
/* We don't want to put a loadable section after a
nonloadable section in the same segment. */
new_segment = true;
}
else if ((abfd->flags & D_PAGED) == 0)
{
/* If the file is not demand paged, which means that we
don't require the sections to be correctly aligned in the
file, then there is no other reason for a new segment. */
new_segment = false;
}
else if (! writable
&& (hdr->flags & SEC_READONLY) == 0
&& (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
== hdr->lma))
{
/* We don't want to put a writable section in a read only
segment, unless they are on the same page in memory
anyhow. We already know that the last section does not
bring us past the current section on the page, so the
only case in which the new section is not on the same
page as the previous section is when the previous section
ends precisely on a page boundary. */
new_segment = true;
}
else
{
/* Otherwise, we can use the same segment. */
new_segment = false;
}
if (! new_segment)
{
if ((hdr->flags & SEC_READONLY) == 0)
writable = true;
last_hdr = hdr;
continue;
}
/* We need a new program segment. We must create a new program
header holding all the sections from phdr_index until hdr. */
m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
if (m == NULL)
goto error_return;
*pm = m;
pm = &m->next;
if ((hdr->flags & SEC_READONLY) == 0)
writable = true;
else
writable = false;
last_hdr = hdr;
phdr_index = i;
phdr_in_segment = false;
}
/* Create a final PT_LOAD program segment. */
if (last_hdr != NULL)
{
m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
if (m == NULL)
goto error_return;
*pm = m;
pm = &m->next;
}
/* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
if (dynsec != NULL)
{
m = ((struct elf_segment_map *)
bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_DYNAMIC;
m->count = 1;
m->sections[0] = dynsec;
*pm = m;
pm = &m->next;
}
/* For each loadable .note section, add a PT_NOTE segment. We don't
use bfd_get_section_by_name, because if we link together
nonloadable .note sections and loadable .note sections, we will
generate two .note sections in the output file. FIXME: Using
names for section types is bogus anyhow. */
for (s = abfd->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LOAD) != 0
&& strncmp (s->name, ".note", 5) == 0)
{
m = ((struct elf_segment_map *)
bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_NOTE;
m->count = 1;
m->sections[0] = s;
*pm = m;
pm = &m->next;
}
}
free (sections);
sections = NULL;
elf_tdata (abfd)->segment_map = mfirst;
return true;
error_return:
if (sections != NULL)
free (sections);
return false;
}
/* Sort sections by address. */
static int
elf_sort_sections (arg1, arg2)
const PTR arg1;
const PTR arg2;
{
const asection *sec1 = *(const asection **) arg1;
const asection *sec2 = *(const asection **) arg2;
/* Sort by LMA first, since this is the address used to
place the section into a segment. */
if (sec1->lma < sec2->lma)
return -1;
else if (sec1->lma > sec2->lma)
return 1;
/* Then sort by VMA. Normally the LMA and the VMA will be
the same, and this will do nothing. */
if (sec1->vma < sec2->vma)
return -1;
else if (sec1->vma > sec2->vma)
return 1;
/* Put !SEC_LOAD sections after SEC_LOAD ones. */
#define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
if (TOEND (sec1))
{
if (TOEND (sec2))
{
/* If the indicies are the same, do not return 0
here, but continue to try the next comparison. */
if (sec1->target_index - sec2->target_index != 0)
return sec1->target_index - sec2->target_index;
}
else
return 1;
}
else if (TOEND (sec2))
return -1;
#undef TOEND
/* Sort by size, to put zero sized sections
before others at the same address. */
if (sec1->_raw_size < sec2->_raw_size)
return -1;
if (sec1->_raw_size > sec2->_raw_size)
return 1;
return sec1->target_index - sec2->target_index;
}
/* Assign file positions to the sections based on the mapping from
sections to segments. This function also sets up some fields in
the file header, and writes out the program headers. */
static boolean
assign_file_positions_for_segments (abfd)
bfd *abfd;
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
unsigned int count;
struct elf_segment_map *m;
unsigned int alloc;
Elf_Internal_Phdr *phdrs;
file_ptr off, voff;
bfd_vma filehdr_vaddr, filehdr_paddr;
bfd_vma phdrs_vaddr, phdrs_paddr;
Elf_Internal_Phdr *p;
if (elf_tdata (abfd)->segment_map == NULL)
{
if (! map_sections_to_segments (abfd))
return false;
}
if (bed->elf_backend_modify_segment_map)
{
if (! (*bed->elf_backend_modify_segment_map) (abfd))
return false;
}
count = 0;
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
++count;
elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
elf_elfheader (abfd)->e_phnum = count;
if (count == 0)
return true;
/* If we already counted the number of program segments, make sure
that we allocated enough space. This happens when SIZEOF_HEADERS
is used in a linker script. */
alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
if (alloc != 0 && count > alloc)
{
((*_bfd_error_handler)
(_("%s: Not enough room for program headers (allocated %u, need %u)"),
bfd_get_filename (abfd), alloc, count));
bfd_set_error (bfd_error_bad_value);
return false;
}
if (alloc == 0)
alloc = count;
phdrs = ((Elf_Internal_Phdr *)
bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr)));
if (phdrs == NULL)
return false;
off = bed->s->sizeof_ehdr;
off += alloc * bed->s->sizeof_phdr;
filehdr_vaddr = 0;
filehdr_paddr = 0;
phdrs_vaddr = 0;
phdrs_paddr = 0;
for (m = elf_tdata (abfd)->segment_map, p = phdrs;
m != NULL;
m = m->next, p++)
{
unsigned int i;
asection **secpp;
/* If elf_segment_map is not from map_sections_to_segments, the
sections may not be correctly ordered. */
if (m->count > 0)
qsort (m->sections, (size_t) m->count, sizeof (asection *),
elf_sort_sections);
p->p_type = m->p_type;
p->p_flags = m->p_flags;
if (p->p_type == PT_LOAD
&& m->count > 0
&& (m->sections[0]->flags & SEC_ALLOC) != 0)
{
if ((abfd->flags & D_PAGED) != 0)
off += (m->sections[0]->vma - off) % bed->maxpagesize;
else
{
bfd_size_type align;
align = 0;
for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
{
bfd_size_type secalign;
secalign = bfd_get_section_alignment (abfd, *secpp);
if (secalign > align)
align = secalign;
}
off += (m->sections[0]->vma - off) % (1 << align);
}
}
if (m->count == 0)
p->p_vaddr = 0;
else
p->p_vaddr = m->sections[0]->vma;
if (m->p_paddr_valid)
p->p_paddr = m->p_paddr;
else if (m->count == 0)
p->p_paddr = 0;
else
p->p_paddr = m->sections[0]->lma;
if (p->p_type == PT_LOAD
&& (abfd->flags & D_PAGED) != 0)
p->p_align = bed->maxpagesize;
else if (m->count == 0)
p->p_align = bed->s->file_align;
else
p->p_align = 0;
p->p_offset = 0;
p->p_filesz = 0;
p->p_memsz = 0;
if (m->includes_filehdr)
{
if (! m->p_flags_valid)
p->p_flags |= PF_R;
p->p_offset = 0;
p->p_filesz = bed->s->sizeof_ehdr;
p->p_memsz = bed->s->sizeof_ehdr;
if (m->count > 0)
{
BFD_ASSERT (p->p_type == PT_LOAD);
if (p->p_vaddr < (bfd_vma) off)
{
_bfd_error_handler (_("%s: Not enough room for program headers, try linking with -N"),
bfd_get_filename (abfd));
bfd_set_error (bfd_error_bad_value);
return false;
}
p->p_vaddr -= off;
if (! m->p_paddr_valid)
p->p_paddr -= off;
}
if (p->p_type == PT_LOAD)
{
filehdr_vaddr = p->p_vaddr;
filehdr_paddr = p->p_paddr;
}
}
if (m->includes_phdrs)
{
if (! m->p_flags_valid)
p->p_flags |= PF_R;
if (m->includes_filehdr)
{
if (p->p_type == PT_LOAD)
{
phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
}
}
else
{
p->p_offset = bed->s->sizeof_ehdr;
if (m->count > 0)
{
BFD_ASSERT (p->p_type == PT_LOAD);
p->p_vaddr -= off - p->p_offset;
if (! m->p_paddr_valid)
p->p_paddr -= off - p->p_offset;
}
if (p->p_type == PT_LOAD)
{
phdrs_vaddr = p->p_vaddr;
phdrs_paddr = p->p_paddr;
}
else
phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
}
p->p_filesz += alloc * bed->s->sizeof_phdr;
p->p_memsz += alloc * bed->s->sizeof_phdr;
}
if (p->p_type == PT_LOAD
|| (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
{
if (! m->includes_filehdr && ! m->includes_phdrs)
p->p_offset = off;
else
{
file_ptr adjust;
adjust = off - (p->p_offset + p->p_filesz);
p->p_filesz += adjust;
p->p_memsz += adjust;
}
}
voff = off;
for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
{
asection *sec;
flagword flags;
bfd_size_type align;
sec = *secpp;
flags = sec->flags;
align = 1 << bfd_get_section_alignment (abfd, sec);
/* The section may have artificial alignment forced by a
link script. Notice this case by the gap between the
cumulative phdr vma and the section's vma. */
if (p->p_vaddr + p->p_memsz < sec->vma)
{
bfd_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
p->p_memsz += adjust;
off += adjust;
voff += adjust;
if ((flags & SEC_LOAD) != 0)
p->p_filesz += adjust;
}
if (p->p_type == PT_LOAD)
{
bfd_signed_vma adjust;
if ((flags & SEC_LOAD) != 0)
{
adjust = sec->lma - (p->p_paddr + p->p_memsz);
if (adjust < 0)
adjust = 0;
}
else if ((flags & SEC_ALLOC) != 0)
{
/* The section VMA must equal the file position
modulo the page size. FIXME: I'm not sure if
this adjustment is really necessary. We used to
not have the SEC_LOAD case just above, and then
this was necessary, but now I'm not sure. */
if ((abfd->flags & D_PAGED) != 0)
adjust = (sec->vma - voff) % bed->maxpagesize;
else
adjust = (sec->vma - voff) % align;
}
else
adjust = 0;
if (adjust != 0)
{
if (i == 0)
{
(* _bfd_error_handler)
(_("Error: First section in segment (%s) starts at 0x%x"),
bfd_section_name (abfd, sec), sec->lma);
(* _bfd_error_handler)
(_(" whereas segment starts at 0x%x"),
p->p_paddr);
return false;
}
p->p_memsz += adjust;
off += adjust;
voff += adjust;
if ((flags & SEC_LOAD) != 0)
p->p_filesz += adjust;
}
sec->filepos = off;
/* We check SEC_HAS_CONTENTS here because if NOLOAD is
used in a linker script we may have a section with
SEC_LOAD clear but which is supposed to have
contents. */
if ((flags & SEC_LOAD) != 0
|| (flags & SEC_HAS_CONTENTS) != 0)
off += sec->_raw_size;
if ((flags & SEC_ALLOC) != 0)
voff += sec->_raw_size;
}
if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
{
/* The actual "note" segment has i == 0.
This is the one that actually contains everything. */
if (i == 0)
{
sec->filepos = off;
p->p_filesz = sec->_raw_size;
off += sec->_raw_size;
voff = off;
}
else
{
/* Fake sections -- don't need to be written. */
sec->filepos = 0;
sec->_raw_size = 0;
flags = sec->flags = 0;
}
p->p_memsz = 0;
p->p_align = 1;
}
else
{
p->p_memsz += sec->_raw_size;
if ((flags & SEC_LOAD) != 0)
p->p_filesz += sec->_raw_size;
if (align > p->p_align
&& (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
p->p_align = align;
}
if (! m->p_flags_valid)
{
p->p_flags |= PF_R;
if ((flags & SEC_CODE) != 0)
p->p_flags |= PF_X;
if ((flags & SEC_READONLY) == 0)
p->p_flags |= PF_W;
}
}
}
/* Now that we have set the section file positions, we can set up
the file positions for the non PT_LOAD segments. */
for (m = elf_tdata (abfd)->segment_map, p = phdrs;
m != NULL;
m = m->next, p++)
{
if (p->p_type != PT_LOAD && m->count > 0)
{
BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
p->p_offset = m->sections[0]->filepos;
}
if (m->count == 0)
{
if (m->includes_filehdr)
{
p->p_vaddr = filehdr_vaddr;
if (! m->p_paddr_valid)
p->p_paddr = filehdr_paddr;
}
else if (m->includes_phdrs)
{
p->p_vaddr = phdrs_vaddr;
if (! m->p_paddr_valid)
p->p_paddr = phdrs_paddr;
}
}
}
/* Clear out any program headers we allocated but did not use. */
for (; count < alloc; count++, p++)
{
memset (p, 0, sizeof *p);
p->p_type = PT_NULL;
}
elf_tdata (abfd)->phdr = phdrs;
elf_tdata (abfd)->next_file_pos = off;
/* Write out the program headers. */
if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0
|| bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
return false;
return true;
}
/* Get the size of the program header.
If this is called by the linker before any of the section VMA's are set, it
can't calculate the correct value for a strange memory layout. This only
happens when SIZEOF_HEADERS is used in a linker script. In this case,
SORTED_HDRS is NULL and we assume the normal scenario of one text and one
data segment (exclusive of .interp and .dynamic).
??? User written scripts must either not use SIZEOF_HEADERS, or assume there
will be two segments. */
static bfd_size_type
get_program_header_size (abfd)
bfd *abfd;
{
size_t segs;
asection *s;
struct elf_backend_data *bed = get_elf_backend_data (abfd);
/* We can't return a different result each time we're called. */
if (elf_tdata (abfd)->program_header_size != 0)
return elf_tdata (abfd)->program_header_size;
if (elf_tdata (abfd)->segment_map != NULL)
{
struct elf_segment_map *m;
segs = 0;
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
++segs;
elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
return elf_tdata (abfd)->program_header_size;
}
/* Assume we will need exactly two PT_LOAD segments: one for text
and one for data. */
segs = 2;
s = bfd_get_section_by_name (abfd, ".interp");
if (s != NULL && (s->flags & SEC_LOAD) != 0)
{
/* If we have a loadable interpreter section, we need a
PT_INTERP segment. In this case, assume we also need a
PT_PHDR segment, although that may not be true for all
targets. */
segs += 2;
}
if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
{
/* We need a PT_DYNAMIC segment. */
++segs;
}
for (s = abfd->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LOAD) != 0
&& strncmp (s->name, ".note", 5) == 0)
{
/* We need a PT_NOTE segment. */
++segs;
}
}
/* Let the backend count up any program headers it might need. */
if (bed->elf_backend_additional_program_headers)
{
int a;
a = (*bed->elf_backend_additional_program_headers) (abfd);
if (a == -1)
abort ();
segs += a;
}
elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
return elf_tdata (abfd)->program_header_size;
}
/* Work out the file positions of all the sections. This is called by
_bfd_elf_compute_section_file_positions. All the section sizes and
VMAs must be known before this is called.
We do not consider reloc sections at this point, unless they form
part of the loadable image. Reloc sections are assigned file
positions in assign_file_positions_for_relocs, which is called by
write_object_contents and final_link.
We also don't set the positions of the .symtab and .strtab here. */
static boolean
assign_file_positions_except_relocs (abfd)
bfd *abfd;
{
struct elf_obj_tdata * const tdata = elf_tdata (abfd);
Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
file_ptr off;
struct elf_backend_data *bed = get_elf_backend_data (abfd);
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
&& bfd_get_format (abfd) != bfd_core)
{
Elf_Internal_Shdr **hdrpp;
unsigned int i;
/* Start after the ELF header. */
off = i_ehdrp->e_ehsize;
/* We are not creating an executable, which means that we are
not creating a program header, and that the actual order of
the sections in the file is unimportant. */
for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
{
Elf_Internal_Shdr *hdr;
hdr = *hdrpp;
if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
{
hdr->sh_offset = -1;
continue;
}
if (i == tdata->symtab_section
|| i == tdata->strtab_section)
{
hdr->sh_offset = -1;
continue;
}
off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
}
}
else
{
unsigned int i;
Elf_Internal_Shdr **hdrpp;
/* Assign file positions for the loaded sections based on the
assignment of sections to segments. */
if (! assign_file_positions_for_segments (abfd))
return false;
/* Assign file positions for the other sections. */
off = elf_tdata (abfd)->next_file_pos;
for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
{
Elf_Internal_Shdr *hdr;
hdr = *hdrpp;
if (hdr->bfd_section != NULL
&& hdr->bfd_section->filepos != 0)
hdr->sh_offset = hdr->bfd_section->filepos;
else if ((hdr->sh_flags & SHF_ALLOC) != 0)
{
((*_bfd_error_handler)
(_("%s: warning: allocated section `%s' not in segment"),
bfd_get_filename (abfd),
(hdr->bfd_section == NULL
? "*unknown*"
: hdr->bfd_section->name)));
if ((abfd->flags & D_PAGED) != 0)
off += (hdr->sh_addr - off) % bed->maxpagesize;
else
off += (hdr->sh_addr - off) % hdr->sh_addralign;
off = _bfd_elf_assign_file_position_for_section (hdr, off,
false);
}
else if (hdr->sh_type == SHT_REL
|| hdr->sh_type == SHT_RELA
|| hdr == i_shdrpp[tdata->symtab_section]
|| hdr == i_shdrpp[tdata->strtab_section])
hdr->sh_offset = -1;
else
off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
}
}
/* Place the section headers. */
off = align_file_position (off, bed->s->file_align);
i_ehdrp->e_shoff = off;
off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
elf_tdata (abfd)->next_file_pos = off;
return true;
}
static boolean
prep_headers (abfd)
bfd *abfd;
{
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
int count;
struct bfd_strtab_hash *shstrtab;
struct elf_backend_data *bed = get_elf_backend_data (abfd);
i_ehdrp = elf_elfheader (abfd);
i_shdrp = elf_elfsections (abfd);
shstrtab = _bfd_elf_stringtab_init ();
if (shstrtab == NULL)
return false;
elf_shstrtab (abfd) = shstrtab;
i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
i_ehdrp->e_ident[EI_DATA] =
bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NONE;
i_ehdrp->e_ident[EI_ABIVERSION] = 0;
for (count = EI_PAD; count < EI_NIDENT; count++)
i_ehdrp->e_ident[count] = 0;
if ((abfd->flags & DYNAMIC) != 0)
i_ehdrp->e_type = ET_DYN;
else if ((abfd->flags & EXEC_P) != 0)
i_ehdrp->e_type = ET_EXEC;
else if (bfd_get_format (abfd) == bfd_core)
i_ehdrp->e_type = ET_CORE;
else
i_ehdrp->e_type = ET_REL;
switch (bfd_get_arch (abfd))
{
case bfd_arch_unknown:
i_ehdrp->e_machine = EM_NONE;
break;
case bfd_arch_sparc:
if (bfd_get_arch_size (abfd) == 64)
i_ehdrp->e_machine = EM_SPARCV9;
else
i_ehdrp->e_machine = EM_SPARC;
break;
case bfd_arch_i370:
i_ehdrp->e_machine = EM_S370;
break;
case bfd_arch_i386:
if (bfd_get_arch_size (abfd) == 64)
i_ehdrp->e_machine = EM_X86_64;
else
i_ehdrp->e_machine = EM_386;
break;
case bfd_arch_ia64:
i_ehdrp->e_machine = EM_IA_64;
break;
case bfd_arch_m68hc11:
i_ehdrp->e_machine = EM_68HC11;
break;
case bfd_arch_m68hc12:
i_ehdrp->e_machine = EM_68HC12;
break;
case bfd_arch_s390:
i_ehdrp->e_machine = EM_S390;
break;
case bfd_arch_m68k:
i_ehdrp->e_machine = EM_68K;
break;
case bfd_arch_m88k:
i_ehdrp->e_machine = EM_88K;
break;
case bfd_arch_i860:
i_ehdrp->e_machine = EM_860;
break;
case bfd_arch_i960:
i_ehdrp->e_machine = EM_960;
break;
case bfd_arch_mips: /* MIPS Rxxxx */
i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
break;
case bfd_arch_hppa:
i_ehdrp->e_machine = EM_PARISC;
break;
case bfd_arch_powerpc:
i_ehdrp->e_machine = EM_PPC;
break;
case bfd_arch_alpha:
i_ehdrp->e_machine = EM_ALPHA;
break;
case bfd_arch_sh:
i_ehdrp->e_machine = EM_SH;
break;
case bfd_arch_d10v:
i_ehdrp->e_machine = EM_CYGNUS_D10V;
break;
case bfd_arch_d30v:
i_ehdrp->e_machine = EM_CYGNUS_D30V;
break;
case bfd_arch_fr30:
i_ehdrp->e_machine = EM_CYGNUS_FR30;
break;
case bfd_arch_mcore:
i_ehdrp->e_machine = EM_MCORE;
break;
case bfd_arch_avr:
i_ehdrp->e_machine = EM_AVR;
break;
case bfd_arch_v850:
switch (bfd_get_mach (abfd))
{
default:
case 0: i_ehdrp->e_machine = EM_CYGNUS_V850; break;
}
break;
case bfd_arch_arc:
i_ehdrp->e_machine = EM_CYGNUS_ARC;
break;
case bfd_arch_arm:
i_ehdrp->e_machine = EM_ARM;
break;
case bfd_arch_m32r:
i_ehdrp->e_machine = EM_CYGNUS_M32R;
break;
case bfd_arch_mn10200:
i_ehdrp->e_machine = EM_CYGNUS_MN10200;
break;
case bfd_arch_mn10300:
i_ehdrp->e_machine = EM_CYGNUS_MN10300;
break;
case bfd_arch_pj:
i_ehdrp->e_machine = EM_PJ;
break;
case bfd_arch_cris:
i_ehdrp->e_machine = EM_CRIS;
break;
case bfd_arch_openrisc:
i_ehdrp->e_machine = EM_OPENRISC;
break;
/* Also note that EM_M32, AT&T WE32100 is unknown to bfd. */
default:
i_ehdrp->e_machine = EM_NONE;
}
i_ehdrp->e_version = bed->s->ev_current;
i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
/* No program header, for now. */
i_ehdrp->e_phoff = 0;
i_ehdrp->e_phentsize = 0;
i_ehdrp->e_phnum = 0;
/* Each bfd section is section header entry. */
i_ehdrp->e_entry = bfd_get_start_address (abfd);
i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
/* If we're building an executable, we'll need a program header table. */
if (abfd->flags & EXEC_P)
{
/* It all happens later. */
#if 0
i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
/* elf_build_phdrs() returns a (NULL-terminated) array of
Elf_Internal_Phdrs. */
i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
i_ehdrp->e_phoff = outbase;
outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
#endif
}
else
{
i_ehdrp->e_phentsize = 0;
i_phdrp = 0;
i_ehdrp->e_phoff = 0;
}
elf_tdata (abfd)->symtab_hdr.sh_name =
(unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false);
elf_tdata (abfd)->strtab_hdr.sh_name =
(unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false);
elf_tdata (abfd)->shstrtab_hdr.sh_name =
(unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false);
if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|| elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|| elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
return false;
return true;
}
/* Assign file positions for all the reloc sections which are not part
of the loadable file image. */
void
_bfd_elf_assign_file_positions_for_relocs (abfd)
bfd *abfd;
{
file_ptr off;
unsigned int i;
Elf_Internal_Shdr **shdrpp;
off = elf_tdata (abfd)->next_file_pos;
for (i = 1, shdrpp = elf_elfsections (abfd) + 1;
i < elf_elfheader (abfd)->e_shnum;
i++, shdrpp++)
{
Elf_Internal_Shdr *shdrp;
shdrp = *shdrpp;
if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
&& shdrp->sh_offset == -1)
off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
}
elf_tdata (abfd)->next_file_pos = off;
}
boolean
_bfd_elf_write_object_contents (abfd)
bfd *abfd;
{
struct elf_backend_data *bed = get_elf_backend_data (abfd);
Elf_Internal_Ehdr *i_ehdrp;
Elf_Internal_Shdr **i_shdrp;
boolean failed;
unsigned int count;
if (! abfd->output_has_begun
&& ! _bfd_elf_compute_section_file_positions
(abfd, (struct bfd_link_info *) NULL))
return false;
i_shdrp = elf_elfsections (abfd);
i_ehdrp = elf_elfheader (abfd);
failed = false;
bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
if (failed)
return false;
_bfd_elf_assign_file_positions_for_relocs (abfd);
/* After writing the headers, we need to write the sections too... */
for (count = 1; count < i_ehdrp->e_shnum; count++)
{
if (bed->elf_backend_section_processing)
(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
if (i_shdrp[count]->contents)
{
if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
|| (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size,
1, abfd)
!= i_shdrp[count]->sh_size))
return false;
}
}
/* Write out the section header names. */
if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
|| ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd)))
return false;
if (bed->elf_backend_final_write_processing)
(*bed->elf_backend_final_write_processing) (abfd,
elf_tdata (abfd)->linker);
return bed->s->write_shdrs_and_ehdr (abfd);
}
boolean
_bfd_elf_write_corefile_contents (abfd)
bfd *abfd;
{
/* Hopefully this can be done just like an object file. */
return _bfd_elf_write_object_contents (abfd);
}
/* Given a section, search the header to find them. */
int
_bfd_elf_section_from_bfd_section (abfd, asect)
bfd *abfd;
struct sec *asect;
{
struct elf_backend_data *bed = get_elf_backend_data (abfd);
Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
int index;
Elf_Internal_Shdr *hdr;
int maxindex = elf_elfheader (abfd)->e_shnum;
for (index = 0; index < maxindex; index++)
{
hdr = i_shdrp[index];
if (hdr->bfd_section == asect)
return index;
}
if (bed->elf_backend_section_from_bfd_section)
{
for (index = 0; index < maxindex; index++)
{
int retval;
hdr = i_shdrp[index];
retval = index;
if ((*bed->elf_backend_section_from_bfd_section)
(abfd, hdr, asect, &retval))
return retval;
}
}
if (bfd_is_abs_section (asect))
return SHN_ABS;
if (bfd_is_com_section (asect))
return SHN_COMMON;
if (bfd_is_und_section (asect))
return SHN_UNDEF;
bfd_set_error (bfd_error_nonrepresentable_section);
return -1;
}
/* Given a BFD symbol, return the index in the ELF symbol table, or -1
on error. */
int
_bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
bfd *abfd;
asymbol **asym_ptr_ptr;
{
asymbol *asym_ptr = *asym_ptr_ptr;
int idx;
flagword flags = asym_ptr->flags;
/* When gas creates relocations against local labels, it creates its
own symbol for the section, but does put the symbol into the
symbol chain, so udata is 0. When the linker is generating
relocatable output, this section symbol may be for one of the
input sections rather than the output section. */
if (asym_ptr->udata.i == 0
&& (flags & BSF_SECTION_SYM)
&& asym_ptr->section)
{
int indx;
if (asym_ptr->section->output_section != NULL)
indx = asym_ptr->section->output_section->index;
else
indx = asym_ptr->section->index;
if (indx < elf_num_section_syms (abfd)
&& elf_section_syms (abfd)[indx] != NULL)
asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
}
idx = asym_ptr->udata.i;
if (idx == 0)
{
/* This case can occur when using --strip-symbol on a symbol
which is used in a relocation entry. */
(*_bfd_error_handler)
(_("%s: symbol `%s' required but not present"),
bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr));
bfd_set_error (bfd_error_no_symbols);
return -1;
}
#if DEBUG & 4
{
fprintf (stderr,
_("elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n"),
(long) asym_ptr, asym_ptr->name, idx, flags,
elf_symbol_flags (flags));
fflush (stderr);
}
#endif
return idx;
}
/* Copy private BFD data. This copies any program header information. */
static boolean
copy_private_bfd_data (ibfd, obfd)
bfd *ibfd;
bfd *obfd;
{
Elf_Internal_Ehdr * iehdr;
struct elf_segment_map * map;
struct elf_segment_map * map_first;
struct elf_segment_map ** pointer_to_map;
Elf_Internal_Phdr * segment;
asection * section;
unsigned int i;
unsigned int num_segments;
boolean phdr_included = false;
bfd_vma maxpagesize;
struct elf_segment_map * phdr_adjust_seg = NULL;
unsigned int phdr_adjust_num = 0;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return true;
if (elf_tdata (ibfd)->phdr == NULL)
return true;
iehdr = elf_elfheader (ibfd);
map_first = NULL;
pointer_to_map = &map_first;
num_segments = elf_elfheader (ibfd)->e_phnum;
maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
/* Returns the end address of the segment + 1. */
#define SEGMENT_END(segment, start) \
(start + (segment->p_memsz > segment->p_filesz \
? segment->p_memsz : segment->p_filesz))
/* Returns true if the given section is contained within
the given segment. VMA addresses are compared. */
#define IS_CONTAINED_BY_VMA(section, segment) \
(section->vma >= segment->p_vaddr \
&& (section->vma + section->_raw_size) \
<= (SEGMENT_END (segment, segment->p_vaddr)))
/* Returns true if the given section is contained within
the given segment. LMA addresses are compared. */
#define IS_CONTAINED_BY_LMA(section, segment, base) \
(section->lma >= base \
&& (section->lma + section->_raw_size) \
<= SEGMENT_END (segment, base))
/* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
#define IS_COREFILE_NOTE(p, s) \
(p->p_type == PT_NOTE \
&& bfd_get_format (ibfd) == bfd_core \
&& s->vma == 0 && s->lma == 0 \
&& (bfd_vma) s->filepos >= p->p_offset \
&& (bfd_vma) s->filepos + s->_raw_size \
<= p->p_offset + p->p_filesz)
/* The complicated case when p_vaddr is 0 is to handle the Solaris
linker, which generates a PT_INTERP section with p_vaddr and
p_memsz set to 0. */
#define IS_SOLARIS_PT_INTERP(p, s) \
( p->p_vaddr == 0 \
&& p->p_filesz > 0 \
&& (s->flags & SEC_HAS_CONTENTS) != 0 \
&& s->_raw_size > 0 \
&& (bfd_vma) s->filepos >= p->p_offset \
&& ((bfd_vma) s->filepos + s->_raw_size \
<= p->p_offset + p->p_filesz))
/* Decide if the given section should be included in the given segment.
A section will be included if:
1. It is within the address space of the segment,
2. It is an allocated segment,
3. There is an output section associated with it,
4. The section has not already been allocated to a previous segment. */
#define INCLUDE_SECTION_IN_SEGMENT(section, segment) \
((((IS_CONTAINED_BY_VMA (section, segment) \
|| IS_SOLARIS_PT_INTERP (segment, section)) \
&& (section->flags & SEC_ALLOC) != 0) \
|| IS_COREFILE_NOTE (segment, section)) \
&& section->output_section != NULL \
&& section->segment_mark == false)
/* Returns true iff seg1 starts after the end of seg2. */
#define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
(seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
/* Returns true iff seg1 and seg2 overlap. */
#define SEGMENT_OVERLAPS(seg1, seg2) \
(!(SEGMENT_AFTER_SEGMENT (seg1, seg2) || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
/* Initialise the segment mark field. */
for (section = ibfd->sections; section != NULL; section = section->next)
section->segment_mark = false;
/* Scan through the segments specified in the program header
of the input BFD. For this first scan we look for overlaps
in the loadable segments. These can be created by wierd
parameters to objcopy. */
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i++, segment++)
{
unsigned int j;
Elf_Internal_Phdr *segment2;
if (segment->p_type != PT_LOAD)
continue;
/* Determine if this segment overlaps any previous segments. */
for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
{
bfd_signed_vma extra_length;
if (segment2->p_type != PT_LOAD
|| ! SEGMENT_OVERLAPS (segment, segment2))
continue;
/* Merge the two segments together. */
if (segment2->p_vaddr < segment->p_vaddr)
{
/* Extend SEGMENT2 to include SEGMENT and then delete
SEGMENT. */
extra_length =
SEGMENT_END (segment, segment->p_vaddr)
- SEGMENT_END (segment2, segment2->p_vaddr);
if (extra_length > 0)
{
segment2->p_memsz += extra_length;
segment2->p_filesz += extra_length;
}
segment->p_type = PT_NULL;
/* Since we have deleted P we must restart the outer loop. */
i = 0;
segment = elf_tdata (ibfd)->phdr;
break;
}
else
{
/* Extend SEGMENT to include SEGMENT2 and then delete
SEGMENT2. */
extra_length =
SEGMENT_END (segment2, segment2->p_vaddr)
- SEGMENT_END (segment, segment->p_vaddr);
if (extra_length > 0)
{
segment->p_memsz += extra_length;
segment->p_filesz += extra_length;
}
segment2->p_type = PT_NULL;
}
}
}
/* The second scan attempts to assign sections to segments. */
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i ++, segment ++)
{
unsigned int section_count;
asection ** sections;
asection * output_section;
unsigned int isec;
bfd_vma matching_lma;
bfd_vma suggested_lma;
unsigned int j;
if (segment->p_type == PT_NULL)
continue;
/* Compute how many sections might be placed into this segment. */
section_count = 0;
for (section = ibfd->sections; section != NULL; section = section->next)
if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
++section_count;
/* Allocate a segment map big enough to contain all of the
sections we have selected. */
map = ((struct elf_segment_map *)
bfd_alloc (obfd,
(sizeof (struct elf_segment_map)
+ ((size_t) section_count - 1) * sizeof (asection *))));
if (map == NULL)
return false;
/* Initialise the fields of the segment map. Default to
using the physical address of the segment in the input BFD. */
map->next = NULL;
map->p_type = segment->p_type;
map->p_flags = segment->p_flags;
map->p_flags_valid = 1;
map->p_paddr = segment->p_paddr;
map->p_paddr_valid = 1;
/* Determine if this segment contains the ELF file header
and if it contains the program headers themselves. */
map->includes_filehdr = (segment->p_offset == 0
&& segment->p_filesz >= iehdr->e_ehsize);
map->includes_phdrs = 0;
if (! phdr_included || segment->p_type != PT_LOAD)
{
map->includes_phdrs =
(segment->p_offset <= (bfd_vma) iehdr->e_phoff
&& (segment->p_offset + segment->p_filesz
>= ((bfd_vma) iehdr->e_phoff
+ iehdr->e_phnum * iehdr->e_phentsize)));
if (segment->p_type == PT_LOAD && map->includes_phdrs)
phdr_included = true;
}
if (section_count == 0)
{
/* Special segments, such as the PT_PHDR segment, may contain
no sections, but ordinary, loadable segments should contain
something. */
if (segment->p_type == PT_LOAD)
_bfd_error_handler
(_("%s: warning: Empty loadable segment detected\n"),
bfd_get_filename (ibfd));
map->count = 0;
*pointer_to_map = map;
pointer_to_map = &map->next;
continue;
}
/* Now scan the sections in the input BFD again and attempt
to add their corresponding output sections to the segment map.
The problem here is how to handle an output section which has
been moved (ie had its LMA changed). There are four possibilities:
1. None of the sections have been moved.
In this case we can continue to use the segment LMA from the
input BFD.
2. All of the sections have been moved by the same amount.
In this case we can change the segment's LMA to match the LMA
of the first section.
3. Some of the sections have been moved, others have not.
In this case those sections which have not been moved can be
placed in the current segment which will have to have its size,
and possibly its LMA changed, and a new segment or segments will
have to be created to contain the other sections.
4. The sections have been moved, but not be the same amount.
In this case we can change the segment's LMA to match the LMA
of the first section and we will have to create a new segment
or segments to contain the other sections.
In order to save time, we allocate an array to hold the section
pointers that we are interested in. As these sections get assigned
to a segment, they are removed from this array. */
sections = (asection **) bfd_malloc
(sizeof (asection *) * section_count);
if (sections == NULL)
return false;
/* Step One: Scan for segment vs section LMA conflicts.
Also add the sections to the section array allocated above.
Also add the sections to the current segment. In the common
case, where the sections have not been moved, this means that
we have completely filled the segment, and there is nothing
more to do. */
isec = 0;
matching_lma = 0;
suggested_lma = 0;
for (j = 0, section = ibfd->sections;
section != NULL;
section = section->next)
{
if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
{
output_section = section->output_section;
sections[j ++] = section;
/* The Solaris native linker always sets p_paddr to 0.
We try to catch that case here, and set it to the
correct value. */
if (segment->p_paddr == 0
&& segment->p_vaddr != 0
&& isec == 0
&& output_section->lma != 0
&& (output_section->vma == (segment->p_vaddr
+ (map->includes_filehdr
? iehdr->e_ehsize
: 0)
+ (map->includes_phdrs
? iehdr->e_phnum * iehdr->e_phentsize
: 0))))
map->p_paddr = segment->p_vaddr;
/* Match up the physical address of the segment with the
LMA address of the output section. */
if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
|| IS_COREFILE_NOTE (segment, section))
{
if (matching_lma == 0)
matching_lma = output_section->lma;
/* We assume that if the section fits within the segment
then it does not overlap any other section within that
segment. */
map->sections[isec ++] = output_section;
}
else if (suggested_lma == 0)
suggested_lma = output_section->lma;
}
}
BFD_ASSERT (j == section_count);
/* Step Two: Adjust the physical address of the current segment,
if necessary. */
if (isec == section_count)
{
/* All of the sections fitted within the segment as currently
specified. This is the default case. Add the segment to
the list of built segments and carry on to process the next
program header in the input BFD. */
map->count = section_count;
*pointer_to_map = map;
pointer_to_map = &map->next;
free (sections);
continue;
}
else
{
if (matching_lma != 0)
{
/* At least one section fits inside the current segment.
Keep it, but modify its physical address to match the
LMA of the first section that fitted. */
map->p_paddr = matching_lma;
}
else
{
/* None of the sections fitted inside the current segment.
Change the current segment's physical address to match
the LMA of the first section. */
map->p_paddr = suggested_lma;
}
/* Offset the segment physical address from the lma
to allow for space taken up by elf headers. */
if (map->includes_filehdr)
map->p_paddr -= iehdr->e_ehsize;
if (map->includes_phdrs)
{
map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
/* iehdr->e_phnum is just an estimate of the number
of program headers that we will need. Make a note
here of the number we used and the segment we chose
to hold these headers, so that we can adjust the
offset when we know the correct value. */
phdr_adjust_num = iehdr->e_phnum;
phdr_adjust_seg = map;
}
}
/* Step Three: Loop over the sections again, this time assigning
those that fit to the current segment and remvoing them from the
sections array; but making sure not to leave large gaps. Once all
possible sections have been assigned to the current segment it is
added to the list of built segments and if sections still remain
to be assigned, a new segment is constructed before repeating
the loop. */
isec = 0;
do
{
map->count = 0;
suggested_lma = 0;
/* Fill the current segment with sections that fit. */
for (j = 0; j < section_count; j++)
{
section = sections[j];
if (section == NULL)
continue;
output_section = section->output_section;
BFD_ASSERT (output_section != NULL);
if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
|| IS_COREFILE_NOTE (segment, section))
{
if (map->count == 0)
{
/* If the first section in a segment does not start at
the beginning of the segment, then something is
wrong. */
if (output_section->lma !=
(map->p_paddr
+ (map->includes_filehdr ? iehdr->e_ehsize : 0)
+ (map->includes_phdrs
? iehdr->e_phnum * iehdr->e_phentsize
: 0)))
abort ();
}
else
{
asection * prev_sec;
prev_sec = map->sections[map->count - 1];
/* If the gap between the end of the previous section
and the start of this section is more than
maxpagesize then we need to start a new segment. */
if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size, maxpagesize)
< BFD_ALIGN (output_section->lma, maxpagesize))
|| ((prev_sec->lma + prev_sec->_raw_size) > output_section->lma))
{
if (suggested_lma == 0)
suggested_lma = output_section->lma;
continue;
}
}
map->sections[map->count++] = output_section;
++isec;
sections[j] = NULL;
section->segment_mark = true;
}
else if (suggested_lma == 0)
suggested_lma = output_section->lma;
}
BFD_ASSERT (map->count > 0);
/* Add the current segment to the list of built segments. */
*pointer_to_map = map;
pointer_to_map = &map->next;
if (isec < section_count)
{
/* We still have not allocated all of the sections to
segments. Create a new segment here, initialise it
and carry on looping. */
map = ((struct elf_segment_map *)
bfd_alloc (obfd,
(sizeof (struct elf_segment_map)
+ ((size_t) section_count - 1)
* sizeof (asection *))));
if (map == NULL)
return false;
/* Initialise the fields of the segment map. Set the physical
physical address to the LMA of the first section that has
not yet been assigned. */
map->next = NULL;
map->p_type = segment->p_type;
map->p_flags = segment->p_flags;
map->p_flags_valid = 1;
map->p_paddr = suggested_lma;
map->p_paddr_valid = 1;
map->includes_filehdr = 0;
map->includes_phdrs = 0;
}
}
while (isec < section_count);
free (sections);
}
/* The Solaris linker creates program headers in which all the
p_paddr fields are zero. When we try to objcopy or strip such a
file, we get confused. Check for this case, and if we find it
reset the p_paddr_valid fields. */
for (map = map_first; map != NULL; map = map->next)
if (map->p_paddr != 0)
break;
if (map == NULL)
{
for (map = map_first; map != NULL; map = map->next)
map->p_paddr_valid = 0;
}
elf_tdata (obfd)->segment_map = map_first;
/* If we had to estimate the number of program headers that were
going to be needed, then check our estimate know and adjust
the offset if necessary. */
if (phdr_adjust_seg != NULL)
{
unsigned int count;
for (count = 0, map = map_first; map != NULL; map = map->next)
count++;
if (count > phdr_adjust_num)
phdr_adjust_seg->p_paddr
-= (count - phdr_adjust_num) * iehdr->e_phentsize;
}
#if 0
/* Final Step: Sort the segments into ascending order of physical
address. */
if (map_first != NULL)
{
struct elf_segment_map *prev;
prev = map_first;
for (map = map_first->next; map != NULL; prev = map, map = map->next)
{
/* Yes I know - its a bubble sort.... */
if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
{
/* Swap map and map->next. */
prev->next = map->next;
map->next = map->next->next;
prev->next->next = map;
/* Restart loop. */
map = map_first;
}
}
}
#endif
#undef SEGMENT_END
#undef IS_CONTAINED_BY_VMA
#undef IS_CONTAINED_BY_LMA
#undef IS_COREFILE_NOTE
#undef IS_SOLARIS_PT_INTERP
#undef INCLUDE_SECTION_IN_SEGMENT
#undef SEGMENT_AFTER_SEGMENT
#undef SEGMENT_OVERLAPS
return true;
}
/* Copy private section information. This copies over the entsize
field, and sometimes the info field. */
boolean
_bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
bfd *ibfd;
asection *isec;
bfd *obfd;
asection *osec;
{
Elf_Internal_Shdr *ihdr, *ohdr;
if (ibfd->xvec->flavour != bfd_target_elf_flavour
|| obfd->xvec->flavour != bfd_target_elf_flavour)
return true;
/* Copy over private BFD data if it has not already been copied.
This must be done here, rather than in the copy_private_bfd_data
entry point, because the latter is called after the section
contents have been set, which means that the program headers have
already been worked out. */
if (elf_tdata (obfd)->segment_map == NULL
&& elf_tdata (ibfd)->phdr != NULL)
{
asection *s;
/* Only set up the segments if there are no more SEC_ALLOC
sections. FIXME: This won't do the right thing if objcopy is
used to remove the last SEC_ALLOC section, since objcopy
won't call this routine in that case. */
for (s = isec->next; s != NULL; s = s->next)
if ((s->flags & SEC_ALLOC) != 0)
break;
if (s == NULL)
{
if (! copy_private_bfd_data (ibfd, obfd))
return false;
}
}
ihdr = &elf_section_data (isec)->this_hdr;
ohdr = &elf_section_data (osec)->this_hdr;
ohdr->sh_entsize = ihdr->sh_entsize;
if (ihdr->sh_type == SHT_SYMTAB
|| ihdr->sh_type == SHT_DYNSYM
|| ihdr->sh_type == SHT_GNU_verneed
|| ihdr->sh_type == SHT_GNU_verdef)
ohdr->sh_info = ihdr->sh_info;
elf_section_data (osec)->use_rela_p
= elf_section_data (isec)->use_rela_p;
return true;
}
/* Copy private symbol information. If this symbol is in a section
which we did not map into a BFD section, try to map the section
index correctly. We use special macro definitions for the mapped
section indices; these definitions are interpreted by the
swap_out_syms function. */
#define MAP_ONESYMTAB (SHN_LORESERVE - 1)
#define MAP_DYNSYMTAB (SHN_LORESERVE - 2)
#define MAP_STRTAB (SHN_LORESERVE - 3)
#define MAP_SHSTRTAB (SHN_LORESERVE - 4)
boolean
_bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
bfd *ibfd;
asymbol *isymarg;
bfd *obfd;
asymbol *osymarg;
{
elf_symbol_type *isym, *osym;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return true;
isym = elf_symbol_from (ibfd, isymarg);
osym = elf_symbol_from (obfd, osymarg);
if (isym != NULL
&& osym != NULL
&& bfd_is_abs_section (isym->symbol.section))
{
unsigned int shndx;
shndx = isym->internal_elf_sym.st_shndx;
if (shndx == elf_onesymtab (ibfd))
shndx = MAP_ONESYMTAB;
else if (shndx == elf_dynsymtab (ibfd))
shndx = MAP_DYNSYMTAB;
else if (shndx == elf_tdata (ibfd)->strtab_section)
shndx = MAP_STRTAB;
else if (shndx == elf_tdata (ibfd)->shstrtab_section)
shndx = MAP_SHSTRTAB;
osym->internal_elf_sym.st_shndx = shndx;
}
return true;
}
/* Swap out the symbols. */
static boolean
swap_out_syms (abfd, sttp, relocatable_p)
bfd *abfd;
struct bfd_strtab_hash **sttp;
int relocatable_p;
{
struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (!elf_map_symbols (abfd))
return false;
/* Dump out the symtabs. */
{
int symcount = bfd_get_symcount (abfd);
asymbol **syms = bfd_get_outsymbols (abfd);
struct bfd_strtab_hash *stt;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *symstrtab_hdr;
char *outbound_syms;
int idx;
stt = _bfd_elf_stringtab_init ();
if (stt == NULL)
return false;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
symtab_hdr->sh_type = SHT_SYMTAB;
symtab_hdr->sh_entsize = bed->s->sizeof_sym;
symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
symtab_hdr->sh_addralign = bed->s->file_align;
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
symstrtab_hdr->sh_type = SHT_STRTAB;
outbound_syms = bfd_alloc (abfd,
(1 + symcount) * bed->s->sizeof_sym);
if (outbound_syms == NULL)
return false;
symtab_hdr->contents = (PTR) outbound_syms;
/* now generate the data (for "contents") */
{
/* Fill in zeroth symbol and swap it out. */
Elf_Internal_Sym sym;
sym.st_name = 0;
sym.st_value = 0;
sym.st_size = 0;
sym.st_info = 0;
sym.st_other = 0;
sym.st_shndx = SHN_UNDEF;
bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
outbound_syms += bed->s->sizeof_sym;
}
for (idx = 0; idx < symcount; idx++)
{
Elf_Internal_Sym sym;
bfd_vma value = syms[idx]->value;
elf_symbol_type *type_ptr;
flagword flags = syms[idx]->flags;
int type;
if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
{
/* Local section symbols have no name. */
sym.st_name = 0;
}
else
{
sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
syms[idx]->name,
true, false);
if (sym.st_name == (unsigned long) -1)
return false;
}
type_ptr = elf_symbol_from (abfd, syms[idx]);
if ((flags & BSF_SECTION_SYM) == 0
&& bfd_is_com_section (syms[idx]->section))
{
/* ELF common symbols put the alignment into the `value' field,
and the size into the `size' field. This is backwards from
how BFD handles it, so reverse it here. */
sym.st_size = value;
if (type_ptr == NULL
|| type_ptr->internal_elf_sym.st_value == 0)
sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
else
sym.st_value = type_ptr->internal_elf_sym.st_value;
sym.st_shndx = _bfd_elf_section_from_bfd_section
(abfd, syms[idx]->section);
}
else
{
asection *sec = syms[idx]->section;
int shndx;
if (sec->output_section)
{
value += sec->output_offset;
sec = sec->output_section;
}
/* Don't add in the section vma for relocatable output. */
if (! relocatable_p)
value += sec->vma;
sym.st_value = value;
sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
if (bfd_is_abs_section (sec)
&& type_ptr != NULL
&& type_ptr->internal_elf_sym.st_shndx != 0)
{
/* This symbol is in a real ELF section which we did
not create as a BFD section. Undo the mapping done
by copy_private_symbol_data. */
shndx = type_ptr->internal_elf_sym.st_shndx;
switch (shndx)
{
case MAP_ONESYMTAB:
shndx = elf_onesymtab (abfd);
break;
case MAP_DYNSYMTAB:
shndx = elf_dynsymtab (abfd);
break;
case MAP_STRTAB:
shndx = elf_tdata (abfd)->strtab_section;
break;
case MAP_SHSTRTAB:
shndx = elf_tdata (abfd)->shstrtab_section;
break;
default:
break;
}
}
else
{
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
if (shndx == -1)
{
asection *sec2;
/* Writing this would be a hell of a lot easier if
we had some decent documentation on bfd, and
knew what to expect of the library, and what to
demand of applications. For example, it
appears that `objcopy' might not set the
section of a symbol to be a section that is
actually in the output file. */
sec2 = bfd_get_section_by_name (abfd, sec->name);
BFD_ASSERT (sec2 != 0);
shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
BFD_ASSERT (shndx != -1);
}
}
sym.st_shndx = shndx;
}
if ((flags & BSF_FUNCTION) != 0)
type = STT_FUNC;
else if ((flags & BSF_OBJECT) != 0)
type = STT_OBJECT;
else
type = STT_NOTYPE;
/* Processor-specific types */
if (type_ptr != NULL
&& bed->elf_backend_get_symbol_type)
type = (*bed->elf_backend_get_symbol_type) (&type_ptr->internal_elf_sym, type);
if (flags & BSF_SECTION_SYM)
{
if (flags & BSF_GLOBAL)
sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
else
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
}
else if (bfd_is_com_section (syms[idx]->section))
sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
else if (bfd_is_und_section (syms[idx]->section))
sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
? STB_WEAK
: STB_GLOBAL),
type);
else if (flags & BSF_FILE)
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
else
{
int bind = STB_LOCAL;
if (flags & BSF_LOCAL)
bind = STB_LOCAL;
else if (flags & BSF_WEAK)
bind = STB_WEAK;
else if (flags & BSF_GLOBAL)
bind = STB_GLOBAL;
sym.st_info = ELF_ST_INFO (bind, type);
}
if (type_ptr != NULL)
sym.st_other = type_ptr->internal_elf_sym.st_other;
else
sym.st_other = 0;
bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
outbound_syms += bed->s->sizeof_sym;
}
*sttp = stt;
symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
symstrtab_hdr->sh_type = SHT_STRTAB;
symstrtab_hdr->sh_flags = 0;
symstrtab_hdr->sh_addr = 0;
symstrtab_hdr->sh_entsize = 0;
symstrtab_hdr->sh_link = 0;
symstrtab_hdr->sh_info = 0;
symstrtab_hdr->sh_addralign = 1;
}
return true;
}
/* Return the number of bytes required to hold the symtab vector.
Note that we base it on the count plus 1, since we will null terminate
the vector allocated based on this size. However, the ELF symbol table
always has a dummy entry as symbol #0, so it ends up even. */
long
_bfd_elf_get_symtab_upper_bound (abfd)
bfd *abfd;
{
long symcount;
long symtab_size;
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
return symtab_size;
}
long
_bfd_elf_get_dynamic_symtab_upper_bound (abfd)
bfd *abfd;
{
long symcount;
long symtab_size;
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
if (elf_dynsymtab (abfd) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
return symtab_size;
}
long
_bfd_elf_get_reloc_upper_bound (abfd, asect)
bfd *abfd ATTRIBUTE_UNUSED;
sec_ptr asect;
{
return (asect->reloc_count + 1) * sizeof (arelent *);
}
/* Canonicalize the relocs. */
long
_bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
bfd *abfd;
sec_ptr section;
arelent **relptr;
asymbol **symbols;
{
arelent *tblptr;
unsigned int i;
if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd,
section,
symbols,
false))
return -1;
tblptr = section->relocation;
for (i = 0; i < section->reloc_count; i++)
*relptr++ = tblptr++;
*relptr = NULL;
return section->reloc_count;
}
long
_bfd_elf_get_symtab (abfd, alocation)
bfd *abfd;
asymbol **alocation;
{
long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table
(abfd, alocation, false);
if (symcount >= 0)
bfd_get_symcount (abfd) = symcount;
return symcount;
}
long
_bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
bfd *abfd;
asymbol **alocation;
{
return get_elf_backend_data (abfd)->s->slurp_symbol_table
(abfd, alocation, true);
}
/* Return the size required for the dynamic reloc entries. Any
section that was actually installed in the BFD, and has type
SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
considered to be a dynamic reloc section. */
long
_bfd_elf_get_dynamic_reloc_upper_bound (abfd)
bfd *abfd;
{
long ret;
asection *s;
if (elf_dynsymtab (abfd) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
ret = sizeof (arelent *);
for (s = abfd->sections; s != NULL; s = s->next)
if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
&& (elf_section_data (s)->this_hdr.sh_type == SHT_REL
|| elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
* sizeof (arelent *));
return ret;
}
/* Canonicalize the dynamic relocation entries. Note that we return
the dynamic relocations as a single block, although they are
actually associated with particular sections; the interface, which
was designed for SunOS style shared libraries, expects that there
is only one set of dynamic relocs. Any section that was actually
installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
the dynamic symbol table, is considered to be a dynamic reloc
section. */
long
_bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
bfd *abfd;
arelent **storage;
asymbol **syms;
{
boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
asection *s;
long ret;
if (elf_dynsymtab (abfd) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
ret = 0;
for (s = abfd->sections; s != NULL; s = s->next)
{
if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
&& (elf_section_data (s)->this_hdr.sh_type == SHT_REL
|| elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
{
arelent *p;
long count, i;
if (! (*slurp_relocs) (abfd, s, syms, true))
return -1;
count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
p = s->relocation;
for (i = 0; i < count; i++)
*storage++ = p++;
ret += count;
}
}
*storage = NULL;
return ret;
}
/* Read in the version information. */
boolean
_bfd_elf_slurp_version_tables (abfd)
bfd *abfd;
{
bfd_byte *contents = NULL;
if (elf_dynverdef (abfd) != 0)
{
Elf_Internal_Shdr *hdr;
Elf_External_Verdef *everdef;
Elf_Internal_Verdef *iverdef;
Elf_Internal_Verdef *iverdefarr;
Elf_Internal_Verdef iverdefmem;
unsigned int i;
unsigned int maxidx;
hdr = &elf_tdata (abfd)->dynverdef_hdr;
contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
if (contents == NULL)
goto error_return;
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|| bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
goto error_return;
/* We know the number of entries in the section but not the maximum
index. Therefore we have to run through all entries and find
the maximum. */
everdef = (Elf_External_Verdef *) contents;
maxidx = 0;
for (i = 0; i < hdr->sh_info; ++i)
{
_bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
everdef = ((Elf_External_Verdef *)
((bfd_byte *) everdef + iverdefmem.vd_next));
}
elf_tdata (abfd)->verdef =
((Elf_Internal_Verdef *)
bfd_zalloc (abfd, maxidx * sizeof (Elf_Internal_Verdef)));
if (elf_tdata (abfd)->verdef == NULL)
goto error_return;
elf_tdata (abfd)->cverdefs = maxidx;
everdef = (Elf_External_Verdef *) contents;
iverdefarr = elf_tdata (abfd)->verdef;
for (i = 0; i < hdr->sh_info; i++)
{
Elf_External_Verdaux *everdaux;
Elf_Internal_Verdaux *iverdaux;
unsigned int j;
_bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
iverdef->vd_bfd = abfd;
iverdef->vd_auxptr = ((Elf_Internal_Verdaux *)
bfd_alloc (abfd,
(iverdef->vd_cnt
* sizeof (Elf_Internal_Verdaux))));
if (iverdef->vd_auxptr == NULL)
goto error_return;
everdaux = ((Elf_External_Verdaux *)
((bfd_byte *) everdef + iverdef->vd_aux));
iverdaux = iverdef->vd_auxptr;
for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
{
_bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
iverdaux->vda_nodename =
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
iverdaux->vda_name);
if (iverdaux->vda_nodename == NULL)
goto error_return;
if (j + 1 < iverdef->vd_cnt)
iverdaux->vda_nextptr = iverdaux + 1;
else
iverdaux->vda_nextptr = NULL;
everdaux = ((Elf_External_Verdaux *)
((bfd_byte *) everdaux + iverdaux->vda_next));
}
iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
if (i + 1 < hdr->sh_info)
iverdef->vd_nextdef = iverdef + 1;
else
iverdef->vd_nextdef = NULL;
everdef = ((Elf_External_Verdef *)
((bfd_byte *) everdef + iverdef->vd_next));
}
free (contents);
contents = NULL;
}
if (elf_dynverref (abfd) != 0)
{
Elf_Internal_Shdr *hdr;
Elf_External_Verneed *everneed;
Elf_Internal_Verneed *iverneed;
unsigned int i;
hdr = &elf_tdata (abfd)->dynverref_hdr;
elf_tdata (abfd)->verref =
((Elf_Internal_Verneed *)
bfd_zalloc (abfd, hdr->sh_info * sizeof (Elf_Internal_Verneed)));
if (elf_tdata (abfd)->verref == NULL)
goto error_return;
elf_tdata (abfd)->cverrefs = hdr->sh_info;
contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
if (contents == NULL)
goto error_return;
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|| bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
goto error_return;
everneed = (Elf_External_Verneed *) contents;
iverneed = elf_tdata (abfd)->verref;
for (i = 0; i < hdr->sh_info; i++, iverneed++)
{
Elf_External_Vernaux *evernaux;
Elf_Internal_Vernaux *ivernaux;
unsigned int j;
_bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
iverneed->vn_bfd = abfd;
iverneed->vn_filename =
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
iverneed->vn_file);
if (iverneed->vn_filename == NULL)
goto error_return;
iverneed->vn_auxptr =
((Elf_Internal_Vernaux *)
bfd_alloc (abfd,
iverneed->vn_cnt * sizeof (Elf_Internal_Vernaux)));
evernaux = ((Elf_External_Vernaux *)
((bfd_byte *) everneed + iverneed->vn_aux));
ivernaux = iverneed->vn_auxptr;
for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
{
_bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
ivernaux->vna_nodename =
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
ivernaux->vna_name);
if (ivernaux->vna_nodename == NULL)
goto error_return;
if (j + 1 < iverneed->vn_cnt)
ivernaux->vna_nextptr = ivernaux + 1;
else
ivernaux->vna_nextptr = NULL;
evernaux = ((Elf_External_Vernaux *)
((bfd_byte *) evernaux + ivernaux->vna_next));
}
if (i + 1 < hdr->sh_info)
iverneed->vn_nextref = iverneed + 1;
else
iverneed->vn_nextref = NULL;
everneed = ((Elf_External_Verneed *)
((bfd_byte *) everneed + iverneed->vn_next));
}
free (contents);
contents = NULL;
}
return true;
error_return:
if (contents == NULL)
free (contents);
return false;
}
asymbol *
_bfd_elf_make_empty_symbol (abfd)
bfd *abfd;
{
elf_symbol_type *newsym;
newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
if (!newsym)
return NULL;
else
{
newsym->symbol.the_bfd = abfd;
return &newsym->symbol;
}
}
void
_bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
bfd *ignore_abfd ATTRIBUTE_UNUSED;
asymbol *symbol;
symbol_info *ret;
{
bfd_symbol_info (symbol, ret);
}
/* Return whether a symbol name implies a local symbol. Most targets
use this function for the is_local_label_name entry point, but some
override it. */
boolean
_bfd_elf_is_local_label_name (abfd, name)
bfd *abfd ATTRIBUTE_UNUSED;
const char *name;
{
/* Normal local symbols start with ``.L''. */
if (name[0] == '.' && name[1] == 'L')
return true;
/* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
DWARF debugging symbols starting with ``..''. */
if (name[0] == '.' && name[1] == '.')
return true;
/* gcc will sometimes generate symbols beginning with ``_.L_'' when
emitting DWARF debugging output. I suspect this is actually a
small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
underscore to be emitted on some ELF targets). For ease of use,
we treat such symbols as local. */
if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
return true;
return false;
}
alent *
_bfd_elf_get_lineno (ignore_abfd, symbol)
bfd *ignore_abfd ATTRIBUTE_UNUSED;
asymbol *symbol ATTRIBUTE_UNUSED;
{
abort ();
return NULL;
}
boolean
_bfd_elf_set_arch_mach (abfd, arch, machine)
bfd *abfd;
enum bfd_architecture arch;
unsigned long machine;
{
/* If this isn't the right architecture for this backend, and this
isn't the generic backend, fail. */
if (arch != get_elf_backend_data (abfd)->arch
&& arch != bfd_arch_unknown
&& get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
return false;
return bfd_default_set_arch_mach (abfd, arch, machine);
}
/* Find the function to a particular section and offset,
for error reporting. */
static boolean
elf_find_function (abfd, section, symbols, offset,
filename_ptr, functionname_ptr)
bfd *abfd ATTRIBUTE_UNUSED;
asection *section;
asymbol **symbols;
bfd_vma offset;
const char **filename_ptr;
const char **functionname_ptr;
{
const char *filename;
asymbol *func;
bfd_vma low_func;
asymbol **p;
filename = NULL;
func = NULL;
low_func = 0;
for (p = symbols; *p != NULL; p++)
{
elf_symbol_type *q;
q = (elf_symbol_type *) *p;
if (bfd_get_section (&q->symbol) != section)
continue;
switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
{
default:
break;
case STT_FILE:
filename = bfd_asymbol_name (&q->symbol);
break;
case STT_NOTYPE:
case STT_FUNC:
if (q->symbol.section == section
&& q->symbol.value >= low_func
&& q->symbol.value <= offset)
{
func = (asymbol *) q;
low_func = q->symbol.value;
}
break;
}
}
if (func == NULL)
return false;
if (filename_ptr)
*filename_ptr = filename;
if (functionname_ptr)
*functionname_ptr = bfd_asymbol_name (func);
return true;
}
/* Find the nearest line to a particular section and offset,
for error reporting. */
boolean
_bfd_elf_find_nearest_line (abfd, section, symbols, offset,
filename_ptr, functionname_ptr, line_ptr)
bfd *abfd;
asection *section;
asymbol **symbols;
bfd_vma offset;
const char **filename_ptr;
const char **functionname_ptr;
unsigned int *line_ptr;
{
boolean found;
if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
filename_ptr, functionname_ptr,
line_ptr))
{
if (!*functionname_ptr)
elf_find_function (abfd, section, symbols, offset,
*filename_ptr ? NULL : filename_ptr,
functionname_ptr);
return true;
}
if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
filename_ptr, functionname_ptr,
line_ptr, 0,
&elf_tdata (abfd)->dwarf2_find_line_info))
{
if (!*functionname_ptr)
elf_find_function (abfd, section, symbols, offset,
*filename_ptr ? NULL : filename_ptr,
functionname_ptr);
return true;
}
if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
&found, filename_ptr,
functionname_ptr, line_ptr,
&elf_tdata (abfd)->line_info))
return false;
if (found)
return true;
if (symbols == NULL)
return false;
if (! elf_find_function (abfd, section, symbols, offset,
filename_ptr, functionname_ptr))
return false;
*line_ptr = 0;
return true;
}
int
_bfd_elf_sizeof_headers (abfd, reloc)
bfd *abfd;
boolean reloc;
{
int ret;
ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
if (! reloc)
ret += get_program_header_size (abfd);
return ret;
}
boolean
_bfd_elf_set_section_contents (abfd, section, location, offset, count)
bfd *abfd;
sec_ptr section;
PTR location;
file_ptr offset;
bfd_size_type count;
{
Elf_Internal_Shdr *hdr;
if (! abfd->output_has_begun
&& ! _bfd_elf_compute_section_file_positions
(abfd, (struct bfd_link_info *) NULL))
return false;
hdr = &elf_section_data (section)->this_hdr;
if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1)
return false;
if (bfd_write (location, 1, count, abfd) != count)
return false;
return true;
}
void
_bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *cache_ptr ATTRIBUTE_UNUSED;
Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
{
abort ();
}
#if 0
void
_bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
bfd *abfd;
arelent *cache_ptr;
Elf_Internal_Rel *dst;
{
abort ();
}
#endif
/* Try to convert a non-ELF reloc into an ELF one. */
boolean
_bfd_elf_validate_reloc (abfd, areloc)
bfd *abfd;
arelent *areloc;
{
/* Check whether we really have an ELF howto. */
if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
{
bfd_reloc_code_real_type code;
reloc_howto_type *howto;
/* Alien reloc: Try to determine its type to replace it with an
equivalent ELF reloc. */
if (areloc->howto->pc_relative)
{
switch (areloc->howto->bitsize)
{
case 8:
code = BFD_RELOC_8_PCREL;
break;
case 12:
code = BFD_RELOC_12_PCREL;
break;
case 16:
code = BFD_RELOC_16_PCREL;
break;
case 24:
code = BFD_RELOC_24_PCREL;
break;
case 32:
code = BFD_RELOC_32_PCREL;
break;
case 64:
code = BFD_RELOC_64_PCREL;
break;
default:
goto fail;
}
howto = bfd_reloc_type_lookup (abfd, code);
if (areloc->howto->pcrel_offset != howto->pcrel_offset)
{
if (howto->pcrel_offset)
areloc->addend += areloc->address;
else
areloc->addend -= areloc->address; /* addend is unsigned!! */
}
}
else
{
switch (areloc->howto->bitsize)
{
case 8:
code = BFD_RELOC_8;
break;
case 14:
code = BFD_RELOC_14;
break;
case 16:
code = BFD_RELOC_16;
break;
case 26:
code = BFD_RELOC_26;
break;
case 32:
code = BFD_RELOC_32;
break;
case 64:
code = BFD_RELOC_64;
break;
default:
goto fail;
}
howto = bfd_reloc_type_lookup (abfd, code);
}
if (howto)
areloc->howto = howto;
else
goto fail;
}
return true;
fail:
(*_bfd_error_handler)
(_("%s: unsupported relocation type %s"),
bfd_get_filename (abfd), areloc->howto->name);
bfd_set_error (bfd_error_bad_value);
return false;
}
boolean
_bfd_elf_close_and_cleanup (abfd)
bfd *abfd;
{
if (bfd_get_format (abfd) == bfd_object)
{
if (elf_shstrtab (abfd) != NULL)
_bfd_stringtab_free (elf_shstrtab (abfd));
}
return _bfd_generic_close_and_cleanup (abfd);
}
/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
in the relocation's offset. Thus we cannot allow any sort of sanity
range-checking to interfere. There is nothing else to do in processing
this reloc. */
bfd_reloc_status_type
_bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *re ATTRIBUTE_UNUSED;
struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
PTR data ATTRIBUTE_UNUSED;
asection *is ATTRIBUTE_UNUSED;
bfd *obfd ATTRIBUTE_UNUSED;
char **errmsg ATTRIBUTE_UNUSED;
{
return bfd_reloc_ok;
}
/* Elf core file support. Much of this only works on native
toolchains, since we rely on knowing the
machine-dependent procfs structure in order to pick
out details about the corefile. */
#ifdef HAVE_SYS_PROCFS_H
# include <sys/procfs.h>
#endif
/* FIXME: this is kinda wrong, but it's what gdb wants. */
static int
elfcore_make_pid (abfd)
bfd *abfd;
{
return ((elf_tdata (abfd)->core_lwpid << 16)
+ (elf_tdata (abfd)->core_pid));
}
/* If there isn't a section called NAME, make one, using
data from SECT. Note, this function will generate a
reference to NAME, so you shouldn't deallocate or
overwrite it. */
static boolean
elfcore_maybe_make_sect (abfd, name, sect)
bfd *abfd;
char *name;
asection *sect;
{
asection *sect2;
if (bfd_get_section_by_name (abfd, name) != NULL)
return true;
sect2 = bfd_make_section (abfd, name);
if (sect2 == NULL)
return false;
sect2->_raw_size = sect->_raw_size;
sect2->filepos = sect->filepos;
sect2->flags = sect->flags;
sect2->alignment_power = sect->alignment_power;
return true;
}
/* Create a pseudosection containing SIZE bytes at FILEPOS. This
actually creates up to two pseudosections:
- For the single-threaded case, a section named NAME, unless
such a section already exists.
- For the multi-threaded case, a section named "NAME/PID", where
PID is elfcore_make_pid (abfd).
Both pseudosections have identical contents. */
boolean
_bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
bfd *abfd;
char *name;
int size;
int filepos;
{
char buf[100];
char *threaded_name;
asection *sect;
/* Build the section name. */
sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
threaded_name = bfd_alloc (abfd, strlen (buf) + 1);
if (threaded_name == NULL)
return false;
strcpy (threaded_name, buf);
sect = bfd_make_section (abfd, threaded_name);
if (sect == NULL)
return false;
sect->_raw_size = size;
sect->filepos = filepos;
sect->flags = SEC_HAS_CONTENTS;
sect->alignment_power = 2;
return elfcore_maybe_make_sect (abfd, name, sect);
}
/* prstatus_t exists on:
solaris 2.5+
linux 2.[01] + glibc
unixware 4.2
*/
#if defined (HAVE_PRSTATUS_T)
static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
static boolean
elfcore_grok_prstatus (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
int raw_size;
int offset;
if (note->descsz == sizeof (prstatus_t))
{
prstatus_t prstat;
raw_size = sizeof (prstat.pr_reg);
offset = offsetof (prstatus_t, pr_reg);
memcpy (&prstat, note->descdata, sizeof (prstat));
elf_tdata (abfd)->core_signal = prstat.pr_cursig;
elf_tdata (abfd)->core_pid = prstat.pr_pid;
/* pr_who exists on:
solaris 2.5+
unixware 4.2
pr_who doesn't exist on:
linux 2.[01]
*/
#if defined (HAVE_PRSTATUS_T_PR_WHO)
elf_tdata (abfd)->core_lwpid = prstat.pr_who;
#endif
}
#if defined (HAVE_PRSTATUS32_T)
else if (note->descsz == sizeof (prstatus32_t))
{
/* 64-bit host, 32-bit corefile */
prstatus32_t prstat;
raw_size = sizeof (prstat.pr_reg);
offset = offsetof (prstatus32_t, pr_reg);
memcpy (&prstat, note->descdata, sizeof (prstat));
elf_tdata (abfd)->core_signal = prstat.pr_cursig;
elf_tdata (abfd)->core_pid = prstat.pr_pid;
/* pr_who exists on:
solaris 2.5+
unixware 4.2
pr_who doesn't exist on:
linux 2.[01]
*/
#if defined (HAVE_PRSTATUS32_T_PR_WHO)
elf_tdata (abfd)->core_lwpid = prstat.pr_who;
#endif
}
#endif /* HAVE_PRSTATUS32_T */
else
{
/* Fail - we don't know how to handle any other
note size (ie. data object type). */
return true;
}
/* Make a ".reg/999" section and a ".reg" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
raw_size, note->descpos + offset);
}
#endif /* defined (HAVE_PRSTATUS_T) */
/* Create a pseudosection containing the exact contents of NOTE. */
static boolean
elfcore_make_note_pseudosection (abfd, name, note)
bfd *abfd;
char *name;
Elf_Internal_Note *note;
{
return _bfd_elfcore_make_pseudosection (abfd, name,
note->descsz, note->descpos);
}
/* There isn't a consistent prfpregset_t across platforms,
but it doesn't matter, because we don't have to pick this
data structure apart. */
static boolean
elfcore_grok_prfpreg (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
return elfcore_make_note_pseudosection (abfd, ".reg2", note);
}
/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
type of 5 (NT_PRXFPREG). Just include the whole note's contents
literally. */
static boolean
elfcore_grok_prxfpreg (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
}
#if defined (HAVE_PRPSINFO_T)
typedef prpsinfo_t elfcore_psinfo_t;
#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
typedef prpsinfo32_t elfcore_psinfo32_t;
#endif
#endif
#if defined (HAVE_PSINFO_T)
typedef psinfo_t elfcore_psinfo_t;
#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
typedef psinfo32_t elfcore_psinfo32_t;
#endif
#endif
/* return a malloc'ed copy of a string at START which is at
most MAX bytes long, possibly without a terminating '\0'.
the copy will always have a terminating '\0'. */
char *
_bfd_elfcore_strndup (abfd, start, max)
bfd *abfd;
char *start;
int max;
{
char *dup;
char *end = memchr (start, '\0', max);
int len;
if (end == NULL)
len = max;
else
len = end - start;
dup = bfd_alloc (abfd, len + 1);
if (dup == NULL)
return NULL;
memcpy (dup, start, len);
dup[len] = '\0';
return dup;
}
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *));
static boolean
elfcore_grok_psinfo (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
if (note->descsz == sizeof (elfcore_psinfo_t))
{
elfcore_psinfo_t psinfo;
memcpy (&psinfo, note->descdata, sizeof (psinfo));
elf_tdata (abfd)->core_program
= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
sizeof (psinfo.pr_fname));
elf_tdata (abfd)->core_command
= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
sizeof (psinfo.pr_psargs));
}
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
else if (note->descsz == sizeof (elfcore_psinfo32_t))
{
/* 64-bit host, 32-bit corefile */
elfcore_psinfo32_t psinfo;
memcpy (&psinfo, note->descdata, sizeof (psinfo));
elf_tdata (abfd)->core_program
= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
sizeof (psinfo.pr_fname));
elf_tdata (abfd)->core_command
= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
sizeof (psinfo.pr_psargs));
}
#endif
else
{
/* Fail - we don't know how to handle any other
note size (ie. data object type). */
return true;
}
/* Note that for some reason, a spurious space is tacked
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core_command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return true;
}
#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
#if defined (HAVE_PSTATUS_T)
static boolean
elfcore_grok_pstatus (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
if (note->descsz == sizeof (pstatus_t)
#if defined (HAVE_PXSTATUS_T)
|| note->descsz == sizeof (pxstatus_t)
#endif
)
{
pstatus_t pstat;
memcpy (&pstat, note->descdata, sizeof (pstat));
elf_tdata (abfd)->core_pid = pstat.pr_pid;
}
#if defined (HAVE_PSTATUS32_T)
else if (note->descsz == sizeof (pstatus32_t))
{
/* 64-bit host, 32-bit corefile */
pstatus32_t pstat;
memcpy (&pstat, note->descdata, sizeof (pstat));
elf_tdata (abfd)->core_pid = pstat.pr_pid;
}
#endif
/* Could grab some more details from the "representative"
lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
NT_LWPSTATUS note, presumably. */
return true;
}
#endif /* defined (HAVE_PSTATUS_T) */
#if defined (HAVE_LWPSTATUS_T)
static boolean
elfcore_grok_lwpstatus (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
lwpstatus_t lwpstat;
char buf[100];
char *name;
asection *sect;
if (note->descsz != sizeof (lwpstat)
#if defined (HAVE_LWPXSTATUS_T)
&& note->descsz != sizeof (lwpxstatus_t)
#endif
)
return true;
memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
/* Make a ".reg/999" section. */
sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
name = bfd_alloc (abfd, strlen (buf) + 1);
if (name == NULL)
return false;
strcpy (name, buf);
sect = bfd_make_section (abfd, name);
if (sect == NULL)
return false;
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
sect->filepos = note->descpos
+ offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
#endif
#if defined (HAVE_LWPSTATUS_T_PR_REG)
sect->_raw_size = sizeof (lwpstat.pr_reg);
sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
#endif
sect->flags = SEC_HAS_CONTENTS;
sect->alignment_power = 2;
if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
return false;
/* Make a ".reg2/999" section */
sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
name = bfd_alloc (abfd, strlen (buf) + 1);
if (name == NULL)
return false;
strcpy (name, buf);
sect = bfd_make_section (abfd, name);
if (sect == NULL)
return false;
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
sect->filepos = note->descpos
+ offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
#endif
#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
sect->_raw_size = sizeof (lwpstat.pr_fpreg);
sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
#endif
sect->flags = SEC_HAS_CONTENTS;
sect->alignment_power = 2;
return elfcore_maybe_make_sect (abfd, ".reg2", sect);
}
#endif /* defined (HAVE_LWPSTATUS_T) */
#if defined (HAVE_WIN32_PSTATUS_T)
static boolean
elfcore_grok_win32pstatus (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
char buf[30];
char *name;
asection *sect;
win32_pstatus_t pstatus;
if (note->descsz < sizeof (pstatus))
return true;
memcpy (&pstatus, note->descdata, note->descsz);
switch (pstatus.data_type)
{
case NOTE_INFO_PROCESS:
/* FIXME: need to add ->core_command. */
elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
break;
case NOTE_INFO_THREAD:
/* Make a ".reg/999" section. */
sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
name = bfd_alloc (abfd, strlen (buf) + 1);
if (name == NULL)
return false;
strcpy (name, buf);
sect = bfd_make_section (abfd, name);
if (sect == NULL)
return false;
sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
sect->filepos = note->descpos + offsetof (struct win32_pstatus,
data.thread_info.thread_context);
sect->flags = SEC_HAS_CONTENTS;
sect->alignment_power = 2;
if (pstatus.data.thread_info.is_active_thread)
if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
return false;
break;
case NOTE_INFO_MODULE:
/* Make a ".module/xxxxxxxx" section. */
sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
name = bfd_alloc (abfd, strlen (buf) + 1);
if (name == NULL)
return false;
strcpy (name, buf);
sect = bfd_make_section (abfd, name);
if (sect == NULL)
return false;
sect->_raw_size = note->descsz;
sect->filepos = note->descpos;
sect->flags = SEC_HAS_CONTENTS;
sect->alignment_power = 2;
break;
default:
return true;
}
return true;
}
#endif /* HAVE_WIN32_PSTATUS_T */
static boolean
elfcore_grok_note (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
struct elf_backend_data *bed = get_elf_backend_data (abfd);
switch (note->type)
{
default:
return true;
case NT_PRSTATUS:
if (bed->elf_backend_grok_prstatus)
if ((*bed->elf_backend_grok_prstatus) (abfd, note))
return true;
#if defined (HAVE_PRSTATUS_T)
return elfcore_grok_prstatus (abfd, note);
#else
return true;
#endif
#if defined (HAVE_PSTATUS_T)
case NT_PSTATUS:
return elfcore_grok_pstatus (abfd, note);
#endif
#if defined (HAVE_LWPSTATUS_T)
case NT_LWPSTATUS:
return elfcore_grok_lwpstatus (abfd, note);
#endif
case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
return elfcore_grok_prfpreg (abfd, note);
#if defined (HAVE_WIN32_PSTATUS_T)
case NT_WIN32PSTATUS:
return elfcore_grok_win32pstatus (abfd, note);
#endif
case NT_PRXFPREG: /* Linux SSE extension */
if (note->namesz == 5
&& ! strcmp (note->namedata, "LINUX"))
return elfcore_grok_prxfpreg (abfd, note);
else
return true;
case NT_PRPSINFO:
case NT_PSINFO:
if (bed->elf_backend_grok_psinfo)
if ((*bed->elf_backend_grok_psinfo) (abfd, note))
return true;
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
return elfcore_grok_psinfo (abfd, note);
#else
return true;
#endif
}
}
static boolean
elfcore_read_notes (abfd, offset, size)
bfd *abfd;
bfd_vma offset;
bfd_vma size;
{
char *buf;
char *p;
if (size <= 0)
return true;
if (bfd_seek (abfd, offset, SEEK_SET) == -1)
return false;
buf = bfd_malloc ((size_t) size);
if (buf == NULL)
return false;
if (bfd_read (buf, size, 1, abfd) != size)
{
error:
free (buf);
return false;
}
p = buf;
while (p < buf + size)
{
/* FIXME: bad alignment assumption. */
Elf_External_Note *xnp = (Elf_External_Note *) p;
Elf_Internal_Note in;
in.type = bfd_h_get_32 (abfd, (bfd_byte *) xnp->type);
in.namesz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->namesz);
in.namedata = xnp->name;
in.descsz = bfd_h_get_32 (abfd, (bfd_byte *) xnp->descsz);
in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
in.descpos = offset + (in.descdata - buf);
if (! elfcore_grok_note (abfd, &in))
goto error;
p = in.descdata + BFD_ALIGN (in.descsz, 4);
}
free (buf);
return true;
}
/* Providing external access to the ELF program header table. */
/* Return an upper bound on the number of bytes required to store a
copy of ABFD's program header table entries. Return -1 if an error
occurs; bfd_get_error will return an appropriate code. */
long
bfd_get_elf_phdr_upper_bound (abfd)
bfd *abfd;
{
if (abfd->xvec->flavour != bfd_target_elf_flavour)
{
bfd_set_error (bfd_error_wrong_format);
return -1;
}
return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
}
/* Copy ABFD's program header table entries to *PHDRS. The entries
will be stored as an array of Elf_Internal_Phdr structures, as
defined in include/elf/internal.h. To find out how large the
buffer needs to be, call bfd_get_elf_phdr_upper_bound.
Return the number of program header table entries read, or -1 if an
error occurs; bfd_get_error will return an appropriate code. */
int
bfd_get_elf_phdrs (abfd, phdrs)
bfd *abfd;
void *phdrs;
{
int num_phdrs;
if (abfd->xvec->flavour != bfd_target_elf_flavour)
{
bfd_set_error (bfd_error_wrong_format);
return -1;
}
num_phdrs = elf_elfheader (abfd)->e_phnum;
memcpy (phdrs, elf_tdata (abfd)->phdr,
num_phdrs * sizeof (Elf_Internal_Phdr));
return num_phdrs;
}
void
_bfd_elf_sprintf_vma (abfd, buf, value)
bfd *abfd ATTRIBUTE_UNUSED;
char *buf;
bfd_vma value;
{
#ifdef BFD64
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
i_ehdrp = elf_elfheader (abfd);
if (i_ehdrp == NULL)
sprintf_vma (buf, value);
else
{
if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
{
#if BFD_HOST_64BIT_LONG
sprintf (buf, "%016lx", value);
#else
sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
_bfd_int64_low (value));
#endif
}
else
sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
}
#else
sprintf_vma (buf, value);
#endif
}
void
_bfd_elf_fprintf_vma (abfd, stream, value)
bfd *abfd ATTRIBUTE_UNUSED;
PTR stream;
bfd_vma value;
{
#ifdef BFD64
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
i_ehdrp = elf_elfheader (abfd);
if (i_ehdrp == NULL)
fprintf_vma ((FILE *) stream, value);
else
{
if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
{
#if BFD_HOST_64BIT_LONG
fprintf ((FILE *) stream, "%016lx", value);
#else
fprintf ((FILE *) stream, "%08lx%08lx",
_bfd_int64_high (value), _bfd_int64_low (value));
#endif
}
else
fprintf ((FILE *) stream, "%08lx",
(unsigned long) (value & 0xffffffff));
}
#else
fprintf_vma ((FILE *) stream, value);
#endif
}
enum elf_reloc_type_class
_bfd_elf_reloc_type_class (type)
int type;
{
return reloc_class_normal;
}