54cfded08e
* config/tc-i386.c (tc_x86_cfi_init): New function. * config/tc-i386.h (TARGET_USE_CFIPOP, tc_cfi_init): New defines. * as.c (parse_args): Set verbose flag on --verbose. (main): Call tc_cfi_init()/cfi_finish(). * as.h (verbose): New external variable. * read.c (pobegin): Insert CFI pops to the list. * symbols.c (local_symbol_make): Make symbol external. * symbols.h (local_symbol_make): New prototype. * Makefile.am: Add dw2gencfi.[ch] files. Run "make dep-am". * Makefile.in: Regenerate. * doc/as.texinfo: Added node "CFI directives" with description of all implemented .cfi_* directives. * doc/Makefile.in: Regenerate. * po/POTFILES.in: Regenerate.
6384 lines
165 KiB
C
6384 lines
165 KiB
C
/* i386.c -- Assemble code for the Intel 80386
|
||
Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* Intel 80386 machine specific gas.
|
||
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
|
||
x86_64 support by Jan Hubicka (jh@suse.cz)
|
||
Bugs & suggestions are completely welcome. This is free software.
|
||
Please help us make it better. */
|
||
|
||
#include "as.h"
|
||
#include "safe-ctype.h"
|
||
#include "subsegs.h"
|
||
#include "dwarf2dbg.h"
|
||
#include "dw2gencfi.h"
|
||
#include "opcode/i386.h"
|
||
|
||
#ifndef REGISTER_WARNINGS
|
||
#define REGISTER_WARNINGS 1
|
||
#endif
|
||
|
||
#ifndef INFER_ADDR_PREFIX
|
||
#define INFER_ADDR_PREFIX 1
|
||
#endif
|
||
|
||
#ifndef SCALE1_WHEN_NO_INDEX
|
||
/* Specifying a scale factor besides 1 when there is no index is
|
||
futile. eg. `mov (%ebx,2),%al' does exactly the same as
|
||
`mov (%ebx),%al'. To slavishly follow what the programmer
|
||
specified, set SCALE1_WHEN_NO_INDEX to 0. */
|
||
#define SCALE1_WHEN_NO_INDEX 1
|
||
#endif
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
#define RELOC_ENUM enum bfd_reloc_code_real
|
||
#else
|
||
#define RELOC_ENUM int
|
||
#endif
|
||
|
||
#ifndef DEFAULT_ARCH
|
||
#define DEFAULT_ARCH "i386"
|
||
#endif
|
||
|
||
#ifndef INLINE
|
||
#if __GNUC__ >= 2
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
|
||
static INLINE int fits_in_signed_byte PARAMS ((offsetT));
|
||
static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
|
||
static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
|
||
static INLINE int fits_in_signed_word PARAMS ((offsetT));
|
||
static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
|
||
static INLINE int fits_in_signed_long PARAMS ((offsetT));
|
||
static int smallest_imm_type PARAMS ((offsetT));
|
||
static offsetT offset_in_range PARAMS ((offsetT, int));
|
||
static int add_prefix PARAMS ((unsigned int));
|
||
static void set_code_flag PARAMS ((int));
|
||
static void set_16bit_gcc_code_flag PARAMS ((int));
|
||
static void set_intel_syntax PARAMS ((int));
|
||
static void set_cpu_arch PARAMS ((int));
|
||
static char *output_invalid PARAMS ((int c));
|
||
static int i386_operand PARAMS ((char *operand_string));
|
||
static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
|
||
static const reg_entry *parse_register PARAMS ((char *reg_string,
|
||
char **end_op));
|
||
static char *parse_insn PARAMS ((char *, char *));
|
||
static char *parse_operands PARAMS ((char *, const char *));
|
||
static void swap_operands PARAMS ((void));
|
||
static void optimize_imm PARAMS ((void));
|
||
static void optimize_disp PARAMS ((void));
|
||
static int match_template PARAMS ((void));
|
||
static int check_string PARAMS ((void));
|
||
static int process_suffix PARAMS ((void));
|
||
static int check_byte_reg PARAMS ((void));
|
||
static int check_long_reg PARAMS ((void));
|
||
static int check_qword_reg PARAMS ((void));
|
||
static int check_word_reg PARAMS ((void));
|
||
static int finalize_imm PARAMS ((void));
|
||
static int process_operands PARAMS ((void));
|
||
static const seg_entry *build_modrm_byte PARAMS ((void));
|
||
static void output_insn PARAMS ((void));
|
||
static void output_branch PARAMS ((void));
|
||
static void output_jump PARAMS ((void));
|
||
static void output_interseg_jump PARAMS ((void));
|
||
static void output_imm PARAMS ((fragS *insn_start_frag,
|
||
offsetT insn_start_off));
|
||
static void output_disp PARAMS ((fragS *insn_start_frag,
|
||
offsetT insn_start_off));
|
||
#ifndef I386COFF
|
||
static void s_bss PARAMS ((int));
|
||
#endif
|
||
|
||
static const char *default_arch = DEFAULT_ARCH;
|
||
|
||
/* 'md_assemble ()' gathers together information and puts it into a
|
||
i386_insn. */
|
||
|
||
union i386_op
|
||
{
|
||
expressionS *disps;
|
||
expressionS *imms;
|
||
const reg_entry *regs;
|
||
};
|
||
|
||
struct _i386_insn
|
||
{
|
||
/* TM holds the template for the insn were currently assembling. */
|
||
template tm;
|
||
|
||
/* SUFFIX holds the instruction mnemonic suffix if given.
|
||
(e.g. 'l' for 'movl') */
|
||
char suffix;
|
||
|
||
/* OPERANDS gives the number of given operands. */
|
||
unsigned int operands;
|
||
|
||
/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
|
||
of given register, displacement, memory operands and immediate
|
||
operands. */
|
||
unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
|
||
|
||
/* TYPES [i] is the type (see above #defines) which tells us how to
|
||
use OP[i] for the corresponding operand. */
|
||
unsigned int types[MAX_OPERANDS];
|
||
|
||
/* Displacement expression, immediate expression, or register for each
|
||
operand. */
|
||
union i386_op op[MAX_OPERANDS];
|
||
|
||
/* Flags for operands. */
|
||
unsigned int flags[MAX_OPERANDS];
|
||
#define Operand_PCrel 1
|
||
|
||
/* Relocation type for operand */
|
||
RELOC_ENUM reloc[MAX_OPERANDS];
|
||
|
||
/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
|
||
the base index byte below. */
|
||
const reg_entry *base_reg;
|
||
const reg_entry *index_reg;
|
||
unsigned int log2_scale_factor;
|
||
|
||
/* SEG gives the seg_entries of this insn. They are zero unless
|
||
explicit segment overrides are given. */
|
||
const seg_entry *seg[2];
|
||
|
||
/* PREFIX holds all the given prefix opcodes (usually null).
|
||
PREFIXES is the number of prefix opcodes. */
|
||
unsigned int prefixes;
|
||
unsigned char prefix[MAX_PREFIXES];
|
||
|
||
/* RM and SIB are the modrm byte and the sib byte where the
|
||
addressing modes of this insn are encoded. */
|
||
|
||
modrm_byte rm;
|
||
rex_byte rex;
|
||
sib_byte sib;
|
||
};
|
||
|
||
typedef struct _i386_insn i386_insn;
|
||
|
||
/* List of chars besides those in app.c:symbol_chars that can start an
|
||
operand. Used to prevent the scrubber eating vital white-space. */
|
||
#ifdef LEX_AT
|
||
const char extra_symbol_chars[] = "*%-(@[";
|
||
#else
|
||
const char extra_symbol_chars[] = "*%-([";
|
||
#endif
|
||
|
||
#if (defined (TE_I386AIX) \
|
||
|| ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
|
||
&& !defined (TE_LINUX) \
|
||
&& !defined (TE_FreeBSD) \
|
||
&& !defined (TE_NetBSD)))
|
||
/* This array holds the chars that always start a comment. If the
|
||
pre-processor is disabled, these aren't very useful. */
|
||
const char comment_chars[] = "#/";
|
||
#define PREFIX_SEPARATOR '\\'
|
||
|
||
/* This array holds the chars that only start a comment at the beginning of
|
||
a line. If the line seems to have the form '# 123 filename'
|
||
.line and .file directives will appear in the pre-processed output.
|
||
Note that input_file.c hand checks for '#' at the beginning of the
|
||
first line of the input file. This is because the compiler outputs
|
||
#NO_APP at the beginning of its output.
|
||
Also note that comments started like this one will always work if
|
||
'/' isn't otherwise defined. */
|
||
const char line_comment_chars[] = "#";
|
||
|
||
#else
|
||
/* Putting '/' here makes it impossible to use the divide operator.
|
||
However, we need it for compatibility with SVR4 systems. */
|
||
const char comment_chars[] = "#";
|
||
#define PREFIX_SEPARATOR '/'
|
||
|
||
const char line_comment_chars[] = "/#";
|
||
#endif
|
||
|
||
const char line_separator_chars[] = ";";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point
|
||
nums. */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant
|
||
As in 0f12.456
|
||
or 0d1.2345e12. */
|
||
const char FLT_CHARS[] = "fFdDxX";
|
||
|
||
/* Tables for lexical analysis. */
|
||
static char mnemonic_chars[256];
|
||
static char register_chars[256];
|
||
static char operand_chars[256];
|
||
static char identifier_chars[256];
|
||
static char digit_chars[256];
|
||
|
||
/* Lexical macros. */
|
||
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
|
||
#define is_operand_char(x) (operand_chars[(unsigned char) x])
|
||
#define is_register_char(x) (register_chars[(unsigned char) x])
|
||
#define is_space_char(x) ((x) == ' ')
|
||
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
|
||
#define is_digit_char(x) (digit_chars[(unsigned char) x])
|
||
|
||
/* All non-digit non-letter charcters that may occur in an operand. */
|
||
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
|
||
|
||
/* md_assemble() always leaves the strings it's passed unaltered. To
|
||
effect this we maintain a stack of saved characters that we've smashed
|
||
with '\0's (indicating end of strings for various sub-fields of the
|
||
assembler instruction). */
|
||
static char save_stack[32];
|
||
static char *save_stack_p;
|
||
#define END_STRING_AND_SAVE(s) \
|
||
do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
|
||
#define RESTORE_END_STRING(s) \
|
||
do { *(s) = *--save_stack_p; } while (0)
|
||
|
||
/* The instruction we're assembling. */
|
||
static i386_insn i;
|
||
|
||
/* Possible templates for current insn. */
|
||
static const templates *current_templates;
|
||
|
||
/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
|
||
static expressionS disp_expressions[2], im_expressions[2];
|
||
|
||
/* Current operand we are working on. */
|
||
static int this_operand;
|
||
|
||
/* We support four different modes. FLAG_CODE variable is used to distinguish
|
||
these. */
|
||
|
||
enum flag_code {
|
||
CODE_32BIT,
|
||
CODE_16BIT,
|
||
CODE_64BIT };
|
||
#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
|
||
|
||
static enum flag_code flag_code;
|
||
static int use_rela_relocations = 0;
|
||
|
||
/* The names used to print error messages. */
|
||
static const char *flag_code_names[] =
|
||
{
|
||
"32",
|
||
"16",
|
||
"64"
|
||
};
|
||
|
||
/* 1 for intel syntax,
|
||
0 if att syntax. */
|
||
static int intel_syntax = 0;
|
||
|
||
/* 1 if register prefix % not required. */
|
||
static int allow_naked_reg = 0;
|
||
|
||
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
|
||
leave, push, and pop instructions so that gcc has the same stack
|
||
frame as in 32 bit mode. */
|
||
static char stackop_size = '\0';
|
||
|
||
/* Non-zero to quieten some warnings. */
|
||
static int quiet_warnings = 0;
|
||
|
||
/* CPU name. */
|
||
static const char *cpu_arch_name = NULL;
|
||
|
||
/* CPU feature flags. */
|
||
static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
|
||
|
||
/* If set, conditional jumps are not automatically promoted to handle
|
||
larger than a byte offset. */
|
||
static unsigned int no_cond_jump_promotion = 0;
|
||
|
||
/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
|
||
symbolS *GOT_symbol;
|
||
|
||
/* Interface to relax_segment.
|
||
There are 3 major relax states for 386 jump insns because the
|
||
different types of jumps add different sizes to frags when we're
|
||
figuring out what sort of jump to choose to reach a given label. */
|
||
|
||
/* Types. */
|
||
#define UNCOND_JUMP 0
|
||
#define COND_JUMP 1
|
||
#define COND_JUMP86 2
|
||
|
||
/* Sizes. */
|
||
#define CODE16 1
|
||
#define SMALL 0
|
||
#define SMALL16 (SMALL | CODE16)
|
||
#define BIG 2
|
||
#define BIG16 (BIG | CODE16)
|
||
|
||
#ifndef INLINE
|
||
#ifdef __GNUC__
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
#define ENCODE_RELAX_STATE(type, size) \
|
||
((relax_substateT) (((type) << 2) | (size)))
|
||
#define TYPE_FROM_RELAX_STATE(s) \
|
||
((s) >> 2)
|
||
#define DISP_SIZE_FROM_RELAX_STATE(s) \
|
||
((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
|
||
|
||
/* This table is used by relax_frag to promote short jumps to long
|
||
ones where necessary. SMALL (short) jumps may be promoted to BIG
|
||
(32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
|
||
don't allow a short jump in a 32 bit code segment to be promoted to
|
||
a 16 bit offset jump because it's slower (requires data size
|
||
prefix), and doesn't work, unless the destination is in the bottom
|
||
64k of the code segment (The top 16 bits of eip are zeroed). */
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
/* The fields are:
|
||
1) most positive reach of this state,
|
||
2) most negative reach of this state,
|
||
3) how many bytes this mode will have in the variable part of the frag
|
||
4) which index into the table to try if we can't fit into this one. */
|
||
|
||
/* UNCOND_JUMP states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
|
||
/* dword jmp adds 4 bytes to frag:
|
||
0 extra opcode bytes, 4 displacement bytes. */
|
||
{0, 0, 4, 0},
|
||
/* word jmp adds 2 byte2 to frag:
|
||
0 extra opcode bytes, 2 displacement bytes. */
|
||
{0, 0, 2, 0},
|
||
|
||
/* COND_JUMP states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
|
||
/* dword conditionals adds 5 bytes to frag:
|
||
1 extra opcode byte, 4 displacement bytes. */
|
||
{0, 0, 5, 0},
|
||
/* word conditionals add 3 bytes to frag:
|
||
1 extra opcode byte, 2 displacement bytes. */
|
||
{0, 0, 3, 0},
|
||
|
||
/* COND_JUMP86 states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
|
||
/* dword conditionals adds 5 bytes to frag:
|
||
1 extra opcode byte, 4 displacement bytes. */
|
||
{0, 0, 5, 0},
|
||
/* word conditionals add 4 bytes to frag:
|
||
1 displacement byte and a 3 byte long branch insn. */
|
||
{0, 0, 4, 0}
|
||
};
|
||
|
||
static const arch_entry cpu_arch[] = {
|
||
{"i8086", Cpu086 },
|
||
{"i186", Cpu086|Cpu186 },
|
||
{"i286", Cpu086|Cpu186|Cpu286 },
|
||
{"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
|
||
{"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
|
||
{"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
|
||
{"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
|
||
{"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
|
||
{"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
|
||
{"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
|
||
{"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
|
||
{"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
|
||
{"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
|
||
{NULL, 0 }
|
||
};
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
|
||
{"align", s_align_bytes, 0},
|
||
#else
|
||
{"align", s_align_ptwo, 0},
|
||
#endif
|
||
{"arch", set_cpu_arch, 0},
|
||
#ifndef I386COFF
|
||
{"bss", s_bss, 0},
|
||
#endif
|
||
{"ffloat", float_cons, 'f'},
|
||
{"dfloat", float_cons, 'd'},
|
||
{"tfloat", float_cons, 'x'},
|
||
{"value", cons, 2},
|
||
{"noopt", s_ignore, 0},
|
||
{"optim", s_ignore, 0},
|
||
{"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
|
||
{"code16", set_code_flag, CODE_16BIT},
|
||
{"code32", set_code_flag, CODE_32BIT},
|
||
{"code64", set_code_flag, CODE_64BIT},
|
||
{"intel_syntax", set_intel_syntax, 1},
|
||
{"att_syntax", set_intel_syntax, 0},
|
||
{"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
|
||
{"loc", dwarf2_directive_loc, 0},
|
||
{0, 0, 0}
|
||
};
|
||
|
||
/* For interface with expression (). */
|
||
extern char *input_line_pointer;
|
||
|
||
/* Hash table for instruction mnemonic lookup. */
|
||
static struct hash_control *op_hash;
|
||
|
||
/* Hash table for register lookup. */
|
||
static struct hash_control *reg_hash;
|
||
|
||
void
|
||
i386_align_code (fragP, count)
|
||
fragS *fragP;
|
||
int count;
|
||
{
|
||
/* Various efficient no-op patterns for aligning code labels.
|
||
Note: Don't try to assemble the instructions in the comments.
|
||
0L and 0w are not legal. */
|
||
static const char f32_1[] =
|
||
{0x90}; /* nop */
|
||
static const char f32_2[] =
|
||
{0x89,0xf6}; /* movl %esi,%esi */
|
||
static const char f32_3[] =
|
||
{0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
|
||
static const char f32_4[] =
|
||
{0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
|
||
static const char f32_5[] =
|
||
{0x90, /* nop */
|
||
0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
|
||
static const char f32_6[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
|
||
static const char f32_7[] =
|
||
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
|
||
static const char f32_8[] =
|
||
{0x90, /* nop */
|
||
0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
|
||
static const char f32_9[] =
|
||
{0x89,0xf6, /* movl %esi,%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_10[] =
|
||
{0x8d,0x76,0x00, /* leal 0(%esi),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_11[] =
|
||
{0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_12[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
|
||
0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
|
||
static const char f32_13[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_14[] =
|
||
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_15[] =
|
||
{0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
|
||
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
|
||
static const char f16_3[] =
|
||
{0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
|
||
static const char f16_4[] =
|
||
{0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
|
||
static const char f16_5[] =
|
||
{0x90, /* nop */
|
||
0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
|
||
static const char f16_6[] =
|
||
{0x89,0xf6, /* mov %si,%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char f16_7[] =
|
||
{0x8d,0x74,0x00, /* lea 0(%si),%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char f16_8[] =
|
||
{0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char *const f32_patt[] = {
|
||
f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
|
||
f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
|
||
};
|
||
static const char *const f16_patt[] = {
|
||
f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
|
||
f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
|
||
};
|
||
|
||
if (count <= 0 || count > 15)
|
||
return;
|
||
|
||
/* The recommended way to pad 64bit code is to use NOPs preceded by
|
||
maximally four 0x66 prefixes. Balance the size of nops. */
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
int i;
|
||
int nnops = (count + 3) / 4;
|
||
int len = count / nnops;
|
||
int remains = count - nnops * len;
|
||
int pos = 0;
|
||
|
||
for (i = 0; i < remains; i++)
|
||
{
|
||
memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
|
||
fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
|
||
pos += len + 1;
|
||
}
|
||
for (; i < nnops; i++)
|
||
{
|
||
memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
|
||
fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
|
||
pos += len;
|
||
}
|
||
}
|
||
else
|
||
if (flag_code == CODE_16BIT)
|
||
{
|
||
memcpy (fragP->fr_literal + fragP->fr_fix,
|
||
f16_patt[count - 1], count);
|
||
if (count > 8)
|
||
/* Adjust jump offset. */
|
||
fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
|
||
}
|
||
else
|
||
memcpy (fragP->fr_literal + fragP->fr_fix,
|
||
f32_patt[count - 1], count);
|
||
fragP->fr_var = count;
|
||
}
|
||
|
||
static INLINE unsigned int
|
||
mode_from_disp_size (t)
|
||
unsigned int t;
|
||
{
|
||
return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_byte (num)
|
||
offsetT num;
|
||
{
|
||
return (num >= -128) && (num <= 127);
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_byte (num)
|
||
offsetT num;
|
||
{
|
||
return (num & 0xff) == num;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_word (num)
|
||
offsetT num;
|
||
{
|
||
return (num & 0xffff) == num;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_word (num)
|
||
offsetT num;
|
||
{
|
||
return (-32768 <= num) && (num <= 32767);
|
||
}
|
||
static INLINE int
|
||
fits_in_signed_long (num)
|
||
offsetT num ATTRIBUTE_UNUSED;
|
||
{
|
||
#ifndef BFD64
|
||
return 1;
|
||
#else
|
||
return (!(((offsetT) -1 << 31) & num)
|
||
|| (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
|
||
#endif
|
||
} /* fits_in_signed_long() */
|
||
static INLINE int
|
||
fits_in_unsigned_long (num)
|
||
offsetT num ATTRIBUTE_UNUSED;
|
||
{
|
||
#ifndef BFD64
|
||
return 1;
|
||
#else
|
||
return (num & (((offsetT) 2 << 31) - 1)) == num;
|
||
#endif
|
||
} /* fits_in_unsigned_long() */
|
||
|
||
static int
|
||
smallest_imm_type (num)
|
||
offsetT num;
|
||
{
|
||
if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
|
||
{
|
||
/* This code is disabled on the 486 because all the Imm1 forms
|
||
in the opcode table are slower on the i486. They're the
|
||
versions with the implicitly specified single-position
|
||
displacement, which has another syntax if you really want to
|
||
use that form. */
|
||
if (num == 1)
|
||
return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
|
||
}
|
||
return (fits_in_signed_byte (num)
|
||
? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
|
||
: fits_in_unsigned_byte (num)
|
||
? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
|
||
: (fits_in_signed_word (num) || fits_in_unsigned_word (num))
|
||
? (Imm16 | Imm32 | Imm32S | Imm64)
|
||
: fits_in_signed_long (num)
|
||
? (Imm32 | Imm32S | Imm64)
|
||
: fits_in_unsigned_long (num)
|
||
? (Imm32 | Imm64)
|
||
: Imm64);
|
||
}
|
||
|
||
static offsetT
|
||
offset_in_range (val, size)
|
||
offsetT val;
|
||
int size;
|
||
{
|
||
addressT mask;
|
||
|
||
switch (size)
|
||
{
|
||
case 1: mask = ((addressT) 1 << 8) - 1; break;
|
||
case 2: mask = ((addressT) 1 << 16) - 1; break;
|
||
case 4: mask = ((addressT) 2 << 31) - 1; break;
|
||
#ifdef BFD64
|
||
case 8: mask = ((addressT) 2 << 63) - 1; break;
|
||
#endif
|
||
default: abort ();
|
||
}
|
||
|
||
/* If BFD64, sign extend val. */
|
||
if (!use_rela_relocations)
|
||
if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
|
||
val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
|
||
|
||
if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
|
||
{
|
||
char buf1[40], buf2[40];
|
||
|
||
sprint_value (buf1, val);
|
||
sprint_value (buf2, val & mask);
|
||
as_warn (_("%s shortened to %s"), buf1, buf2);
|
||
}
|
||
return val & mask;
|
||
}
|
||
|
||
/* Returns 0 if attempting to add a prefix where one from the same
|
||
class already exists, 1 if non rep/repne added, 2 if rep/repne
|
||
added. */
|
||
static int
|
||
add_prefix (prefix)
|
||
unsigned int prefix;
|
||
{
|
||
int ret = 1;
|
||
int q;
|
||
|
||
if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
|
||
&& flag_code == CODE_64BIT)
|
||
q = REX_PREFIX;
|
||
else
|
||
switch (prefix)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case CS_PREFIX_OPCODE:
|
||
case DS_PREFIX_OPCODE:
|
||
case ES_PREFIX_OPCODE:
|
||
case FS_PREFIX_OPCODE:
|
||
case GS_PREFIX_OPCODE:
|
||
case SS_PREFIX_OPCODE:
|
||
q = SEG_PREFIX;
|
||
break;
|
||
|
||
case REPNE_PREFIX_OPCODE:
|
||
case REPE_PREFIX_OPCODE:
|
||
ret = 2;
|
||
/* fall thru */
|
||
case LOCK_PREFIX_OPCODE:
|
||
q = LOCKREP_PREFIX;
|
||
break;
|
||
|
||
case FWAIT_OPCODE:
|
||
q = WAIT_PREFIX;
|
||
break;
|
||
|
||
case ADDR_PREFIX_OPCODE:
|
||
q = ADDR_PREFIX;
|
||
break;
|
||
|
||
case DATA_PREFIX_OPCODE:
|
||
q = DATA_PREFIX;
|
||
break;
|
||
}
|
||
|
||
if (i.prefix[q] != 0)
|
||
{
|
||
as_bad (_("same type of prefix used twice"));
|
||
return 0;
|
||
}
|
||
|
||
i.prefixes += 1;
|
||
i.prefix[q] = prefix;
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
set_code_flag (value)
|
||
int value;
|
||
{
|
||
flag_code = value;
|
||
cpu_arch_flags &= ~(Cpu64 | CpuNo64);
|
||
cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
|
||
if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
|
||
{
|
||
as_bad (_("64bit mode not supported on this CPU."));
|
||
}
|
||
if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
|
||
{
|
||
as_bad (_("32bit mode not supported on this CPU."));
|
||
}
|
||
stackop_size = '\0';
|
||
}
|
||
|
||
static void
|
||
set_16bit_gcc_code_flag (new_code_flag)
|
||
int new_code_flag;
|
||
{
|
||
flag_code = new_code_flag;
|
||
cpu_arch_flags &= ~(Cpu64 | CpuNo64);
|
||
cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
|
||
stackop_size = 'l';
|
||
}
|
||
|
||
static void
|
||
set_intel_syntax (syntax_flag)
|
||
int syntax_flag;
|
||
{
|
||
/* Find out if register prefixing is specified. */
|
||
int ask_naked_reg = 0;
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *string = input_line_pointer;
|
||
int e = get_symbol_end ();
|
||
|
||
if (strcmp (string, "prefix") == 0)
|
||
ask_naked_reg = 1;
|
||
else if (strcmp (string, "noprefix") == 0)
|
||
ask_naked_reg = -1;
|
||
else
|
||
as_bad (_("bad argument to syntax directive."));
|
||
*input_line_pointer = e;
|
||
}
|
||
demand_empty_rest_of_line ();
|
||
|
||
intel_syntax = syntax_flag;
|
||
|
||
if (ask_naked_reg == 0)
|
||
{
|
||
#ifdef BFD_ASSEMBLER
|
||
allow_naked_reg = (intel_syntax
|
||
&& (bfd_get_symbol_leading_char (stdoutput) != '\0'));
|
||
#else
|
||
/* Conservative default. */
|
||
allow_naked_reg = 0;
|
||
#endif
|
||
}
|
||
else
|
||
allow_naked_reg = (ask_naked_reg < 0);
|
||
}
|
||
|
||
static void
|
||
set_cpu_arch (dummy)
|
||
int dummy ATTRIBUTE_UNUSED;
|
||
{
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *string = input_line_pointer;
|
||
int e = get_symbol_end ();
|
||
int i;
|
||
|
||
for (i = 0; cpu_arch[i].name; i++)
|
||
{
|
||
if (strcmp (string, cpu_arch[i].name) == 0)
|
||
{
|
||
cpu_arch_name = cpu_arch[i].name;
|
||
cpu_arch_flags = (cpu_arch[i].flags
|
||
| (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
|
||
break;
|
||
}
|
||
}
|
||
if (!cpu_arch[i].name)
|
||
as_bad (_("no such architecture: `%s'"), string);
|
||
|
||
*input_line_pointer = e;
|
||
}
|
||
else
|
||
as_bad (_("missing cpu architecture"));
|
||
|
||
no_cond_jump_promotion = 0;
|
||
if (*input_line_pointer == ','
|
||
&& !is_end_of_line[(unsigned char) input_line_pointer[1]])
|
||
{
|
||
char *string = ++input_line_pointer;
|
||
int e = get_symbol_end ();
|
||
|
||
if (strcmp (string, "nojumps") == 0)
|
||
no_cond_jump_promotion = 1;
|
||
else if (strcmp (string, "jumps") == 0)
|
||
;
|
||
else
|
||
as_bad (_("no such architecture modifier: `%s'"), string);
|
||
|
||
*input_line_pointer = e;
|
||
}
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
unsigned long
|
||
i386_mach ()
|
||
{
|
||
if (!strcmp (default_arch, "x86_64"))
|
||
return bfd_mach_x86_64;
|
||
else if (!strcmp (default_arch, "i386"))
|
||
return bfd_mach_i386_i386;
|
||
else
|
||
as_fatal (_("Unknown architecture"));
|
||
}
|
||
#endif
|
||
|
||
void
|
||
md_begin ()
|
||
{
|
||
const char *hash_err;
|
||
|
||
/* Initialize op_hash hash table. */
|
||
op_hash = hash_new ();
|
||
|
||
{
|
||
const template *optab;
|
||
templates *core_optab;
|
||
|
||
/* Setup for loop. */
|
||
optab = i386_optab;
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
core_optab->start = optab;
|
||
|
||
while (1)
|
||
{
|
||
++optab;
|
||
if (optab->name == NULL
|
||
|| strcmp (optab->name, (optab - 1)->name) != 0)
|
||
{
|
||
/* different name --> ship out current template list;
|
||
add to hash table; & begin anew. */
|
||
core_optab->end = optab;
|
||
hash_err = hash_insert (op_hash,
|
||
(optab - 1)->name,
|
||
(PTR) core_optab);
|
||
if (hash_err)
|
||
{
|
||
as_fatal (_("Internal Error: Can't hash %s: %s"),
|
||
(optab - 1)->name,
|
||
hash_err);
|
||
}
|
||
if (optab->name == NULL)
|
||
break;
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
core_optab->start = optab;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize reg_hash hash table. */
|
||
reg_hash = hash_new ();
|
||
{
|
||
const reg_entry *regtab;
|
||
|
||
for (regtab = i386_regtab;
|
||
regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
|
||
regtab++)
|
||
{
|
||
hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
|
||
if (hash_err)
|
||
as_fatal (_("Internal Error: Can't hash %s: %s"),
|
||
regtab->reg_name,
|
||
hash_err);
|
||
}
|
||
}
|
||
|
||
/* Fill in lexical tables: mnemonic_chars, operand_chars. */
|
||
{
|
||
int c;
|
||
char *p;
|
||
|
||
for (c = 0; c < 256; c++)
|
||
{
|
||
if (ISDIGIT (c))
|
||
{
|
||
digit_chars[c] = c;
|
||
mnemonic_chars[c] = c;
|
||
register_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (ISLOWER (c))
|
||
{
|
||
mnemonic_chars[c] = c;
|
||
register_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (ISUPPER (c))
|
||
{
|
||
mnemonic_chars[c] = TOLOWER (c);
|
||
register_chars[c] = mnemonic_chars[c];
|
||
operand_chars[c] = c;
|
||
}
|
||
|
||
if (ISALPHA (c) || ISDIGIT (c))
|
||
identifier_chars[c] = c;
|
||
else if (c >= 128)
|
||
{
|
||
identifier_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
}
|
||
|
||
#ifdef LEX_AT
|
||
identifier_chars['@'] = '@';
|
||
#endif
|
||
digit_chars['-'] = '-';
|
||
identifier_chars['_'] = '_';
|
||
identifier_chars['.'] = '.';
|
||
|
||
for (p = operand_special_chars; *p != '\0'; p++)
|
||
operand_chars[(unsigned char) *p] = *p;
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
|
||
{
|
||
record_alignment (text_section, 2);
|
||
record_alignment (data_section, 2);
|
||
record_alignment (bss_section, 2);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
void
|
||
i386_print_statistics (file)
|
||
FILE *file;
|
||
{
|
||
hash_print_statistics (file, "i386 opcode", op_hash);
|
||
hash_print_statistics (file, "i386 register", reg_hash);
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
|
||
/* Debugging routines for md_assemble. */
|
||
static void pi PARAMS ((char *, i386_insn *));
|
||
static void pte PARAMS ((template *));
|
||
static void pt PARAMS ((unsigned int));
|
||
static void pe PARAMS ((expressionS *));
|
||
static void ps PARAMS ((symbolS *));
|
||
|
||
static void
|
||
pi (line, x)
|
||
char *line;
|
||
i386_insn *x;
|
||
{
|
||
unsigned int i;
|
||
|
||
fprintf (stdout, "%s: template ", line);
|
||
pte (&x->tm);
|
||
fprintf (stdout, " address: base %s index %s scale %x\n",
|
||
x->base_reg ? x->base_reg->reg_name : "none",
|
||
x->index_reg ? x->index_reg->reg_name : "none",
|
||
x->log2_scale_factor);
|
||
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
|
||
x->rm.mode, x->rm.reg, x->rm.regmem);
|
||
fprintf (stdout, " sib: base %x index %x scale %x\n",
|
||
x->sib.base, x->sib.index, x->sib.scale);
|
||
fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
|
||
(x->rex & REX_MODE64) != 0,
|
||
(x->rex & REX_EXTX) != 0,
|
||
(x->rex & REX_EXTY) != 0,
|
||
(x->rex & REX_EXTZ) != 0);
|
||
for (i = 0; i < x->operands; i++)
|
||
{
|
||
fprintf (stdout, " #%d: ", i + 1);
|
||
pt (x->types[i]);
|
||
fprintf (stdout, "\n");
|
||
if (x->types[i]
|
||
& (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
|
||
fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
|
||
if (x->types[i] & Imm)
|
||
pe (x->op[i].imms);
|
||
if (x->types[i] & Disp)
|
||
pe (x->op[i].disps);
|
||
}
|
||
}
|
||
|
||
static void
|
||
pte (t)
|
||
template *t;
|
||
{
|
||
unsigned int i;
|
||
fprintf (stdout, " %d operands ", t->operands);
|
||
fprintf (stdout, "opcode %x ", t->base_opcode);
|
||
if (t->extension_opcode != None)
|
||
fprintf (stdout, "ext %x ", t->extension_opcode);
|
||
if (t->opcode_modifier & D)
|
||
fprintf (stdout, "D");
|
||
if (t->opcode_modifier & W)
|
||
fprintf (stdout, "W");
|
||
fprintf (stdout, "\n");
|
||
for (i = 0; i < t->operands; i++)
|
||
{
|
||
fprintf (stdout, " #%d type ", i + 1);
|
||
pt (t->operand_types[i]);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
pe (e)
|
||
expressionS *e;
|
||
{
|
||
fprintf (stdout, " operation %d\n", e->X_op);
|
||
fprintf (stdout, " add_number %ld (%lx)\n",
|
||
(long) e->X_add_number, (long) e->X_add_number);
|
||
if (e->X_add_symbol)
|
||
{
|
||
fprintf (stdout, " add_symbol ");
|
||
ps (e->X_add_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
if (e->X_op_symbol)
|
||
{
|
||
fprintf (stdout, " op_symbol ");
|
||
ps (e->X_op_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
ps (s)
|
||
symbolS *s;
|
||
{
|
||
fprintf (stdout, "%s type %s%s",
|
||
S_GET_NAME (s),
|
||
S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
|
||
segment_name (S_GET_SEGMENT (s)));
|
||
}
|
||
|
||
struct type_name
|
||
{
|
||
unsigned int mask;
|
||
char *tname;
|
||
}
|
||
|
||
static const type_names[] =
|
||
{
|
||
{ Reg8, "r8" },
|
||
{ Reg16, "r16" },
|
||
{ Reg32, "r32" },
|
||
{ Reg64, "r64" },
|
||
{ Imm8, "i8" },
|
||
{ Imm8S, "i8s" },
|
||
{ Imm16, "i16" },
|
||
{ Imm32, "i32" },
|
||
{ Imm32S, "i32s" },
|
||
{ Imm64, "i64" },
|
||
{ Imm1, "i1" },
|
||
{ BaseIndex, "BaseIndex" },
|
||
{ Disp8, "d8" },
|
||
{ Disp16, "d16" },
|
||
{ Disp32, "d32" },
|
||
{ Disp32S, "d32s" },
|
||
{ Disp64, "d64" },
|
||
{ InOutPortReg, "InOutPortReg" },
|
||
{ ShiftCount, "ShiftCount" },
|
||
{ Control, "control reg" },
|
||
{ Test, "test reg" },
|
||
{ Debug, "debug reg" },
|
||
{ FloatReg, "FReg" },
|
||
{ FloatAcc, "FAcc" },
|
||
{ SReg2, "SReg2" },
|
||
{ SReg3, "SReg3" },
|
||
{ Acc, "Acc" },
|
||
{ JumpAbsolute, "Jump Absolute" },
|
||
{ RegMMX, "rMMX" },
|
||
{ RegXMM, "rXMM" },
|
||
{ EsSeg, "es" },
|
||
{ 0, "" }
|
||
};
|
||
|
||
static void
|
||
pt (t)
|
||
unsigned int t;
|
||
{
|
||
const struct type_name *ty;
|
||
|
||
for (ty = type_names; ty->mask; ty++)
|
||
if (t & ty->mask)
|
||
fprintf (stdout, "%s, ", ty->tname);
|
||
fflush (stdout);
|
||
}
|
||
|
||
#endif /* DEBUG386 */
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
static bfd_reloc_code_real_type reloc
|
||
PARAMS ((int, int, int, bfd_reloc_code_real_type));
|
||
|
||
static bfd_reloc_code_real_type
|
||
reloc (size, pcrel, sign, other)
|
||
int size;
|
||
int pcrel;
|
||
int sign;
|
||
bfd_reloc_code_real_type other;
|
||
{
|
||
if (other != NO_RELOC)
|
||
return other;
|
||
|
||
if (pcrel)
|
||
{
|
||
if (!sign)
|
||
as_bad (_("There are no unsigned pc-relative relocations"));
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8_PCREL;
|
||
case 2: return BFD_RELOC_16_PCREL;
|
||
case 4: return BFD_RELOC_32_PCREL;
|
||
}
|
||
as_bad (_("can not do %d byte pc-relative relocation"), size);
|
||
}
|
||
else
|
||
{
|
||
if (sign)
|
||
switch (size)
|
||
{
|
||
case 4: return BFD_RELOC_X86_64_32S;
|
||
}
|
||
else
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8;
|
||
case 2: return BFD_RELOC_16;
|
||
case 4: return BFD_RELOC_32;
|
||
case 8: return BFD_RELOC_64;
|
||
}
|
||
as_bad (_("can not do %s %d byte relocation"),
|
||
sign ? "signed" : "unsigned", size);
|
||
}
|
||
|
||
abort ();
|
||
return BFD_RELOC_NONE;
|
||
}
|
||
|
||
/* Here we decide which fixups can be adjusted to make them relative to
|
||
the beginning of the section instead of the symbol. Basically we need
|
||
to make sure that the dynamic relocations are done correctly, so in
|
||
some cases we force the original symbol to be used. */
|
||
|
||
int
|
||
tc_i386_fix_adjustable (fixP)
|
||
fixS *fixP ATTRIBUTE_UNUSED;
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
|
||
return 1;
|
||
|
||
/* Don't adjust pc-relative references to merge sections in 64-bit
|
||
mode. */
|
||
if (use_rela_relocations
|
||
&& (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
|
||
&& fixP->fx_pcrel)
|
||
return 0;
|
||
|
||
/* adjust_reloc_syms doesn't know about the GOT. */
|
||
if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_386_PLT32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOT32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GD
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
return 0;
|
||
#endif
|
||
return 1;
|
||
}
|
||
#else
|
||
#define reloc(SIZE,PCREL,SIGN,OTHER) 0
|
||
#define BFD_RELOC_8 0
|
||
#define BFD_RELOC_16 0
|
||
#define BFD_RELOC_32 0
|
||
#define BFD_RELOC_8_PCREL 0
|
||
#define BFD_RELOC_16_PCREL 0
|
||
#define BFD_RELOC_32_PCREL 0
|
||
#define BFD_RELOC_386_PLT32 0
|
||
#define BFD_RELOC_386_GOT32 0
|
||
#define BFD_RELOC_386_GOTOFF 0
|
||
#define BFD_RELOC_386_TLS_GD 0
|
||
#define BFD_RELOC_386_TLS_LDM 0
|
||
#define BFD_RELOC_386_TLS_LDO_32 0
|
||
#define BFD_RELOC_386_TLS_IE_32 0
|
||
#define BFD_RELOC_386_TLS_IE 0
|
||
#define BFD_RELOC_386_TLS_GOTIE 0
|
||
#define BFD_RELOC_386_TLS_LE_32 0
|
||
#define BFD_RELOC_386_TLS_LE 0
|
||
#define BFD_RELOC_X86_64_PLT32 0
|
||
#define BFD_RELOC_X86_64_GOT32 0
|
||
#define BFD_RELOC_X86_64_GOTPCREL 0
|
||
#define BFD_RELOC_X86_64_TLSGD 0
|
||
#define BFD_RELOC_X86_64_TLSLD 0
|
||
#define BFD_RELOC_X86_64_DTPOFF32 0
|
||
#define BFD_RELOC_X86_64_GOTTPOFF 0
|
||
#define BFD_RELOC_X86_64_TPOFF32 0
|
||
#endif
|
||
|
||
static int intel_float_operand PARAMS ((const char *mnemonic));
|
||
|
||
static int
|
||
intel_float_operand (mnemonic)
|
||
const char *mnemonic;
|
||
{
|
||
if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
|
||
return 2;
|
||
|
||
if (mnemonic[0] == 'f')
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This is the guts of the machine-dependent assembler. LINE points to a
|
||
machine dependent instruction. This function is supposed to emit
|
||
the frags/bytes it assembles to. */
|
||
|
||
void
|
||
md_assemble (line)
|
||
char *line;
|
||
{
|
||
int j;
|
||
char mnemonic[MAX_MNEM_SIZE];
|
||
|
||
/* Initialize globals. */
|
||
memset (&i, '\0', sizeof (i));
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
i.reloc[j] = NO_RELOC;
|
||
memset (disp_expressions, '\0', sizeof (disp_expressions));
|
||
memset (im_expressions, '\0', sizeof (im_expressions));
|
||
save_stack_p = save_stack;
|
||
|
||
/* First parse an instruction mnemonic & call i386_operand for the operands.
|
||
We assume that the scrubber has arranged it so that line[0] is the valid
|
||
start of a (possibly prefixed) mnemonic. */
|
||
|
||
line = parse_insn (line, mnemonic);
|
||
if (line == NULL)
|
||
return;
|
||
|
||
line = parse_operands (line, mnemonic);
|
||
if (line == NULL)
|
||
return;
|
||
|
||
/* Now we've parsed the mnemonic into a set of templates, and have the
|
||
operands at hand. */
|
||
|
||
/* All intel opcodes have reversed operands except for "bound" and
|
||
"enter". We also don't reverse intersegment "jmp" and "call"
|
||
instructions with 2 immediate operands so that the immediate segment
|
||
precedes the offset, as it does when in AT&T mode. "enter" and the
|
||
intersegment "jmp" and "call" instructions are the only ones that
|
||
have two immediate operands. */
|
||
if (intel_syntax && i.operands > 1
|
||
&& (strcmp (mnemonic, "bound") != 0)
|
||
&& !((i.types[0] & Imm) && (i.types[1] & Imm)))
|
||
swap_operands ();
|
||
|
||
if (i.imm_operands)
|
||
optimize_imm ();
|
||
|
||
if (i.disp_operands)
|
||
optimize_disp ();
|
||
|
||
/* Next, we find a template that matches the given insn,
|
||
making sure the overlap of the given operands types is consistent
|
||
with the template operand types. */
|
||
|
||
if (!match_template ())
|
||
return;
|
||
|
||
if (intel_syntax)
|
||
{
|
||
/* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
|
||
if (SYSV386_COMPAT
|
||
&& (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
|
||
i.tm.base_opcode ^= FloatR;
|
||
|
||
/* Zap movzx and movsx suffix. The suffix may have been set from
|
||
"word ptr" or "byte ptr" on the source operand, but we'll use
|
||
the suffix later to choose the destination register. */
|
||
if ((i.tm.base_opcode & ~9) == 0x0fb6)
|
||
i.suffix = 0;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier & FWait)
|
||
if (!add_prefix (FWAIT_OPCODE))
|
||
return;
|
||
|
||
/* Check string instruction segment overrides. */
|
||
if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
|
||
{
|
||
if (!check_string ())
|
||
return;
|
||
}
|
||
|
||
if (!process_suffix ())
|
||
return;
|
||
|
||
/* Make still unresolved immediate matches conform to size of immediate
|
||
given in i.suffix. */
|
||
if (!finalize_imm ())
|
||
return;
|
||
|
||
if (i.types[0] & Imm1)
|
||
i.imm_operands = 0; /* kludge for shift insns. */
|
||
if (i.types[0] & ImplicitRegister)
|
||
i.reg_operands--;
|
||
if (i.types[1] & ImplicitRegister)
|
||
i.reg_operands--;
|
||
if (i.types[2] & ImplicitRegister)
|
||
i.reg_operands--;
|
||
|
||
if (i.tm.opcode_modifier & ImmExt)
|
||
{
|
||
/* These AMD 3DNow! and Intel Katmai New Instructions have an
|
||
opcode suffix which is coded in the same place as an 8-bit
|
||
immediate field would be. Here we fake an 8-bit immediate
|
||
operand from the opcode suffix stored in tm.extension_opcode. */
|
||
|
||
expressionS *exp;
|
||
|
||
assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[i.operands].imms = exp;
|
||
i.types[i.operands++] = Imm8;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = i.tm.extension_opcode;
|
||
i.tm.extension_opcode = None;
|
||
}
|
||
|
||
/* For insns with operands there are more diddles to do to the opcode. */
|
||
if (i.operands)
|
||
{
|
||
if (!process_operands ())
|
||
return;
|
||
}
|
||
else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
|
||
{
|
||
/* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
|
||
as_warn (_("translating to `%sp'"), i.tm.name);
|
||
}
|
||
|
||
/* Handle conversion of 'int $3' --> special int3 insn. */
|
||
if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
|
||
{
|
||
i.tm.base_opcode = INT3_OPCODE;
|
||
i.imm_operands = 0;
|
||
}
|
||
|
||
if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
|
||
&& i.op[0].disps->X_op == O_constant)
|
||
{
|
||
/* Convert "jmp constant" (and "call constant") to a jump (call) to
|
||
the absolute address given by the constant. Since ix86 jumps and
|
||
calls are pc relative, we need to generate a reloc. */
|
||
i.op[0].disps->X_add_symbol = &abs_symbol;
|
||
i.op[0].disps->X_op = O_symbol;
|
||
}
|
||
|
||
if ((i.tm.opcode_modifier & Rex64) != 0)
|
||
i.rex |= REX_MODE64;
|
||
|
||
/* For 8 bit registers we need an empty rex prefix. Also if the
|
||
instruction already has a prefix, we need to convert old
|
||
registers to new ones. */
|
||
|
||
if (((i.types[0] & Reg8) != 0
|
||
&& (i.op[0].regs->reg_flags & RegRex64) != 0)
|
||
|| ((i.types[1] & Reg8) != 0
|
||
&& (i.op[1].regs->reg_flags & RegRex64) != 0)
|
||
|| (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
|
||
&& i.rex != 0))
|
||
{
|
||
int x;
|
||
|
||
i.rex |= REX_OPCODE;
|
||
for (x = 0; x < 2; x++)
|
||
{
|
||
/* Look for 8 bit operand that uses old registers. */
|
||
if ((i.types[x] & Reg8) != 0
|
||
&& (i.op[x].regs->reg_flags & RegRex64) == 0)
|
||
{
|
||
/* In case it is "hi" register, give up. */
|
||
if (i.op[x].regs->reg_num > 3)
|
||
as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
|
||
i.op[x].regs->reg_name);
|
||
|
||
/* Otherwise it is equivalent to the extended register.
|
||
Since the encoding doesn't change this is merely
|
||
cosmetic cleanup for debug output. */
|
||
|
||
i.op[x].regs = i.op[x].regs + 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (i.rex != 0)
|
||
add_prefix (REX_OPCODE | i.rex);
|
||
|
||
/* We are ready to output the insn. */
|
||
output_insn ();
|
||
}
|
||
|
||
static char *
|
||
parse_insn (line, mnemonic)
|
||
char *line;
|
||
char *mnemonic;
|
||
{
|
||
char *l = line;
|
||
char *token_start = l;
|
||
char *mnem_p;
|
||
|
||
/* Non-zero if we found a prefix only acceptable with string insns. */
|
||
const char *expecting_string_instruction = NULL;
|
||
|
||
while (1)
|
||
{
|
||
mnem_p = mnemonic;
|
||
while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
|
||
{
|
||
mnem_p++;
|
||
if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
|
||
{
|
||
as_bad (_("no such instruction: `%s'"), token_start);
|
||
return NULL;
|
||
}
|
||
l++;
|
||
}
|
||
if (!is_space_char (*l)
|
||
&& *l != END_OF_INSN
|
||
&& *l != PREFIX_SEPARATOR
|
||
&& *l != ',')
|
||
{
|
||
as_bad (_("invalid character %s in mnemonic"),
|
||
output_invalid (*l));
|
||
return NULL;
|
||
}
|
||
if (token_start == l)
|
||
{
|
||
if (*l == PREFIX_SEPARATOR)
|
||
as_bad (_("expecting prefix; got nothing"));
|
||
else
|
||
as_bad (_("expecting mnemonic; got nothing"));
|
||
return NULL;
|
||
}
|
||
|
||
/* Look up instruction (or prefix) via hash table. */
|
||
current_templates = hash_find (op_hash, mnemonic);
|
||
|
||
if (*l != END_OF_INSN
|
||
&& (!is_space_char (*l) || l[1] != END_OF_INSN)
|
||
&& current_templates
|
||
&& (current_templates->start->opcode_modifier & IsPrefix))
|
||
{
|
||
/* If we are in 16-bit mode, do not allow addr16 or data16.
|
||
Similarly, in 32-bit mode, do not allow addr32 or data32. */
|
||
if ((current_templates->start->opcode_modifier & (Size16 | Size32))
|
||
&& flag_code != CODE_64BIT
|
||
&& (((current_templates->start->opcode_modifier & Size32) != 0)
|
||
^ (flag_code == CODE_16BIT)))
|
||
{
|
||
as_bad (_("redundant %s prefix"),
|
||
current_templates->start->name);
|
||
return NULL;
|
||
}
|
||
/* Add prefix, checking for repeated prefixes. */
|
||
switch (add_prefix (current_templates->start->base_opcode))
|
||
{
|
||
case 0:
|
||
return NULL;
|
||
case 2:
|
||
expecting_string_instruction = current_templates->start->name;
|
||
break;
|
||
}
|
||
/* Skip past PREFIX_SEPARATOR and reset token_start. */
|
||
token_start = ++l;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (!current_templates)
|
||
{
|
||
/* See if we can get a match by trimming off a suffix. */
|
||
switch (mnem_p[-1])
|
||
{
|
||
case WORD_MNEM_SUFFIX:
|
||
case BYTE_MNEM_SUFFIX:
|
||
case QWORD_MNEM_SUFFIX:
|
||
i.suffix = mnem_p[-1];
|
||
mnem_p[-1] = '\0';
|
||
current_templates = hash_find (op_hash, mnemonic);
|
||
break;
|
||
case SHORT_MNEM_SUFFIX:
|
||
case LONG_MNEM_SUFFIX:
|
||
if (!intel_syntax)
|
||
{
|
||
i.suffix = mnem_p[-1];
|
||
mnem_p[-1] = '\0';
|
||
current_templates = hash_find (op_hash, mnemonic);
|
||
}
|
||
break;
|
||
|
||
/* Intel Syntax. */
|
||
case 'd':
|
||
if (intel_syntax)
|
||
{
|
||
if (intel_float_operand (mnemonic))
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
mnem_p[-1] = '\0';
|
||
current_templates = hash_find (op_hash, mnemonic);
|
||
}
|
||
break;
|
||
}
|
||
if (!current_templates)
|
||
{
|
||
as_bad (_("no such instruction: `%s'"), token_start);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (current_templates->start->opcode_modifier & (Jump | JumpByte))
|
||
{
|
||
/* Check for a branch hint. We allow ",pt" and ",pn" for
|
||
predict taken and predict not taken respectively.
|
||
I'm not sure that branch hints actually do anything on loop
|
||
and jcxz insns (JumpByte) for current Pentium4 chips. They
|
||
may work in the future and it doesn't hurt to accept them
|
||
now. */
|
||
if (l[0] == ',' && l[1] == 'p')
|
||
{
|
||
if (l[2] == 't')
|
||
{
|
||
if (!add_prefix (DS_PREFIX_OPCODE))
|
||
return NULL;
|
||
l += 3;
|
||
}
|
||
else if (l[2] == 'n')
|
||
{
|
||
if (!add_prefix (CS_PREFIX_OPCODE))
|
||
return NULL;
|
||
l += 3;
|
||
}
|
||
}
|
||
}
|
||
/* Any other comma loses. */
|
||
if (*l == ',')
|
||
{
|
||
as_bad (_("invalid character %s in mnemonic"),
|
||
output_invalid (*l));
|
||
return NULL;
|
||
}
|
||
|
||
/* Check if instruction is supported on specified architecture. */
|
||
if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
|
||
& ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
|
||
{
|
||
as_warn (_("`%s' is not supported on `%s'"),
|
||
current_templates->start->name, cpu_arch_name);
|
||
}
|
||
else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
|
||
{
|
||
as_warn (_("use .code16 to ensure correct addressing mode"));
|
||
}
|
||
|
||
/* Check for rep/repne without a string instruction. */
|
||
if (expecting_string_instruction
|
||
&& !(current_templates->start->opcode_modifier & IsString))
|
||
{
|
||
as_bad (_("expecting string instruction after `%s'"),
|
||
expecting_string_instruction);
|
||
return NULL;
|
||
}
|
||
|
||
return l;
|
||
}
|
||
|
||
static char *
|
||
parse_operands (l, mnemonic)
|
||
char *l;
|
||
const char *mnemonic;
|
||
{
|
||
char *token_start;
|
||
|
||
/* 1 if operand is pending after ','. */
|
||
unsigned int expecting_operand = 0;
|
||
|
||
/* Non-zero if operand parens not balanced. */
|
||
unsigned int paren_not_balanced;
|
||
|
||
while (*l != END_OF_INSN)
|
||
{
|
||
/* Skip optional white space before operand. */
|
||
if (is_space_char (*l))
|
||
++l;
|
||
if (!is_operand_char (*l) && *l != END_OF_INSN)
|
||
{
|
||
as_bad (_("invalid character %s before operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
token_start = l; /* after white space */
|
||
paren_not_balanced = 0;
|
||
while (paren_not_balanced || *l != ',')
|
||
{
|
||
if (*l == END_OF_INSN)
|
||
{
|
||
if (paren_not_balanced)
|
||
{
|
||
if (!intel_syntax)
|
||
as_bad (_("unbalanced parenthesis in operand %d."),
|
||
i.operands + 1);
|
||
else
|
||
as_bad (_("unbalanced brackets in operand %d."),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
else
|
||
break; /* we are done */
|
||
}
|
||
else if (!is_operand_char (*l) && !is_space_char (*l))
|
||
{
|
||
as_bad (_("invalid character %s in operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
if (!intel_syntax)
|
||
{
|
||
if (*l == '(')
|
||
++paren_not_balanced;
|
||
if (*l == ')')
|
||
--paren_not_balanced;
|
||
}
|
||
else
|
||
{
|
||
if (*l == '[')
|
||
++paren_not_balanced;
|
||
if (*l == ']')
|
||
--paren_not_balanced;
|
||
}
|
||
l++;
|
||
}
|
||
if (l != token_start)
|
||
{ /* Yes, we've read in another operand. */
|
||
unsigned int operand_ok;
|
||
this_operand = i.operands++;
|
||
if (i.operands > MAX_OPERANDS)
|
||
{
|
||
as_bad (_("spurious operands; (%d operands/instruction max)"),
|
||
MAX_OPERANDS);
|
||
return NULL;
|
||
}
|
||
/* Now parse operand adding info to 'i' as we go along. */
|
||
END_STRING_AND_SAVE (l);
|
||
|
||
if (intel_syntax)
|
||
operand_ok =
|
||
i386_intel_operand (token_start,
|
||
intel_float_operand (mnemonic));
|
||
else
|
||
operand_ok = i386_operand (token_start);
|
||
|
||
RESTORE_END_STRING (l);
|
||
if (!operand_ok)
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
if (expecting_operand)
|
||
{
|
||
expecting_operand_after_comma:
|
||
as_bad (_("expecting operand after ','; got nothing"));
|
||
return NULL;
|
||
}
|
||
if (*l == ',')
|
||
{
|
||
as_bad (_("expecting operand before ','; got nothing"));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Now *l must be either ',' or END_OF_INSN. */
|
||
if (*l == ',')
|
||
{
|
||
if (*++l == END_OF_INSN)
|
||
{
|
||
/* Just skip it, if it's \n complain. */
|
||
goto expecting_operand_after_comma;
|
||
}
|
||
expecting_operand = 1;
|
||
}
|
||
}
|
||
return l;
|
||
}
|
||
|
||
static void
|
||
swap_operands ()
|
||
{
|
||
union i386_op temp_op;
|
||
unsigned int temp_type;
|
||
RELOC_ENUM temp_reloc;
|
||
int xchg1 = 0;
|
||
int xchg2 = 0;
|
||
|
||
if (i.operands == 2)
|
||
{
|
||
xchg1 = 0;
|
||
xchg2 = 1;
|
||
}
|
||
else if (i.operands == 3)
|
||
{
|
||
xchg1 = 0;
|
||
xchg2 = 2;
|
||
}
|
||
temp_type = i.types[xchg2];
|
||
i.types[xchg2] = i.types[xchg1];
|
||
i.types[xchg1] = temp_type;
|
||
temp_op = i.op[xchg2];
|
||
i.op[xchg2] = i.op[xchg1];
|
||
i.op[xchg1] = temp_op;
|
||
temp_reloc = i.reloc[xchg2];
|
||
i.reloc[xchg2] = i.reloc[xchg1];
|
||
i.reloc[xchg1] = temp_reloc;
|
||
|
||
if (i.mem_operands == 2)
|
||
{
|
||
const seg_entry *temp_seg;
|
||
temp_seg = i.seg[0];
|
||
i.seg[0] = i.seg[1];
|
||
i.seg[1] = temp_seg;
|
||
}
|
||
}
|
||
|
||
/* Try to ensure constant immediates are represented in the smallest
|
||
opcode possible. */
|
||
static void
|
||
optimize_imm ()
|
||
{
|
||
char guess_suffix = 0;
|
||
int op;
|
||
|
||
if (i.suffix)
|
||
guess_suffix = i.suffix;
|
||
else if (i.reg_operands)
|
||
{
|
||
/* Figure out a suffix from the last register operand specified.
|
||
We can't do this properly yet, ie. excluding InOutPortReg,
|
||
but the following works for instructions with immediates.
|
||
In any case, we can't set i.suffix yet. */
|
||
for (op = i.operands; --op >= 0;)
|
||
if (i.types[op] & Reg)
|
||
{
|
||
if (i.types[op] & Reg8)
|
||
guess_suffix = BYTE_MNEM_SUFFIX;
|
||
else if (i.types[op] & Reg16)
|
||
guess_suffix = WORD_MNEM_SUFFIX;
|
||
else if (i.types[op] & Reg32)
|
||
guess_suffix = LONG_MNEM_SUFFIX;
|
||
else if (i.types[op] & Reg64)
|
||
guess_suffix = QWORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
}
|
||
else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
|
||
guess_suffix = WORD_MNEM_SUFFIX;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
if (i.types[op] & Imm)
|
||
{
|
||
switch (i.op[op].imms->X_op)
|
||
{
|
||
case O_constant:
|
||
/* If a suffix is given, this operand may be shortened. */
|
||
switch (guess_suffix)
|
||
{
|
||
case LONG_MNEM_SUFFIX:
|
||
i.types[op] |= Imm32 | Imm64;
|
||
break;
|
||
case WORD_MNEM_SUFFIX:
|
||
i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
|
||
break;
|
||
case BYTE_MNEM_SUFFIX:
|
||
i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
|
||
break;
|
||
}
|
||
|
||
/* If this operand is at most 16 bits, convert it
|
||
to a signed 16 bit number before trying to see
|
||
whether it will fit in an even smaller size.
|
||
This allows a 16-bit operand such as $0xffe0 to
|
||
be recognised as within Imm8S range. */
|
||
if ((i.types[op] & Imm16)
|
||
&& (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
|
||
{
|
||
i.op[op].imms->X_add_number =
|
||
(((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
|
||
}
|
||
if ((i.types[op] & Imm32)
|
||
&& ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
|
||
== 0))
|
||
{
|
||
i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
|
||
^ ((offsetT) 1 << 31))
|
||
- ((offsetT) 1 << 31));
|
||
}
|
||
i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
|
||
|
||
/* We must avoid matching of Imm32 templates when 64bit
|
||
only immediate is available. */
|
||
if (guess_suffix == QWORD_MNEM_SUFFIX)
|
||
i.types[op] &= ~Imm32;
|
||
break;
|
||
|
||
case O_absent:
|
||
case O_register:
|
||
abort ();
|
||
|
||
/* Symbols and expressions. */
|
||
default:
|
||
/* Convert symbolic operand to proper sizes for matching. */
|
||
switch (guess_suffix)
|
||
{
|
||
case QWORD_MNEM_SUFFIX:
|
||
i.types[op] = Imm64 | Imm32S;
|
||
break;
|
||
case LONG_MNEM_SUFFIX:
|
||
i.types[op] = Imm32 | Imm64;
|
||
break;
|
||
case WORD_MNEM_SUFFIX:
|
||
i.types[op] = Imm16 | Imm32 | Imm64;
|
||
break;
|
||
break;
|
||
case BYTE_MNEM_SUFFIX:
|
||
i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
|
||
break;
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to use the smallest displacement type too. */
|
||
static void
|
||
optimize_disp ()
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
|
||
{
|
||
offsetT disp = i.op[op].disps->X_add_number;
|
||
|
||
if (i.types[op] & Disp16)
|
||
{
|
||
/* We know this operand is at most 16 bits, so
|
||
convert to a signed 16 bit number before trying
|
||
to see whether it will fit in an even smaller
|
||
size. */
|
||
|
||
disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
|
||
}
|
||
else if (i.types[op] & Disp32)
|
||
{
|
||
/* We know this operand is at most 32 bits, so convert to a
|
||
signed 32 bit number before trying to see whether it will
|
||
fit in an even smaller size. */
|
||
disp &= (((offsetT) 2 << 31) - 1);
|
||
disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
|
||
}
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if (fits_in_signed_long (disp))
|
||
i.types[op] |= Disp32S;
|
||
if (fits_in_unsigned_long (disp))
|
||
i.types[op] |= Disp32;
|
||
}
|
||
if ((i.types[op] & (Disp32 | Disp32S | Disp16))
|
||
&& fits_in_signed_byte (disp))
|
||
i.types[op] |= Disp8;
|
||
}
|
||
}
|
||
|
||
static int
|
||
match_template ()
|
||
{
|
||
/* Points to template once we've found it. */
|
||
const template *t;
|
||
unsigned int overlap0, overlap1, overlap2;
|
||
unsigned int found_reverse_match;
|
||
int suffix_check;
|
||
|
||
#define MATCH(overlap, given, template) \
|
||
((overlap & ~JumpAbsolute) \
|
||
&& (((given) & (BaseIndex | JumpAbsolute)) \
|
||
== ((overlap) & (BaseIndex | JumpAbsolute))))
|
||
|
||
/* If given types r0 and r1 are registers they must be of the same type
|
||
unless the expected operand type register overlap is null.
|
||
Note that Acc in a template matches every size of reg. */
|
||
#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
|
||
(((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
|
||
|| ((g0) & Reg) == ((g1) & Reg) \
|
||
|| ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
|
||
|
||
overlap0 = 0;
|
||
overlap1 = 0;
|
||
overlap2 = 0;
|
||
found_reverse_match = 0;
|
||
suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
|
||
? No_bSuf
|
||
: (i.suffix == WORD_MNEM_SUFFIX
|
||
? No_wSuf
|
||
: (i.suffix == SHORT_MNEM_SUFFIX
|
||
? No_sSuf
|
||
: (i.suffix == LONG_MNEM_SUFFIX
|
||
? No_lSuf
|
||
: (i.suffix == QWORD_MNEM_SUFFIX
|
||
? No_qSuf
|
||
: (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
|
||
? No_xSuf : 0))))));
|
||
|
||
for (t = current_templates->start;
|
||
t < current_templates->end;
|
||
t++)
|
||
{
|
||
/* Must have right number of operands. */
|
||
if (i.operands != t->operands)
|
||
continue;
|
||
|
||
/* Check the suffix, except for some instructions in intel mode. */
|
||
if ((t->opcode_modifier & suffix_check)
|
||
&& !(intel_syntax
|
||
&& (t->opcode_modifier & IgnoreSize))
|
||
&& !(intel_syntax
|
||
&& t->base_opcode == 0xd9
|
||
&& (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
|
||
|| t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
|
||
continue;
|
||
|
||
/* Do not verify operands when there are none. */
|
||
else if (!t->operands)
|
||
{
|
||
if (t->cpu_flags & ~cpu_arch_flags)
|
||
continue;
|
||
/* We've found a match; break out of loop. */
|
||
break;
|
||
}
|
||
|
||
overlap0 = i.types[0] & t->operand_types[0];
|
||
switch (t->operands)
|
||
{
|
||
case 1:
|
||
if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
|
||
continue;
|
||
break;
|
||
case 2:
|
||
case 3:
|
||
overlap1 = i.types[1] & t->operand_types[1];
|
||
if (!MATCH (overlap0, i.types[0], t->operand_types[0])
|
||
|| !MATCH (overlap1, i.types[1], t->operand_types[1])
|
||
|| !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
|
||
t->operand_types[0],
|
||
overlap1, i.types[1],
|
||
t->operand_types[1]))
|
||
{
|
||
/* Check if other direction is valid ... */
|
||
if ((t->opcode_modifier & (D | FloatD)) == 0)
|
||
continue;
|
||
|
||
/* Try reversing direction of operands. */
|
||
overlap0 = i.types[0] & t->operand_types[1];
|
||
overlap1 = i.types[1] & t->operand_types[0];
|
||
if (!MATCH (overlap0, i.types[0], t->operand_types[1])
|
||
|| !MATCH (overlap1, i.types[1], t->operand_types[0])
|
||
|| !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
|
||
t->operand_types[1],
|
||
overlap1, i.types[1],
|
||
t->operand_types[0]))
|
||
{
|
||
/* Does not match either direction. */
|
||
continue;
|
||
}
|
||
/* found_reverse_match holds which of D or FloatDR
|
||
we've found. */
|
||
found_reverse_match = t->opcode_modifier & (D | FloatDR);
|
||
}
|
||
/* Found a forward 2 operand match here. */
|
||
else if (t->operands == 3)
|
||
{
|
||
/* Here we make use of the fact that there are no
|
||
reverse match 3 operand instructions, and all 3
|
||
operand instructions only need to be checked for
|
||
register consistency between operands 2 and 3. */
|
||
overlap2 = i.types[2] & t->operand_types[2];
|
||
if (!MATCH (overlap2, i.types[2], t->operand_types[2])
|
||
|| !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
|
||
t->operand_types[1],
|
||
overlap2, i.types[2],
|
||
t->operand_types[2]))
|
||
|
||
continue;
|
||
}
|
||
/* Found either forward/reverse 2 or 3 operand match here:
|
||
slip through to break. */
|
||
}
|
||
if (t->cpu_flags & ~cpu_arch_flags)
|
||
{
|
||
found_reverse_match = 0;
|
||
continue;
|
||
}
|
||
/* We've found a match; break out of loop. */
|
||
break;
|
||
}
|
||
|
||
if (t == current_templates->end)
|
||
{
|
||
/* We found no match. */
|
||
as_bad (_("suffix or operands invalid for `%s'"),
|
||
current_templates->start->name);
|
||
return 0;
|
||
}
|
||
|
||
if (!quiet_warnings)
|
||
{
|
||
if (!intel_syntax
|
||
&& ((i.types[0] & JumpAbsolute)
|
||
!= (t->operand_types[0] & JumpAbsolute)))
|
||
{
|
||
as_warn (_("indirect %s without `*'"), t->name);
|
||
}
|
||
|
||
if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
|
||
== (IsPrefix | IgnoreSize))
|
||
{
|
||
/* Warn them that a data or address size prefix doesn't
|
||
affect assembly of the next line of code. */
|
||
as_warn (_("stand-alone `%s' prefix"), t->name);
|
||
}
|
||
}
|
||
|
||
/* Copy the template we found. */
|
||
i.tm = *t;
|
||
if (found_reverse_match)
|
||
{
|
||
/* If we found a reverse match we must alter the opcode
|
||
direction bit. found_reverse_match holds bits to change
|
||
(different for int & float insns). */
|
||
|
||
i.tm.base_opcode ^= found_reverse_match;
|
||
|
||
i.tm.operand_types[0] = t->operand_types[1];
|
||
i.tm.operand_types[1] = t->operand_types[0];
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_string ()
|
||
{
|
||
int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
|
||
if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
|
||
{
|
||
if (i.seg[0] != NULL && i.seg[0] != &es)
|
||
{
|
||
as_bad (_("`%s' operand %d must use `%%es' segment"),
|
||
i.tm.name,
|
||
mem_op + 1);
|
||
return 0;
|
||
}
|
||
/* There's only ever one segment override allowed per instruction.
|
||
This instruction possibly has a legal segment override on the
|
||
second operand, so copy the segment to where non-string
|
||
instructions store it, allowing common code. */
|
||
i.seg[0] = i.seg[1];
|
||
}
|
||
else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
|
||
{
|
||
if (i.seg[1] != NULL && i.seg[1] != &es)
|
||
{
|
||
as_bad (_("`%s' operand %d must use `%%es' segment"),
|
||
i.tm.name,
|
||
mem_op + 2);
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
process_suffix ()
|
||
{
|
||
/* If matched instruction specifies an explicit instruction mnemonic
|
||
suffix, use it. */
|
||
if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
|
||
{
|
||
if (i.tm.opcode_modifier & Size16)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
else if (i.tm.opcode_modifier & Size64)
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
}
|
||
else if (i.reg_operands)
|
||
{
|
||
/* If there's no instruction mnemonic suffix we try to invent one
|
||
based on register operands. */
|
||
if (!i.suffix)
|
||
{
|
||
/* We take i.suffix from the last register operand specified,
|
||
Destination register type is more significant than source
|
||
register type. */
|
||
int op;
|
||
for (op = i.operands; --op >= 0;)
|
||
if ((i.types[op] & Reg)
|
||
&& !(i.tm.operand_types[op] & InOutPortReg))
|
||
{
|
||
i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
|
||
(i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
|
||
(i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
|
||
LONG_MNEM_SUFFIX);
|
||
break;
|
||
}
|
||
}
|
||
else if (i.suffix == BYTE_MNEM_SUFFIX)
|
||
{
|
||
if (!check_byte_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == LONG_MNEM_SUFFIX)
|
||
{
|
||
if (!check_long_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == QWORD_MNEM_SUFFIX)
|
||
{
|
||
if (!check_qword_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == WORD_MNEM_SUFFIX)
|
||
{
|
||
if (!check_word_reg ())
|
||
return 0;
|
||
}
|
||
else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
|
||
/* Do nothing if the instruction is going to ignore the prefix. */
|
||
;
|
||
else
|
||
abort ();
|
||
}
|
||
else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
|
||
{
|
||
i.suffix = stackop_size;
|
||
}
|
||
|
||
/* Change the opcode based on the operand size given by i.suffix;
|
||
We need not change things for byte insns. */
|
||
|
||
if (!i.suffix && (i.tm.opcode_modifier & W))
|
||
{
|
||
as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
|
||
return 0;
|
||
}
|
||
|
||
if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
|
||
{
|
||
/* It's not a byte, select word/dword operation. */
|
||
if (i.tm.opcode_modifier & W)
|
||
{
|
||
if (i.tm.opcode_modifier & ShortForm)
|
||
i.tm.base_opcode |= 8;
|
||
else
|
||
i.tm.base_opcode |= 1;
|
||
}
|
||
|
||
/* Now select between word & dword operations via the operand
|
||
size prefix, except for instructions that will ignore this
|
||
prefix anyway. */
|
||
if (i.suffix != QWORD_MNEM_SUFFIX
|
||
&& !(i.tm.opcode_modifier & IgnoreSize)
|
||
&& ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
|
||
|| (flag_code == CODE_64BIT
|
||
&& (i.tm.opcode_modifier & JumpByte))))
|
||
{
|
||
unsigned int prefix = DATA_PREFIX_OPCODE;
|
||
if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
|
||
prefix = ADDR_PREFIX_OPCODE;
|
||
|
||
if (!add_prefix (prefix))
|
||
return 0;
|
||
}
|
||
|
||
/* Set mode64 for an operand. */
|
||
if (i.suffix == QWORD_MNEM_SUFFIX
|
||
&& flag_code == CODE_64BIT
|
||
&& (i.tm.opcode_modifier & NoRex64) == 0)
|
||
i.rex |= REX_MODE64;
|
||
|
||
/* Size floating point instruction. */
|
||
if (i.suffix == LONG_MNEM_SUFFIX)
|
||
{
|
||
if (i.tm.opcode_modifier & FloatMF)
|
||
i.tm.base_opcode ^= 4;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_byte_reg ()
|
||
{
|
||
int op;
|
||
for (op = i.operands; --op >= 0;)
|
||
{
|
||
/* If this is an eight bit register, it's OK. If it's the 16 or
|
||
32 bit version of an eight bit register, we will just use the
|
||
low portion, and that's OK too. */
|
||
if (i.types[op] & Reg8)
|
||
continue;
|
||
|
||
/* movzx and movsx should not generate this warning. */
|
||
if (intel_syntax
|
||
&& (i.tm.base_opcode == 0xfb7
|
||
|| i.tm.base_opcode == 0xfb6
|
||
|| i.tm.base_opcode == 0x63
|
||
|| i.tm.base_opcode == 0xfbe
|
||
|| i.tm.base_opcode == 0xfbf))
|
||
continue;
|
||
|
||
if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
|
||
#if 0
|
||
/* Check that the template allows eight bit regs. This
|
||
kills insns such as `orb $1,%edx', which maybe should be
|
||
allowed. */
|
||
&& (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
|
||
#endif
|
||
)
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
if (flag_code == CODE_64BIT
|
||
&& (i.tm.operand_types[op] & InOutPortReg) == 0)
|
||
{
|
||
as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
#if REGISTER_WARNINGS
|
||
if (!quiet_warnings
|
||
&& (i.tm.operand_types[op] & InOutPortReg) == 0)
|
||
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
|
||
(i.op[op].regs + (i.types[op] & Reg16
|
||
? REGNAM_AL - REGNAM_AX
|
||
: REGNAM_AL - REGNAM_EAX))->reg_name,
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
#endif
|
||
continue;
|
||
}
|
||
/* Any other register is bad. */
|
||
if (i.types[op] & (Reg | RegMMX | RegXMM
|
||
| SReg2 | SReg3
|
||
| Control | Debug | Test
|
||
| FloatReg | FloatAcc))
|
||
{
|
||
as_bad (_("`%%%s' not allowed with `%s%c'"),
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_long_reg ()
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
if ((i.types[op] & Reg8) != 0
|
||
&& (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
|
||
{
|
||
as_bad (_("`%%%s' not allowed with `%s%c'"),
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the e prefix on a general reg is missing. */
|
||
else if ((!quiet_warnings || flag_code == CODE_64BIT)
|
||
&& (i.types[op] & Reg16) != 0
|
||
&& (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
#if REGISTER_WARNINGS
|
||
else
|
||
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
|
||
(i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
#endif
|
||
}
|
||
/* Warn if the r prefix on a general reg is missing. */
|
||
else if ((i.types[op] & Reg64) != 0
|
||
&& (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
|
||
{
|
||
as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_qword_reg ()
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0; )
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
if ((i.types[op] & Reg8) != 0
|
||
&& (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
|
||
{
|
||
as_bad (_("`%%%s' not allowed with `%s%c'"),
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the e prefix on a general reg is missing. */
|
||
else if (((i.types[op] & Reg16) != 0
|
||
|| (i.types[op] & Reg32) != 0)
|
||
&& (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_word_reg ()
|
||
{
|
||
int op;
|
||
for (op = i.operands; --op >= 0;)
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
if ((i.types[op] & Reg8) != 0
|
||
&& (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
|
||
{
|
||
as_bad (_("`%%%s' not allowed with `%s%c'"),
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the e prefix on a general reg is present. */
|
||
else if ((!quiet_warnings || flag_code == CODE_64BIT)
|
||
&& (i.types[op] & Reg32) != 0
|
||
&& (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
else
|
||
#if REGISTER_WARNINGS
|
||
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
|
||
(i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
#endif
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
finalize_imm ()
|
||
{
|
||
unsigned int overlap0, overlap1, overlap2;
|
||
|
||
overlap0 = i.types[0] & i.tm.operand_types[0];
|
||
if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
|
||
&& overlap0 != Imm8 && overlap0 != Imm8S
|
||
&& overlap0 != Imm16 && overlap0 != Imm32S
|
||
&& overlap0 != Imm32 && overlap0 != Imm64)
|
||
{
|
||
if (i.suffix)
|
||
{
|
||
overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
|
||
? Imm8 | Imm8S
|
||
: (i.suffix == WORD_MNEM_SUFFIX
|
||
? Imm16
|
||
: (i.suffix == QWORD_MNEM_SUFFIX
|
||
? Imm64 | Imm32S
|
||
: Imm32)));
|
||
}
|
||
else if (overlap0 == (Imm16 | Imm32S | Imm32)
|
||
|| overlap0 == (Imm16 | Imm32)
|
||
|| overlap0 == (Imm16 | Imm32S))
|
||
{
|
||
overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
|
||
? Imm16 : Imm32S);
|
||
}
|
||
if (overlap0 != Imm8 && overlap0 != Imm8S
|
||
&& overlap0 != Imm16 && overlap0 != Imm32S
|
||
&& overlap0 != Imm32 && overlap0 != Imm64)
|
||
{
|
||
as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
|
||
return 0;
|
||
}
|
||
}
|
||
i.types[0] = overlap0;
|
||
|
||
overlap1 = i.types[1] & i.tm.operand_types[1];
|
||
if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
|
||
&& overlap1 != Imm8 && overlap1 != Imm8S
|
||
&& overlap1 != Imm16 && overlap1 != Imm32S
|
||
&& overlap1 != Imm32 && overlap1 != Imm64)
|
||
{
|
||
if (i.suffix)
|
||
{
|
||
overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
|
||
? Imm8 | Imm8S
|
||
: (i.suffix == WORD_MNEM_SUFFIX
|
||
? Imm16
|
||
: (i.suffix == QWORD_MNEM_SUFFIX
|
||
? Imm64 | Imm32S
|
||
: Imm32)));
|
||
}
|
||
else if (overlap1 == (Imm16 | Imm32 | Imm32S)
|
||
|| overlap1 == (Imm16 | Imm32)
|
||
|| overlap1 == (Imm16 | Imm32S))
|
||
{
|
||
overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
|
||
? Imm16 : Imm32S);
|
||
}
|
||
if (overlap1 != Imm8 && overlap1 != Imm8S
|
||
&& overlap1 != Imm16 && overlap1 != Imm32S
|
||
&& overlap1 != Imm32 && overlap1 != Imm64)
|
||
{
|
||
as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
|
||
return 0;
|
||
}
|
||
}
|
||
i.types[1] = overlap1;
|
||
|
||
overlap2 = i.types[2] & i.tm.operand_types[2];
|
||
assert ((overlap2 & Imm) == 0);
|
||
i.types[2] = overlap2;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
process_operands ()
|
||
{
|
||
/* Default segment register this instruction will use for memory
|
||
accesses. 0 means unknown. This is only for optimizing out
|
||
unnecessary segment overrides. */
|
||
const seg_entry *default_seg = 0;
|
||
|
||
/* The imul $imm, %reg instruction is converted into
|
||
imul $imm, %reg, %reg, and the clr %reg instruction
|
||
is converted into xor %reg, %reg. */
|
||
if (i.tm.opcode_modifier & regKludge)
|
||
{
|
||
unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
|
||
/* Pretend we saw the extra register operand. */
|
||
assert (i.op[first_reg_op + 1].regs == 0);
|
||
i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
|
||
i.types[first_reg_op + 1] = i.types[first_reg_op];
|
||
i.reg_operands = 2;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier & ShortForm)
|
||
{
|
||
/* The register or float register operand is in operand 0 or 1. */
|
||
unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
|
||
/* Register goes in low 3 bits of opcode. */
|
||
i.tm.base_opcode |= i.op[op].regs->reg_num;
|
||
if ((i.op[op].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTZ;
|
||
if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
|
||
{
|
||
/* Warn about some common errors, but press on regardless.
|
||
The first case can be generated by gcc (<= 2.8.1). */
|
||
if (i.operands == 2)
|
||
{
|
||
/* Reversed arguments on faddp, fsubp, etc. */
|
||
as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
|
||
i.op[1].regs->reg_name,
|
||
i.op[0].regs->reg_name);
|
||
}
|
||
else
|
||
{
|
||
/* Extraneous `l' suffix on fp insn. */
|
||
as_warn (_("translating to `%s %%%s'"), i.tm.name,
|
||
i.op[0].regs->reg_name);
|
||
}
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier & Modrm)
|
||
{
|
||
/* The opcode is completed (modulo i.tm.extension_opcode which
|
||
must be put into the modrm byte). Now, we make the modrm and
|
||
index base bytes based on all the info we've collected. */
|
||
|
||
default_seg = build_modrm_byte ();
|
||
}
|
||
else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
|
||
{
|
||
if (i.tm.base_opcode == POP_SEG_SHORT
|
||
&& i.op[0].regs->reg_num == 1)
|
||
{
|
||
as_bad (_("you can't `pop %%cs'"));
|
||
return 0;
|
||
}
|
||
i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
|
||
if ((i.op[0].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTZ;
|
||
}
|
||
else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
|
||
{
|
||
default_seg = &ds;
|
||
}
|
||
else if ((i.tm.opcode_modifier & IsString) != 0)
|
||
{
|
||
/* For the string instructions that allow a segment override
|
||
on one of their operands, the default segment is ds. */
|
||
default_seg = &ds;
|
||
}
|
||
|
||
if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
|
||
as_warn (_("segment override on `lea' is ineffectual"));
|
||
|
||
/* If a segment was explicitly specified, and the specified segment
|
||
is not the default, use an opcode prefix to select it. If we
|
||
never figured out what the default segment is, then default_seg
|
||
will be zero at this point, and the specified segment prefix will
|
||
always be used. */
|
||
if ((i.seg[0]) && (i.seg[0] != default_seg))
|
||
{
|
||
if (!add_prefix (i.seg[0]->seg_prefix))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static const seg_entry *
|
||
build_modrm_byte ()
|
||
{
|
||
const seg_entry *default_seg = 0;
|
||
|
||
/* i.reg_operands MUST be the number of real register operands;
|
||
implicit registers do not count. */
|
||
if (i.reg_operands == 2)
|
||
{
|
||
unsigned int source, dest;
|
||
source = ((i.types[0]
|
||
& (Reg | RegMMX | RegXMM
|
||
| SReg2 | SReg3
|
||
| Control | Debug | Test))
|
||
? 0 : 1);
|
||
dest = source + 1;
|
||
|
||
i.rm.mode = 3;
|
||
/* One of the register operands will be encoded in the i.tm.reg
|
||
field, the other in the combined i.tm.mode and i.tm.regmem
|
||
fields. If no form of this instruction supports a memory
|
||
destination operand, then we assume the source operand may
|
||
sometimes be a memory operand and so we need to store the
|
||
destination in the i.rm.reg field. */
|
||
if ((i.tm.operand_types[dest] & AnyMem) == 0)
|
||
{
|
||
i.rm.reg = i.op[dest].regs->reg_num;
|
||
i.rm.regmem = i.op[source].regs->reg_num;
|
||
if ((i.op[dest].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTX;
|
||
if ((i.op[source].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTZ;
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.op[source].regs->reg_num;
|
||
i.rm.regmem = i.op[dest].regs->reg_num;
|
||
if ((i.op[dest].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTZ;
|
||
if ((i.op[source].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTX;
|
||
}
|
||
}
|
||
else
|
||
{ /* If it's not 2 reg operands... */
|
||
if (i.mem_operands)
|
||
{
|
||
unsigned int fake_zero_displacement = 0;
|
||
unsigned int op = ((i.types[0] & AnyMem)
|
||
? 0
|
||
: (i.types[1] & AnyMem) ? 1 : 2);
|
||
|
||
default_seg = &ds;
|
||
|
||
if (i.base_reg == 0)
|
||
{
|
||
i.rm.mode = 0;
|
||
if (!i.disp_operands)
|
||
fake_zero_displacement = 1;
|
||
if (i.index_reg == 0)
|
||
{
|
||
/* Operand is just <disp> */
|
||
if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
|
||
&& (flag_code != CODE_64BIT))
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER_16;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp16;
|
||
}
|
||
else if (flag_code != CODE_64BIT
|
||
|| (i.prefix[ADDR_PREFIX] != 0))
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp32;
|
||
}
|
||
else
|
||
{
|
||
/* 64bit mode overwrites the 32bit absolute
|
||
addressing by RIP relative addressing and
|
||
absolute addressing is encoded by one of the
|
||
redundant SIB forms. */
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp32S;
|
||
}
|
||
}
|
||
else /* !i.base_reg && i.index_reg */
|
||
{
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.scale = i.log2_scale_factor;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.types[op] &= ~Disp;
|
||
if (flag_code != CODE_64BIT)
|
||
i.types[op] |= Disp32; /* Must be 32 bit */
|
||
else
|
||
i.types[op] |= Disp32S;
|
||
if ((i.index_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTY;
|
||
}
|
||
}
|
||
/* RIP addressing for 64bit mode. */
|
||
else if (i.base_reg->reg_type == BaseIndex)
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp32S;
|
||
i.flags[op] = Operand_PCrel;
|
||
}
|
||
else if (i.base_reg->reg_type & Reg16)
|
||
{
|
||
switch (i.base_reg->reg_num)
|
||
{
|
||
case 3: /* (%bx) */
|
||
if (i.index_reg == 0)
|
||
i.rm.regmem = 7;
|
||
else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6;
|
||
break;
|
||
case 5: /* (%bp) */
|
||
default_seg = &ss;
|
||
if (i.index_reg == 0)
|
||
{
|
||
i.rm.regmem = 6;
|
||
if ((i.types[op] & Disp) == 0)
|
||
{
|
||
/* fake (%bp) into 0(%bp) */
|
||
i.types[op] |= Disp8;
|
||
fake_zero_displacement = 1;
|
||
}
|
||
}
|
||
else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6 + 2;
|
||
break;
|
||
default: /* (%si) -> 4 or (%di) -> 5 */
|
||
i.rm.regmem = i.base_reg->reg_num - 6 + 4;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
else /* i.base_reg and 32/64 bit mode */
|
||
{
|
||
if (flag_code == CODE_64BIT
|
||
&& (i.types[op] & Disp))
|
||
{
|
||
if (i.types[op] & Disp8)
|
||
i.types[op] = Disp8 | Disp32S;
|
||
else
|
||
i.types[op] = Disp32S;
|
||
}
|
||
i.rm.regmem = i.base_reg->reg_num;
|
||
if ((i.base_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTZ;
|
||
i.sib.base = i.base_reg->reg_num;
|
||
/* x86-64 ignores REX prefix bit here to avoid decoder
|
||
complications. */
|
||
if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
|
||
{
|
||
default_seg = &ss;
|
||
if (i.disp_operands == 0)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
i.types[op] |= Disp8;
|
||
}
|
||
}
|
||
else if (i.base_reg->reg_num == ESP_REG_NUM)
|
||
{
|
||
default_seg = &ss;
|
||
}
|
||
i.sib.scale = i.log2_scale_factor;
|
||
if (i.index_reg == 0)
|
||
{
|
||
/* <disp>(%esp) becomes two byte modrm with no index
|
||
register. We've already stored the code for esp
|
||
in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
|
||
Any base register besides %esp will not use the
|
||
extra modrm byte. */
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
#if !SCALE1_WHEN_NO_INDEX
|
||
/* Another case where we force the second modrm byte. */
|
||
if (i.log2_scale_factor)
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
if ((i.index_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTY;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
|
||
if (fake_zero_displacement)
|
||
{
|
||
/* Fakes a zero displacement assuming that i.types[op]
|
||
holds the correct displacement size. */
|
||
expressionS *exp;
|
||
|
||
assert (i.op[op].disps == 0);
|
||
exp = &disp_expressions[i.disp_operands++];
|
||
i.op[op].disps = exp;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
}
|
||
|
||
/* Fill in i.rm.reg or i.rm.regmem field with register operand
|
||
(if any) based on i.tm.extension_opcode. Again, we must be
|
||
careful to make sure that segment/control/debug/test/MMX
|
||
registers are coded into the i.rm.reg field. */
|
||
if (i.reg_operands)
|
||
{
|
||
unsigned int op =
|
||
((i.types[0]
|
||
& (Reg | RegMMX | RegXMM
|
||
| SReg2 | SReg3
|
||
| Control | Debug | Test))
|
||
? 0
|
||
: ((i.types[1]
|
||
& (Reg | RegMMX | RegXMM
|
||
| SReg2 | SReg3
|
||
| Control | Debug | Test))
|
||
? 1
|
||
: 2));
|
||
/* If there is an extension opcode to put here, the register
|
||
number must be put into the regmem field. */
|
||
if (i.tm.extension_opcode != None)
|
||
{
|
||
i.rm.regmem = i.op[op].regs->reg_num;
|
||
if ((i.op[op].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTZ;
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.op[op].regs->reg_num;
|
||
if ((i.op[op].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_EXTX;
|
||
}
|
||
|
||
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
|
||
must set it to 3 to indicate this is a register operand
|
||
in the regmem field. */
|
||
if (!i.mem_operands)
|
||
i.rm.mode = 3;
|
||
}
|
||
|
||
/* Fill in i.rm.reg field with extension opcode (if any). */
|
||
if (i.tm.extension_opcode != None)
|
||
i.rm.reg = i.tm.extension_opcode;
|
||
}
|
||
return default_seg;
|
||
}
|
||
|
||
static void
|
||
output_branch ()
|
||
{
|
||
char *p;
|
||
int code16;
|
||
int prefix;
|
||
relax_substateT subtype;
|
||
symbolS *sym;
|
||
offsetT off;
|
||
|
||
code16 = 0;
|
||
if (flag_code == CODE_16BIT)
|
||
code16 = CODE16;
|
||
|
||
prefix = 0;
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
prefix = 1;
|
||
i.prefixes -= 1;
|
||
code16 ^= CODE16;
|
||
}
|
||
/* Pentium4 branch hints. */
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
|
||
{
|
||
prefix++;
|
||
i.prefixes--;
|
||
}
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
prefix++;
|
||
i.prefixes--;
|
||
}
|
||
|
||
if (i.prefixes != 0 && !intel_syntax)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
/* It's always a symbol; End frag & setup for relax.
|
||
Make sure there is enough room in this frag for the largest
|
||
instruction we may generate in md_convert_frag. This is 2
|
||
bytes for the opcode and room for the prefix and largest
|
||
displacement. */
|
||
frag_grow (prefix + 2 + 4);
|
||
/* Prefix and 1 opcode byte go in fr_fix. */
|
||
p = frag_more (prefix + 1);
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
|
||
*p++ = i.prefix[SEG_PREFIX];
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
*p++ = i.prefix[REX_PREFIX];
|
||
*p = i.tm.base_opcode;
|
||
|
||
if ((unsigned char) *p == JUMP_PC_RELATIVE)
|
||
subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
|
||
else if ((cpu_arch_flags & Cpu386) != 0)
|
||
subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
|
||
else
|
||
subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
|
||
subtype |= code16;
|
||
|
||
sym = i.op[0].disps->X_add_symbol;
|
||
off = i.op[0].disps->X_add_number;
|
||
|
||
if (i.op[0].disps->X_op != O_constant
|
||
&& i.op[0].disps->X_op != O_symbol)
|
||
{
|
||
/* Handle complex expressions. */
|
||
sym = make_expr_symbol (i.op[0].disps);
|
||
off = 0;
|
||
}
|
||
|
||
/* 1 possible extra opcode + 4 byte displacement go in var part.
|
||
Pass reloc in fr_var. */
|
||
frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
|
||
}
|
||
|
||
static void
|
||
output_jump ()
|
||
{
|
||
char *p;
|
||
int size;
|
||
fixS *fixP;
|
||
|
||
if (i.tm.opcode_modifier & JumpByte)
|
||
{
|
||
/* This is a loop or jecxz type instruction. */
|
||
size = 1;
|
||
if (i.prefix[ADDR_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
}
|
||
/* Pentium4 branch hints. */
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
|
||
i.prefixes--;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int code16;
|
||
|
||
code16 = 0;
|
||
if (flag_code == CODE_16BIT)
|
||
code16 = CODE16;
|
||
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
code16 ^= CODE16;
|
||
}
|
||
|
||
size = 4;
|
||
if (code16)
|
||
size = 2;
|
||
}
|
||
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
if (i.prefixes != 0 && !intel_syntax)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
p = frag_more (1 + size);
|
||
*p++ = i.tm.base_opcode;
|
||
|
||
fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
|
||
|
||
/* All jumps handled here are signed, but don't use a signed limit
|
||
check for 32 and 16 bit jumps as we want to allow wrap around at
|
||
4G and 64k respectively. */
|
||
if (size == 1)
|
||
fixP->fx_signed = 1;
|
||
}
|
||
|
||
static void
|
||
output_interseg_jump ()
|
||
{
|
||
char *p;
|
||
int size;
|
||
int prefix;
|
||
int code16;
|
||
|
||
code16 = 0;
|
||
if (flag_code == CODE_16BIT)
|
||
code16 = CODE16;
|
||
|
||
prefix = 0;
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
prefix = 1;
|
||
i.prefixes -= 1;
|
||
code16 ^= CODE16;
|
||
}
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
prefix++;
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
size = 4;
|
||
if (code16)
|
||
size = 2;
|
||
|
||
if (i.prefixes != 0 && !intel_syntax)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
/* 1 opcode; 2 segment; offset */
|
||
p = frag_more (prefix + 1 + 2 + size);
|
||
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
*p++ = i.prefix[REX_PREFIX];
|
||
|
||
*p++ = i.tm.base_opcode;
|
||
if (i.op[1].imms->X_op == O_constant)
|
||
{
|
||
offsetT n = i.op[1].imms->X_add_number;
|
||
|
||
if (size == 2
|
||
&& !fits_in_unsigned_word (n)
|
||
&& !fits_in_signed_word (n))
|
||
{
|
||
as_bad (_("16-bit jump out of range"));
|
||
return;
|
||
}
|
||
md_number_to_chars (p, n, size);
|
||
}
|
||
else
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
|
||
if (i.op[0].imms->X_op != O_constant)
|
||
as_bad (_("can't handle non absolute segment in `%s'"),
|
||
i.tm.name);
|
||
md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
|
||
}
|
||
|
||
|
||
static void
|
||
output_insn ()
|
||
{
|
||
fragS *insn_start_frag;
|
||
offsetT insn_start_off;
|
||
|
||
/* Tie dwarf2 debug info to the address at the start of the insn.
|
||
We can't do this after the insn has been output as the current
|
||
frag may have been closed off. eg. by frag_var. */
|
||
dwarf2_emit_insn (0);
|
||
|
||
insn_start_frag = frag_now;
|
||
insn_start_off = frag_now_fix ();
|
||
|
||
/* Output jumps. */
|
||
if (i.tm.opcode_modifier & Jump)
|
||
output_branch ();
|
||
else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
|
||
output_jump ();
|
||
else if (i.tm.opcode_modifier & JumpInterSegment)
|
||
output_interseg_jump ();
|
||
else
|
||
{
|
||
/* Output normal instructions here. */
|
||
char *p;
|
||
unsigned char *q;
|
||
|
||
/* All opcodes on i386 have either 1 or 2 bytes. We may use third
|
||
byte for the SSE instructions to specify a prefix they require. */
|
||
if (i.tm.base_opcode & 0xff0000)
|
||
add_prefix ((i.tm.base_opcode >> 16) & 0xff);
|
||
|
||
/* The prefix bytes. */
|
||
for (q = i.prefix;
|
||
q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
|
||
q++)
|
||
{
|
||
if (*q)
|
||
{
|
||
p = frag_more (1);
|
||
md_number_to_chars (p, (valueT) *q, 1);
|
||
}
|
||
}
|
||
|
||
/* Now the opcode; be careful about word order here! */
|
||
if (fits_in_unsigned_byte (i.tm.base_opcode))
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.tm.base_opcode);
|
||
}
|
||
else
|
||
{
|
||
p = frag_more (2);
|
||
/* Put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (i.tm.base_opcode >> 8) & 0xff;
|
||
*p = i.tm.base_opcode & 0xff;
|
||
}
|
||
|
||
/* Now the modrm byte and sib byte (if present). */
|
||
if (i.tm.opcode_modifier & Modrm)
|
||
{
|
||
p = frag_more (1);
|
||
md_number_to_chars (p,
|
||
(valueT) (i.rm.regmem << 0
|
||
| i.rm.reg << 3
|
||
| i.rm.mode << 6),
|
||
1);
|
||
/* If i.rm.regmem == ESP (4)
|
||
&& i.rm.mode != (Register mode)
|
||
&& not 16 bit
|
||
==> need second modrm byte. */
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
|
||
&& i.rm.mode != 3
|
||
&& !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
|
||
{
|
||
p = frag_more (1);
|
||
md_number_to_chars (p,
|
||
(valueT) (i.sib.base << 0
|
||
| i.sib.index << 3
|
||
| i.sib.scale << 6),
|
||
1);
|
||
}
|
||
}
|
||
|
||
if (i.disp_operands)
|
||
output_disp (insn_start_frag, insn_start_off);
|
||
|
||
if (i.imm_operands)
|
||
output_imm (insn_start_frag, insn_start_off);
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
if (flag_debug)
|
||
{
|
||
pi (line, &i);
|
||
}
|
||
#endif /* DEBUG386 */
|
||
}
|
||
|
||
static void
|
||
output_disp (insn_start_frag, insn_start_off)
|
||
fragS *insn_start_frag;
|
||
offsetT insn_start_off;
|
||
{
|
||
char *p;
|
||
unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (i.types[n] & Disp)
|
||
{
|
||
if (i.op[n].disps->X_op == O_constant)
|
||
{
|
||
int size;
|
||
offsetT val;
|
||
|
||
size = 4;
|
||
if (i.types[n] & (Disp8 | Disp16 | Disp64))
|
||
{
|
||
size = 2;
|
||
if (i.types[n] & Disp8)
|
||
size = 1;
|
||
if (i.types[n] & Disp64)
|
||
size = 8;
|
||
}
|
||
val = offset_in_range (i.op[n].disps->X_add_number,
|
||
size);
|
||
p = frag_more (size);
|
||
md_number_to_chars (p, val, size);
|
||
}
|
||
else
|
||
{
|
||
RELOC_ENUM reloc_type;
|
||
int size = 4;
|
||
int sign = 0;
|
||
int pcrel = (i.flags[n] & Operand_PCrel) != 0;
|
||
|
||
/* The PC relative address is computed relative
|
||
to the instruction boundary, so in case immediate
|
||
fields follows, we need to adjust the value. */
|
||
if (pcrel && i.imm_operands)
|
||
{
|
||
int imm_size = 4;
|
||
unsigned int n1;
|
||
|
||
for (n1 = 0; n1 < i.operands; n1++)
|
||
if (i.types[n1] & Imm)
|
||
{
|
||
if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
|
||
{
|
||
imm_size = 2;
|
||
if (i.types[n1] & (Imm8 | Imm8S))
|
||
imm_size = 1;
|
||
if (i.types[n1] & Imm64)
|
||
imm_size = 8;
|
||
}
|
||
break;
|
||
}
|
||
/* We should find the immediate. */
|
||
if (n1 == i.operands)
|
||
abort ();
|
||
i.op[n].disps->X_add_number -= imm_size;
|
||
}
|
||
|
||
if (i.types[n] & Disp32S)
|
||
sign = 1;
|
||
|
||
if (i.types[n] & (Disp16 | Disp64))
|
||
{
|
||
size = 2;
|
||
if (i.types[n] & Disp64)
|
||
size = 8;
|
||
}
|
||
|
||
p = frag_more (size);
|
||
reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
|
||
#ifdef BFD_ASSEMBLER
|
||
if (reloc_type == BFD_RELOC_32
|
||
&& GOT_symbol
|
||
&& GOT_symbol == i.op[n].disps->X_add_symbol
|
||
&& (i.op[n].disps->X_op == O_symbol
|
||
|| (i.op[n].disps->X_op == O_add
|
||
&& ((symbol_get_value_expression
|
||
(i.op[n].disps->X_op_symbol)->X_op)
|
||
== O_subtract))))
|
||
{
|
||
offsetT add;
|
||
|
||
if (insn_start_frag == frag_now)
|
||
add = (p - frag_now->fr_literal) - insn_start_off;
|
||
else
|
||
{
|
||
fragS *fr;
|
||
|
||
add = insn_start_frag->fr_fix - insn_start_off;
|
||
for (fr = insn_start_frag->fr_next;
|
||
fr && fr != frag_now; fr = fr->fr_next)
|
||
add += fr->fr_fix;
|
||
add += p - frag_now->fr_literal;
|
||
}
|
||
|
||
/* We don't support dynamic linking on x86-64 yet. */
|
||
if (flag_code == CODE_64BIT)
|
||
abort ();
|
||
reloc_type = BFD_RELOC_386_GOTPC;
|
||
i.op[n].disps->X_add_number += add;
|
||
}
|
||
#endif
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[n].disps, pcrel, reloc_type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
output_imm (insn_start_frag, insn_start_off)
|
||
fragS *insn_start_frag;
|
||
offsetT insn_start_off;
|
||
{
|
||
char *p;
|
||
unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (i.types[n] & Imm)
|
||
{
|
||
if (i.op[n].imms->X_op == O_constant)
|
||
{
|
||
int size;
|
||
offsetT val;
|
||
|
||
size = 4;
|
||
if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
|
||
{
|
||
size = 2;
|
||
if (i.types[n] & (Imm8 | Imm8S))
|
||
size = 1;
|
||
else if (i.types[n] & Imm64)
|
||
size = 8;
|
||
}
|
||
val = offset_in_range (i.op[n].imms->X_add_number,
|
||
size);
|
||
p = frag_more (size);
|
||
md_number_to_chars (p, val, size);
|
||
}
|
||
else
|
||
{
|
||
/* Not absolute_section.
|
||
Need a 32-bit fixup (don't support 8bit
|
||
non-absolute imms). Try to support other
|
||
sizes ... */
|
||
RELOC_ENUM reloc_type;
|
||
int size = 4;
|
||
int sign = 0;
|
||
|
||
if ((i.types[n] & (Imm32S))
|
||
&& i.suffix == QWORD_MNEM_SUFFIX)
|
||
sign = 1;
|
||
if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
|
||
{
|
||
size = 2;
|
||
if (i.types[n] & (Imm8 | Imm8S))
|
||
size = 1;
|
||
if (i.types[n] & Imm64)
|
||
size = 8;
|
||
}
|
||
|
||
p = frag_more (size);
|
||
reloc_type = reloc (size, 0, sign, i.reloc[n]);
|
||
#ifdef BFD_ASSEMBLER
|
||
/* This is tough to explain. We end up with this one if we
|
||
* have operands that look like
|
||
* "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
|
||
* obtain the absolute address of the GOT, and it is strongly
|
||
* preferable from a performance point of view to avoid using
|
||
* a runtime relocation for this. The actual sequence of
|
||
* instructions often look something like:
|
||
*
|
||
* call .L66
|
||
* .L66:
|
||
* popl %ebx
|
||
* addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
|
||
*
|
||
* The call and pop essentially return the absolute address
|
||
* of the label .L66 and store it in %ebx. The linker itself
|
||
* will ultimately change the first operand of the addl so
|
||
* that %ebx points to the GOT, but to keep things simple, the
|
||
* .o file must have this operand set so that it generates not
|
||
* the absolute address of .L66, but the absolute address of
|
||
* itself. This allows the linker itself simply treat a GOTPC
|
||
* relocation as asking for a pcrel offset to the GOT to be
|
||
* added in, and the addend of the relocation is stored in the
|
||
* operand field for the instruction itself.
|
||
*
|
||
* Our job here is to fix the operand so that it would add
|
||
* the correct offset so that %ebx would point to itself. The
|
||
* thing that is tricky is that .-.L66 will point to the
|
||
* beginning of the instruction, so we need to further modify
|
||
* the operand so that it will point to itself. There are
|
||
* other cases where you have something like:
|
||
*
|
||
* .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
|
||
*
|
||
* and here no correction would be required. Internally in
|
||
* the assembler we treat operands of this form as not being
|
||
* pcrel since the '.' is explicitly mentioned, and I wonder
|
||
* whether it would simplify matters to do it this way. Who
|
||
* knows. In earlier versions of the PIC patches, the
|
||
* pcrel_adjust field was used to store the correction, but
|
||
* since the expression is not pcrel, I felt it would be
|
||
* confusing to do it this way. */
|
||
|
||
if (reloc_type == BFD_RELOC_32
|
||
&& GOT_symbol
|
||
&& GOT_symbol == i.op[n].imms->X_add_symbol
|
||
&& (i.op[n].imms->X_op == O_symbol
|
||
|| (i.op[n].imms->X_op == O_add
|
||
&& ((symbol_get_value_expression
|
||
(i.op[n].imms->X_op_symbol)->X_op)
|
||
== O_subtract))))
|
||
{
|
||
offsetT add;
|
||
|
||
if (insn_start_frag == frag_now)
|
||
add = (p - frag_now->fr_literal) - insn_start_off;
|
||
else
|
||
{
|
||
fragS *fr;
|
||
|
||
add = insn_start_frag->fr_fix - insn_start_off;
|
||
for (fr = insn_start_frag->fr_next;
|
||
fr && fr != frag_now; fr = fr->fr_next)
|
||
add += fr->fr_fix;
|
||
add += p - frag_now->fr_literal;
|
||
}
|
||
|
||
/* We don't support dynamic linking on x86-64 yet. */
|
||
if (flag_code == CODE_64BIT)
|
||
abort ();
|
||
reloc_type = BFD_RELOC_386_GOTPC;
|
||
i.op[n].imms->X_add_number += add;
|
||
}
|
||
#endif
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[n].imms, 0, reloc_type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifndef LEX_AT
|
||
static char *lex_got PARAMS ((RELOC_ENUM *, int *));
|
||
|
||
/* Parse operands of the form
|
||
<symbol>@GOTOFF+<nnn>
|
||
and similar .plt or .got references.
|
||
|
||
If we find one, set up the correct relocation in RELOC and copy the
|
||
input string, minus the `@GOTOFF' into a malloc'd buffer for
|
||
parsing by the calling routine. Return this buffer, and if ADJUST
|
||
is non-null set it to the length of the string we removed from the
|
||
input line. Otherwise return NULL. */
|
||
static char *
|
||
lex_got (reloc, adjust)
|
||
RELOC_ENUM *reloc;
|
||
int *adjust;
|
||
{
|
||
static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
|
||
static const struct {
|
||
const char *str;
|
||
const RELOC_ENUM rel[NUM_FLAG_CODE];
|
||
} gotrel[] = {
|
||
{ "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
|
||
{ "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
|
||
{ "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
|
||
{ "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
|
||
{ "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
|
||
{ "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
|
||
{ "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
|
||
{ "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
|
||
{ "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
|
||
{ "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
|
||
{ "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
|
||
{ "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
|
||
{ "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
|
||
};
|
||
char *cp;
|
||
unsigned int j;
|
||
|
||
for (cp = input_line_pointer; *cp != '@'; cp++)
|
||
if (is_end_of_line[(unsigned char) *cp])
|
||
return NULL;
|
||
|
||
for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
|
||
{
|
||
int len;
|
||
|
||
len = strlen (gotrel[j].str);
|
||
if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
|
||
{
|
||
if (gotrel[j].rel[(unsigned int) flag_code] != 0)
|
||
{
|
||
int first, second;
|
||
char *tmpbuf, *past_reloc;
|
||
|
||
*reloc = gotrel[j].rel[(unsigned int) flag_code];
|
||
if (adjust)
|
||
*adjust = len;
|
||
|
||
if (GOT_symbol == NULL)
|
||
GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
|
||
|
||
/* Replace the relocation token with ' ', so that
|
||
errors like foo@GOTOFF1 will be detected. */
|
||
|
||
/* The length of the first part of our input line. */
|
||
first = cp - input_line_pointer;
|
||
|
||
/* The second part goes from after the reloc token until
|
||
(and including) an end_of_line char. Don't use strlen
|
||
here as the end_of_line char may not be a NUL. */
|
||
past_reloc = cp + 1 + len;
|
||
for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
|
||
;
|
||
second = cp - past_reloc;
|
||
|
||
/* Allocate and copy string. The trailing NUL shouldn't
|
||
be necessary, but be safe. */
|
||
tmpbuf = xmalloc (first + second + 2);
|
||
memcpy (tmpbuf, input_line_pointer, first);
|
||
tmpbuf[first] = ' ';
|
||
memcpy (tmpbuf + first + 1, past_reloc, second);
|
||
tmpbuf[first + second + 1] = '\0';
|
||
return tmpbuf;
|
||
}
|
||
|
||
as_bad (_("@%s reloc is not supported in %s bit mode"),
|
||
gotrel[j].str, mode_name[(unsigned int) flag_code]);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Might be a symbol version string. Don't as_bad here. */
|
||
return NULL;
|
||
}
|
||
|
||
/* x86_cons_fix_new is called via the expression parsing code when a
|
||
reloc is needed. We use this hook to get the correct .got reloc. */
|
||
static RELOC_ENUM got_reloc = NO_RELOC;
|
||
|
||
void
|
||
x86_cons_fix_new (frag, off, len, exp)
|
||
fragS *frag;
|
||
unsigned int off;
|
||
unsigned int len;
|
||
expressionS *exp;
|
||
{
|
||
RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
|
||
got_reloc = NO_RELOC;
|
||
fix_new_exp (frag, off, len, exp, 0, r);
|
||
}
|
||
|
||
void
|
||
x86_cons (exp, size)
|
||
expressionS *exp;
|
||
int size;
|
||
{
|
||
if (size == 4)
|
||
{
|
||
/* Handle @GOTOFF and the like in an expression. */
|
||
char *save;
|
||
char *gotfree_input_line;
|
||
int adjust;
|
||
|
||
save = input_line_pointer;
|
||
gotfree_input_line = lex_got (&got_reloc, &adjust);
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
|
||
expression (exp);
|
||
|
||
if (gotfree_input_line)
|
||
{
|
||
/* expression () has merrily parsed up to the end of line,
|
||
or a comma - in the wrong buffer. Transfer how far
|
||
input_line_pointer has moved to the right buffer. */
|
||
input_line_pointer = (save
|
||
+ (input_line_pointer - gotfree_input_line)
|
||
+ adjust);
|
||
free (gotfree_input_line);
|
||
}
|
||
}
|
||
else
|
||
expression (exp);
|
||
}
|
||
#endif
|
||
|
||
static int i386_immediate PARAMS ((char *));
|
||
|
||
static int
|
||
i386_immediate (imm_start)
|
||
char *imm_start;
|
||
{
|
||
char *save_input_line_pointer;
|
||
#ifndef LEX_AT
|
||
char *gotfree_input_line;
|
||
#endif
|
||
segT exp_seg = 0;
|
||
expressionS *exp;
|
||
|
||
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
|
||
{
|
||
as_bad (_("only 1 or 2 immediate operands are allowed"));
|
||
return 0;
|
||
}
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[this_operand].imms = exp;
|
||
|
||
if (is_space_char (*imm_start))
|
||
++imm_start;
|
||
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = imm_start;
|
||
|
||
#ifndef LEX_AT
|
||
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
#endif
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer)
|
||
as_bad (_("junk `%s' after expression"), input_line_pointer);
|
||
|
||
input_line_pointer = save_input_line_pointer;
|
||
#ifndef LEX_AT
|
||
if (gotfree_input_line)
|
||
free (gotfree_input_line);
|
||
#endif
|
||
|
||
if (exp->X_op == O_absent || exp->X_op == O_big)
|
||
{
|
||
/* Missing or bad expr becomes absolute 0. */
|
||
as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
|
||
imm_start);
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
else if (exp->X_op == O_constant)
|
||
{
|
||
/* Size it properly later. */
|
||
i.types[this_operand] |= Imm64;
|
||
/* If BFD64, sign extend val. */
|
||
if (!use_rela_relocations)
|
||
if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
|
||
exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
|
||
}
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
else if (1
|
||
#ifdef BFD_ASSEMBLER
|
||
&& OUTPUT_FLAVOR == bfd_target_aout_flavour
|
||
#endif
|
||
&& exp_seg != absolute_section
|
||
&& exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
#ifdef BFD_ASSEMBLER
|
||
&& !bfd_is_com_section (exp_seg)
|
||
#endif
|
||
)
|
||
{
|
||
#ifdef BFD_ASSEMBLER
|
||
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
|
||
#else
|
||
as_bad (_("unimplemented segment type %d in operand"), exp_seg);
|
||
#endif
|
||
return 0;
|
||
}
|
||
#endif
|
||
else
|
||
{
|
||
/* This is an address. The size of the address will be
|
||
determined later, depending on destination register,
|
||
suffix, or the default for the section. */
|
||
i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static char *i386_scale PARAMS ((char *));
|
||
|
||
static char *
|
||
i386_scale (scale)
|
||
char *scale;
|
||
{
|
||
offsetT val;
|
||
char *save = input_line_pointer;
|
||
|
||
input_line_pointer = scale;
|
||
val = get_absolute_expression ();
|
||
|
||
switch (val)
|
||
{
|
||
case 0:
|
||
case 1:
|
||
i.log2_scale_factor = 0;
|
||
break;
|
||
case 2:
|
||
i.log2_scale_factor = 1;
|
||
break;
|
||
case 4:
|
||
i.log2_scale_factor = 2;
|
||
break;
|
||
case 8:
|
||
i.log2_scale_factor = 3;
|
||
break;
|
||
default:
|
||
as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
|
||
scale);
|
||
input_line_pointer = save;
|
||
return NULL;
|
||
}
|
||
if (i.log2_scale_factor != 0 && i.index_reg == 0)
|
||
{
|
||
as_warn (_("scale factor of %d without an index register"),
|
||
1 << i.log2_scale_factor);
|
||
#if SCALE1_WHEN_NO_INDEX
|
||
i.log2_scale_factor = 0;
|
||
#endif
|
||
}
|
||
scale = input_line_pointer;
|
||
input_line_pointer = save;
|
||
return scale;
|
||
}
|
||
|
||
static int i386_displacement PARAMS ((char *, char *));
|
||
|
||
static int
|
||
i386_displacement (disp_start, disp_end)
|
||
char *disp_start;
|
||
char *disp_end;
|
||
{
|
||
expressionS *exp;
|
||
segT exp_seg = 0;
|
||
char *save_input_line_pointer;
|
||
#ifndef LEX_AT
|
||
char *gotfree_input_line;
|
||
#endif
|
||
int bigdisp = Disp32;
|
||
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if (i.prefix[ADDR_PREFIX] == 0)
|
||
bigdisp = Disp64;
|
||
}
|
||
else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
|
||
bigdisp = Disp16;
|
||
i.types[this_operand] |= bigdisp;
|
||
|
||
exp = &disp_expressions[i.disp_operands];
|
||
i.op[this_operand].disps = exp;
|
||
i.disp_operands++;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = disp_start;
|
||
END_STRING_AND_SAVE (disp_end);
|
||
|
||
#ifndef GCC_ASM_O_HACK
|
||
#define GCC_ASM_O_HACK 0
|
||
#endif
|
||
#if GCC_ASM_O_HACK
|
||
END_STRING_AND_SAVE (disp_end + 1);
|
||
if ((i.types[this_operand] & BaseIndex) != 0
|
||
&& displacement_string_end[-1] == '+')
|
||
{
|
||
/* This hack is to avoid a warning when using the "o"
|
||
constraint within gcc asm statements.
|
||
For instance:
|
||
|
||
#define _set_tssldt_desc(n,addr,limit,type) \
|
||
__asm__ __volatile__ ( \
|
||
"movw %w2,%0\n\t" \
|
||
"movw %w1,2+%0\n\t" \
|
||
"rorl $16,%1\n\t" \
|
||
"movb %b1,4+%0\n\t" \
|
||
"movb %4,5+%0\n\t" \
|
||
"movb $0,6+%0\n\t" \
|
||
"movb %h1,7+%0\n\t" \
|
||
"rorl $16,%1" \
|
||
: "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
|
||
|
||
This works great except that the output assembler ends
|
||
up looking a bit weird if it turns out that there is
|
||
no offset. You end up producing code that looks like:
|
||
|
||
#APP
|
||
movw $235,(%eax)
|
||
movw %dx,2+(%eax)
|
||
rorl $16,%edx
|
||
movb %dl,4+(%eax)
|
||
movb $137,5+(%eax)
|
||
movb $0,6+(%eax)
|
||
movb %dh,7+(%eax)
|
||
rorl $16,%edx
|
||
#NO_APP
|
||
|
||
So here we provide the missing zero. */
|
||
|
||
*displacement_string_end = '0';
|
||
}
|
||
#endif
|
||
#ifndef LEX_AT
|
||
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
#endif
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer)
|
||
as_bad (_("junk `%s' after expression"), input_line_pointer);
|
||
#if GCC_ASM_O_HACK
|
||
RESTORE_END_STRING (disp_end + 1);
|
||
#endif
|
||
RESTORE_END_STRING (disp_end);
|
||
input_line_pointer = save_input_line_pointer;
|
||
#ifndef LEX_AT
|
||
if (gotfree_input_line)
|
||
free (gotfree_input_line);
|
||
#endif
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
/* We do this to make sure that the section symbol is in
|
||
the symbol table. We will ultimately change the relocation
|
||
to be relative to the beginning of the section. */
|
||
if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
|
||
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
|
||
{
|
||
if (exp->X_op != O_symbol)
|
||
{
|
||
as_bad (_("bad expression used with @%s"),
|
||
(i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
|
||
? "GOTPCREL"
|
||
: "GOTOFF"));
|
||
return 0;
|
||
}
|
||
|
||
if (S_IS_LOCAL (exp->X_add_symbol)
|
||
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
|
||
section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
|
||
exp->X_op = O_subtract;
|
||
exp->X_op_symbol = GOT_symbol;
|
||
if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
|
||
i.reloc[this_operand] = BFD_RELOC_32_PCREL;
|
||
else
|
||
i.reloc[this_operand] = BFD_RELOC_32;
|
||
}
|
||
#endif
|
||
|
||
if (exp->X_op == O_absent || exp->X_op == O_big)
|
||
{
|
||
/* Missing or bad expr becomes absolute 0. */
|
||
as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
|
||
disp_start);
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
if (exp->X_op != O_constant
|
||
#ifdef BFD_ASSEMBLER
|
||
&& OUTPUT_FLAVOR == bfd_target_aout_flavour
|
||
#endif
|
||
&& exp_seg != absolute_section
|
||
&& exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
#ifdef BFD_ASSEMBLER
|
||
&& !bfd_is_com_section (exp_seg)
|
||
#endif
|
||
)
|
||
{
|
||
#ifdef BFD_ASSEMBLER
|
||
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
|
||
#else
|
||
as_bad (_("unimplemented segment type %d in operand"), exp_seg);
|
||
#endif
|
||
return 0;
|
||
}
|
||
#endif
|
||
else if (flag_code == CODE_64BIT)
|
||
i.types[this_operand] |= Disp32S | Disp32;
|
||
return 1;
|
||
}
|
||
|
||
static int i386_index_check PARAMS ((const char *));
|
||
|
||
/* Make sure the memory operand we've been dealt is valid.
|
||
Return 1 on success, 0 on a failure. */
|
||
|
||
static int
|
||
i386_index_check (operand_string)
|
||
const char *operand_string;
|
||
{
|
||
int ok;
|
||
#if INFER_ADDR_PREFIX
|
||
int fudged = 0;
|
||
|
||
tryprefix:
|
||
#endif
|
||
ok = 1;
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if (i.prefix[ADDR_PREFIX] == 0)
|
||
{
|
||
/* 64bit checks. */
|
||
if ((i.base_reg
|
||
&& ((i.base_reg->reg_type & Reg64) == 0)
|
||
&& (i.base_reg->reg_type != BaseIndex
|
||
|| i.index_reg))
|
||
|| (i.index_reg
|
||
&& ((i.index_reg->reg_type & (Reg64 | BaseIndex))
|
||
!= (Reg64 | BaseIndex))))
|
||
ok = 0;
|
||
}
|
||
else
|
||
{
|
||
/* 32bit checks. */
|
||
if ((i.base_reg
|
||
&& (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
|
||
|| (i.index_reg
|
||
&& ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
|
||
!= (Reg32 | BaseIndex))))
|
||
ok = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
|
||
{
|
||
/* 16bit checks. */
|
||
if ((i.base_reg
|
||
&& ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
|
||
!= (Reg16 | BaseIndex)))
|
||
|| (i.index_reg
|
||
&& (((i.index_reg->reg_type & (Reg16 | BaseIndex))
|
||
!= (Reg16 | BaseIndex))
|
||
|| !(i.base_reg
|
||
&& i.base_reg->reg_num < 6
|
||
&& i.index_reg->reg_num >= 6
|
||
&& i.log2_scale_factor == 0))))
|
||
ok = 0;
|
||
}
|
||
else
|
||
{
|
||
/* 32bit checks. */
|
||
if ((i.base_reg
|
||
&& (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
|
||
|| (i.index_reg
|
||
&& ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
|
||
!= (Reg32 | BaseIndex))))
|
||
ok = 0;
|
||
}
|
||
}
|
||
if (!ok)
|
||
{
|
||
#if INFER_ADDR_PREFIX
|
||
if (flag_code != CODE_64BIT
|
||
&& i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
|
||
{
|
||
i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
|
||
i.prefixes += 1;
|
||
/* Change the size of any displacement too. At most one of
|
||
Disp16 or Disp32 is set.
|
||
FIXME. There doesn't seem to be any real need for separate
|
||
Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
|
||
Removing them would probably clean up the code quite a lot. */
|
||
if (i.types[this_operand] & (Disp16 | Disp32))
|
||
i.types[this_operand] ^= (Disp16 | Disp32);
|
||
fudged = 1;
|
||
goto tryprefix;
|
||
}
|
||
if (fudged)
|
||
as_bad (_("`%s' is not a valid base/index expression"),
|
||
operand_string);
|
||
else
|
||
#endif
|
||
as_bad (_("`%s' is not a valid %s bit base/index expression"),
|
||
operand_string,
|
||
flag_code_names[flag_code]);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
|
||
on error. */
|
||
|
||
static int
|
||
i386_operand (operand_string)
|
||
char *operand_string;
|
||
{
|
||
const reg_entry *r;
|
||
char *end_op;
|
||
char *op_string = operand_string;
|
||
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
/* We check for an absolute prefix (differentiating,
|
||
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
|
||
/* Check if operand is a register. */
|
||
if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
|
||
&& (r = parse_register (op_string, &end_op)) != NULL)
|
||
{
|
||
/* Check for a segment override by searching for ':' after a
|
||
segment register. */
|
||
op_string = end_op;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
|
||
{
|
||
switch (r->reg_num)
|
||
{
|
||
case 0:
|
||
i.seg[i.mem_operands] = &es;
|
||
break;
|
||
case 1:
|
||
i.seg[i.mem_operands] = &cs;
|
||
break;
|
||
case 2:
|
||
i.seg[i.mem_operands] = &ss;
|
||
break;
|
||
case 3:
|
||
i.seg[i.mem_operands] = &ds;
|
||
break;
|
||
case 4:
|
||
i.seg[i.mem_operands] = &fs;
|
||
break;
|
||
case 5:
|
||
i.seg[i.mem_operands] = &gs;
|
||
break;
|
||
}
|
||
|
||
/* Skip the ':' and whitespace. */
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
if (!is_digit_char (*op_string)
|
||
&& !is_identifier_char (*op_string)
|
||
&& *op_string != '('
|
||
&& *op_string != ABSOLUTE_PREFIX)
|
||
{
|
||
as_bad (_("bad memory operand `%s'"), op_string);
|
||
return 0;
|
||
}
|
||
/* Handle case of %es:*foo. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
goto do_memory_reference;
|
||
}
|
||
if (*op_string)
|
||
{
|
||
as_bad (_("junk `%s' after register"), op_string);
|
||
return 0;
|
||
}
|
||
i.types[this_operand] |= r->reg_type & ~BaseIndex;
|
||
i.op[this_operand].regs = r;
|
||
i.reg_operands++;
|
||
}
|
||
else if (*op_string == REGISTER_PREFIX)
|
||
{
|
||
as_bad (_("bad register name `%s'"), op_string);
|
||
return 0;
|
||
}
|
||
else if (*op_string == IMMEDIATE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (i.types[this_operand] & JumpAbsolute)
|
||
{
|
||
as_bad (_("immediate operand illegal with absolute jump"));
|
||
return 0;
|
||
}
|
||
if (!i386_immediate (op_string))
|
||
return 0;
|
||
}
|
||
else if (is_digit_char (*op_string)
|
||
|| is_identifier_char (*op_string)
|
||
|| *op_string == '(')
|
||
{
|
||
/* This is a memory reference of some sort. */
|
||
char *base_string;
|
||
|
||
/* Start and end of displacement string expression (if found). */
|
||
char *displacement_string_start;
|
||
char *displacement_string_end;
|
||
|
||
do_memory_reference:
|
||
if ((i.mem_operands == 1
|
||
&& (current_templates->start->opcode_modifier & IsString) == 0)
|
||
|| i.mem_operands == 2)
|
||
{
|
||
as_bad (_("too many memory references for `%s'"),
|
||
current_templates->start->name);
|
||
return 0;
|
||
}
|
||
|
||
/* Check for base index form. We detect the base index form by
|
||
looking for an ')' at the end of the operand, searching
|
||
for the '(' matching it, and finding a REGISTER_PREFIX or ','
|
||
after the '('. */
|
||
base_string = op_string + strlen (op_string);
|
||
|
||
--base_string;
|
||
if (is_space_char (*base_string))
|
||
--base_string;
|
||
|
||
/* If we only have a displacement, set-up for it to be parsed later. */
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = base_string + 1;
|
||
|
||
if (*base_string == ')')
|
||
{
|
||
char *temp_string;
|
||
unsigned int parens_balanced = 1;
|
||
/* We've already checked that the number of left & right ()'s are
|
||
equal, so this loop will not be infinite. */
|
||
do
|
||
{
|
||
base_string--;
|
||
if (*base_string == ')')
|
||
parens_balanced++;
|
||
if (*base_string == '(')
|
||
parens_balanced--;
|
||
}
|
||
while (parens_balanced);
|
||
|
||
temp_string = base_string;
|
||
|
||
/* Skip past '(' and whitespace. */
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if (*base_string == ','
|
||
|| ((*base_string == REGISTER_PREFIX || allow_naked_reg)
|
||
&& (i.base_reg = parse_register (base_string, &end_op)) != NULL))
|
||
{
|
||
displacement_string_end = temp_string;
|
||
|
||
i.types[this_operand] |= BaseIndex;
|
||
|
||
if (i.base_reg)
|
||
{
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
|
||
/* There may be an index reg or scale factor here. */
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
|
||
&& (i.index_reg = parse_register (base_string, &end_op)) != NULL)
|
||
{
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' after index register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string == REGISTER_PREFIX)
|
||
{
|
||
as_bad (_("bad register name `%s'"), base_string);
|
||
return 0;
|
||
}
|
||
|
||
/* Check for scale factor. */
|
||
if (*base_string != ')')
|
||
{
|
||
char *end_scale = i386_scale (base_string);
|
||
|
||
if (!end_scale)
|
||
return 0;
|
||
|
||
base_string = end_scale;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `)' after scale factor in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (!i.index_reg)
|
||
{
|
||
as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
|
||
*base_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' after base register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string == REGISTER_PREFIX)
|
||
{
|
||
as_bad (_("bad register name `%s'"), base_string);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If there's an expression beginning the operand, parse it,
|
||
assuming displacement_string_start and
|
||
displacement_string_end are meaningful. */
|
||
if (displacement_string_start != displacement_string_end)
|
||
{
|
||
if (!i386_displacement (displacement_string_start,
|
||
displacement_string_end))
|
||
return 0;
|
||
}
|
||
|
||
/* Special case for (%dx) while doing input/output op. */
|
||
if (i.base_reg
|
||
&& i.base_reg->reg_type == (Reg16 | InOutPortReg)
|
||
&& i.index_reg == 0
|
||
&& i.log2_scale_factor == 0
|
||
&& i.seg[i.mem_operands] == 0
|
||
&& (i.types[this_operand] & Disp) == 0)
|
||
{
|
||
i.types[this_operand] = InOutPortReg;
|
||
return 1;
|
||
}
|
||
|
||
if (i386_index_check (operand_string) == 0)
|
||
return 0;
|
||
i.mem_operands++;
|
||
}
|
||
else
|
||
{
|
||
/* It's not a memory operand; argh! */
|
||
as_bad (_("invalid char %s beginning operand %d `%s'"),
|
||
output_invalid (*op_string),
|
||
this_operand + 1,
|
||
op_string);
|
||
return 0;
|
||
}
|
||
return 1; /* Normal return. */
|
||
}
|
||
|
||
/* md_estimate_size_before_relax()
|
||
|
||
Called just before relax() for rs_machine_dependent frags. The x86
|
||
assembler uses these frags to handle variable size jump
|
||
instructions.
|
||
|
||
Any symbol that is now undefined will not become defined.
|
||
Return the correct fr_subtype in the frag.
|
||
Return the initial "guess for variable size of frag" to caller.
|
||
The guess is actually the growth beyond the fixed part. Whatever
|
||
we do to grow the fixed or variable part contributes to our
|
||
returned value. */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragP, segment)
|
||
fragS *fragP;
|
||
segT segment;
|
||
{
|
||
/* We've already got fragP->fr_subtype right; all we have to do is
|
||
check for un-relaxable symbols. On an ELF system, we can't relax
|
||
an externally visible symbol, because it may be overridden by a
|
||
shared library. */
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) != segment
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
|| (OUTPUT_FLAVOR == bfd_target_elf_flavour
|
||
&& (S_IS_EXTERNAL (fragP->fr_symbol)
|
||
|| S_IS_WEAK (fragP->fr_symbol)))
|
||
#endif
|
||
)
|
||
{
|
||
/* Symbol is undefined in this segment, or we need to keep a
|
||
reloc so that weak symbols can be overridden. */
|
||
int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
|
||
RELOC_ENUM reloc_type;
|
||
unsigned char *opcode;
|
||
int old_fr_fix;
|
||
|
||
if (fragP->fr_var != NO_RELOC)
|
||
reloc_type = fragP->fr_var;
|
||
else if (size == 2)
|
||
reloc_type = BFD_RELOC_16_PCREL;
|
||
else
|
||
reloc_type = BFD_RELOC_32_PCREL;
|
||
|
||
old_fr_fix = fragP->fr_fix;
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
|
||
{
|
||
case UNCOND_JUMP:
|
||
/* Make jmp (0xeb) a (d)word displacement jump. */
|
||
opcode[0] = 0xe9;
|
||
fragP->fr_fix += size;
|
||
fix_new (fragP, old_fr_fix, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
|
||
case COND_JUMP86:
|
||
if (size == 2
|
||
&& (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
|
||
{
|
||
/* Negate the condition, and branch past an
|
||
unconditional jump. */
|
||
opcode[0] ^= 1;
|
||
opcode[1] = 3;
|
||
/* Insert an unconditional jump. */
|
||
opcode[2] = 0xe9;
|
||
/* We added two extra opcode bytes, and have a two byte
|
||
offset. */
|
||
fragP->fr_fix += 2 + 2;
|
||
fix_new (fragP, old_fr_fix + 2, 2,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case COND_JUMP:
|
||
if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
|
||
{
|
||
fixS *fixP;
|
||
|
||
fragP->fr_fix += 1;
|
||
fixP = fix_new (fragP, old_fr_fix, 1,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
BFD_RELOC_8_PCREL);
|
||
fixP->fx_signed = 1;
|
||
break;
|
||
}
|
||
|
||
/* This changes the byte-displacement jump 0x7N
|
||
to the (d)word-displacement jump 0x0f,0x8N. */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
/* We've added an opcode byte. */
|
||
fragP->fr_fix += 1 + size;
|
||
fix_new (fragP, old_fr_fix + 1, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
frag_wane (fragP);
|
||
return fragP->fr_fix - old_fr_fix;
|
||
}
|
||
|
||
/* Guess size depending on current relax state. Initially the relax
|
||
state will correspond to a short jump and we return 1, because
|
||
the variable part of the frag (the branch offset) is one byte
|
||
long. However, we can relax a section more than once and in that
|
||
case we must either set fr_subtype back to the unrelaxed state,
|
||
or return the value for the appropriate branch. */
|
||
return md_relax_table[fragP->fr_subtype].rlx_length;
|
||
}
|
||
|
||
/* Called after relax() is finished.
|
||
|
||
In: Address of frag.
|
||
fr_type == rs_machine_dependent.
|
||
fr_subtype is what the address relaxed to.
|
||
|
||
Out: Any fixSs and constants are set up.
|
||
Caller will turn frag into a ".space 0". */
|
||
|
||
#ifndef BFD_ASSEMBLER
|
||
void
|
||
md_convert_frag (headers, sec, fragP)
|
||
object_headers *headers ATTRIBUTE_UNUSED;
|
||
segT sec ATTRIBUTE_UNUSED;
|
||
fragS *fragP;
|
||
#else
|
||
void
|
||
md_convert_frag (abfd, sec, fragP)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
segT sec ATTRIBUTE_UNUSED;
|
||
fragS *fragP;
|
||
#endif
|
||
{
|
||
unsigned char *opcode;
|
||
unsigned char *where_to_put_displacement = NULL;
|
||
offsetT target_address;
|
||
offsetT opcode_address;
|
||
unsigned int extension = 0;
|
||
offsetT displacement_from_opcode_start;
|
||
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
/* Address we want to reach in file space. */
|
||
target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
|
||
|
||
/* Address opcode resides at in file space. */
|
||
opcode_address = fragP->fr_address + fragP->fr_fix;
|
||
|
||
/* Displacement from opcode start to fill into instruction. */
|
||
displacement_from_opcode_start = target_address - opcode_address;
|
||
|
||
if ((fragP->fr_subtype & BIG) == 0)
|
||
{
|
||
/* Don't have to change opcode. */
|
||
extension = 1; /* 1 opcode + 1 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
}
|
||
else
|
||
{
|
||
if (no_cond_jump_promotion
|
||
&& TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
|
||
as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
|
||
extension = 4; /* 1 opcode + 4 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
|
||
extension = 2; /* 1 opcode + 2 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG):
|
||
case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
|
||
extension = 5; /* 2 opcode + 4 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
|
||
extension = 3; /* 2 opcode + 2 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
|
||
extension = 4;
|
||
opcode[0] ^= 1;
|
||
opcode[1] = 3;
|
||
opcode[2] = 0xe9;
|
||
where_to_put_displacement = &opcode[3];
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Now put displacement after opcode. */
|
||
md_number_to_chars ((char *) where_to_put_displacement,
|
||
(valueT) (displacement_from_opcode_start - extension),
|
||
DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
|
||
fragP->fr_fix += extension;
|
||
}
|
||
|
||
/* Size of byte displacement jmp. */
|
||
int md_short_jump_size = 2;
|
||
|
||
/* Size of dword displacement jmp. */
|
||
int md_long_jump_size = 5;
|
||
|
||
/* Size of relocation record. */
|
||
const int md_reloc_size = 8;
|
||
|
||
void
|
||
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag ATTRIBUTE_UNUSED;
|
||
symbolS *to_symbol ATTRIBUTE_UNUSED;
|
||
{
|
||
offsetT offset;
|
||
|
||
offset = to_addr - (from_addr + 2);
|
||
/* Opcode for byte-disp jump. */
|
||
md_number_to_chars (ptr, (valueT) 0xeb, 1);
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 1);
|
||
}
|
||
|
||
void
|
||
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag ATTRIBUTE_UNUSED;
|
||
symbolS *to_symbol ATTRIBUTE_UNUSED;
|
||
{
|
||
offsetT offset;
|
||
|
||
offset = to_addr - (from_addr + 5);
|
||
md_number_to_chars (ptr, (valueT) 0xe9, 1);
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 4);
|
||
}
|
||
|
||
/* Apply a fixup (fixS) to segment data, once it has been determined
|
||
by our caller that we have all the info we need to fix it up.
|
||
|
||
On the 386, immediates, displacements, and data pointers are all in
|
||
the same (little-endian) format, so we don't need to care about which
|
||
we are handling. */
|
||
|
||
void
|
||
md_apply_fix3 (fixP, valP, seg)
|
||
/* The fix we're to put in. */
|
||
fixS *fixP;
|
||
/* Pointer to the value of the bits. */
|
||
valueT *valP;
|
||
/* Segment fix is from. */
|
||
segT seg ATTRIBUTE_UNUSED;
|
||
{
|
||
char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
valueT value = *valP;
|
||
|
||
#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
|
||
if (fixP->fx_pcrel)
|
||
{
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case BFD_RELOC_32:
|
||
fixP->fx_r_type = BFD_RELOC_32_PCREL;
|
||
break;
|
||
case BFD_RELOC_16:
|
||
fixP->fx_r_type = BFD_RELOC_16_PCREL;
|
||
break;
|
||
case BFD_RELOC_8:
|
||
fixP->fx_r_type = BFD_RELOC_8_PCREL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (fixP->fx_addsy != NULL
|
||
&& (fixP->fx_r_type == BFD_RELOC_32_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_16_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_8_PCREL)
|
||
&& !use_rela_relocations)
|
||
{
|
||
/* This is a hack. There should be a better way to handle this.
|
||
This covers for the fact that bfd_install_relocation will
|
||
subtract the current location (for partial_inplace, PC relative
|
||
relocations); see more below. */
|
||
#ifndef OBJ_AOUT
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
|
||
#ifdef TE_PE
|
||
|| OUTPUT_FLAVOR == bfd_target_coff_flavour
|
||
#endif
|
||
)
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
|
||
{
|
||
segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
|
||
|
||
if ((sym_seg == seg
|
||
|| (symbol_section_p (fixP->fx_addsy)
|
||
&& sym_seg != absolute_section))
|
||
&& !generic_force_reloc (fixP))
|
||
{
|
||
/* Yes, we add the values in twice. This is because
|
||
bfd_install_relocation subtracts them out again. I think
|
||
bfd_install_relocation is broken, but I don't dare change
|
||
it. FIXME. */
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
}
|
||
#endif
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
/* For some reason, the PE format does not store a section
|
||
address offset for a PC relative symbol. */
|
||
if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
|
||
value += md_pcrel_from (fixP);
|
||
#endif
|
||
}
|
||
|
||
/* Fix a few things - the dynamic linker expects certain values here,
|
||
and we must not dissappoint it. */
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
|
||
&& fixP->fx_addsy)
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
/* Make the jump instruction point to the address of the operand. At
|
||
runtime we merely add the offset to the actual PLT entry. */
|
||
value = -4;
|
||
break;
|
||
|
||
case BFD_RELOC_386_TLS_GD:
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
case BFD_RELOC_386_TLS_IE:
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
/* Fallthrough */
|
||
case BFD_RELOC_386_TLS_LE:
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
S_SET_THREAD_LOCAL (fixP->fx_addsy);
|
||
break;
|
||
|
||
case BFD_RELOC_386_GOT32:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
break;
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
fixP->fx_done = 0;
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
|
||
*valP = value;
|
||
#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
|
||
|
||
/* Are we finished with this relocation now? */
|
||
if (fixP->fx_addsy == NULL)
|
||
fixP->fx_done = 1;
|
||
#ifdef BFD_ASSEMBLER
|
||
else if (use_rela_relocations)
|
||
{
|
||
fixP->fx_no_overflow = 1;
|
||
/* Remember value for tc_gen_reloc. */
|
||
fixP->fx_addnumber = value;
|
||
value = 0;
|
||
}
|
||
#endif
|
||
md_number_to_chars (p, value, fixP->fx_size);
|
||
}
|
||
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
/* Turn the string pointed to by litP into a floating point constant
|
||
of type TYPE, and emit the appropriate bytes. The number of
|
||
LITTLENUMS emitted is stored in *SIZEP. An error message is
|
||
returned, or NULL on OK. */
|
||
|
||
char *
|
||
md_atof (type, litP, sizeP)
|
||
int type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
int prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
char *t;
|
||
|
||
switch (type)
|
||
{
|
||
case 'f':
|
||
case 'F':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
case 'D':
|
||
prec = 4;
|
||
break;
|
||
|
||
case 'x':
|
||
case 'X':
|
||
prec = 5;
|
||
break;
|
||
|
||
default:
|
||
*sizeP = 0;
|
||
return _("Bad call to md_atof ()");
|
||
}
|
||
t = atof_ieee (input_line_pointer, type, words);
|
||
if (t)
|
||
input_line_pointer = t;
|
||
|
||
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
||
/* This loops outputs the LITTLENUMs in REVERSE order; in accord with
|
||
the bigendian 386. */
|
||
for (wordP = words + prec - 1; prec--;)
|
||
{
|
||
md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
char output_invalid_buf[8];
|
||
|
||
static char *
|
||
output_invalid (c)
|
||
int c;
|
||
{
|
||
if (ISPRINT (c))
|
||
sprintf (output_invalid_buf, "'%c'", c);
|
||
else
|
||
sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
|
||
return output_invalid_buf;
|
||
}
|
||
|
||
/* REG_STRING starts *before* REGISTER_PREFIX. */
|
||
|
||
static const reg_entry *
|
||
parse_register (reg_string, end_op)
|
||
char *reg_string;
|
||
char **end_op;
|
||
{
|
||
char *s = reg_string;
|
||
char *p;
|
||
char reg_name_given[MAX_REG_NAME_SIZE + 1];
|
||
const reg_entry *r;
|
||
|
||
/* Skip possible REGISTER_PREFIX and possible whitespace. */
|
||
if (*s == REGISTER_PREFIX)
|
||
++s;
|
||
|
||
if (is_space_char (*s))
|
||
++s;
|
||
|
||
p = reg_name_given;
|
||
while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
|
||
{
|
||
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
|
||
return (const reg_entry *) NULL;
|
||
s++;
|
||
}
|
||
|
||
/* For naked regs, make sure that we are not dealing with an identifier.
|
||
This prevents confusing an identifier like `eax_var' with register
|
||
`eax'. */
|
||
if (allow_naked_reg && identifier_chars[(unsigned char) *s])
|
||
return (const reg_entry *) NULL;
|
||
|
||
*end_op = s;
|
||
|
||
r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
|
||
|
||
/* Handle floating point regs, allowing spaces in the (i) part. */
|
||
if (r == i386_regtab /* %st is first entry of table */)
|
||
{
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s == '(')
|
||
{
|
||
++s;
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s >= '0' && *s <= '7')
|
||
{
|
||
r = &i386_float_regtab[*s - '0'];
|
||
++s;
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s == ')')
|
||
{
|
||
*end_op = s + 1;
|
||
return r;
|
||
}
|
||
}
|
||
/* We have "%st(" then garbage. */
|
||
return (const reg_entry *) NULL;
|
||
}
|
||
}
|
||
|
||
if (r != NULL
|
||
&& (r->reg_flags & (RegRex64 | RegRex)) != 0
|
||
&& flag_code != CODE_64BIT)
|
||
{
|
||
return (const reg_entry *) NULL;
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
const char *md_shortopts = "kVQ:sq";
|
||
#else
|
||
const char *md_shortopts = "q";
|
||
#endif
|
||
|
||
struct option md_longopts[] = {
|
||
#define OPTION_32 (OPTION_MD_BASE + 0)
|
||
{"32", no_argument, NULL, OPTION_32},
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
#define OPTION_64 (OPTION_MD_BASE + 1)
|
||
{"64", no_argument, NULL, OPTION_64},
|
||
#endif
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
int
|
||
md_parse_option (c, arg)
|
||
int c;
|
||
char *arg ATTRIBUTE_UNUSED;
|
||
{
|
||
switch (c)
|
||
{
|
||
case 'q':
|
||
quiet_warnings = 1;
|
||
break;
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
|
||
should be emitted or not. FIXME: Not implemented. */
|
||
case 'Q':
|
||
break;
|
||
|
||
/* -V: SVR4 argument to print version ID. */
|
||
case 'V':
|
||
print_version_id ();
|
||
break;
|
||
|
||
/* -k: Ignore for FreeBSD compatibility. */
|
||
case 'k':
|
||
break;
|
||
|
||
case 's':
|
||
/* -s: On i386 Solaris, this tells the native assembler to use
|
||
.stab instead of .stab.excl. We always use .stab anyhow. */
|
||
break;
|
||
|
||
case OPTION_64:
|
||
{
|
||
const char **list, **l;
|
||
|
||
list = bfd_target_list ();
|
||
for (l = list; *l != NULL; l++)
|
||
if (strcmp (*l, "elf64-x86-64") == 0)
|
||
{
|
||
default_arch = "x86_64";
|
||
break;
|
||
}
|
||
if (*l == NULL)
|
||
as_fatal (_("No compiled in support for x86_64"));
|
||
free (list);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
case OPTION_32:
|
||
default_arch = "i386";
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (stream)
|
||
FILE *stream;
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
fprintf (stream, _("\
|
||
-Q ignored\n\
|
||
-V print assembler version number\n\
|
||
-k ignored\n\
|
||
-q quieten some warnings\n\
|
||
-s ignored\n"));
|
||
#else
|
||
fprintf (stream, _("\
|
||
-q quieten some warnings\n"));
|
||
#endif
|
||
}
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
|
||
|| defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
|
||
|
||
/* Pick the target format to use. */
|
||
|
||
const char *
|
||
i386_target_format ()
|
||
{
|
||
if (!strcmp (default_arch, "x86_64"))
|
||
set_code_flag (CODE_64BIT);
|
||
else if (!strcmp (default_arch, "i386"))
|
||
set_code_flag (CODE_32BIT);
|
||
else
|
||
as_fatal (_("Unknown architecture"));
|
||
switch (OUTPUT_FLAVOR)
|
||
{
|
||
#ifdef OBJ_MAYBE_AOUT
|
||
case bfd_target_aout_flavour:
|
||
return AOUT_TARGET_FORMAT;
|
||
#endif
|
||
#ifdef OBJ_MAYBE_COFF
|
||
case bfd_target_coff_flavour:
|
||
return "coff-i386";
|
||
#endif
|
||
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
|
||
case bfd_target_elf_flavour:
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
use_rela_relocations = 1;
|
||
return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
|
||
}
|
||
#endif
|
||
default:
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
#endif /* OBJ_MAYBE_ more than one */
|
||
|
||
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
|
||
void i386_elf_emit_arch_note ()
|
||
{
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
|
||
&& cpu_arch_name != NULL)
|
||
{
|
||
char *p;
|
||
asection *seg = now_seg;
|
||
subsegT subseg = now_subseg;
|
||
Elf_Internal_Note i_note;
|
||
Elf_External_Note e_note;
|
||
asection *note_secp;
|
||
int len;
|
||
|
||
/* Create the .note section. */
|
||
note_secp = subseg_new (".note", 0);
|
||
bfd_set_section_flags (stdoutput,
|
||
note_secp,
|
||
SEC_HAS_CONTENTS | SEC_READONLY);
|
||
|
||
/* Process the arch string. */
|
||
len = strlen (cpu_arch_name);
|
||
|
||
i_note.namesz = len + 1;
|
||
i_note.descsz = 0;
|
||
i_note.type = NT_ARCH;
|
||
p = frag_more (sizeof (e_note.namesz));
|
||
md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
|
||
p = frag_more (sizeof (e_note.descsz));
|
||
md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
|
||
p = frag_more (sizeof (e_note.type));
|
||
md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
|
||
p = frag_more (len + 1);
|
||
strcpy (p, cpu_arch_name);
|
||
|
||
frag_align (2, 0, 0);
|
||
|
||
subseg_set (seg, subseg);
|
||
}
|
||
}
|
||
#endif
|
||
#endif /* BFD_ASSEMBLER */
|
||
|
||
symbolS *
|
||
md_undefined_symbol (name)
|
||
char *name;
|
||
{
|
||
if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
|
||
&& name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
|
||
&& name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
|
||
&& strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
|
||
{
|
||
if (!GOT_symbol)
|
||
{
|
||
if (symbol_find (name))
|
||
as_bad (_("GOT already in symbol table"));
|
||
GOT_symbol = symbol_new (name, undefined_section,
|
||
(valueT) 0, &zero_address_frag);
|
||
};
|
||
return GOT_symbol;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
|
||
valueT
|
||
md_section_align (segment, size)
|
||
segT segment ATTRIBUTE_UNUSED;
|
||
valueT size;
|
||
{
|
||
#ifdef BFD_ASSEMBLER
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
|
||
{
|
||
/* For a.out, force the section size to be aligned. If we don't do
|
||
this, BFD will align it for us, but it will not write out the
|
||
final bytes of the section. This may be a bug in BFD, but it is
|
||
easier to fix it here since that is how the other a.out targets
|
||
work. */
|
||
int align;
|
||
|
||
align = bfd_get_section_alignment (stdoutput, segment);
|
||
size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
return size;
|
||
}
|
||
|
||
/* On the i386, PC-relative offsets are relative to the start of the
|
||
next instruction. That is, the address of the offset, plus its
|
||
size, since the offset is always the last part of the insn. */
|
||
|
||
long
|
||
md_pcrel_from (fixP)
|
||
fixS *fixP;
|
||
{
|
||
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
#ifndef I386COFF
|
||
|
||
static void
|
||
s_bss (ignore)
|
||
int ignore ATTRIBUTE_UNUSED;
|
||
{
|
||
int temp;
|
||
|
||
temp = get_absolute_expression ();
|
||
subseg_set (bss_section, (subsegT) temp);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
#endif
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
|
||
void
|
||
i386_validate_fix (fixp)
|
||
fixS *fixp;
|
||
{
|
||
if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
|
||
{
|
||
/* GOTOFF relocation are nonsense in 64bit mode. */
|
||
if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
|
||
{
|
||
if (flag_code != CODE_64BIT)
|
||
abort ();
|
||
fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
|
||
}
|
||
else
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
abort ();
|
||
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
|
||
}
|
||
fixp->fx_subsy = 0;
|
||
}
|
||
}
|
||
|
||
arelent *
|
||
tc_gen_reloc (section, fixp)
|
||
asection *section ATTRIBUTE_UNUSED;
|
||
fixS *fixp;
|
||
{
|
||
arelent *rel;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
switch (fixp->fx_r_type)
|
||
{
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_386_GOT32:
|
||
case BFD_RELOC_386_GOTOFF:
|
||
case BFD_RELOC_386_GOTPC:
|
||
case BFD_RELOC_386_TLS_GD:
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
case BFD_RELOC_386_TLS_IE:
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
case BFD_RELOC_386_TLS_LE:
|
||
case BFD_RELOC_X86_64_32S:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
case BFD_RELOC_RVA:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
default:
|
||
if (fixp->fx_pcrel)
|
||
{
|
||
switch (fixp->fx_size)
|
||
{
|
||
default:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("can not do %d byte pc-relative relocation"),
|
||
fixp->fx_size);
|
||
code = BFD_RELOC_32_PCREL;
|
||
break;
|
||
case 1: code = BFD_RELOC_8_PCREL; break;
|
||
case 2: code = BFD_RELOC_16_PCREL; break;
|
||
case 4: code = BFD_RELOC_32_PCREL; break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (fixp->fx_size)
|
||
{
|
||
default:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("can not do %d byte relocation"),
|
||
fixp->fx_size);
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
case 1: code = BFD_RELOC_8; break;
|
||
case 2: code = BFD_RELOC_16; break;
|
||
case 4: code = BFD_RELOC_32; break;
|
||
#ifdef BFD64
|
||
case 8: code = BFD_RELOC_64; break;
|
||
#endif
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (code == BFD_RELOC_32
|
||
&& GOT_symbol
|
||
&& fixp->fx_addsy == GOT_symbol)
|
||
{
|
||
/* We don't support GOTPC on 64bit targets. */
|
||
if (flag_code == CODE_64BIT)
|
||
abort ();
|
||
code = BFD_RELOC_386_GOTPC;
|
||
}
|
||
|
||
rel = (arelent *) xmalloc (sizeof (arelent));
|
||
rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
|
||
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
|
||
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
if (!use_rela_relocations)
|
||
{
|
||
/* HACK: Since i386 ELF uses Rel instead of Rela, encode the
|
||
vtable entry to be used in the relocation's section offset. */
|
||
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
rel->address = fixp->fx_offset;
|
||
|
||
rel->addend = 0;
|
||
}
|
||
/* Use the rela in 64bit mode. */
|
||
else
|
||
{
|
||
if (!fixp->fx_pcrel)
|
||
rel->addend = fixp->fx_offset;
|
||
else
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
rel->addend = fixp->fx_offset - fixp->fx_size;
|
||
break;
|
||
default:
|
||
rel->addend = (section->vma
|
||
- fixp->fx_size
|
||
+ fixp->fx_addnumber
|
||
+ md_pcrel_from (fixp));
|
||
break;
|
||
}
|
||
}
|
||
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
if (rel->howto == NULL)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("cannot represent relocation type %s"),
|
||
bfd_get_reloc_code_name (code));
|
||
/* Set howto to a garbage value so that we can keep going. */
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
|
||
assert (rel->howto != NULL);
|
||
}
|
||
|
||
return rel;
|
||
}
|
||
|
||
#else /* !BFD_ASSEMBLER */
|
||
|
||
#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
|
||
void
|
||
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
|
||
char *where;
|
||
fixS *fixP;
|
||
relax_addressT segment_address_in_file;
|
||
{
|
||
/* In: length of relocation (or of address) in chars: 1, 2 or 4.
|
||
Out: GNU LD relocation length code: 0, 1, or 2. */
|
||
|
||
static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
|
||
long r_symbolnum;
|
||
|
||
know (fixP->fx_addsy != NULL);
|
||
|
||
md_number_to_chars (where,
|
||
(valueT) (fixP->fx_frag->fr_address
|
||
+ fixP->fx_where - segment_address_in_file),
|
||
4);
|
||
|
||
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
|
||
? S_GET_TYPE (fixP->fx_addsy)
|
||
: fixP->fx_addsy->sy_number);
|
||
|
||
where[6] = (r_symbolnum >> 16) & 0x0ff;
|
||
where[5] = (r_symbolnum >> 8) & 0x0ff;
|
||
where[4] = r_symbolnum & 0x0ff;
|
||
where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
|
||
| ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
|
||
| (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
|
||
}
|
||
|
||
#endif /* OBJ_AOUT or OBJ_BOUT. */
|
||
|
||
#if defined (I386COFF)
|
||
|
||
short
|
||
tc_coff_fix2rtype (fixP)
|
||
fixS *fixP;
|
||
{
|
||
if (fixP->fx_r_type == R_IMAGEBASE)
|
||
return R_IMAGEBASE;
|
||
|
||
return (fixP->fx_pcrel ?
|
||
(fixP->fx_size == 1 ? R_PCRBYTE :
|
||
fixP->fx_size == 2 ? R_PCRWORD :
|
||
R_PCRLONG) :
|
||
(fixP->fx_size == 1 ? R_RELBYTE :
|
||
fixP->fx_size == 2 ? R_RELWORD :
|
||
R_DIR32));
|
||
}
|
||
|
||
int
|
||
tc_coff_sizemachdep (frag)
|
||
fragS *frag;
|
||
{
|
||
if (frag->fr_next)
|
||
return (frag->fr_next->fr_address - frag->fr_address);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
#endif /* I386COFF */
|
||
|
||
#endif /* !BFD_ASSEMBLER */
|
||
|
||
/* Parse operands using Intel syntax. This implements a recursive descent
|
||
parser based on the BNF grammar published in Appendix B of the MASM 6.1
|
||
Programmer's Guide.
|
||
|
||
FIXME: We do not recognize the full operand grammar defined in the MASM
|
||
documentation. In particular, all the structure/union and
|
||
high-level macro operands are missing.
|
||
|
||
Uppercase words are terminals, lower case words are non-terminals.
|
||
Objects surrounded by double brackets '[[' ']]' are optional. Vertical
|
||
bars '|' denote choices. Most grammar productions are implemented in
|
||
functions called 'intel_<production>'.
|
||
|
||
Initial production is 'expr'.
|
||
|
||
addOp + | -
|
||
|
||
alpha [a-zA-Z]
|
||
|
||
byteRegister AL | AH | BL | BH | CL | CH | DL | DH
|
||
|
||
constant digits [[ radixOverride ]]
|
||
|
||
dataType BYTE | WORD | DWORD | QWORD | XWORD
|
||
|
||
digits decdigit
|
||
| digits decdigit
|
||
| digits hexdigit
|
||
|
||
decdigit [0-9]
|
||
|
||
e05 e05 addOp e06
|
||
| e06
|
||
|
||
e06 e06 mulOp e09
|
||
| e09
|
||
|
||
e09 OFFSET e10
|
||
| e09 PTR e10
|
||
| e09 : e10
|
||
| e10
|
||
|
||
e10 e10 [ expr ]
|
||
| e11
|
||
|
||
e11 ( expr )
|
||
| [ expr ]
|
||
| constant
|
||
| dataType
|
||
| id
|
||
| $
|
||
| register
|
||
|
||
=> expr SHORT e05
|
||
| e05
|
||
|
||
gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
|
||
| BP | EBP | SP | ESP | DI | EDI | SI | ESI
|
||
|
||
hexdigit a | b | c | d | e | f
|
||
| A | B | C | D | E | F
|
||
|
||
id alpha
|
||
| id alpha
|
||
| id decdigit
|
||
|
||
mulOp * | / | MOD
|
||
|
||
quote " | '
|
||
|
||
register specialRegister
|
||
| gpRegister
|
||
| byteRegister
|
||
|
||
segmentRegister CS | DS | ES | FS | GS | SS
|
||
|
||
specialRegister CR0 | CR2 | CR3
|
||
| DR0 | DR1 | DR2 | DR3 | DR6 | DR7
|
||
| TR3 | TR4 | TR5 | TR6 | TR7
|
||
|
||
We simplify the grammar in obvious places (e.g., register parsing is
|
||
done by calling parse_register) and eliminate immediate left recursion
|
||
to implement a recursive-descent parser.
|
||
|
||
expr SHORT e05
|
||
| e05
|
||
|
||
e05 e06 e05'
|
||
|
||
e05' addOp e06 e05'
|
||
| Empty
|
||
|
||
e06 e09 e06'
|
||
|
||
e06' mulOp e09 e06'
|
||
| Empty
|
||
|
||
e09 OFFSET e10 e09'
|
||
| e10 e09'
|
||
|
||
e09' PTR e10 e09'
|
||
| : e10 e09'
|
||
| Empty
|
||
|
||
e10 e11 e10'
|
||
|
||
e10' [ expr ] e10'
|
||
| Empty
|
||
|
||
e11 ( expr )
|
||
| [ expr ]
|
||
| BYTE
|
||
| WORD
|
||
| DWORD
|
||
| QWORD
|
||
| XWORD
|
||
| .
|
||
| $
|
||
| register
|
||
| id
|
||
| constant */
|
||
|
||
/* Parsing structure for the intel syntax parser. Used to implement the
|
||
semantic actions for the operand grammar. */
|
||
struct intel_parser_s
|
||
{
|
||
char *op_string; /* The string being parsed. */
|
||
int got_a_float; /* Whether the operand is a float. */
|
||
int op_modifier; /* Operand modifier. */
|
||
int is_mem; /* 1 if operand is memory reference. */
|
||
const reg_entry *reg; /* Last register reference found. */
|
||
char *disp; /* Displacement string being built. */
|
||
};
|
||
|
||
static struct intel_parser_s intel_parser;
|
||
|
||
/* Token structure for parsing intel syntax. */
|
||
struct intel_token
|
||
{
|
||
int code; /* Token code. */
|
||
const reg_entry *reg; /* Register entry for register tokens. */
|
||
char *str; /* String representation. */
|
||
};
|
||
|
||
static struct intel_token cur_token, prev_token;
|
||
|
||
/* Token codes for the intel parser. Since T_SHORT is already used
|
||
by COFF, undefine it first to prevent a warning. */
|
||
#define T_NIL -1
|
||
#define T_CONST 1
|
||
#define T_REG 2
|
||
#define T_BYTE 3
|
||
#define T_WORD 4
|
||
#define T_DWORD 5
|
||
#define T_QWORD 6
|
||
#define T_XWORD 7
|
||
#undef T_SHORT
|
||
#define T_SHORT 8
|
||
#define T_OFFSET 9
|
||
#define T_PTR 10
|
||
#define T_ID 11
|
||
|
||
/* Prototypes for intel parser functions. */
|
||
static int intel_match_token PARAMS ((int code));
|
||
static void intel_get_token PARAMS ((void));
|
||
static void intel_putback_token PARAMS ((void));
|
||
static int intel_expr PARAMS ((void));
|
||
static int intel_e05 PARAMS ((void));
|
||
static int intel_e05_1 PARAMS ((void));
|
||
static int intel_e06 PARAMS ((void));
|
||
static int intel_e06_1 PARAMS ((void));
|
||
static int intel_e09 PARAMS ((void));
|
||
static int intel_e09_1 PARAMS ((void));
|
||
static int intel_e10 PARAMS ((void));
|
||
static int intel_e10_1 PARAMS ((void));
|
||
static int intel_e11 PARAMS ((void));
|
||
|
||
static int
|
||
i386_intel_operand (operand_string, got_a_float)
|
||
char *operand_string;
|
||
int got_a_float;
|
||
{
|
||
int ret;
|
||
char *p;
|
||
|
||
/* Initialize token holders. */
|
||
cur_token.code = prev_token.code = T_NIL;
|
||
cur_token.reg = prev_token.reg = NULL;
|
||
cur_token.str = prev_token.str = NULL;
|
||
|
||
/* Initialize parser structure. */
|
||
p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
|
||
if (p == NULL)
|
||
abort ();
|
||
strcpy (intel_parser.op_string, operand_string);
|
||
intel_parser.got_a_float = got_a_float;
|
||
intel_parser.op_modifier = -1;
|
||
intel_parser.is_mem = 0;
|
||
intel_parser.reg = NULL;
|
||
intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
|
||
if (intel_parser.disp == NULL)
|
||
abort ();
|
||
intel_parser.disp[0] = '\0';
|
||
|
||
/* Read the first token and start the parser. */
|
||
intel_get_token ();
|
||
ret = intel_expr ();
|
||
|
||
if (ret)
|
||
{
|
||
/* If we found a memory reference, hand it over to i386_displacement
|
||
to fill in the rest of the operand fields. */
|
||
if (intel_parser.is_mem)
|
||
{
|
||
if ((i.mem_operands == 1
|
||
&& (current_templates->start->opcode_modifier & IsString) == 0)
|
||
|| i.mem_operands == 2)
|
||
{
|
||
as_bad (_("too many memory references for '%s'"),
|
||
current_templates->start->name);
|
||
ret = 0;
|
||
}
|
||
else
|
||
{
|
||
char *s = intel_parser.disp;
|
||
i.mem_operands++;
|
||
|
||
/* Add the displacement expression. */
|
||
if (*s != '\0')
|
||
ret = i386_displacement (s, s + strlen (s))
|
||
&& i386_index_check (s);
|
||
}
|
||
}
|
||
|
||
/* Constant and OFFSET expressions are handled by i386_immediate. */
|
||
else if (intel_parser.op_modifier == OFFSET_FLAT
|
||
|| intel_parser.reg == NULL)
|
||
ret = i386_immediate (intel_parser.disp);
|
||
}
|
||
|
||
free (p);
|
||
free (intel_parser.disp);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* expr SHORT e05
|
||
| e05 */
|
||
static int
|
||
intel_expr ()
|
||
{
|
||
/* expr SHORT e05 */
|
||
if (cur_token.code == T_SHORT)
|
||
{
|
||
intel_parser.op_modifier = SHORT;
|
||
intel_match_token (T_SHORT);
|
||
|
||
return (intel_e05 ());
|
||
}
|
||
|
||
/* expr e05 */
|
||
else
|
||
return intel_e05 ();
|
||
}
|
||
|
||
/* e05 e06 e05'
|
||
|
||
e05' addOp e06 e05'
|
||
| Empty */
|
||
static int
|
||
intel_e05 ()
|
||
{
|
||
return (intel_e06 () && intel_e05_1 ());
|
||
}
|
||
|
||
static int
|
||
intel_e05_1 ()
|
||
{
|
||
/* e05' addOp e06 e05' */
|
||
if (cur_token.code == '+' || cur_token.code == '-')
|
||
{
|
||
strcat (intel_parser.disp, cur_token.str);
|
||
intel_match_token (cur_token.code);
|
||
|
||
return (intel_e06 () && intel_e05_1 ());
|
||
}
|
||
|
||
/* e05' Empty */
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* e06 e09 e06'
|
||
|
||
e06' mulOp e09 e06'
|
||
| Empty */
|
||
static int
|
||
intel_e06 ()
|
||
{
|
||
return (intel_e09 () && intel_e06_1 ());
|
||
}
|
||
|
||
static int
|
||
intel_e06_1 ()
|
||
{
|
||
/* e06' mulOp e09 e06' */
|
||
if (cur_token.code == '*' || cur_token.code == '/')
|
||
{
|
||
strcat (intel_parser.disp, cur_token.str);
|
||
intel_match_token (cur_token.code);
|
||
|
||
return (intel_e09 () && intel_e06_1 ());
|
||
}
|
||
|
||
/* e06' Empty */
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* e09 OFFSET e10 e09'
|
||
| e10 e09'
|
||
|
||
e09' PTR e10 e09'
|
||
| : e10 e09'
|
||
| Empty */
|
||
static int
|
||
intel_e09 ()
|
||
{
|
||
/* e09 OFFSET e10 e09' */
|
||
if (cur_token.code == T_OFFSET)
|
||
{
|
||
intel_parser.is_mem = 0;
|
||
intel_parser.op_modifier = OFFSET_FLAT;
|
||
intel_match_token (T_OFFSET);
|
||
|
||
return (intel_e10 () && intel_e09_1 ());
|
||
}
|
||
|
||
/* e09 e10 e09' */
|
||
else
|
||
return (intel_e10 () && intel_e09_1 ());
|
||
}
|
||
|
||
static int
|
||
intel_e09_1 ()
|
||
{
|
||
/* e09' PTR e10 e09' */
|
||
if (cur_token.code == T_PTR)
|
||
{
|
||
if (prev_token.code == T_BYTE)
|
||
i.suffix = BYTE_MNEM_SUFFIX;
|
||
|
||
else if (prev_token.code == T_WORD)
|
||
{
|
||
if (intel_parser.got_a_float == 2) /* "fi..." */
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
}
|
||
|
||
else if (prev_token.code == T_DWORD)
|
||
{
|
||
if (intel_parser.got_a_float == 1) /* "f..." */
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
}
|
||
|
||
else if (prev_token.code == T_QWORD)
|
||
{
|
||
if (intel_parser.got_a_float == 1) /* "f..." */
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
}
|
||
|
||
else if (prev_token.code == T_XWORD)
|
||
i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
|
||
|
||
else
|
||
{
|
||
as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
|
||
return 0;
|
||
}
|
||
|
||
intel_match_token (T_PTR);
|
||
|
||
return (intel_e10 () && intel_e09_1 ());
|
||
}
|
||
|
||
/* e09 : e10 e09' */
|
||
else if (cur_token.code == ':')
|
||
{
|
||
/* Mark as a memory operand only if it's not already known to be an
|
||
offset expression. */
|
||
if (intel_parser.op_modifier != OFFSET_FLAT)
|
||
intel_parser.is_mem = 1;
|
||
|
||
return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
|
||
}
|
||
|
||
/* e09' Empty */
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* e10 e11 e10'
|
||
|
||
e10' [ expr ] e10'
|
||
| Empty */
|
||
static int
|
||
intel_e10 ()
|
||
{
|
||
return (intel_e11 () && intel_e10_1 ());
|
||
}
|
||
|
||
static int
|
||
intel_e10_1 ()
|
||
{
|
||
/* e10' [ expr ] e10' */
|
||
if (cur_token.code == '[')
|
||
{
|
||
intel_match_token ('[');
|
||
|
||
/* Mark as a memory operand only if it's not already known to be an
|
||
offset expression. If it's an offset expression, we need to keep
|
||
the brace in. */
|
||
if (intel_parser.op_modifier != OFFSET_FLAT)
|
||
intel_parser.is_mem = 1;
|
||
else
|
||
strcat (intel_parser.disp, "[");
|
||
|
||
/* Add a '+' to the displacement string if necessary. */
|
||
if (*intel_parser.disp != '\0'
|
||
&& *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
|
||
strcat (intel_parser.disp, "+");
|
||
|
||
if (intel_expr () && intel_match_token (']'))
|
||
{
|
||
/* Preserve brackets when the operand is an offset expression. */
|
||
if (intel_parser.op_modifier == OFFSET_FLAT)
|
||
strcat (intel_parser.disp, "]");
|
||
|
||
return intel_e10_1 ();
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* e10' Empty */
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* e11 ( expr )
|
||
| [ expr ]
|
||
| BYTE
|
||
| WORD
|
||
| DWORD
|
||
| QWORD
|
||
| XWORD
|
||
| $
|
||
| .
|
||
| register
|
||
| id
|
||
| constant */
|
||
static int
|
||
intel_e11 ()
|
||
{
|
||
/* e11 ( expr ) */
|
||
if (cur_token.code == '(')
|
||
{
|
||
intel_match_token ('(');
|
||
strcat (intel_parser.disp, "(");
|
||
|
||
if (intel_expr () && intel_match_token (')'))
|
||
{
|
||
strcat (intel_parser.disp, ")");
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* e11 [ expr ] */
|
||
else if (cur_token.code == '[')
|
||
{
|
||
intel_match_token ('[');
|
||
|
||
/* Mark as a memory operand only if it's not already known to be an
|
||
offset expression. If it's an offset expression, we need to keep
|
||
the brace in. */
|
||
if (intel_parser.op_modifier != OFFSET_FLAT)
|
||
intel_parser.is_mem = 1;
|
||
else
|
||
strcat (intel_parser.disp, "[");
|
||
|
||
/* Operands for jump/call inside brackets denote absolute addresses. */
|
||
if (current_templates->start->opcode_modifier & Jump
|
||
|| current_templates->start->opcode_modifier & JumpDword
|
||
|| current_templates->start->opcode_modifier & JumpByte
|
||
|| current_templates->start->opcode_modifier & JumpInterSegment)
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
|
||
/* Add a '+' to the displacement string if necessary. */
|
||
if (*intel_parser.disp != '\0'
|
||
&& *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
|
||
strcat (intel_parser.disp, "+");
|
||
|
||
if (intel_expr () && intel_match_token (']'))
|
||
{
|
||
/* Preserve brackets when the operand is an offset expression. */
|
||
if (intel_parser.op_modifier == OFFSET_FLAT)
|
||
strcat (intel_parser.disp, "]");
|
||
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* e11 BYTE
|
||
| WORD
|
||
| DWORD
|
||
| QWORD
|
||
| XWORD */
|
||
else if (cur_token.code == T_BYTE
|
||
|| cur_token.code == T_WORD
|
||
|| cur_token.code == T_DWORD
|
||
|| cur_token.code == T_QWORD
|
||
|| cur_token.code == T_XWORD)
|
||
{
|
||
intel_match_token (cur_token.code);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* e11 $
|
||
| . */
|
||
else if (cur_token.code == '$' || cur_token.code == '.')
|
||
{
|
||
strcat (intel_parser.disp, cur_token.str);
|
||
intel_match_token (cur_token.code);
|
||
|
||
/* Mark as a memory operand only if it's not already known to be an
|
||
offset expression. */
|
||
if (intel_parser.op_modifier != OFFSET_FLAT)
|
||
intel_parser.is_mem = 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* e11 register */
|
||
else if (cur_token.code == T_REG)
|
||
{
|
||
const reg_entry *reg = intel_parser.reg = cur_token.reg;
|
||
|
||
intel_match_token (T_REG);
|
||
|
||
/* Check for segment change. */
|
||
if (cur_token.code == ':')
|
||
{
|
||
if (reg->reg_type & (SReg2 | SReg3))
|
||
{
|
||
switch (reg->reg_num)
|
||
{
|
||
case 0:
|
||
i.seg[i.mem_operands] = &es;
|
||
break;
|
||
case 1:
|
||
i.seg[i.mem_operands] = &cs;
|
||
break;
|
||
case 2:
|
||
i.seg[i.mem_operands] = &ss;
|
||
break;
|
||
case 3:
|
||
i.seg[i.mem_operands] = &ds;
|
||
break;
|
||
case 4:
|
||
i.seg[i.mem_operands] = &fs;
|
||
break;
|
||
case 5:
|
||
i.seg[i.mem_operands] = &gs;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Not a segment register. Check for register scaling. */
|
||
else if (cur_token.code == '*')
|
||
{
|
||
if (!intel_parser.is_mem)
|
||
{
|
||
as_bad (_("Register scaling only allowed in memory operands."));
|
||
return 0;
|
||
}
|
||
|
||
/* What follows must be a valid scale. */
|
||
if (intel_match_token ('*')
|
||
&& strchr ("01248", *cur_token.str))
|
||
{
|
||
i.index_reg = reg;
|
||
i.types[this_operand] |= BaseIndex;
|
||
|
||
/* Set the scale after setting the register (otherwise,
|
||
i386_scale will complain) */
|
||
i386_scale (cur_token.str);
|
||
intel_match_token (T_CONST);
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
|
||
cur_token.str);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* No scaling. If this is a memory operand, the register is either a
|
||
base register (first occurrence) or an index register (second
|
||
occurrence). */
|
||
else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
|
||
{
|
||
if (i.base_reg && i.index_reg)
|
||
{
|
||
as_bad (_("Too many register references in memory operand.\n"));
|
||
return 0;
|
||
}
|
||
|
||
if (i.base_reg == NULL)
|
||
i.base_reg = reg;
|
||
else
|
||
i.index_reg = reg;
|
||
|
||
i.types[this_operand] |= BaseIndex;
|
||
}
|
||
|
||
/* Offset modifier. Add the register to the displacement string to be
|
||
parsed as an immediate expression after we're done. */
|
||
else if (intel_parser.op_modifier == OFFSET_FLAT)
|
||
strcat (intel_parser.disp, reg->reg_name);
|
||
|
||
/* It's neither base nor index nor offset. */
|
||
else
|
||
{
|
||
i.types[this_operand] |= reg->reg_type & ~BaseIndex;
|
||
i.op[this_operand].regs = reg;
|
||
i.reg_operands++;
|
||
}
|
||
|
||
/* Since registers are not part of the displacement string (except
|
||
when we're parsing offset operands), we may need to remove any
|
||
preceding '+' from the displacement string. */
|
||
if (*intel_parser.disp != '\0'
|
||
&& intel_parser.op_modifier != OFFSET_FLAT)
|
||
{
|
||
char *s = intel_parser.disp;
|
||
s += strlen (s) - 1;
|
||
if (*s == '+')
|
||
*s = '\0';
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* e11 id */
|
||
else if (cur_token.code == T_ID)
|
||
{
|
||
/* Add the identifier to the displacement string. */
|
||
strcat (intel_parser.disp, cur_token.str);
|
||
intel_match_token (T_ID);
|
||
|
||
/* The identifier represents a memory reference only if it's not
|
||
preceded by an offset modifier. */
|
||
if (intel_parser.op_modifier != OFFSET_FLAT)
|
||
intel_parser.is_mem = 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* e11 constant */
|
||
else if (cur_token.code == T_CONST
|
||
|| cur_token.code == '-'
|
||
|| cur_token.code == '+')
|
||
{
|
||
char *save_str;
|
||
|
||
/* Allow constants that start with `+' or `-'. */
|
||
if (cur_token.code == '-' || cur_token.code == '+')
|
||
{
|
||
strcat (intel_parser.disp, cur_token.str);
|
||
intel_match_token (cur_token.code);
|
||
if (cur_token.code != T_CONST)
|
||
{
|
||
as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
|
||
cur_token.str);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
save_str = (char *) malloc (strlen (cur_token.str) + 1);
|
||
if (save_str == NULL)
|
||
abort ();
|
||
strcpy (save_str, cur_token.str);
|
||
|
||
/* Get the next token to check for register scaling. */
|
||
intel_match_token (cur_token.code);
|
||
|
||
/* Check if this constant is a scaling factor for an index register. */
|
||
if (cur_token.code == '*')
|
||
{
|
||
if (intel_match_token ('*') && cur_token.code == T_REG)
|
||
{
|
||
if (!intel_parser.is_mem)
|
||
{
|
||
as_bad (_("Register scaling only allowed in memory operands."));
|
||
return 0;
|
||
}
|
||
|
||
/* The constant is followed by `* reg', so it must be
|
||
a valid scale. */
|
||
if (strchr ("01248", *save_str))
|
||
{
|
||
i.index_reg = cur_token.reg;
|
||
i.types[this_operand] |= BaseIndex;
|
||
|
||
/* Set the scale after setting the register (otherwise,
|
||
i386_scale will complain) */
|
||
i386_scale (save_str);
|
||
intel_match_token (T_REG);
|
||
|
||
/* Since registers are not part of the displacement
|
||
string, we may need to remove any preceding '+' from
|
||
the displacement string. */
|
||
if (*intel_parser.disp != '\0')
|
||
{
|
||
char *s = intel_parser.disp;
|
||
s += strlen (s) - 1;
|
||
if (*s == '+')
|
||
*s = '\0';
|
||
}
|
||
|
||
free (save_str);
|
||
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* The constant was not used for register scaling. Since we have
|
||
already consumed the token following `*' we now need to put it
|
||
back in the stream. */
|
||
else
|
||
intel_putback_token ();
|
||
}
|
||
|
||
/* Add the constant to the displacement string. */
|
||
strcat (intel_parser.disp, save_str);
|
||
free (save_str);
|
||
|
||
return 1;
|
||
}
|
||
|
||
as_bad (_("Unrecognized token '%s'"), cur_token.str);
|
||
return 0;
|
||
}
|
||
|
||
/* Match the given token against cur_token. If they match, read the next
|
||
token from the operand string. */
|
||
static int
|
||
intel_match_token (code)
|
||
int code;
|
||
{
|
||
if (cur_token.code == code)
|
||
{
|
||
intel_get_token ();
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("Unexpected token `%s'\n"), cur_token.str);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Read a new token from intel_parser.op_string and store it in cur_token. */
|
||
static void
|
||
intel_get_token ()
|
||
{
|
||
char *end_op;
|
||
const reg_entry *reg;
|
||
struct intel_token new_token;
|
||
|
||
new_token.code = T_NIL;
|
||
new_token.reg = NULL;
|
||
new_token.str = NULL;
|
||
|
||
/* Free the memory allocated to the previous token and move
|
||
cur_token to prev_token. */
|
||
if (prev_token.str)
|
||
free (prev_token.str);
|
||
|
||
prev_token = cur_token;
|
||
|
||
/* Skip whitespace. */
|
||
while (is_space_char (*intel_parser.op_string))
|
||
intel_parser.op_string++;
|
||
|
||
/* Return an empty token if we find nothing else on the line. */
|
||
if (*intel_parser.op_string == '\0')
|
||
{
|
||
cur_token = new_token;
|
||
return;
|
||
}
|
||
|
||
/* The new token cannot be larger than the remainder of the operand
|
||
string. */
|
||
new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
|
||
if (new_token.str == NULL)
|
||
abort ();
|
||
new_token.str[0] = '\0';
|
||
|
||
if (strchr ("0123456789", *intel_parser.op_string))
|
||
{
|
||
char *p = new_token.str;
|
||
char *q = intel_parser.op_string;
|
||
new_token.code = T_CONST;
|
||
|
||
/* Allow any kind of identifier char to encompass floating point and
|
||
hexadecimal numbers. */
|
||
while (is_identifier_char (*q))
|
||
*p++ = *q++;
|
||
*p = '\0';
|
||
|
||
/* Recognize special symbol names [0-9][bf]. */
|
||
if (strlen (intel_parser.op_string) == 2
|
||
&& (intel_parser.op_string[1] == 'b'
|
||
|| intel_parser.op_string[1] == 'f'))
|
||
new_token.code = T_ID;
|
||
}
|
||
|
||
else if (strchr ("+-/*:[]()", *intel_parser.op_string))
|
||
{
|
||
new_token.code = *intel_parser.op_string;
|
||
new_token.str[0] = *intel_parser.op_string;
|
||
new_token.str[1] = '\0';
|
||
}
|
||
|
||
else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
|
||
&& ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
|
||
{
|
||
new_token.code = T_REG;
|
||
new_token.reg = reg;
|
||
|
||
if (*intel_parser.op_string == REGISTER_PREFIX)
|
||
{
|
||
new_token.str[0] = REGISTER_PREFIX;
|
||
new_token.str[1] = '\0';
|
||
}
|
||
|
||
strcat (new_token.str, reg->reg_name);
|
||
}
|
||
|
||
else if (is_identifier_char (*intel_parser.op_string))
|
||
{
|
||
char *p = new_token.str;
|
||
char *q = intel_parser.op_string;
|
||
|
||
/* A '.' or '$' followed by an identifier char is an identifier.
|
||
Otherwise, it's operator '.' followed by an expression. */
|
||
if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
|
||
{
|
||
new_token.code = *q;
|
||
new_token.str[0] = *q;
|
||
new_token.str[1] = '\0';
|
||
}
|
||
else
|
||
{
|
||
while (is_identifier_char (*q) || *q == '@')
|
||
*p++ = *q++;
|
||
*p = '\0';
|
||
|
||
if (strcasecmp (new_token.str, "BYTE") == 0)
|
||
new_token.code = T_BYTE;
|
||
|
||
else if (strcasecmp (new_token.str, "WORD") == 0)
|
||
new_token.code = T_WORD;
|
||
|
||
else if (strcasecmp (new_token.str, "DWORD") == 0)
|
||
new_token.code = T_DWORD;
|
||
|
||
else if (strcasecmp (new_token.str, "QWORD") == 0)
|
||
new_token.code = T_QWORD;
|
||
|
||
else if (strcasecmp (new_token.str, "XWORD") == 0)
|
||
new_token.code = T_XWORD;
|
||
|
||
else if (strcasecmp (new_token.str, "PTR") == 0)
|
||
new_token.code = T_PTR;
|
||
|
||
else if (strcasecmp (new_token.str, "SHORT") == 0)
|
||
new_token.code = T_SHORT;
|
||
|
||
else if (strcasecmp (new_token.str, "OFFSET") == 0)
|
||
{
|
||
new_token.code = T_OFFSET;
|
||
|
||
/* ??? This is not mentioned in the MASM grammar but gcc
|
||
makes use of it with -mintel-syntax. OFFSET may be
|
||
followed by FLAT: */
|
||
if (strncasecmp (q, " FLAT:", 6) == 0)
|
||
strcat (new_token.str, " FLAT:");
|
||
}
|
||
|
||
/* ??? This is not mentioned in the MASM grammar. */
|
||
else if (strcasecmp (new_token.str, "FLAT") == 0)
|
||
new_token.code = T_OFFSET;
|
||
|
||
else
|
||
new_token.code = T_ID;
|
||
}
|
||
}
|
||
|
||
else
|
||
as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
|
||
|
||
intel_parser.op_string += strlen (new_token.str);
|
||
cur_token = new_token;
|
||
}
|
||
|
||
/* Put cur_token back into the token stream and make cur_token point to
|
||
prev_token. */
|
||
static void
|
||
intel_putback_token ()
|
||
{
|
||
intel_parser.op_string -= strlen (cur_token.str);
|
||
free (cur_token.str);
|
||
cur_token = prev_token;
|
||
|
||
/* Forget prev_token. */
|
||
prev_token.code = T_NIL;
|
||
prev_token.reg = NULL;
|
||
prev_token.str = NULL;
|
||
}
|
||
|
||
void
|
||
tc_x86_cfi_init (void)
|
||
{
|
||
struct cfi_config cfi_config;
|
||
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
cfi_config.addr_length = 8;
|
||
cfi_config.eh_align = 8;
|
||
cfi_config.code_align = 1;
|
||
cfi_config.data_align = -8;
|
||
cfi_config.ra_column = 0x10;
|
||
cfi_config.reloc_type = BFD_RELOC_64;
|
||
}
|
||
else
|
||
{
|
||
cfi_config.addr_length = 4;
|
||
cfi_config.eh_align = 4;
|
||
cfi_config.code_align = 1;
|
||
cfi_config.data_align = -4;
|
||
cfi_config.ra_column = 0x08;
|
||
cfi_config.reloc_type = BFD_RELOC_32;
|
||
}
|
||
|
||
cfi_set_config (&cfi_config);
|
||
}
|
||
|
||
unsigned long
|
||
tc_x86_regname_to_dw2regnum (const char *regname)
|
||
{
|
||
unsigned int regnum;
|
||
unsigned int regnames_count;
|
||
char *regnames_32[] =
|
||
{
|
||
"eax", "ebx", "ecx", "edx",
|
||
"edi", "esi", "ebp", "esp",
|
||
"eip"
|
||
};
|
||
char *regnames_64[] =
|
||
{
|
||
"rax", "rbx", "rcx", "rdx",
|
||
"rdi", "rsi", "rbp", "rsp",
|
||
"r8", "r9", "r10", "r11",
|
||
"r12", "r13", "r14", "r15",
|
||
"rip"
|
||
};
|
||
char **regnames;
|
||
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
regnames = regnames_64;
|
||
regnames_count = sizeof (regnames_64);
|
||
}
|
||
else
|
||
{
|
||
regnames = regnames_32;
|
||
regnames_count = sizeof (regnames_32);
|
||
}
|
||
|
||
for (regnum = 0; regnum < regnames_count; regnum++)
|
||
if (strcmp (regname, regnames[regnum]) == 0)
|
||
return regnum;
|
||
|
||
as_bad (_("unknown register name '%s'"), regname);
|
||
return -1;
|
||
}
|
||
|
||
void
|
||
tc_x86_frame_initial_instructions (void)
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
cfi_add_insn (CFA_def_cfa, tc_x86_regname_to_dw2regnum ("rsp"), 8);
|
||
cfi_add_insn (CFA_offset, tc_x86_regname_to_dw2regnum ("rip"), -8);
|
||
}
|
||
else
|
||
{
|
||
cfi_add_insn (CFA_def_cfa, tc_x86_regname_to_dw2regnum ("esp"), 4);
|
||
cfi_add_insn (CFA_offset, tc_x86_regname_to_dw2regnum ("eip"), -4);
|
||
}
|
||
}
|