74f6756095
Doug Kwan <dougkwan@google.com> * resolve.cc (Symbol_table::should_override): When a weak dynamic defintion overrides non-weak undef, remember that the original undef is not weak. * symtab.cc (Symbol_table::sized_write_global): For undef without an original weak binding, set binding to global in output. * testsuite/Makefile.am: Add new test strong_ref_weak_def. * testsuite/Makefile.in: Regenerate. * testsuite/strong_ref_weak_def.sh: New file. * testsuite/strong_ref_weak_def_1.c: Ditto. * testsuite/strong_ref_weak_def_2.c: Ditto.
1026 lines
33 KiB
C++
1026 lines
33 KiB
C++
// resolve.cc -- symbol resolution for gold
|
|
|
|
// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
|
|
|
// This file is part of gold.
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
// MA 02110-1301, USA.
|
|
|
|
#include "gold.h"
|
|
|
|
#include "elfcpp.h"
|
|
#include "target.h"
|
|
#include "object.h"
|
|
#include "symtab.h"
|
|
#include "plugin.h"
|
|
|
|
namespace gold
|
|
{
|
|
|
|
// Symbol methods used in this file.
|
|
|
|
// This symbol is being overridden by another symbol whose version is
|
|
// VERSION. Update the VERSION_ field accordingly.
|
|
|
|
inline void
|
|
Symbol::override_version(const char* version)
|
|
{
|
|
if (version == NULL)
|
|
{
|
|
// This is the case where this symbol is NAME/VERSION, and the
|
|
// version was not marked as hidden. That makes it the default
|
|
// version, so we create NAME/NULL. Later we see another symbol
|
|
// NAME/NULL, and that symbol is overriding this one. In this
|
|
// case, since NAME/VERSION is the default, we make NAME/NULL
|
|
// override NAME/VERSION as well. They are already the same
|
|
// Symbol structure. Setting the VERSION_ field to NULL ensures
|
|
// that it will be output with the correct, empty, version.
|
|
this->version_ = version;
|
|
}
|
|
else
|
|
{
|
|
// This is the case where this symbol is NAME/VERSION_ONE, and
|
|
// now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
|
|
// overriding NAME. If VERSION_ONE and VERSION_TWO are
|
|
// different, then this can only happen when VERSION_ONE is NULL
|
|
// and VERSION_TWO is not hidden.
|
|
gold_assert(this->version_ == version || this->version_ == NULL);
|
|
this->version_ = version;
|
|
}
|
|
}
|
|
|
|
// This symbol is being overidden by another symbol whose visibility
|
|
// is VISIBILITY. Updated the VISIBILITY_ field accordingly.
|
|
|
|
inline void
|
|
Symbol::override_visibility(elfcpp::STV visibility)
|
|
{
|
|
// The rule for combining visibility is that we always choose the
|
|
// most constrained visibility. In order of increasing constraint,
|
|
// visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
|
|
// of the numeric values, so the effect is that we always want the
|
|
// smallest non-zero value.
|
|
if (visibility != elfcpp::STV_DEFAULT)
|
|
{
|
|
if (this->visibility_ == elfcpp::STV_DEFAULT)
|
|
this->visibility_ = visibility;
|
|
else if (this->visibility_ > visibility)
|
|
this->visibility_ = visibility;
|
|
}
|
|
}
|
|
|
|
// Override the fields in Symbol.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
|
|
unsigned int st_shndx, bool is_ordinary,
|
|
Object* object, const char* version)
|
|
{
|
|
gold_assert(this->source_ == FROM_OBJECT);
|
|
this->u_.from_object.object = object;
|
|
this->override_version(version);
|
|
this->u_.from_object.shndx = st_shndx;
|
|
this->is_ordinary_shndx_ = is_ordinary;
|
|
this->type_ = sym.get_st_type();
|
|
this->binding_ = sym.get_st_bind();
|
|
this->override_visibility(sym.get_st_visibility());
|
|
this->nonvis_ = sym.get_st_nonvis();
|
|
if (object->is_dynamic())
|
|
this->in_dyn_ = true;
|
|
else
|
|
this->in_reg_ = true;
|
|
}
|
|
|
|
// Override the fields in Sized_symbol.
|
|
|
|
template<int size>
|
|
template<bool big_endian>
|
|
void
|
|
Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
|
|
unsigned st_shndx, bool is_ordinary,
|
|
Object* object, const char* version)
|
|
{
|
|
this->override_base(sym, st_shndx, is_ordinary, object, version);
|
|
this->value_ = sym.get_st_value();
|
|
this->symsize_ = sym.get_st_size();
|
|
}
|
|
|
|
// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
|
|
// VERSION. This handles all aliases of TOSYM.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::override(Sized_symbol<size>* tosym,
|
|
const elfcpp::Sym<size, big_endian>& fromsym,
|
|
unsigned int st_shndx, bool is_ordinary,
|
|
Object* object, const char* version)
|
|
{
|
|
tosym->override(fromsym, st_shndx, is_ordinary, object, version);
|
|
if (tosym->has_alias())
|
|
{
|
|
Symbol* sym = this->weak_aliases_[tosym];
|
|
gold_assert(sym != NULL);
|
|
Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
|
|
do
|
|
{
|
|
ssym->override(fromsym, st_shndx, is_ordinary, object, version);
|
|
sym = this->weak_aliases_[ssym];
|
|
gold_assert(sym != NULL);
|
|
ssym = this->get_sized_symbol<size>(sym);
|
|
}
|
|
while (ssym != tosym);
|
|
}
|
|
}
|
|
|
|
// The resolve functions build a little code for each symbol.
|
|
// Bit 0: 0 for global, 1 for weak.
|
|
// Bit 1: 0 for regular object, 1 for shared object
|
|
// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
|
|
// This gives us values from 0 to 11.
|
|
|
|
static const int global_or_weak_shift = 0;
|
|
static const unsigned int global_flag = 0 << global_or_weak_shift;
|
|
static const unsigned int weak_flag = 1 << global_or_weak_shift;
|
|
|
|
static const int regular_or_dynamic_shift = 1;
|
|
static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
|
|
static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
|
|
|
|
static const int def_undef_or_common_shift = 2;
|
|
static const unsigned int def_flag = 0 << def_undef_or_common_shift;
|
|
static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
|
|
static const unsigned int common_flag = 2 << def_undef_or_common_shift;
|
|
|
|
// This convenience function combines all the flags based on facts
|
|
// about the symbol.
|
|
|
|
static unsigned int
|
|
symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
|
|
unsigned int shndx, bool is_ordinary, elfcpp::STT type)
|
|
{
|
|
unsigned int bits;
|
|
|
|
switch (binding)
|
|
{
|
|
case elfcpp::STB_GLOBAL:
|
|
case elfcpp::STB_GNU_UNIQUE:
|
|
bits = global_flag;
|
|
break;
|
|
|
|
case elfcpp::STB_WEAK:
|
|
bits = weak_flag;
|
|
break;
|
|
|
|
case elfcpp::STB_LOCAL:
|
|
// We should only see externally visible symbols in the symbol
|
|
// table.
|
|
gold_error(_("invalid STB_LOCAL symbol in external symbols"));
|
|
bits = global_flag;
|
|
|
|
default:
|
|
// Any target which wants to handle STB_LOOS, etc., needs to
|
|
// define a resolve method.
|
|
gold_error(_("unsupported symbol binding"));
|
|
bits = global_flag;
|
|
}
|
|
|
|
if (is_dynamic)
|
|
bits |= dynamic_flag;
|
|
else
|
|
bits |= regular_flag;
|
|
|
|
switch (shndx)
|
|
{
|
|
case elfcpp::SHN_UNDEF:
|
|
bits |= undef_flag;
|
|
break;
|
|
|
|
case elfcpp::SHN_COMMON:
|
|
if (!is_ordinary)
|
|
bits |= common_flag;
|
|
break;
|
|
|
|
default:
|
|
if (type == elfcpp::STT_COMMON)
|
|
bits |= common_flag;
|
|
else if (!is_ordinary && Symbol::is_common_shndx(shndx))
|
|
bits |= common_flag;
|
|
else
|
|
bits |= def_flag;
|
|
break;
|
|
}
|
|
|
|
return bits;
|
|
}
|
|
|
|
// Resolve a symbol. This is called the second and subsequent times
|
|
// we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
|
|
// section index for SYM, possibly adjusted for many sections.
|
|
// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
|
|
// than a special code. ORIG_ST_SHNDX is the original section index,
|
|
// before any munging because of discarded sections, except that all
|
|
// non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
|
|
// the version of SYM.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::resolve(Sized_symbol<size>* to,
|
|
const elfcpp::Sym<size, big_endian>& sym,
|
|
unsigned int st_shndx, bool is_ordinary,
|
|
unsigned int orig_st_shndx,
|
|
Object* object, const char* version)
|
|
{
|
|
if (parameters->target().has_resolve())
|
|
{
|
|
Sized_target<size, big_endian>* sized_target;
|
|
sized_target = parameters->sized_target<size, big_endian>();
|
|
sized_target->resolve(to, sym, object, version);
|
|
return;
|
|
}
|
|
|
|
if (!object->is_dynamic())
|
|
{
|
|
// Record that we've seen this symbol in a regular object.
|
|
to->set_in_reg();
|
|
}
|
|
else if (st_shndx == elfcpp::SHN_UNDEF
|
|
&& (to->visibility() == elfcpp::STV_HIDDEN
|
|
|| to->visibility() == elfcpp::STV_INTERNAL))
|
|
{
|
|
// A dynamic object cannot reference a hidden or internal symbol
|
|
// defined in another object.
|
|
gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
|
|
(to->visibility() == elfcpp::STV_HIDDEN
|
|
? "hidden"
|
|
: "internal"),
|
|
to->demangled_name().c_str(),
|
|
to->object()->name().c_str(),
|
|
object->name().c_str());
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
// Record that we've seen this symbol in a dynamic object.
|
|
to->set_in_dyn();
|
|
}
|
|
|
|
// Record if we've seen this symbol in a real ELF object (i.e., the
|
|
// symbol is referenced from outside the world known to the plugin).
|
|
if (object->pluginobj() == NULL)
|
|
to->set_in_real_elf();
|
|
|
|
// If we're processing replacement files, allow new symbols to override
|
|
// the placeholders from the plugin objects.
|
|
if (to->source() == Symbol::FROM_OBJECT)
|
|
{
|
|
Pluginobj* obj = to->object()->pluginobj();
|
|
if (obj != NULL
|
|
&& parameters->options().plugins()->in_replacement_phase())
|
|
{
|
|
this->override(to, sym, st_shndx, is_ordinary, object, version);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A new weak undefined reference, merging with an old weak
|
|
// reference, could be a One Definition Rule (ODR) violation --
|
|
// especially if the types or sizes of the references differ. We'll
|
|
// store such pairs and look them up later to make sure they
|
|
// actually refer to the same lines of code. We also check
|
|
// combinations of weak and strong, which might occur if one case is
|
|
// inline and the other is not. (Note: not all ODR violations can
|
|
// be found this way, and not everything this finds is an ODR
|
|
// violation. But it's helpful to warn about.)
|
|
bool to_is_ordinary;
|
|
if (parameters->options().detect_odr_violations()
|
|
&& (sym.get_st_bind() == elfcpp::STB_WEAK
|
|
|| to->binding() == elfcpp::STB_WEAK)
|
|
&& orig_st_shndx != elfcpp::SHN_UNDEF
|
|
&& to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
|
|
&& to_is_ordinary
|
|
&& sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
|
|
&& to->symsize() != 0
|
|
&& (sym.get_st_type() != to->type()
|
|
|| sym.get_st_size() != to->symsize())
|
|
// C does not have a concept of ODR, so we only need to do this
|
|
// on C++ symbols. These have (mangled) names starting with _Z.
|
|
&& to->name()[0] == '_' && to->name()[1] == 'Z')
|
|
{
|
|
Symbol_location fromloc
|
|
= { object, orig_st_shndx, sym.get_st_value() };
|
|
Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
|
|
to->value() };
|
|
this->candidate_odr_violations_[to->name()].insert(fromloc);
|
|
this->candidate_odr_violations_[to->name()].insert(toloc);
|
|
}
|
|
|
|
unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
|
|
object->is_dynamic(),
|
|
st_shndx, is_ordinary,
|
|
sym.get_st_type());
|
|
|
|
bool adjust_common_sizes;
|
|
bool adjust_dyndef;
|
|
typename Sized_symbol<size>::Size_type tosize = to->symsize();
|
|
if (Symbol_table::should_override(to, frombits, OBJECT, object,
|
|
&adjust_common_sizes,
|
|
&adjust_dyndef))
|
|
{
|
|
elfcpp::STB tobinding = to->binding();
|
|
this->override(to, sym, st_shndx, is_ordinary, object, version);
|
|
if (adjust_common_sizes && tosize > to->symsize())
|
|
to->set_symsize(tosize);
|
|
if (adjust_dyndef)
|
|
{
|
|
// We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
|
|
// Remember which kind of UNDEF it was for future reference.
|
|
to->set_undef_binding(tobinding);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (adjust_common_sizes && sym.get_st_size() > tosize)
|
|
to->set_symsize(sym.get_st_size());
|
|
if (adjust_dyndef)
|
|
{
|
|
// We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
|
|
// Remember which kind of UNDEF it was.
|
|
to->set_undef_binding(sym.get_st_bind());
|
|
}
|
|
// The ELF ABI says that even for a reference to a symbol we
|
|
// merge the visibility.
|
|
to->override_visibility(sym.get_st_visibility());
|
|
}
|
|
|
|
if (adjust_common_sizes && parameters->options().warn_common())
|
|
{
|
|
if (tosize > sym.get_st_size())
|
|
Symbol_table::report_resolve_problem(false,
|
|
_("common of '%s' overriding "
|
|
"smaller common"),
|
|
to, OBJECT, object);
|
|
else if (tosize < sym.get_st_size())
|
|
Symbol_table::report_resolve_problem(false,
|
|
_("common of '%s' overidden by "
|
|
"larger common"),
|
|
to, OBJECT, object);
|
|
else
|
|
Symbol_table::report_resolve_problem(false,
|
|
_("multiple common of '%s'"),
|
|
to, OBJECT, object);
|
|
}
|
|
}
|
|
|
|
// Handle the core of symbol resolution. This is called with the
|
|
// existing symbol, TO, and a bitflag describing the new symbol. This
|
|
// returns true if we should override the existing symbol with the new
|
|
// one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
|
|
// true if we should set the symbol size to the maximum of the TO and
|
|
// FROM sizes. It handles error conditions.
|
|
|
|
bool
|
|
Symbol_table::should_override(const Symbol* to, unsigned int frombits,
|
|
Defined defined, Object* object,
|
|
bool* adjust_common_sizes,
|
|
bool* adjust_dyndef)
|
|
{
|
|
*adjust_common_sizes = false;
|
|
*adjust_dyndef = false;
|
|
|
|
unsigned int tobits;
|
|
if (to->source() == Symbol::IS_UNDEFINED)
|
|
tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
|
|
to->type());
|
|
else if (to->source() != Symbol::FROM_OBJECT)
|
|
tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
|
|
to->type());
|
|
else
|
|
{
|
|
bool is_ordinary;
|
|
unsigned int shndx = to->shndx(&is_ordinary);
|
|
tobits = symbol_to_bits(to->binding(),
|
|
to->object()->is_dynamic(),
|
|
shndx,
|
|
is_ordinary,
|
|
to->type());
|
|
}
|
|
|
|
// FIXME: Warn if either but not both of TO and SYM are STT_TLS.
|
|
|
|
// We use a giant switch table for symbol resolution. This code is
|
|
// unwieldy, but: 1) it is efficient; 2) we definitely handle all
|
|
// cases; 3) it is easy to change the handling of a particular case.
|
|
// The alternative would be a series of conditionals, but it is easy
|
|
// to get the ordering wrong. This could also be done as a table,
|
|
// but that is no easier to understand than this large switch
|
|
// statement.
|
|
|
|
// These are the values generated by the bit codes.
|
|
enum
|
|
{
|
|
DEF = global_flag | regular_flag | def_flag,
|
|
WEAK_DEF = weak_flag | regular_flag | def_flag,
|
|
DYN_DEF = global_flag | dynamic_flag | def_flag,
|
|
DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
|
|
UNDEF = global_flag | regular_flag | undef_flag,
|
|
WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
|
|
DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
|
|
DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
|
|
COMMON = global_flag | regular_flag | common_flag,
|
|
WEAK_COMMON = weak_flag | regular_flag | common_flag,
|
|
DYN_COMMON = global_flag | dynamic_flag | common_flag,
|
|
DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
|
|
};
|
|
|
|
switch (tobits * 16 + frombits)
|
|
{
|
|
case DEF * 16 + DEF:
|
|
// Two definitions of the same symbol.
|
|
|
|
// If either symbol is defined by an object included using
|
|
// --just-symbols, then don't warn. This is for compatibility
|
|
// with the GNU linker. FIXME: This is a hack.
|
|
if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
|
|
|| (object != NULL && object->just_symbols()))
|
|
return false;
|
|
|
|
if (!parameters->options().muldefs())
|
|
Symbol_table::report_resolve_problem(true,
|
|
_("multiple definition of '%s'"),
|
|
to, defined, object);
|
|
return false;
|
|
|
|
case WEAK_DEF * 16 + DEF:
|
|
// We've seen a weak definition, and now we see a strong
|
|
// definition. In the original SVR4 linker, this was treated as
|
|
// a multiple definition error. In the Solaris linker and the
|
|
// GNU linker, a weak definition followed by a regular
|
|
// definition causes the weak definition to be overridden. We
|
|
// are currently compatible with the GNU linker. In the future
|
|
// we should add a target specific option to change this.
|
|
// FIXME.
|
|
return true;
|
|
|
|
case DYN_DEF * 16 + DEF:
|
|
case DYN_WEAK_DEF * 16 + DEF:
|
|
// We've seen a definition in a dynamic object, and now we see a
|
|
// definition in a regular object. The definition in the
|
|
// regular object overrides the definition in the dynamic
|
|
// object.
|
|
return true;
|
|
|
|
case UNDEF * 16 + DEF:
|
|
case WEAK_UNDEF * 16 + DEF:
|
|
case DYN_UNDEF * 16 + DEF:
|
|
case DYN_WEAK_UNDEF * 16 + DEF:
|
|
// We've seen an undefined reference, and now we see a
|
|
// definition. We use the definition.
|
|
return true;
|
|
|
|
case COMMON * 16 + DEF:
|
|
case WEAK_COMMON * 16 + DEF:
|
|
case DYN_COMMON * 16 + DEF:
|
|
case DYN_WEAK_COMMON * 16 + DEF:
|
|
// We've seen a common symbol and now we see a definition. The
|
|
// definition overrides.
|
|
if (parameters->options().warn_common())
|
|
Symbol_table::report_resolve_problem(false,
|
|
_("definition of '%s' overriding "
|
|
"common"),
|
|
to, defined, object);
|
|
return true;
|
|
|
|
case DEF * 16 + WEAK_DEF:
|
|
case WEAK_DEF * 16 + WEAK_DEF:
|
|
// We've seen a definition and now we see a weak definition. We
|
|
// ignore the new weak definition.
|
|
return false;
|
|
|
|
case DYN_DEF * 16 + WEAK_DEF:
|
|
case DYN_WEAK_DEF * 16 + WEAK_DEF:
|
|
// We've seen a dynamic definition and now we see a regular weak
|
|
// definition. The regular weak definition overrides.
|
|
return true;
|
|
|
|
case UNDEF * 16 + WEAK_DEF:
|
|
case WEAK_UNDEF * 16 + WEAK_DEF:
|
|
case DYN_UNDEF * 16 + WEAK_DEF:
|
|
case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
|
|
// A weak definition of a currently undefined symbol.
|
|
return true;
|
|
|
|
case COMMON * 16 + WEAK_DEF:
|
|
case WEAK_COMMON * 16 + WEAK_DEF:
|
|
// A weak definition does not override a common definition.
|
|
return false;
|
|
|
|
case DYN_COMMON * 16 + WEAK_DEF:
|
|
case DYN_WEAK_COMMON * 16 + WEAK_DEF:
|
|
// A weak definition does override a definition in a dynamic
|
|
// object.
|
|
if (parameters->options().warn_common())
|
|
Symbol_table::report_resolve_problem(false,
|
|
_("definition of '%s' overriding "
|
|
"dynamic common definition"),
|
|
to, defined, object);
|
|
return true;
|
|
|
|
case DEF * 16 + DYN_DEF:
|
|
case WEAK_DEF * 16 + DYN_DEF:
|
|
case DYN_DEF * 16 + DYN_DEF:
|
|
case DYN_WEAK_DEF * 16 + DYN_DEF:
|
|
// Ignore a dynamic definition if we already have a definition.
|
|
return false;
|
|
|
|
case UNDEF * 16 + DYN_DEF:
|
|
case DYN_UNDEF * 16 + DYN_DEF:
|
|
case DYN_WEAK_UNDEF * 16 + DYN_DEF:
|
|
// Use a dynamic definition if we have a reference.
|
|
return true;
|
|
|
|
case WEAK_UNDEF * 16 + DYN_DEF:
|
|
// When overriding a weak undef by a dynamic definition,
|
|
// we need to remember that the original undef was weak.
|
|
*adjust_dyndef = true;
|
|
return true;
|
|
|
|
case COMMON * 16 + DYN_DEF:
|
|
case WEAK_COMMON * 16 + DYN_DEF:
|
|
case DYN_COMMON * 16 + DYN_DEF:
|
|
case DYN_WEAK_COMMON * 16 + DYN_DEF:
|
|
// Ignore a dynamic definition if we already have a common
|
|
// definition.
|
|
return false;
|
|
|
|
case DEF * 16 + DYN_WEAK_DEF:
|
|
case WEAK_DEF * 16 + DYN_WEAK_DEF:
|
|
case DYN_DEF * 16 + DYN_WEAK_DEF:
|
|
case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
|
|
// Ignore a weak dynamic definition if we already have a
|
|
// definition.
|
|
return false;
|
|
|
|
case UNDEF * 16 + DYN_WEAK_DEF:
|
|
// When overriding an undef by a dynamic weak definition,
|
|
// we need to remember that the original undef was not weak.
|
|
*adjust_dyndef = true;
|
|
return true;
|
|
|
|
case DYN_UNDEF * 16 + DYN_WEAK_DEF:
|
|
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
|
|
// Use a weak dynamic definition if we have a reference.
|
|
return true;
|
|
|
|
case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
|
|
// When overriding a weak undef by a dynamic definition,
|
|
// we need to remember that the original undef was weak.
|
|
*adjust_dyndef = true;
|
|
return true;
|
|
|
|
case COMMON * 16 + DYN_WEAK_DEF:
|
|
case WEAK_COMMON * 16 + DYN_WEAK_DEF:
|
|
case DYN_COMMON * 16 + DYN_WEAK_DEF:
|
|
case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
|
|
// Ignore a weak dynamic definition if we already have a common
|
|
// definition.
|
|
return false;
|
|
|
|
case DEF * 16 + UNDEF:
|
|
case WEAK_DEF * 16 + UNDEF:
|
|
case UNDEF * 16 + UNDEF:
|
|
// A new undefined reference tells us nothing.
|
|
return false;
|
|
|
|
case DYN_DEF * 16 + UNDEF:
|
|
case DYN_WEAK_DEF * 16 + UNDEF:
|
|
// For a dynamic def, we need to remember which kind of undef we see.
|
|
*adjust_dyndef = true;
|
|
return false;
|
|
|
|
case WEAK_UNDEF * 16 + UNDEF:
|
|
case DYN_UNDEF * 16 + UNDEF:
|
|
case DYN_WEAK_UNDEF * 16 + UNDEF:
|
|
// A strong undef overrides a dynamic or weak undef.
|
|
return true;
|
|
|
|
case COMMON * 16 + UNDEF:
|
|
case WEAK_COMMON * 16 + UNDEF:
|
|
case DYN_COMMON * 16 + UNDEF:
|
|
case DYN_WEAK_COMMON * 16 + UNDEF:
|
|
// A new undefined reference tells us nothing.
|
|
return false;
|
|
|
|
case DEF * 16 + WEAK_UNDEF:
|
|
case WEAK_DEF * 16 + WEAK_UNDEF:
|
|
case UNDEF * 16 + WEAK_UNDEF:
|
|
case WEAK_UNDEF * 16 + WEAK_UNDEF:
|
|
case DYN_UNDEF * 16 + WEAK_UNDEF:
|
|
case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
|
|
case COMMON * 16 + WEAK_UNDEF:
|
|
case WEAK_COMMON * 16 + WEAK_UNDEF:
|
|
case DYN_COMMON * 16 + WEAK_UNDEF:
|
|
case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
|
|
// A new weak undefined reference tells us nothing.
|
|
return false;
|
|
|
|
case DYN_DEF * 16 + WEAK_UNDEF:
|
|
case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
|
|
// For a dynamic def, we need to remember which kind of undef we see.
|
|
*adjust_dyndef = true;
|
|
return false;
|
|
|
|
case DEF * 16 + DYN_UNDEF:
|
|
case WEAK_DEF * 16 + DYN_UNDEF:
|
|
case DYN_DEF * 16 + DYN_UNDEF:
|
|
case DYN_WEAK_DEF * 16 + DYN_UNDEF:
|
|
case UNDEF * 16 + DYN_UNDEF:
|
|
case WEAK_UNDEF * 16 + DYN_UNDEF:
|
|
case DYN_UNDEF * 16 + DYN_UNDEF:
|
|
case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
|
|
case COMMON * 16 + DYN_UNDEF:
|
|
case WEAK_COMMON * 16 + DYN_UNDEF:
|
|
case DYN_COMMON * 16 + DYN_UNDEF:
|
|
case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
|
|
// A new dynamic undefined reference tells us nothing.
|
|
return false;
|
|
|
|
case DEF * 16 + DYN_WEAK_UNDEF:
|
|
case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
|
|
case DYN_DEF * 16 + DYN_WEAK_UNDEF:
|
|
case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
|
|
case UNDEF * 16 + DYN_WEAK_UNDEF:
|
|
case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
|
|
case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
|
|
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
|
|
case COMMON * 16 + DYN_WEAK_UNDEF:
|
|
case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
|
|
case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
|
|
case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
|
|
// A new weak dynamic undefined reference tells us nothing.
|
|
return false;
|
|
|
|
case DEF * 16 + COMMON:
|
|
// A common symbol does not override a definition.
|
|
if (parameters->options().warn_common())
|
|
Symbol_table::report_resolve_problem(false,
|
|
_("common '%s' overridden by "
|
|
"previous definition"),
|
|
to, defined, object);
|
|
return false;
|
|
|
|
case WEAK_DEF * 16 + COMMON:
|
|
case DYN_DEF * 16 + COMMON:
|
|
case DYN_WEAK_DEF * 16 + COMMON:
|
|
// A common symbol does override a weak definition or a dynamic
|
|
// definition.
|
|
return true;
|
|
|
|
case UNDEF * 16 + COMMON:
|
|
case WEAK_UNDEF * 16 + COMMON:
|
|
case DYN_UNDEF * 16 + COMMON:
|
|
case DYN_WEAK_UNDEF * 16 + COMMON:
|
|
// A common symbol is a definition for a reference.
|
|
return true;
|
|
|
|
case COMMON * 16 + COMMON:
|
|
// Set the size to the maximum.
|
|
*adjust_common_sizes = true;
|
|
return false;
|
|
|
|
case WEAK_COMMON * 16 + COMMON:
|
|
// I'm not sure just what a weak common symbol means, but
|
|
// presumably it can be overridden by a regular common symbol.
|
|
return true;
|
|
|
|
case DYN_COMMON * 16 + COMMON:
|
|
case DYN_WEAK_COMMON * 16 + COMMON:
|
|
// Use the real common symbol, but adjust the size if necessary.
|
|
*adjust_common_sizes = true;
|
|
return true;
|
|
|
|
case DEF * 16 + WEAK_COMMON:
|
|
case WEAK_DEF * 16 + WEAK_COMMON:
|
|
case DYN_DEF * 16 + WEAK_COMMON:
|
|
case DYN_WEAK_DEF * 16 + WEAK_COMMON:
|
|
// Whatever a weak common symbol is, it won't override a
|
|
// definition.
|
|
return false;
|
|
|
|
case UNDEF * 16 + WEAK_COMMON:
|
|
case WEAK_UNDEF * 16 + WEAK_COMMON:
|
|
case DYN_UNDEF * 16 + WEAK_COMMON:
|
|
case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
|
|
// A weak common symbol is better than an undefined symbol.
|
|
return true;
|
|
|
|
case COMMON * 16 + WEAK_COMMON:
|
|
case WEAK_COMMON * 16 + WEAK_COMMON:
|
|
case DYN_COMMON * 16 + WEAK_COMMON:
|
|
case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
|
|
// Ignore a weak common symbol in the presence of a real common
|
|
// symbol.
|
|
return false;
|
|
|
|
case DEF * 16 + DYN_COMMON:
|
|
case WEAK_DEF * 16 + DYN_COMMON:
|
|
case DYN_DEF * 16 + DYN_COMMON:
|
|
case DYN_WEAK_DEF * 16 + DYN_COMMON:
|
|
// Ignore a dynamic common symbol in the presence of a
|
|
// definition.
|
|
return false;
|
|
|
|
case UNDEF * 16 + DYN_COMMON:
|
|
case WEAK_UNDEF * 16 + DYN_COMMON:
|
|
case DYN_UNDEF * 16 + DYN_COMMON:
|
|
case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
|
|
// A dynamic common symbol is a definition of sorts.
|
|
return true;
|
|
|
|
case COMMON * 16 + DYN_COMMON:
|
|
case WEAK_COMMON * 16 + DYN_COMMON:
|
|
case DYN_COMMON * 16 + DYN_COMMON:
|
|
case DYN_WEAK_COMMON * 16 + DYN_COMMON:
|
|
// Set the size to the maximum.
|
|
*adjust_common_sizes = true;
|
|
return false;
|
|
|
|
case DEF * 16 + DYN_WEAK_COMMON:
|
|
case WEAK_DEF * 16 + DYN_WEAK_COMMON:
|
|
case DYN_DEF * 16 + DYN_WEAK_COMMON:
|
|
case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
|
|
// A common symbol is ignored in the face of a definition.
|
|
return false;
|
|
|
|
case UNDEF * 16 + DYN_WEAK_COMMON:
|
|
case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
|
|
case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
|
|
case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
|
|
// I guess a weak common symbol is better than a definition.
|
|
return true;
|
|
|
|
case COMMON * 16 + DYN_WEAK_COMMON:
|
|
case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
|
|
case DYN_COMMON * 16 + DYN_WEAK_COMMON:
|
|
case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
|
|
// Set the size to the maximum.
|
|
*adjust_common_sizes = true;
|
|
return false;
|
|
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// Issue an error or warning due to symbol resolution. IS_ERROR
|
|
// indicates an error rather than a warning. MSG is the error
|
|
// message; it is expected to have a %s for the symbol name. TO is
|
|
// the existing symbol. DEFINED/OBJECT is where the new symbol was
|
|
// found.
|
|
|
|
// FIXME: We should have better location information here. When the
|
|
// symbol is defined, we should be able to pull the location from the
|
|
// debug info if there is any.
|
|
|
|
void
|
|
Symbol_table::report_resolve_problem(bool is_error, const char* msg,
|
|
const Symbol* to, Defined defined,
|
|
Object* object)
|
|
{
|
|
std::string demangled(to->demangled_name());
|
|
size_t len = strlen(msg) + demangled.length() + 10;
|
|
char* buf = new char[len];
|
|
snprintf(buf, len, msg, demangled.c_str());
|
|
|
|
const char* objname;
|
|
switch (defined)
|
|
{
|
|
case OBJECT:
|
|
objname = object->name().c_str();
|
|
break;
|
|
case COPY:
|
|
objname = _("COPY reloc");
|
|
break;
|
|
case DEFSYM:
|
|
case UNDEFINED:
|
|
objname = _("command line");
|
|
break;
|
|
case SCRIPT:
|
|
objname = _("linker script");
|
|
break;
|
|
case PREDEFINED:
|
|
objname = _("linker defined");
|
|
break;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
if (is_error)
|
|
gold_error("%s: %s", objname, buf);
|
|
else
|
|
gold_warning("%s: %s", objname, buf);
|
|
|
|
delete[] buf;
|
|
|
|
if (to->source() == Symbol::FROM_OBJECT)
|
|
objname = to->object()->name().c_str();
|
|
else
|
|
objname = _("command line");
|
|
gold_info("%s: %s: previous definition here", program_name, objname);
|
|
}
|
|
|
|
// A special case of should_override which is only called for a strong
|
|
// defined symbol from a regular object file. This is used when
|
|
// defining special symbols.
|
|
|
|
bool
|
|
Symbol_table::should_override_with_special(const Symbol* to, Defined defined)
|
|
{
|
|
bool adjust_common_sizes;
|
|
bool adjust_dyn_def;
|
|
unsigned int frombits = global_flag | regular_flag | def_flag;
|
|
bool ret = Symbol_table::should_override(to, frombits, defined, NULL,
|
|
&adjust_common_sizes,
|
|
&adjust_dyn_def);
|
|
gold_assert(!adjust_common_sizes && !adjust_dyn_def);
|
|
return ret;
|
|
}
|
|
|
|
// Override symbol base with a special symbol.
|
|
|
|
void
|
|
Symbol::override_base_with_special(const Symbol* from)
|
|
{
|
|
gold_assert(this->name_ == from->name_ || this->has_alias());
|
|
|
|
this->source_ = from->source_;
|
|
switch (from->source_)
|
|
{
|
|
case FROM_OBJECT:
|
|
this->u_.from_object = from->u_.from_object;
|
|
break;
|
|
case IN_OUTPUT_DATA:
|
|
this->u_.in_output_data = from->u_.in_output_data;
|
|
break;
|
|
case IN_OUTPUT_SEGMENT:
|
|
this->u_.in_output_segment = from->u_.in_output_segment;
|
|
break;
|
|
case IS_CONSTANT:
|
|
case IS_UNDEFINED:
|
|
break;
|
|
default:
|
|
gold_unreachable();
|
|
break;
|
|
}
|
|
|
|
this->override_version(from->version_);
|
|
this->type_ = from->type_;
|
|
this->binding_ = from->binding_;
|
|
this->override_visibility(from->visibility_);
|
|
this->nonvis_ = from->nonvis_;
|
|
|
|
// Special symbols are always considered to be regular symbols.
|
|
this->in_reg_ = true;
|
|
|
|
if (from->needs_dynsym_entry_)
|
|
this->needs_dynsym_entry_ = true;
|
|
if (from->needs_dynsym_value_)
|
|
this->needs_dynsym_value_ = true;
|
|
|
|
// We shouldn't see these flags. If we do, we need to handle them
|
|
// somehow.
|
|
gold_assert(!from->is_forwarder_);
|
|
gold_assert(!from->has_plt_offset());
|
|
gold_assert(!from->has_warning_);
|
|
gold_assert(!from->is_copied_from_dynobj_);
|
|
gold_assert(!from->is_forced_local_);
|
|
}
|
|
|
|
// Override a symbol with a special symbol.
|
|
|
|
template<int size>
|
|
void
|
|
Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
|
|
{
|
|
this->override_base_with_special(from);
|
|
this->value_ = from->value_;
|
|
this->symsize_ = from->symsize_;
|
|
}
|
|
|
|
// Override TOSYM with the special symbol FROMSYM. This handles all
|
|
// aliases of TOSYM.
|
|
|
|
template<int size>
|
|
void
|
|
Symbol_table::override_with_special(Sized_symbol<size>* tosym,
|
|
const Sized_symbol<size>* fromsym)
|
|
{
|
|
tosym->override_with_special(fromsym);
|
|
if (tosym->has_alias())
|
|
{
|
|
Symbol* sym = this->weak_aliases_[tosym];
|
|
gold_assert(sym != NULL);
|
|
Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
|
|
do
|
|
{
|
|
ssym->override_with_special(fromsym);
|
|
sym = this->weak_aliases_[ssym];
|
|
gold_assert(sym != NULL);
|
|
ssym = this->get_sized_symbol<size>(sym);
|
|
}
|
|
while (ssym != tosym);
|
|
}
|
|
if (tosym->binding() == elfcpp::STB_LOCAL
|
|
|| ((tosym->visibility() == elfcpp::STV_HIDDEN
|
|
|| tosym->visibility() == elfcpp::STV_INTERNAL)
|
|
&& (tosym->binding() == elfcpp::STB_GLOBAL
|
|
|| tosym->binding() == elfcpp::STB_GNU_UNIQUE
|
|
|| tosym->binding() == elfcpp::STB_WEAK)
|
|
&& !parameters->options().relocatable()))
|
|
this->force_local(tosym);
|
|
}
|
|
|
|
// Instantiate the templates we need. We could use the configure
|
|
// script to restrict this to only the ones needed for implemented
|
|
// targets.
|
|
|
|
// We have to instantiate both big and little endian versions because
|
|
// these are used by other templates that depends on size only.
|
|
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
template
|
|
void
|
|
Symbol_table::resolve<32, false>(
|
|
Sized_symbol<32>* to,
|
|
const elfcpp::Sym<32, false>& sym,
|
|
unsigned int st_shndx,
|
|
bool is_ordinary,
|
|
unsigned int orig_st_shndx,
|
|
Object* object,
|
|
const char* version);
|
|
|
|
template
|
|
void
|
|
Symbol_table::resolve<32, true>(
|
|
Sized_symbol<32>* to,
|
|
const elfcpp::Sym<32, true>& sym,
|
|
unsigned int st_shndx,
|
|
bool is_ordinary,
|
|
unsigned int orig_st_shndx,
|
|
Object* object,
|
|
const char* version);
|
|
#endif
|
|
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
template
|
|
void
|
|
Symbol_table::resolve<64, false>(
|
|
Sized_symbol<64>* to,
|
|
const elfcpp::Sym<64, false>& sym,
|
|
unsigned int st_shndx,
|
|
bool is_ordinary,
|
|
unsigned int orig_st_shndx,
|
|
Object* object,
|
|
const char* version);
|
|
|
|
template
|
|
void
|
|
Symbol_table::resolve<64, true>(
|
|
Sized_symbol<64>* to,
|
|
const elfcpp::Sym<64, true>& sym,
|
|
unsigned int st_shndx,
|
|
bool is_ordinary,
|
|
unsigned int orig_st_shndx,
|
|
Object* object,
|
|
const char* version);
|
|
#endif
|
|
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
template
|
|
void
|
|
Symbol_table::override_with_special<32>(Sized_symbol<32>*,
|
|
const Sized_symbol<32>*);
|
|
#endif
|
|
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
template
|
|
void
|
|
Symbol_table::override_with_special<64>(Sized_symbol<64>*,
|
|
const Sized_symbol<64>*);
|
|
#endif
|
|
|
|
} // End namespace gold.
|