old-cross-binutils/gas/config/tc-alpha.c
Richard Henderson 8a8a91a5b7 * config/tc-alpha.c (load_expression): Disable the sym+const .got
optimization to reduce the alignment surprises for gcc.
1997-10-08 23:40:54 +00:00

4489 lines
108 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-alpha.c - Processor-specific code for the DEC Alpha AXP CPU.
Copyright (C) 1989, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
Contributed by Carnegie Mellon University, 1993.
Written by Alessandro Forin, based on earlier gas-1.38 target CPU files.
Modified by Ken Raeburn for gas-2.x and ECOFF support.
Modified by Richard Henderson for ELF support.
Modified by Klaus K"ampf for EVAX (openVMS/Alpha) support.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/*
* Mach Operating System
* Copyright (c) 1993 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include "as.h"
#include "subsegs.h"
#include "opcode/alpha.h"
#ifdef OBJ_ELF
#include "elf/alpha.h"
#endif
#include <ctype.h>
/* Local types */
#define MAX_INSN_FIXUPS 2
#define MAX_INSN_ARGS 5
struct alpha_fixup
{
expressionS exp;
bfd_reloc_code_real_type reloc;
};
struct alpha_insn
{
unsigned insn;
int nfixups;
struct alpha_fixup fixups[MAX_INSN_FIXUPS];
};
enum alpha_macro_arg
{
MACRO_EOA = 1, MACRO_IR, MACRO_PIR, MACRO_CPIR, MACRO_FPR, MACRO_EXP
};
struct alpha_macro
{
const char *name;
void (*emit) PARAMS ((const expressionS *, int, const PTR));
const PTR arg;
enum alpha_macro_arg argsets[16];
};
/* Two extra symbols we want to see in our input. This is a blatent
misuse of the expressionS.X_op field. */
#define O_pregister (O_max+1) /* O_register, but in parentheses */
#define O_cpregister (O_pregister+1) /* + a leading comma */
/* Macros for extracting the type and number of encoded register tokens */
#define is_ir_num(x) (((x) & 32) == 0)
#define is_fpr_num(x) (((x) & 32) != 0)
#define regno(x) ((x) & 31)
/* Something odd inherited from the old assembler */
#define note_gpreg(R) (alpha_gprmask |= (1 << (R)))
#define note_fpreg(R) (alpha_fprmask |= (1 << (R)))
/* Predicates for 16- and 32-bit ranges */
#define range_signed_16(x) ((offsetT)(x) >= -(offsetT)0x8000 && \
(offsetT)(x) <= (offsetT)0x7FFF)
#define range_signed_32(x) ((offsetT)(x) >= -(offsetT)0x80000000 && \
(offsetT)(x) <= (offsetT)0x7FFFFFFF)
/* Macros for sign extending from 16- and 32-bits. */
/* XXX: The cast macros will work on all the systems that I care about,
but really a predicate should be found to use the non-cast forms. */
#if 1
#define sign_extend_16(x) ((short)(x))
#define sign_extend_32(x) ((int)(x))
#else
#define sign_extend_16(x) ((offsetT)(((x) & 0xFFFF) ^ 0x8000) - 0x8000)
#define sign_extend_32(x) ((offsetT)(((x) & 0xFFFFFFFF) \
^ 0x80000000) - 0x80000000)
#endif
/* Macros to build tokens */
#define set_tok_reg(t, r) (memset(&(t), 0, sizeof(t)), \
(t).X_op = O_register, \
(t).X_add_number = (r))
#define set_tok_preg(t, r) (memset(&(t), 0, sizeof(t)), \
(t).X_op = O_pregister, \
(t).X_add_number = (r))
#define set_tok_cpreg(t, r) (memset(&(t), 0, sizeof(t)), \
(t).X_op = O_cpregister, \
(t).X_add_number = (r))
#define set_tok_freg(t, r) (memset(&(t), 0, sizeof(t)), \
(t).X_op = O_register, \
(t).X_add_number = (r)+32)
#define set_tok_sym(t, s, a) (memset(&(t), 0, sizeof(t)), \
(t).X_op = O_symbol, \
(t).X_add_symbol = (s), \
(t).X_add_number = (a))
#define set_tok_const(t, n) (memset(&(t), 0, sizeof(t)), \
(t).X_op = O_constant, \
(t).X_add_number = (n))
/* Prototypes for all local functions */
static int tokenize_arguments PARAMS ((char *, expressionS *, int));
static const struct alpha_opcode *find_opcode_match
PARAMS ((const struct alpha_opcode *, const expressionS *, int *, int *));
static const struct alpha_macro *find_macro_match
PARAMS ((const struct alpha_macro *, const expressionS *, int *));
static unsigned insert_operand
PARAMS ((unsigned, const struct alpha_operand *, offsetT, char *, unsigned));
static void assemble_insn
PARAMS ((const struct alpha_opcode *, const expressionS *, int,
struct alpha_insn *));
static void emit_insn PARAMS ((struct alpha_insn *));
static void assemble_tokens_to_insn
PARAMS ((const char *, const expressionS *, int, struct alpha_insn *));
static void assemble_tokens
PARAMS ((const char *, const expressionS *, int, int));
static int load_expression
PARAMS ((int, const expressionS *, int *, expressionS *));
static void emit_ldgp PARAMS ((const expressionS *, int, const PTR));
static void emit_division PARAMS ((const expressionS *, int, const PTR));
static void emit_lda PARAMS ((const expressionS *, int, const PTR));
static void emit_ldah PARAMS ((const expressionS *, int, const PTR));
static void emit_ir_load PARAMS ((const expressionS *, int, const PTR));
static void emit_loadstore PARAMS ((const expressionS *, int, const PTR));
static void emit_jsrjmp PARAMS ((const expressionS *, int, const PTR));
static void emit_ldX PARAMS ((const expressionS *, int, const PTR));
static void emit_ldXu PARAMS ((const expressionS *, int, const PTR));
static void emit_uldX PARAMS ((const expressionS *, int, const PTR));
static void emit_uldXu PARAMS ((const expressionS *, int, const PTR));
static void emit_ldil PARAMS ((const expressionS *, int, const PTR));
static void emit_stX PARAMS ((const expressionS *, int, const PTR));
static void emit_ustX PARAMS ((const expressionS *, int, const PTR));
static void emit_sextX PARAMS ((const expressionS *, int, const PTR));
static void emit_retjcr PARAMS ((const expressionS *, int, const PTR));
static void s_alpha_text PARAMS ((int));
static void s_alpha_data PARAMS ((int));
#ifndef OBJ_ELF
static void s_alpha_comm PARAMS ((int));
#endif
#if defined (OBJ_ECOFF) || defined (OBJ_EVAX)
static void s_alpha_rdata PARAMS ((int));
#endif
#ifdef OBJ_ECOFF
static void s_alpha_sdata PARAMS ((int));
#endif
#ifdef OBJ_ELF
static void s_alpha_section PARAMS ((int));
#endif
#ifdef OBJ_EVAX
static void s_alpha_section PARAMS ((int));
#endif
static void s_alpha_gprel32 PARAMS ((int));
static void s_alpha_float_cons PARAMS ((int));
static void s_alpha_proc PARAMS ((int));
static void s_alpha_set PARAMS ((int));
static void s_alpha_base PARAMS ((int));
static void s_alpha_align PARAMS ((int));
static void s_alpha_stringer PARAMS ((int));
static void s_alpha_space PARAMS ((int));
static void create_literal_section PARAMS ((const char *, segT *, symbolS **));
#ifndef OBJ_ELF
static void select_gp_value PARAMS ((void));
#endif
static void alpha_align PARAMS ((int, char *, symbolS *));
/* Generic assembler global variables which must be defined by all
targets. */
/* These are exported to relaxing code, even though we don't do any
relaxing on this processor currently. */
int md_short_jump_size = 4;
int md_long_jump_size = 4;
/* Characters which always start a comment. */
const char comment_chars[] = "#";
/* Characters which start a comment at the beginning of a line. */
const char line_comment_chars[] = "#";
/* Characters which may be used to separate multiple commands on a
single line. */
const char line_separator_chars[] = ";";
/* Characters which are used to indicate an exponent in a floating
point number. */
const char EXP_CHARS[] = "eE";
/* Characters which mean that a number is a floating point constant,
as in 0d1.0. */
#if 0
const char FLT_CHARS[] = "dD";
#else
/* XXX: Do all of these really get used on the alpha?? */
char FLT_CHARS[] = "rRsSfFdDxXpP";
#endif
#ifdef OBJ_EVAX
const char *md_shortopts = "Fm:g+1h:H";
#else
const char *md_shortopts = "Fm:g";
#endif
struct option md_longopts[] = {
#define OPTION_32ADDR (OPTION_MD_BASE)
{ "32addr", no_argument, NULL, OPTION_32ADDR },
{ NULL, no_argument, NULL, 0 }
};
size_t md_longopts_size = sizeof(md_longopts);
#ifdef OBJ_EVAX
#define AXP_REG_R0 0
#define AXP_REG_R16 16
#define AXP_REG_R17 17
#undef AXP_REG_T9
#define AXP_REG_T9 22
#undef AXP_REG_T10
#define AXP_REG_T10 23
#undef AXP_REG_T11
#define AXP_REG_T11 24
#undef AXP_REG_T12
#define AXP_REG_T12 25
#define AXP_REG_AI 25
#undef AXP_REG_FP
#define AXP_REG_FP 29
#undef AXP_REG_GP
#define AXP_REG_GP AXP_REG_PV
#endif /* OBJ_EVAX */
/* The cpu for which we are generating code */
static unsigned alpha_target = AXP_OPCODE_BASE;
static const char *alpha_target_name = "<all>";
/* The hash table of instruction opcodes */
static struct hash_control *alpha_opcode_hash;
/* The hash table of macro opcodes */
static struct hash_control *alpha_macro_hash;
#ifdef OBJ_ECOFF
/* The $gp relocation symbol */
static symbolS *alpha_gp_symbol;
/* XXX: what is this, and why is it exported? */
valueT alpha_gp_value;
#endif
/* The current $gp register */
static int alpha_gp_register = AXP_REG_GP;
/* A table of the register symbols */
static symbolS *alpha_register_table[64];
/* Constant sections, or sections of constants */
#ifdef OBJ_ECOFF
static segT alpha_lita_section;
static segT alpha_lit4_section;
#endif
#ifdef OBJ_EVAX
static segT alpha_link_section;
static segT alpha_ctors_section;
static segT alpha_dtors_section;
#endif
static segT alpha_lit8_section;
/* Symbols referring to said sections. */
#ifdef OBJ_ECOFF
static symbolS *alpha_lita_symbol;
static symbolS *alpha_lit4_symbol;
#endif
#ifdef OBJ_EVAX
static symbolS *alpha_link_symbol;
static symbolS *alpha_ctors_symbol;
static symbolS *alpha_dtors_symbol;
#endif
static symbolS *alpha_lit8_symbol;
/* Literal for .litX+0x8000 within .lita */
#ifdef OBJ_ECOFF
static offsetT alpha_lit4_literal;
static offsetT alpha_lit8_literal;
#endif
/* Is the assembler not allowed to use $at? */
static int alpha_noat_on = 0;
/* Are macros enabled? */
static int alpha_macros_on = 1;
/* Are floats disabled? */
static int alpha_nofloats_on = 0;
/* Are addresses 32 bit? */
static int alpha_addr32_on = 0;
/* Symbol labelling the current insn. When the Alpha gas sees
foo:
.quad 0
and the section happens to not be on an eight byte boundary, it
will align both the symbol and the .quad to an eight byte boundary. */
static symbolS *alpha_insn_label;
/* Whether we should automatically align data generation pseudo-ops.
.align 0 will turn this off. */
static int alpha_auto_align_on = 1;
/* The known current alignment of the current section. */
static int alpha_current_align;
/* These are exported to ECOFF code. */
unsigned long alpha_gprmask, alpha_fprmask;
/* Whether the debugging option was seen. */
static int alpha_debug;
#ifdef OBJ_EVAX
/* Collect information about current procedure here. */
static struct {
symbolS *symbol; /* proc pdesc symbol */
int pdsckind;
int framereg; /* register for frame pointer */
int framesize; /* size of frame */
int rsa_offset;
int ra_save;
int fp_save;
long imask;
long fmask;
int type;
int prologue;
} alpha_evax_proc;
static int alpha_flag_hash_long_names = 0; /* -+ */
static int alpha_flag_show_after_trunc = 0; /* -H */
/* If the -+ switch is given, then a hash is appended to any name that is
* longer than 64 characters, else longer symbol names are truncated.
*/
static int alpha_basereg_clobbered;
#endif
/* A table of CPU names and opcode sets. */
static const struct cpu_type
{
const char *name;
unsigned flags;
} cpu_types[] =
{
/* Ad hoc convention: cpu number gets palcode, process code doesn't.
This supports usage under DU 4.0b that does ".arch ev4", and
usage in MILO that does -m21064. Probably something more
specific like -m21064-pal should be used, but oh well. */
{ "21064", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21064a", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21066", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21068", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
{ "21164", AXP_OPCODE_BASE|AXP_OPCODE_EV5 },
/* Do we have CIX extension here? */
{ "21164a", AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX },
/* Still same PALcodes? */
{ "21164pc", (AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX
|AXP_OPCODE_CIX|AXP_OPCODE_MAX) },
/* All new PALcodes? Extras? */
{ "21264", (AXP_OPCODE_BASE|AXP_OPCODE_BWX
|AXP_OPCODE_CIX|AXP_OPCODE_MAX) },
{ "ev4", AXP_OPCODE_BASE },
{ "ev45", AXP_OPCODE_BASE },
{ "lca45", AXP_OPCODE_BASE },
{ "ev5", AXP_OPCODE_BASE },
{ "ev56", AXP_OPCODE_BASE|AXP_OPCODE_BWX },
{ "pca56", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_CIX|AXP_OPCODE_MAX },
{ "ev6", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_CIX|AXP_OPCODE_MAX },
{ "all", AXP_OPCODE_BASE },
{ 0 }
};
/* The macro table */
static const struct alpha_macro alpha_macros[] = {
/* Load/Store macros */
{ "lda", emit_lda, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldah", emit_ldah, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldl", emit_ir_load, "ldl",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldl_l", emit_ir_load, "ldl_l",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldq", emit_ir_load, "ldq",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldq_l", emit_ir_load, "ldq_l",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldq_u", emit_ir_load, "ldq_u",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldf", emit_loadstore, "ldf",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "ldg", emit_loadstore, "ldg",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "lds", emit_loadstore, "lds",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "ldt", emit_loadstore, "ldt",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "ldb", emit_ldX, (PTR)0,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldbu", emit_ldXu, (PTR)0,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldw", emit_ldX, (PTR)1,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldwu", emit_ldXu, (PTR)1,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "uldw", emit_uldX, (PTR)1,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "uldwu", emit_uldXu, (PTR)1,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "uldl", emit_uldX, (PTR)2,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "uldlu", emit_uldXu, (PTR)2,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "uldq", emit_uldXu, (PTR)3,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldgp", emit_ldgp, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA } },
{ "ldi", emit_lda, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldil", emit_ldil, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ldiq", emit_lda, NULL,
{ MACRO_IR, MACRO_EXP, MACRO_EOA } },
#if 0
{ "ldif" emit_ldiq, NULL,
{ MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "ldid" emit_ldiq, NULL,
{ MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "ldig" emit_ldiq, NULL,
{ MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "ldis" emit_ldiq, NULL,
{ MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "ldit" emit_ldiq, NULL,
{ MACRO_FPR, MACRO_EXP, MACRO_EOA } },
#endif
{ "stl", emit_loadstore, "stl",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "stl_c", emit_loadstore, "stl_c",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "stq", emit_loadstore, "stq",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "stq_c", emit_loadstore, "stq_c",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "stq_u", emit_loadstore, "stq_u",
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "stf", emit_loadstore, "stf",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "stg", emit_loadstore, "stg",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "sts", emit_loadstore, "sts",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "stt", emit_loadstore, "stt",
{ MACRO_FPR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_FPR, MACRO_EXP, MACRO_EOA } },
{ "stb", emit_stX, (PTR)0,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "stw", emit_stX, (PTR)1,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ustw", emit_ustX, (PTR)1,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ustl", emit_ustX, (PTR)2,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
{ "ustq", emit_ustX, (PTR)3,
{ MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA } },
/* Arithmetic macros */
#if 0
{ "absl" emit_absl, 1, { IR } },
{ "absl" emit_absl, 2, { IR, IR } },
{ "absl" emit_absl, 2, { EXP, IR } },
{ "absq" emit_absq, 1, { IR } },
{ "absq" emit_absq, 2, { IR, IR } },
{ "absq" emit_absq, 2, { EXP, IR } },
#endif
{ "sextb", emit_sextX, (PTR)0,
{ MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EOA,
/* MACRO_EXP, MACRO_IR, MACRO_EOA */ } },
{ "sextw", emit_sextX, (PTR)1,
{ MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EOA,
/* MACRO_EXP, MACRO_IR, MACRO_EOA */ } },
{ "divl", emit_division, "__divl",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "divlu", emit_division, "__divlu",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "divq", emit_division, "__divq",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "divqu", emit_division, "__divqu",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "reml", emit_division, "__reml",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "remlu", emit_division, "__remlu",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "remq", emit_division, "__remq",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "remqu", emit_division, "__remqu",
{ MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_IR, MACRO_EOA,
/* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
{ "jsr", emit_jsrjmp, "jsr",
{ MACRO_PIR, MACRO_EXP, MACRO_EOA,
MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA,
MACRO_EXP, MACRO_EOA } },
{ "jmp", emit_jsrjmp, "jmp",
{ MACRO_PIR, MACRO_EXP, MACRO_EOA,
MACRO_PIR, MACRO_EOA,
MACRO_IR, MACRO_EXP, MACRO_EOA,
MACRO_EXP, MACRO_EOA } },
{ "ret", emit_retjcr, "ret",
{ MACRO_IR, MACRO_EXP, MACRO_EOA,
MACRO_IR, MACRO_EOA,
MACRO_PIR, MACRO_EXP, MACRO_EOA,
MACRO_PIR, MACRO_EOA,
MACRO_EXP, MACRO_EOA,
MACRO_EOA } },
{ "jcr", emit_retjcr, "jcr",
{ MACRO_IR, MACRO_EXP, MACRO_EOA,
MACRO_IR, MACRO_EOA,
MACRO_PIR, MACRO_EXP, MACRO_EOA,
MACRO_PIR, MACRO_EOA,
MACRO_EXP, MACRO_EOA,
MACRO_EOA } },
{ "jsr_coroutine", emit_retjcr, "jcr",
{ MACRO_IR, MACRO_EXP, MACRO_EOA,
MACRO_IR, MACRO_EOA,
MACRO_PIR, MACRO_EXP, MACRO_EOA,
MACRO_PIR, MACRO_EOA,
MACRO_EXP, MACRO_EOA,
MACRO_EOA } },
};
static const int alpha_num_macros
= sizeof(alpha_macros) / sizeof(*alpha_macros);
/* Public interface functions */
/* This function is called once, at assembler startup time. It sets
up all the tables, etc. that the MD part of the assembler will
need, that can be determined before arguments are parsed. */
void
md_begin ()
{
unsigned int i;
/* Create the opcode hash table */
alpha_opcode_hash = hash_new ();
for (i = 0; i < alpha_num_opcodes; )
{
const char *name, *retval, *slash;
name = alpha_opcodes[i].name;
retval = hash_insert (alpha_opcode_hash, name, (PTR)&alpha_opcodes[i]);
if (retval)
as_fatal ("internal error: can't hash opcode `%s': %s", name, retval);
/* Some opcodes include modifiers of various sorts with a "/mod"
syntax, like the architecture manual suggests. However, for
use with gcc at least, we also need access to those same opcodes
without the "/". */
if ((slash = strchr (name, '/')) != NULL)
{
char *p = xmalloc (strlen (name));
memcpy (p, name, slash - name);
strcpy (p + (slash - name), slash + 1);
(void)hash_insert(alpha_opcode_hash, p, (PTR)&alpha_opcodes[i]);
/* Ignore failures -- the opcode table does duplicate some
variants in different forms, like "hw_stq" and "hw_st/q". */
}
while (++i < alpha_num_opcodes
&& (alpha_opcodes[i].name == name
|| !strcmp (alpha_opcodes[i].name, name)))
continue;
}
/* Create the macro hash table */
alpha_macro_hash = hash_new ();
for (i = 0; i < alpha_num_macros; )
{
const char *name, *retval;
name = alpha_macros[i].name;
retval = hash_insert (alpha_macro_hash, name, (PTR)&alpha_macros[i]);
if (retval)
as_fatal ("internal error: can't hash macro `%s': %s", name, retval);
while (++i < alpha_num_macros
&& (alpha_macros[i].name == name
|| !strcmp (alpha_macros[i].name, name)))
continue;
}
/* Construct symbols for each of the registers */
for (i = 0; i < 32; ++i)
{
char name[4];
sprintf(name, "$%d", i);
alpha_register_table[i] = symbol_create(name, reg_section, i,
&zero_address_frag);
}
for (; i < 64; ++i)
{
char name[5];
sprintf(name, "$f%d", i-32);
alpha_register_table[i] = symbol_create(name, reg_section, i,
&zero_address_frag);
}
/* Create the special symbols and sections we'll be using */
/* So .sbss will get used for tiny objects. */
bfd_set_gp_size (stdoutput, 8);
#ifdef OBJ_ECOFF
create_literal_section (".lita", &alpha_lita_section, &alpha_lita_symbol);
/* For handling the GP, create a symbol that won't be output in the
symbol table. We'll edit it out of relocs later. */
alpha_gp_symbol = symbol_create ("<GP value>", alpha_lita_section, 0x8000,
&zero_address_frag);
#endif
#ifdef OBJ_EVAX
create_literal_section (".link", &alpha_link_section, &alpha_link_symbol);
#endif
#ifdef OBJ_ELF
if (ECOFF_DEBUGGING)
{
segT sec;
sec = subseg_new(".mdebug", (subsegT)0);
bfd_set_section_flags(stdoutput, sec, SEC_HAS_CONTENTS|SEC_READONLY);
bfd_set_section_alignment(stdoutput, sec, 3);
#ifdef ERIC_neverdef
sec = subseg_new(".reginfo", (subsegT)0);
/* The ABI says this section should be loaded so that the running
program can access it. */
bfd_set_section_flags(stdoutput, sec,
SEC_ALLOC|SEC_LOAD|SEC_READONLY|SEC_DATA);
bfd_set_section_alignement(stdoutput, sec, 3);
#endif
}
#endif /* OBJ_ELF */
subseg_set(text_section, 0);
}
/* The public interface to the instruction assembler. */
void
md_assemble (str)
char *str;
{
char opname[32]; /* current maximum is 13 */
expressionS tok[MAX_INSN_ARGS];
int ntok, opnamelen, trunclen;
/* split off the opcode */
opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/48");
trunclen = (opnamelen < sizeof (opname) - 1
? opnamelen
: sizeof (opname) - 1);
memcpy (opname, str, trunclen);
opname[trunclen] = '\0';
/* tokenize the rest of the line */
if ((ntok = tokenize_arguments (str + opnamelen, tok, MAX_INSN_ARGS)) < 0)
{
as_bad ("syntax error");
return;
}
/* finish it off */
assemble_tokens (opname, tok, ntok, alpha_macros_on);
}
/* Round up a section's size to the appropriate boundary. */
valueT
md_section_align (seg, size)
segT seg;
valueT size;
{
int align = bfd_get_section_alignment(stdoutput, seg);
valueT mask = ((valueT)1 << align) - 1;
return (size + mask) & ~mask;
}
/* Turn a string in input_line_pointer into a floating point constant
of type type, and store the appropriate bytes in *litP. The number
of LITTLENUMS emitted is stored in *sizeP. An error message is
returned, or NULL on OK. */
/* Equal to MAX_PRECISION in atof-ieee.c */
#define MAX_LITTLENUMS 6
extern char *vax_md_atof PARAMS ((int, char *, int *));
char *
md_atof (type, litP, sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
switch (type)
{
/* VAX floats */
case 'G':
/* VAX md_atof doesn't like "G" for some reason. */
type = 'g';
case 'F':
case 'D':
return vax_md_atof (type, litP, sizeP);
/* IEEE floats */
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return "Bad call to MD_ATOF()";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
for (wordP = words + prec - 1; prec--;)
{
md_number_to_chars (litP, (long) (*wordP--), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return 0;
}
/* Take care of the target-specific command-line options. */
int
md_parse_option (c, arg)
int c;
char *arg;
{
switch (c)
{
case 'F':
alpha_nofloats_on = 1;
break;
case OPTION_32ADDR:
alpha_addr32_on = 1;
break;
case 'g':
alpha_debug = 1;
break;
case 'm':
{
const struct cpu_type *p;
for (p = cpu_types; p->name; ++p)
if (strcmp(arg, p->name) == 0)
{
alpha_target_name = p->name, alpha_target = p->flags;
goto found;
}
as_warn("Unknown CPU identifier `%s'", arg);
found:;
}
break;
#ifdef OBJ_EVAX
case '+': /* For g++. Hash any name > 63 chars long. */
alpha_flag_hash_long_names = 1;
break;
case 'H': /* Show new symbol after hash truncation */
alpha_flag_show_after_trunc = 1;
break;
case 'h': /* for gnu-c/vax compatibility. */
break;
#endif
default:
return 0;
}
return 1;
}
/* Print a description of the command-line options that we accept. */
void
md_show_usage (stream)
FILE *stream;
{
fputs("\
Alpha options:\n\
-32addr treat addresses as 32-bit values\n\
-F lack floating point instructions support\n\
-m21064 | -m21066 | -m21164 | -m21164a\n\
-mev4 | -mev45 | -mev5 | -mev56 | -mall\n\
specify variant of Alpha architecture\n",
stream);
#ifdef OBJ_EVAX
fputs ("\
VMS options:\n\
-+ hash encode (don't truncate) names longer than 64 characters\n\
-H show new symbol after hash truncation\n",
stream);
#endif
}
/* Decide from what point a pc-relative relocation is relative to,
relative to the pc-relative fixup. Er, relatively speaking. */
long
md_pcrel_from (fixP)
fixS *fixP;
{
valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
switch (fixP->fx_r_type)
{
case BFD_RELOC_ALPHA_GPDISP:
case BFD_RELOC_ALPHA_GPDISP_HI16:
case BFD_RELOC_ALPHA_GPDISP_LO16:
return addr;
default:
return fixP->fx_size + addr;
}
}
/* Attempt to simplify or even eliminate a fixup. The return value is
ignored; perhaps it was once meaningful, but now it is historical.
To indicate that a fixup has been eliminated, set fixP->fx_done.
For ELF, here it is that we transform the GPDISP_HI16 reloc we used
internally into the GPDISP reloc used externally. We had to do
this so that we'd have the GPDISP_LO16 reloc as a tag to compute
the distance to the "lda" instruction for setting the addend to
GPDISP. */
int
md_apply_fix (fixP, valueP)
fixS *fixP;
valueT *valueP;
{
char * const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
valueT value = *valueP;
unsigned image, size;
switch (fixP->fx_r_type)
{
/* The GPDISP relocations are processed internally with a symbol
referring to the current function; we need to drop in a value
which, when added to the address of the start of the function,
gives the desired GP. */
case BFD_RELOC_ALPHA_GPDISP_HI16:
{
fixS *next = fixP->fx_next;
assert (next->fx_r_type == BFD_RELOC_ALPHA_GPDISP_LO16);
fixP->fx_offset = (next->fx_frag->fr_address + next->fx_where
- fixP->fx_frag->fr_address - fixP->fx_where);
value = (value - sign_extend_16 (value)) >> 16;
}
#ifdef OBJ_ELF
fixP->fx_r_type = BFD_RELOC_ALPHA_GPDISP;
#endif
goto do_reloc_gp;
case BFD_RELOC_ALPHA_GPDISP_LO16:
value = sign_extend_16 (value);
fixP->fx_offset = 0;
#ifdef OBJ_ELF
fixP->fx_done = 1;
#endif
do_reloc_gp:
fixP->fx_addsy = section_symbol (absolute_section);
md_number_to_chars (fixpos, value, 2);
break;
case BFD_RELOC_16:
size = 2;
goto do_reloc_xx;
case BFD_RELOC_32:
size = 4;
goto do_reloc_xx;
case BFD_RELOC_64:
size = 8;
do_reloc_xx:
if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
{
md_number_to_chars (fixpos, value, size);
goto done;
}
return 1;
#ifdef OBJ_ECOFF
case BFD_RELOC_GPREL32:
assert (fixP->fx_subsy == alpha_gp_symbol);
fixP->fx_subsy = 0;
/* FIXME: inherited this obliviousness of `value' -- why? */
md_number_to_chars (fixpos, -alpha_gp_value, 4);
break;
#endif
#ifdef OBJ_ELF
case BFD_RELOC_GPREL32:
return 1;
#endif
case BFD_RELOC_23_PCREL_S2:
if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
{
image = bfd_getl32(fixpos);
image = (image & ~0x1FFFFF) | ((value >> 2) & 0x1FFFFF);
goto write_done;
}
return 1;
case BFD_RELOC_ALPHA_HINT:
if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
{
image = bfd_getl32(fixpos);
image = (image & ~0x3FFF) | ((value >> 2) & 0x3FFF);
goto write_done;
}
return 1;
#ifdef OBJ_ECOFF
case BFD_RELOC_ALPHA_LITERAL:
md_number_to_chars (fixpos, value, 2);
return 1;
case BFD_RELOC_ALPHA_LITUSE:
return 1;
#endif
#ifdef OBJ_ELF
case BFD_RELOC_ALPHA_ELF_LITERAL:
case BFD_RELOC_ALPHA_LITUSE:
return 1;
#endif
#ifdef OBJ_EVAX
case BFD_RELOC_ALPHA_LINKAGE:
case BFD_RELOC_ALPHA_CODEADDR:
return 1;
#endif
default:
{
const struct alpha_operand *operand;
if ((int)fixP->fx_r_type >= 0)
as_fatal ("unhandled relocation type %s",
bfd_get_reloc_code_name (fixP->fx_r_type));
assert (-(int)fixP->fx_r_type < alpha_num_operands);
operand = &alpha_operands[-(int)fixP->fx_r_type];
/* The rest of these fixups only exist internally during symbol
resolution and have no representation in the object file.
Therefore they must be completely resolved as constants. */
if (fixP->fx_addsy != 0
&& fixP->fx_addsy->bsym->section != absolute_section)
as_bad_where (fixP->fx_file, fixP->fx_line,
"non-absolute expression in constant field");
image = bfd_getl32(fixpos);
image = insert_operand(image, operand, (offsetT)value,
fixP->fx_file, fixP->fx_line);
}
goto write_done;
}
if (fixP->fx_addsy != 0 || fixP->fx_pcrel != 0)
return 1;
else
{
as_warn_where(fixP->fx_file, fixP->fx_line,
"type %d reloc done?\n", (int)fixP->fx_r_type);
goto done;
}
write_done:
md_number_to_chars(fixpos, image, 4);
done:
fixP->fx_done = 1;
return 0;
}
/*
* Look for a register name in the given symbol.
*/
symbolS *
md_undefined_symbol(name)
char *name;
{
if (*name == '$')
{
int is_float = 0, num;
switch (*++name)
{
case 'f':
if (name[1] == 'p' && name[2] == '\0')
return alpha_register_table[AXP_REG_FP];
is_float = 32;
/* FALLTHRU */
case 'r':
if (!isdigit(*++name))
break;
/* FALLTHRU */
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
if (name[1] == '\0')
num = name[0] - '0';
else if (name[0] != '0' && isdigit(name[1]) && name[2] == '\0')
{
num = (name[0] - '0') * 10 + name[1] - '0';
if (num >= 32)
break;
}
else
break;
if (!alpha_noat_on && num == AXP_REG_AT)
as_warn("Used $at without \".set noat\"");
return alpha_register_table[num + is_float];
case 'a':
if (name[1] == 't' && name[2] == '\0')
{
if (!alpha_noat_on)
as_warn("Used $at without \".set noat\"");
return alpha_register_table[AXP_REG_AT];
}
break;
case 'g':
if (name[1] == 'p' && name[2] == '\0')
return alpha_register_table[alpha_gp_register];
break;
case 's':
if (name[1] == 'p' && name[2] == '\0')
return alpha_register_table[AXP_REG_SP];
break;
}
}
return NULL;
}
#ifdef OBJ_ECOFF
/* @@@ Magic ECOFF bits. */
void
alpha_frob_ecoff_data ()
{
select_gp_value ();
/* $zero and $f31 are read-only */
alpha_gprmask &= ~1;
alpha_fprmask &= ~1;
}
#endif
/* Hook to remember a recently defined label so that the auto-align
code can adjust the symbol after we know what alignment will be
required. */
void
alpha_define_label (sym)
symbolS *sym;
{
alpha_insn_label = sym;
}
/* Return true if we must always emit a reloc for a type and false if
there is some hope of resolving it a assembly time. */
int
alpha_force_relocation (f)
fixS *f;
{
switch (f->fx_r_type)
{
case BFD_RELOC_ALPHA_GPDISP_HI16:
case BFD_RELOC_ALPHA_GPDISP_LO16:
case BFD_RELOC_ALPHA_GPDISP:
#ifdef OBJ_ECOFF
case BFD_RELOC_ALPHA_LITERAL:
#endif
#ifdef OBJ_ELF
case BFD_RELOC_ALPHA_ELF_LITERAL:
#endif
case BFD_RELOC_ALPHA_LITUSE:
case BFD_RELOC_GPREL32:
#ifdef OBJ_EVAX
case BFD_RELOC_ALPHA_LINKAGE:
case BFD_RELOC_ALPHA_CODEADDR:
#endif
return 1;
case BFD_RELOC_23_PCREL_S2:
case BFD_RELOC_32:
case BFD_RELOC_64:
case BFD_RELOC_ALPHA_HINT:
return 0;
default:
assert((int)f->fx_r_type < 0 && -(int)f->fx_r_type < alpha_num_operands);
return 0;
}
}
/* Return true if we can partially resolve a relocation now. */
int
alpha_fix_adjustable (f)
fixS *f;
{
#ifdef OBJ_ELF
/* Prevent all adjustments to global symbols */
if (S_IS_EXTERN (f->fx_addsy))
return 0;
#endif
/* Are there any relocation types for which we must generate a reloc
but we can adjust the values contained within it? */
switch (f->fx_r_type)
{
case BFD_RELOC_ALPHA_GPDISP_HI16:
case BFD_RELOC_ALPHA_GPDISP_LO16:
case BFD_RELOC_ALPHA_GPDISP:
return 0;
#ifdef OBJ_ECOFF
case BFD_RELOC_ALPHA_LITERAL:
#endif
#ifdef OBJ_ELF
case BFD_RELOC_ALPHA_ELF_LITERAL:
#endif
#ifdef OBJ_EVAX
case BFD_RELOC_ALPHA_LINKAGE:
case BFD_RELOC_ALPHA_CODEADDR:
#endif
return 1;
case BFD_RELOC_ALPHA_LITUSE:
return 0;
case BFD_RELOC_GPREL32:
case BFD_RELOC_23_PCREL_S2:
case BFD_RELOC_32:
case BFD_RELOC_64:
case BFD_RELOC_ALPHA_HINT:
return 1;
default:
assert ((int)f->fx_r_type < 0
&& - (int)f->fx_r_type < alpha_num_operands);
return 1;
}
/*NOTREACHED*/
}
/* Generate the BFD reloc to be stuck in the object file from the
fixup used internally in the assembler. */
arelent *
tc_gen_reloc (sec, fixp)
asection *sec;
fixS *fixp;
{
arelent *reloc;
reloc = (arelent *) xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
/* Make sure none of our internal relocations make it this far.
They'd better have been fully resolved by this point. */
assert ((int)fixp->fx_r_type > 0);
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"cannot represent `%s' relocation in object file",
bfd_get_reloc_code_name (fixp->fx_r_type));
return NULL;
}
if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
{
as_fatal ("internal error? cannot generate `%s' relocation",
bfd_get_reloc_code_name (fixp->fx_r_type));
}
assert (!fixp->fx_pcrel == !reloc->howto->pc_relative);
#ifdef OBJ_ECOFF
if (fixp->fx_r_type == BFD_RELOC_ALPHA_LITERAL)
{
/* fake out bfd_perform_relocation. sigh */
reloc->addend = -alpha_gp_value;
}
else
#endif
{
reloc->addend = fixp->fx_offset;
#ifdef OBJ_ELF
/*
* Ohhh, this is ugly. The problem is that if this is a local global
* symbol, the relocation will entirely be performed at link time, not
* at assembly time. bfd_perform_reloc doesn't know about this sort
* of thing, and as a result we need to fake it out here.
*/
if (S_IS_EXTERN (fixp->fx_addsy) && !S_IS_COMMON(fixp->fx_addsy))
reloc->addend -= fixp->fx_addsy->bsym->value;
#endif
}
return reloc;
}
/* Parse a register name off of the input_line and return a register
number. Gets md_undefined_symbol above to do the register name
matching for us.
Only called as a part of processing the ECOFF .frame directive. */
int
tc_get_register (frame)
int frame;
{
int framereg = AXP_REG_SP;
SKIP_WHITESPACE ();
if (*input_line_pointer == '$')
{
char *s = input_line_pointer;
char c = get_symbol_end ();
symbolS *sym = md_undefined_symbol (s);
*strchr(s, '\0') = c;
if (sym && (framereg = S_GET_VALUE (sym)) <= 31)
goto found;
}
as_warn ("frame reg expected, using $%d.", framereg);
found:
note_gpreg (framereg);
return framereg;
}
/* This is called before the symbol table is processed. In order to
work with gcc when using mips-tfile, we must keep all local labels.
However, in other cases, we want to discard them. If we were
called with -g, but we didn't see any debugging information, it may
mean that gcc is smuggling debugging information through to
mips-tfile, in which case we must generate all local labels. */
#ifdef OBJ_ECOFF
void
alpha_frob_file_before_adjust ()
{
if (alpha_debug != 0
&& ! ecoff_debugging_seen)
flag_keep_locals = 1;
}
#endif /* OBJ_ECOFF */
/* Parse the arguments to an opcode. */
static int
tokenize_arguments (str, tok, ntok)
char *str;
expressionS tok[];
int ntok;
{
expressionS *end_tok = tok + ntok;
char *old_input_line_pointer;
int saw_comma = 0, saw_arg = 0;
memset (tok, 0, sizeof (*tok) * ntok);
/* Save and restore input_line_pointer around this function */
old_input_line_pointer = input_line_pointer;
input_line_pointer = str;
while (tok < end_tok && *input_line_pointer)
{
SKIP_WHITESPACE ();
switch (*input_line_pointer)
{
case '\0':
goto fini;
case ',':
++input_line_pointer;
if (saw_comma || !saw_arg)
goto err;
saw_comma = 1;
break;
case '(':
{
char *hold = input_line_pointer++;
/* First try for parenthesized register ... */
expression (tok);
if (*input_line_pointer == ')' && tok->X_op == O_register)
{
tok->X_op = (saw_comma ? O_cpregister : O_pregister);
saw_comma = 0;
saw_arg = 1;
++input_line_pointer;
++tok;
break;
}
/* ... then fall through to plain expression */
input_line_pointer = hold;
}
default:
if (saw_arg && !saw_comma)
goto err;
expression (tok);
if (tok->X_op == O_illegal || tok->X_op == O_absent)
goto err;
saw_comma = 0;
saw_arg = 1;
++tok;
break;
}
}
fini:
if (saw_comma)
goto err;
input_line_pointer = old_input_line_pointer;
return ntok - (end_tok - tok);
err:
input_line_pointer = old_input_line_pointer;
return -1;
}
/* Search forward through all variants of an opcode looking for a
syntax match. */
static const struct alpha_opcode *
find_opcode_match(first_opcode, tok, pntok, pcpumatch)
const struct alpha_opcode *first_opcode;
const expressionS *tok;
int *pntok;
int *pcpumatch;
{
const struct alpha_opcode *opcode = first_opcode;
int ntok = *pntok;
int got_cpu_match = 0;
do
{
const unsigned char *opidx;
int tokidx = 0;
/* Don't match opcodes that don't exist on this architecture */
if (!(opcode->flags & alpha_target))
goto match_failed;
got_cpu_match = 1;
for (opidx = opcode->operands; *opidx; ++opidx)
{
const struct alpha_operand *operand = &alpha_operands[*opidx];
/* only take input from real operands */
if (operand->flags & AXP_OPERAND_FAKE)
continue;
/* when we expect input, make sure we have it */
if (tokidx >= ntok)
{
if ((operand->flags & AXP_OPERAND_OPTIONAL_MASK) == 0)
goto match_failed;
continue;
}
/* match operand type with expression type */
switch (operand->flags & AXP_OPERAND_TYPECHECK_MASK)
{
case AXP_OPERAND_IR:
if (tok[tokidx].X_op != O_register
|| !is_ir_num(tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_FPR:
if (tok[tokidx].X_op != O_register
|| !is_fpr_num(tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_IR|AXP_OPERAND_PARENS:
if (tok[tokidx].X_op != O_pregister
|| !is_ir_num(tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA:
if (tok[tokidx].X_op != O_cpregister
|| !is_ir_num(tok[tokidx].X_add_number))
goto match_failed;
break;
case AXP_OPERAND_RELATIVE:
case AXP_OPERAND_SIGNED:
case AXP_OPERAND_UNSIGNED:
switch (tok[tokidx].X_op)
{
case O_illegal:
case O_absent:
case O_register:
case O_pregister:
case O_cpregister:
goto match_failed;
}
break;
default:
/* everything else should have been fake */
abort();
}
++tokidx;
}
/* possible match -- did we use all of our input? */
if (tokidx == ntok)
{
*pntok = ntok;
return opcode;
}
match_failed:;
}
while (++opcode-alpha_opcodes < alpha_num_opcodes
&& !strcmp(opcode->name, first_opcode->name));
if (*pcpumatch)
*pcpumatch = got_cpu_match;
return NULL;
}
/* Search forward through all variants of a macro looking for a syntax
match. */
static const struct alpha_macro *
find_macro_match(first_macro, tok, pntok)
const struct alpha_macro *first_macro;
const expressionS *tok;
int *pntok;
{
const struct alpha_macro *macro = first_macro;
int ntok = *pntok;
do
{
const enum alpha_macro_arg *arg = macro->argsets;
int tokidx = 0;
while (*arg)
{
switch (*arg)
{
case MACRO_EOA:
if (tokidx == ntok)
return macro;
else
tokidx = 0;
break;
case MACRO_IR:
if (tokidx >= ntok || tok[tokidx].X_op != O_register
|| !is_ir_num(tok[tokidx].X_add_number))
goto match_failed;
++tokidx;
break;
case MACRO_PIR:
if (tokidx >= ntok || tok[tokidx].X_op != O_pregister
|| !is_ir_num(tok[tokidx].X_add_number))
goto match_failed;
++tokidx;
break;
case MACRO_CPIR:
if (tokidx >= ntok || tok[tokidx].X_op != O_cpregister
|| !is_ir_num(tok[tokidx].X_add_number))
goto match_failed;
++tokidx;
break;
case MACRO_FPR:
if (tokidx >= ntok || tok[tokidx].X_op != O_register
|| !is_fpr_num(tok[tokidx].X_add_number))
goto match_failed;
++tokidx;
break;
case MACRO_EXP:
if (tokidx >= ntok)
goto match_failed;
switch (tok[tokidx].X_op)
{
case O_illegal:
case O_absent:
case O_register:
case O_pregister:
case O_cpregister:
goto match_failed;
}
++tokidx;
break;
match_failed:
while (*arg != MACRO_EOA)
++arg;
tokidx = 0;
break;
}
++arg;
}
}
while (++macro-alpha_macros < alpha_num_macros
&& !strcmp(macro->name, first_macro->name));
return NULL;
}
/* Insert an operand value into an instruction. */
static unsigned
insert_operand(insn, operand, val, file, line)
unsigned insn;
const struct alpha_operand *operand;
offsetT val;
char *file;
unsigned line;
{
if (operand->bits != 32 && !(operand->flags & AXP_OPERAND_NOOVERFLOW))
{
offsetT min, max;
if (operand->flags & AXP_OPERAND_SIGNED)
{
max = (1 << (operand->bits - 1)) - 1;
min = -(1 << (operand->bits - 1));
}
else
{
max = (1 << operand->bits) - 1;
min = 0;
}
if (val < min || val > max)
{
const char *err =
"operand out of range (%s not between %d and %d)";
char buf[sizeof (val) * 3 + 2];
sprint_value(buf, val);
if (file)
as_warn_where(file, line, err, buf, min, max);
else
as_warn(err, buf, min, max);
}
}
if (operand->insert)
{
const char *errmsg = NULL;
insn = (*operand->insert) (insn, val, &errmsg);
if (errmsg)
as_warn (errmsg);
}
else
insn |= ((val & ((1 << operand->bits) - 1)) << operand->shift);
return insn;
}
/*
* Turn an opcode description and a set of arguments into
* an instruction and a fixup.
*/
static void
assemble_insn(opcode, tok, ntok, insn)
const struct alpha_opcode *opcode;
const expressionS *tok;
int ntok;
struct alpha_insn *insn;
{
const unsigned char *argidx;
unsigned image;
int tokidx = 0;
memset (insn, 0, sizeof (*insn));
image = opcode->opcode;
for (argidx = opcode->operands; *argidx; ++argidx)
{
const struct alpha_operand *operand = &alpha_operands[*argidx];
const expressionS *t;
if (operand->flags & AXP_OPERAND_FAKE)
{
/* fake operands take no value and generate no fixup */
image = insert_operand(image, operand, 0, NULL, 0);
continue;
}
if (tokidx >= ntok)
{
switch (operand->flags & AXP_OPERAND_OPTIONAL_MASK)
{
case AXP_OPERAND_DEFAULT_FIRST:
t = &tok[0];
break;
case AXP_OPERAND_DEFAULT_SECOND:
t = &tok[1];
break;
case AXP_OPERAND_DEFAULT_ZERO:
{
static const expressionS zero_exp = { 0, 0, 0, O_constant, 1 };
t = &zero_exp;
}
break;
default:
abort();
}
}
else
t = &tok[tokidx++];
switch (t->X_op)
{
case O_register:
case O_pregister:
case O_cpregister:
image = insert_operand(image, operand, regno(t->X_add_number),
NULL, 0);
break;
case O_constant:
image = insert_operand(image, operand, t->X_add_number, NULL, 0);
break;
default:
{
struct alpha_fixup *fixup;
if (insn->nfixups >= MAX_INSN_FIXUPS)
as_fatal("too many fixups");
fixup = &insn->fixups[insn->nfixups++];
fixup->exp = *t;
fixup->reloc = operand->default_reloc;
}
break;
}
}
insn->insn = image;
}
/*
* Actually output an instruction with its fixup.
*/
static void
emit_insn (insn)
struct alpha_insn *insn;
{
char *f;
int i;
/* Take care of alignment duties */
if (alpha_auto_align_on && alpha_current_align < 2)
alpha_align (2, (char *) NULL, alpha_insn_label);
if (alpha_current_align > 2)
alpha_current_align = 2;
alpha_insn_label = NULL;
/* Write out the instruction. */
f = frag_more (4);
md_number_to_chars (f, insn->insn, 4);
/* Apply the fixups in order */
for (i = 0; i < insn->nfixups; ++i)
{
struct alpha_fixup *fixup = &insn->fixups[i];
int size, pcrel;
fixS *fixP;
/* Some fixups are only used internally and so have no howto */
if ((int)fixup->reloc < 0)
size = 4, pcrel = 0;
#ifdef OBJ_ELF
/* These relocation types are only used internally. */
else if (fixup->reloc == BFD_RELOC_ALPHA_GPDISP_HI16
|| fixup->reloc == BFD_RELOC_ALPHA_GPDISP_LO16)
{
size = 2, pcrel = 0;
}
#endif
else
{
reloc_howto_type *reloc_howto
= bfd_reloc_type_lookup (stdoutput, fixup->reloc);
assert (reloc_howto);
size = bfd_get_reloc_size (reloc_howto);
pcrel = reloc_howto->pc_relative;
}
assert (size >= 1 && size <= 4);
fixP = fix_new_exp (frag_now, f - frag_now->fr_literal, size,
&fixup->exp, pcrel, fixup->reloc);
/* Turn off complaints that the addend is too large for some fixups */
switch (fixup->reloc)
{
case BFD_RELOC_ALPHA_GPDISP_LO16:
#ifdef OBJ_ECOFF
case BFD_RELOC_ALPHA_LITERAL:
#endif
#ifdef OBJ_ELF
case BFD_RELOC_ALPHA_ELF_LITERAL:
#endif
case BFD_RELOC_GPREL32:
fixP->fx_no_overflow = 1;
break;
default:
break;
}
}
}
/* Given an opcode name and a pre-tokenized set of arguments, assemble
the insn, but do not emit it.
Note that this implies no macros allowed, since we can't store more
than one insn in an insn structure. */
static void
assemble_tokens_to_insn(opname, tok, ntok, insn)
const char *opname;
const expressionS *tok;
int ntok;
struct alpha_insn *insn;
{
const struct alpha_opcode *opcode;
/* search opcodes */
opcode = (const struct alpha_opcode *) hash_find (alpha_opcode_hash, opname);
if (opcode)
{
int cpumatch;
opcode = find_opcode_match (opcode, tok, &ntok, &cpumatch);
if (opcode)
{
assemble_insn (opcode, tok, ntok, insn);
return;
}
else if (cpumatch)
as_bad ("inappropriate arguments for opcode `%s'", opname);
else
as_bad ("opcode `%s' not supported for target %s", opname,
alpha_target_name);
}
else
as_bad ("unknown opcode `%s'", opname);
}
/* Given an opcode name and a pre-tokenized set of arguments, take the
opcode all the way through emission. */
static void
assemble_tokens (opname, tok, ntok, local_macros_on)
const char *opname;
const expressionS *tok;
int ntok;
int local_macros_on;
{
int found_something = 0;
const struct alpha_opcode *opcode;
const struct alpha_macro *macro;
int cpumatch = 1;
/* search macros */
if (local_macros_on)
{
macro = ((const struct alpha_macro *)
hash_find (alpha_macro_hash, opname));
if (macro)
{
found_something = 1;
macro = find_macro_match (macro, tok, &ntok);
if (macro)
{
(*macro->emit) (tok, ntok, macro->arg);
return;
}
}
}
/* search opcodes */
opcode = (const struct alpha_opcode *) hash_find (alpha_opcode_hash, opname);
if (opcode)
{
found_something = 1;
opcode = find_opcode_match (opcode, tok, &ntok, &cpumatch);
if (opcode)
{
struct alpha_insn insn;
assemble_insn (opcode, tok, ntok, &insn);
emit_insn (&insn);
return;
}
}
if (found_something)
if (cpumatch)
as_bad ("inappropriate arguments for opcode `%s'", opname);
else
as_bad ("opcode `%s' not supported for target %s", opname,
alpha_target_name);
else
as_bad ("unknown opcode `%s'", opname);
}
/* Some instruction sets indexed by lg(size) */
static const char * const sextX_op[] = { "sextb", "sextw", "sextl", NULL };
static const char * const insXl_op[] = { "insbl", "inswl", "insll", "insql" };
static const char * const insXh_op[] = { NULL, "inswh", "inslh", "insqh" };
static const char * const extXl_op[] = { "extbl", "extwl", "extll", "extql" };
static const char * const extXh_op[] = { NULL, "extwh", "extlh", "extqh" };
static const char * const mskXl_op[] = { "mskbl", "mskwl", "mskll", "mskql" };
static const char * const mskXh_op[] = { NULL, "mskwh", "msklh", "mskqh" };
static const char * const stX_op[] = { "stb", "stw", "stl", "stq" };
static const char * const ldX_op[] = { "ldb", "ldw", "ldll", "ldq" };
static const char * const ldXu_op[] = { "ldbu", "ldwu", NULL, NULL };
/* Implement the ldgp macro. */
static void
emit_ldgp (tok, ntok, unused)
const expressionS *tok;
int ntok;
const PTR unused;
{
#ifdef OBJ_AOUT
FIXME
#endif
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
/* from "ldgp r1,n(r2)", generate "ldah r1,X(R2); lda r1,Y(r1)"
with appropriate constants and relocations. */
struct alpha_insn insn;
expressionS newtok[3];
expressionS addend;
/* We're going to need this symbol in md_apply_fix(). */
(void) section_symbol (absolute_section);
#ifdef OBJ_ECOFF
if (regno (tok[2].X_add_number) == AXP_REG_PV)
ecoff_set_gp_prolog_size (0);
#endif
newtok[0] = tok[0];
set_tok_const (newtok[1], 0);
newtok[2] = tok[2];
assemble_tokens_to_insn ("ldah", newtok, 3, &insn);
addend = tok[1];
#ifdef OBJ_ECOFF
assert (addend.X_op == O_constant);
addend.X_op = O_symbol;
addend.X_add_symbol = alpha_gp_symbol;
#endif
insn.nfixups = 1;
insn.fixups[0].exp = addend;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_HI16;
emit_insn (&insn);
set_tok_preg (newtok[2], tok[0].X_add_number);
assemble_tokens_to_insn ("lda", newtok, 3, &insn);
#ifdef OBJ_ECOFF
addend.X_add_number += 4;
#endif
insn.nfixups = 1;
insn.fixups[0].exp = addend;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_LO16;
emit_insn (&insn);
#endif /* OBJ_ECOFF || OBJ_ELF */
}
#ifdef OBJ_EVAX
/* Add symbol+addend to link pool.
Return offset from basesym to entry in link pool.
Add new fixup only if offset isn't 16bit. */
valueT
add_to_link_pool (basesym, sym, addend)
symbolS *basesym;
symbolS *sym;
offsetT addend;
{
segT current_section = now_seg;
int current_subsec = now_subseg;
valueT offset;
bfd_reloc_code_real_type reloc_type;
char *p;
segment_info_type *seginfo = seg_info (alpha_link_section);
fixS *fixp;
offset = -basesym->sy_obj;
/* @@ This assumes all entries in a given section will be of the same
size... Probably correct, but unwise to rely on. */
/* This must always be called with the same subsegment. */
if (seginfo->frchainP)
for (fixp = seginfo->frchainP->fix_root;
fixp != (fixS *) NULL;
fixp = fixp->fx_next, offset += 8)
{
if (fixp->fx_addsy == sym && fixp->fx_offset == addend)
{
if (range_signed_16 (offset))
{
return offset;
}
}
}
/* Not found in 16bit signed range. */
subseg_set (alpha_link_section, 0);
p = frag_more (8);
memset (p, 0, 8);
fix_new (frag_now, p - frag_now->fr_literal, 8, sym, addend, 0,
BFD_RELOC_64);
subseg_set (current_section, current_subsec);
seginfo->literal_pool_size += 8;
return offset;
}
#endif /* OBJ_EVAX */
/* Load a (partial) expression into a target register.
If poffset is not null, after the call it will either contain
O_constant 0, or a 16-bit offset appropriate for any MEM format
instruction. In addition, pbasereg will be modified to point to
the base register to use in that MEM format instruction.
In any case, *pbasereg should contain a base register to add to the
expression. This will normally be either AXP_REG_ZERO or
alpha_gp_register. Symbol addresses will always be loaded via $gp,
so "foo($0)" is interpreted as adding the address of foo to $0;
i.e. "ldq $targ, LIT($gp); addq $targ, $0, $targ". Odd, perhaps,
but this is what OSF/1 does.
Finally, the return value is true if the calling macro may emit a
LITUSE reloc if otherwise appropriate. */
static int
load_expression (targreg, exp, pbasereg, poffset)
int targreg;
const expressionS *exp;
int *pbasereg;
expressionS *poffset;
{
int emit_lituse = 0;
offsetT addend = exp->X_add_number;
int basereg = *pbasereg;
struct alpha_insn insn;
expressionS newtok[3];
switch (exp->X_op)
{
case O_symbol:
{
#ifdef OBJ_ECOFF
offsetT lit;
/* attempt to reduce .lit load by splitting the offset from
its symbol when possible, but don't create a situation in
which we'd fail. */
if (!range_signed_32 (addend) &&
(alpha_noat_on || targreg == AXP_REG_AT))
{
lit = add_to_literal_pool (exp->X_add_symbol, addend,
alpha_lita_section, 8);
addend = 0;
}
else
{
lit = add_to_literal_pool (exp->X_add_symbol, 0,
alpha_lita_section, 8);
}
if (lit >= 0x8000)
as_fatal ("overflow in literal (.lita) table");
/* emit "ldq r, lit(gp)" */
if (basereg != alpha_gp_register && targreg == basereg)
{
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
if (targreg == AXP_REG_AT)
as_bad ("macro requires $at while $at in use");
set_tok_reg (newtok[0], AXP_REG_AT);
}
else
set_tok_reg (newtok[0], targreg);
set_tok_sym (newtok[1], alpha_lita_symbol, lit);
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
assert (insn.nfixups == 1);
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
#endif /* OBJ_ECOFF */
#ifdef OBJ_ELF
/* emit "ldq r, gotoff(gp)" */
if (basereg != alpha_gp_register && targreg == basereg)
{
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
if (targreg == AXP_REG_AT)
as_bad ("macro requires $at while $at in use");
set_tok_reg (newtok[0], AXP_REG_AT);
}
else
set_tok_reg (newtok[0], targreg);
/* XXX: Disable this .got minimizing optimization so that we can get
better instruction offset knowledge in the compiler. This happens
very infrequently anyway. */
if (1 || !range_signed_32 (addend)
&& (alpha_noat_on || targreg == AXP_REG_AT))
{
newtok[1] = *exp;
addend = 0;
}
else
{
set_tok_sym (newtok[1], exp->X_add_symbol, 0);
}
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
assert (insn.nfixups == 1);
insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
#endif /* OBJ_ELF */
#ifdef OBJ_EVAX
offsetT link;
if (alpha_basereg_clobbered)
{
/* no basereg, reload basreg from 0(FP). */
set_tok_reg (newtok[0], targreg);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_FP);
basereg = targreg;
assemble_tokens ("ldq", newtok, 3, 0);
}
/* Find symbol or symbol pointer in link section. */
if (exp->X_add_symbol == alpha_evax_proc.symbol)
{
if (range_signed_16 (addend))
{
set_tok_reg (newtok[0], targreg);
set_tok_const (newtok[1], addend);
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("lda", newtok, 3, &insn);
addend = 0;
}
else
{
set_tok_reg (newtok[0], targreg);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("lda", newtok, 3, &insn);
}
}
else
{
if (!range_signed_32 (addend))
{
link = add_to_link_pool (alpha_evax_proc.symbol,
exp->X_add_symbol, addend);
addend = 0;
}
else
{
link = add_to_link_pool (alpha_evax_proc.symbol,
exp->X_add_symbol, 0);
}
set_tok_reg (newtok[0], targreg);
set_tok_const (newtok[1], link);
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
}
#endif /* OBJ_EVAX */
emit_insn(&insn);
#ifndef OBJ_EVAX
emit_lituse = 1;
if (basereg != alpha_gp_register && basereg != AXP_REG_ZERO)
{
/* emit "addq r, base, r" */
set_tok_reg (newtok[1], basereg);
set_tok_reg (newtok[2], targreg);
assemble_tokens ("addq", newtok, 3, 0);
}
#endif
basereg = targreg;
}
break;
case O_constant:
break;
case O_subtract:
/* Assume that this difference expression will be resolved to an
absolute value and that that value will fit in 16 bits. */
set_tok_reg (newtok[0], targreg);
newtok[1] = *exp;
set_tok_preg (newtok[2], basereg);
assemble_tokens ("lda", newtok, 3, 0);
if (poffset)
set_tok_const (*poffset, 0);
return 0;
case O_big:
as_bad ("%s number invalid; zero assumed",
exp->X_add_number > 0 ? "bignum" : "floating point");
addend = 0;
break;
default:
abort();
}
if (!range_signed_32 (addend))
{
offsetT lit;
/* for 64-bit addends, just put it in the literal pool */
#ifdef OBJ_EVAX
/* emit "ldq targreg, lit(basereg)" */
lit = add_to_link_pool (alpha_evax_proc.symbol,
section_symbol (absolute_section), addend);
set_tok_reg (newtok[0], targreg);
set_tok_const (newtok[1], lit);
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens ("ldq", newtok, 3, 0);
#else
if (alpha_lit8_section == NULL)
{
create_literal_section (".lit8",
&alpha_lit8_section,
&alpha_lit8_symbol);
#ifdef OBJ_ECOFF
alpha_lit8_literal = add_to_literal_pool (alpha_lit8_symbol, 0x8000,
alpha_lita_section, 8);
if (alpha_lit8_literal >= 0x8000)
as_fatal ("overflow in literal (.lita) table");
#endif
}
lit = add_to_literal_pool (NULL, addend, alpha_lit8_section, 8) - 0x8000;
if (lit >= 0x8000)
as_fatal ("overflow in literal (.lit8) table");
/* emit "lda litreg, .lit8+0x8000" */
if (targreg == basereg)
{
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
if (targreg == AXP_REG_AT)
as_bad ("macro requires $at while $at in use");
set_tok_reg (newtok[0], AXP_REG_AT);
}
else
set_tok_reg (newtok[0], targreg);
#ifdef OBJ_ECOFF
set_tok_sym (newtok[1], alpha_lita_symbol, alpha_lit8_literal);
#endif
#ifdef OBJ_ELF
set_tok_sym (newtok[1], alpha_lit8_symbol, 0x8000);
#endif
set_tok_preg (newtok[2], alpha_gp_register);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
assert (insn.nfixups == 1);
#ifdef OBJ_ECOFF
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
#endif
#ifdef OBJ_ELF
insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
#endif
emit_insn (&insn);
/* emit "ldq litreg, lit(litreg)" */
set_tok_const (newtok[1], lit);
set_tok_preg (newtok[2], newtok[0].X_add_number);
assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
assert (insn.nfixups < MAX_INSN_FIXUPS);
if (insn.nfixups > 0)
{
memmove (&insn.fixups[1], &insn.fixups[0],
sizeof(struct alpha_fixup) * insn.nfixups);
}
insn.nfixups++;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITUSE;
insn.fixups[0].exp.X_op = O_constant;
insn.fixups[0].exp.X_add_number = 1;
emit_lituse = 0;
emit_insn (&insn);
/* emit "addq litreg, base, target" */
if (basereg != AXP_REG_ZERO)
{
set_tok_reg (newtok[1], basereg);
set_tok_reg (newtok[2], targreg);
assemble_tokens ("addq", newtok, 3, 0);
}
#endif /* !OBJ_EVAX */
if (poffset)
set_tok_const (*poffset, 0);
*pbasereg = targreg;
}
else
{
offsetT low, high, extra, tmp;
/* for 32-bit operands, break up the addend */
low = sign_extend_16 (addend);
tmp = addend - low;
high = sign_extend_16 (tmp >> 16);
if (tmp - (high << 16))
{
extra = 0x4000;
tmp -= 0x40000000;
high = sign_extend_16 (tmp >> 16);
}
else
extra = 0;
set_tok_reg (newtok[0], targreg);
set_tok_preg (newtok[2], basereg);
if (extra)
{
/* emit "ldah r, extra(r) */
set_tok_const (newtok[1], extra);
assemble_tokens ("ldah", newtok, 3, 0);
set_tok_preg (newtok[2], basereg = targreg);
}
if (high)
{
/* emit "ldah r, high(r) */
set_tok_const (newtok[1], high);
assemble_tokens ("ldah", newtok, 3, 0);
basereg = targreg;
set_tok_preg (newtok[2], basereg);
}
if ((low && !poffset) || (!poffset && basereg != targreg))
{
/* emit "lda r, low(base)" */
set_tok_const (newtok[1], low);
assemble_tokens ("lda", newtok, 3, 0);
basereg = targreg;
low = 0;
}
if (poffset)
set_tok_const (*poffset, low);
*pbasereg = basereg;
}
return emit_lituse;
}
/* The lda macro differs from the lda instruction in that it handles
most simple expressions, particualrly symbol address loads and
large constants. */
static void
emit_lda (tok, ntok, unused)
const expressionS *tok;
int ntok;
const PTR unused;
{
int basereg;
if (ntok == 2)
basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
(void) load_expression (tok[0].X_add_number, &tok[1], &basereg, NULL);
}
/* The ldah macro differs from the ldah instruction in that it has $31
as an implied base register. */
static void
emit_ldah (tok, ntok, unused)
const expressionS *tok;
int ntok;
const PTR unused;
{
expressionS newtok[3];
newtok[0] = tok[0];
newtok[1] = tok[1];
set_tok_preg (newtok[2], AXP_REG_ZERO);
assemble_tokens ("ldah", newtok, 3, 0);
}
/* Handle all "simple" integer register loads -- ldq, ldq_l, ldq_u,
etc. They differ from the real instructions in that they do simple
expressions like the lda macro. */
static void
emit_ir_load (tok, ntok, opname)
const expressionS *tok;
int ntok;
const PTR opname;
{
int basereg, lituse;
expressionS newtok[3];
struct alpha_insn insn;
if (ntok == 2)
basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
lituse = load_expression (tok[0].X_add_number, &tok[1], &basereg,
&newtok[1]);
newtok[0] = tok[0];
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ((const char *)opname, newtok, 3, &insn);
if (lituse)
{
assert (insn.nfixups < MAX_INSN_FIXUPS);
if (insn.nfixups > 0)
{
memmove (&insn.fixups[1], &insn.fixups[0],
sizeof(struct alpha_fixup) * insn.nfixups);
}
insn.nfixups++;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITUSE;
insn.fixups[0].exp.X_op = O_constant;
insn.fixups[0].exp.X_add_number = 1;
}
emit_insn (&insn);
#ifdef OBJ_EVAX
/* special hack. If the basereg is clobbered for a call
all lda's before the call don't have a basereg. */
if ((tok[0].X_op == O_register)
&& (tok[0].X_add_number == alpha_gp_register))
{
alpha_basereg_clobbered = 1;
}
#endif
}
/* Handle fp register loads, and both integer and fp register stores.
Again, we handle simple expressions. */
static void
emit_loadstore (tok, ntok, opname)
const expressionS *tok;
int ntok;
const PTR opname;
{
int basereg, lituse;
expressionS newtok[3];
struct alpha_insn insn;
if (ntok == 2)
basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
else
basereg = tok[2].X_add_number;
if (tok[1].X_op != O_constant || !range_signed_16(tok[1].X_add_number))
{
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, &newtok[1]);
}
else
{
newtok[1] = tok[1];
lituse = 0;
}
newtok[0] = tok[0];
set_tok_preg (newtok[2], basereg);
assemble_tokens_to_insn ((const char *)opname, newtok, 3, &insn);
if (lituse)
{
assert (insn.nfixups < MAX_INSN_FIXUPS);
if (insn.nfixups > 0)
{
memmove (&insn.fixups[1], &insn.fixups[0],
sizeof(struct alpha_fixup) * insn.nfixups);
}
insn.nfixups++;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITUSE;
insn.fixups[0].exp.X_op = O_constant;
insn.fixups[0].exp.X_add_number = 1;
}
emit_insn (&insn);
}
/* Load a half-word or byte as an unsigned value. */
static void
emit_ldXu (tok, ntok, vlgsize)
const expressionS *tok;
int ntok;
const PTR vlgsize;
{
if (alpha_target & AXP_OPCODE_BWX)
emit_ir_load (tok, ntok, ldXu_op[(long)vlgsize]);
else
{
expressionS newtok[3];
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
/* emit "lda $at, exp" */
memcpy (newtok, tok, sizeof (expressionS) * ntok);
newtok[0].X_add_number = AXP_REG_AT;
assemble_tokens ("lda", newtok, ntok, 1);
/* emit "ldq_u targ, 0($at)" */
newtok[0] = tok[0];
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* emit "extXl targ, $at, targ" */
set_tok_reg (newtok[1], AXP_REG_AT);
newtok[2] = newtok[0];
assemble_tokens (extXl_op[(long)vlgsize], newtok, 3, 1);
}
}
/* Load a half-word or byte as a signed value. */
static void
emit_ldX (tok, ntok, vlgsize)
const expressionS *tok;
int ntok;
const PTR vlgsize;
{
emit_ldXu (tok, ntok, vlgsize);
assemble_tokens (sextX_op[(long)vlgsize], tok, 1, 1);
}
/* Load an integral value from an unaligned address as an unsigned
value. */
static void
emit_uldXu (tok, ntok, vlgsize)
const expressionS *tok;
int ntok;
const PTR vlgsize;
{
long lgsize = (long)vlgsize;
expressionS newtok[3];
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
/* emit "lda $at, exp" */
memcpy (newtok, tok, sizeof (expressionS) * ntok);
newtok[0].X_add_number = AXP_REG_AT;
assemble_tokens ("lda", newtok, ntok, 1);
/* emit "ldq_u $t9, 0($at)" */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* emit "ldq_u $t10, size-1($at)" */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_const (newtok[1], (1<<lgsize)-1);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* emit "extXl $t9, $at, $t9" */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_reg (newtok[1], AXP_REG_AT);
set_tok_reg (newtok[2], AXP_REG_T9);
assemble_tokens (extXl_op[lgsize], newtok, 3, 1);
/* emit "extXh $t10, $at, $t10" */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[2], AXP_REG_T10);
assemble_tokens (extXh_op[lgsize], newtok, 3, 1);
/* emit "or $t9, $t10, targ" */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_reg (newtok[1], AXP_REG_T10);
newtok[2] = tok[0];
assemble_tokens ("or", newtok, 3, 1);
}
/* Load an integral value from an unaligned address as a signed value.
Note that quads should get funneled to the unsigned load since we
don't have to do the sign extension. */
static void
emit_uldX (tok, ntok, vlgsize)
const expressionS *tok;
int ntok;
const PTR vlgsize;
{
emit_uldXu (tok, ntok, vlgsize);
assemble_tokens (sextX_op[(long)vlgsize], tok, 1, 1);
}
/* Implement the ldil macro. */
static void
emit_ldil (tok, ntok, unused)
const expressionS *tok;
int ntok;
const PTR unused;
{
expressionS newtok[2];
memcpy (newtok, tok, sizeof(newtok));
newtok[1].X_add_number = sign_extend_32 (tok[1].X_add_number);
assemble_tokens ("lda", newtok, ntok, 1);
}
/* Store a half-word or byte. */
static void
emit_stX (tok, ntok, vlgsize)
const expressionS *tok;
int ntok;
const PTR vlgsize;
{
int lgsize = (int)(long)vlgsize;
if (alpha_target & AXP_OPCODE_BWX)
emit_loadstore (tok, ntok, stX_op[lgsize]);
else
{
expressionS newtok[3];
if (alpha_noat_on)
as_bad("macro requires $at register while noat in effect");
/* emit "lda $at, exp" */
memcpy (newtok, tok, sizeof (expressionS) * ntok);
newtok[0].X_add_number = AXP_REG_AT;
assemble_tokens ("lda", newtok, ntok, 1);
/* emit "ldq_u $t9, 0($at)" */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* emit "insXl src, $at, $t10" */
newtok[0] = tok[0];
set_tok_reg (newtok[1], AXP_REG_AT);
set_tok_reg (newtok[2], AXP_REG_T10);
assemble_tokens (insXl_op[lgsize], newtok, 3, 1);
/* emit "mskXl $t9, $at, $t9" */
set_tok_reg (newtok[0], AXP_REG_T9);
newtok[2] = newtok[0];
assemble_tokens (mskXl_op[lgsize], newtok, 3, 1);
/* emit "or $t9, $t10, $t9" */
set_tok_reg (newtok[1], AXP_REG_T10);
assemble_tokens ("or", newtok, 3, 1);
/* emit "stq_u $t9, 0($at) */
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("stq_u", newtok, 3, 1);
}
}
/* Store an integer to an unaligned address. */
static void
emit_ustX (tok, ntok, vlgsize)
const expressionS *tok;
int ntok;
const PTR vlgsize;
{
int lgsize = (int)(long)vlgsize;
expressionS newtok[3];
/* emit "lda $at, exp" */
memcpy (newtok, tok, sizeof (expressionS) * ntok);
newtok[0].X_add_number = AXP_REG_AT;
assemble_tokens ("lda", newtok, ntok, 1);
/* emit "ldq_u $9, 0($at)" */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* emit "ldq_u $10, size-1($at)" */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_const (newtok[1], (1 << lgsize)-1);
assemble_tokens ("ldq_u", newtok, 3, 1);
/* emit "insXl src, $at, $t11" */
newtok[0] = tok[0];
set_tok_reg (newtok[1], AXP_REG_AT);
set_tok_reg (newtok[2], AXP_REG_T11);
assemble_tokens (insXl_op[lgsize], newtok, 3, 1);
/* emit "insXh src, $at, $t12" */
set_tok_reg (newtok[2], AXP_REG_T12);
assemble_tokens (insXh_op[lgsize], newtok, 3, 1);
/* emit "mskXl $t9, $at, $t9" */
set_tok_reg (newtok[0], AXP_REG_T9);
newtok[2] = newtok[0];
assemble_tokens (mskXl_op[lgsize], newtok, 3, 1);
/* emit "mskXh $t10, $at, $t10" */
set_tok_reg (newtok[0], AXP_REG_T10);
newtok[2] = newtok[0];
assemble_tokens (mskXh_op[lgsize], newtok, 3, 1);
/* emit "or $t9, $t11, $t9" */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_reg (newtok[1], AXP_REG_T11);
newtok[2] = newtok[0];
assemble_tokens ("or", newtok, 3, 1);
/* emit "or $t10, $t12, $t10" */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[1], AXP_REG_T12);
newtok[2] = newtok[0];
assemble_tokens ("or", newtok, 3, 1);
/* emit "stq_u $t9, 0($at)" */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_AT);
assemble_tokens ("stq_u", newtok, 3, 1);
/* emit "stq_u $t10, size-1($at)" */
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_const (newtok[1], (1 << lgsize)-1);
assemble_tokens ("stq_u", newtok, 3, 1);
}
/* Sign extend a half-word or byte. The 32-bit sign extend is
implemented as "addl $31, $r, $t" in the opcode table. */
static void
emit_sextX (tok, ntok, vlgsize)
const expressionS *tok;
int ntok;
const PTR vlgsize;
{
long lgsize = (long)vlgsize;
if (alpha_target & AXP_OPCODE_BWX)
assemble_tokens (sextX_op[lgsize], tok, ntok, 0);
else
{
int bitshift = 64 - 8 * (1 << lgsize);
expressionS newtok[3];
/* emit "sll src,bits,dst" */
newtok[0] = tok[0];
set_tok_const (newtok[1], bitshift);
newtok[2] = tok[ntok - 1];
assemble_tokens ("sll", newtok, 3, 1);
/* emit "sra dst,bits,dst" */
newtok[0] = newtok[2];
assemble_tokens ("sra", newtok, 3, 1);
}
}
/* Implement the division and modulus macros. */
#ifdef OBJ_EVAX
/* Make register usage like in normal procedure call.
Don't clobber PV and RA. */
static void
emit_division (tok, ntok, symname)
const expressionS *tok;
int ntok;
const PTR symname;
{
/* DIVISION and MODULUS. Yech.
*
* Convert
* OP x,y,result
* to
* mov x,R16 # if x != R16
* mov y,R17 # if y != R17
* lda AT,__OP
* jsr AT,(AT),0
* mov R0,result
*
* with appropriate optimizations if R0,R16,R17 are the registers
* specified by the compiler.
*/
int xr, yr, rr;
symbolS *sym;
expressionS newtok[3];
xr = regno (tok[0].X_add_number);
yr = regno (tok[1].X_add_number);
if (ntok < 3)
rr = xr;
else
rr = regno (tok[2].X_add_number);
/* Move the operands into the right place */
if (yr == AXP_REG_R16 && xr == AXP_REG_R17)
{
/* They are in exactly the wrong order -- swap through AT */
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
set_tok_reg (newtok[0], AXP_REG_R16);
set_tok_reg (newtok[1], AXP_REG_AT);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_R17);
set_tok_reg (newtok[1], AXP_REG_R16);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_reg (newtok[1], AXP_REG_R17);
assemble_tokens ("mov", newtok, 2, 1);
}
else
{
if (yr == AXP_REG_R16)
{
set_tok_reg (newtok[0], AXP_REG_R16);
set_tok_reg (newtok[1], AXP_REG_R17);
assemble_tokens ("mov", newtok, 2, 1);
}
if (xr != AXP_REG_R16)
{
set_tok_reg (newtok[0], xr);
set_tok_reg (newtok[1], AXP_REG_R16);
assemble_tokens ("mov", newtok, 2, 1);
}
if (yr != AXP_REG_R16 && yr != AXP_REG_R17)
{
set_tok_reg (newtok[0], yr);
set_tok_reg (newtok[1], AXP_REG_R17);
assemble_tokens ("mov", newtok, 2, 1);
}
}
sym = symbol_find_or_make ((const char *)symname);
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_sym (newtok[1], sym, 0);
assemble_tokens ("lda", newtok, 2, 1);
/* Call the division routine */
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_cpreg (newtok[1], AXP_REG_AT);
set_tok_const (newtok[2], 0);
assemble_tokens ("jsr", newtok, 3, 1);
/* Move the result to the right place */
if (rr != AXP_REG_R0)
{
set_tok_reg (newtok[0], AXP_REG_R0);
set_tok_reg (newtok[1], rr);
assemble_tokens ("mov", newtok, 2, 1);
}
}
#else /* !OBJ_EVAX */
static void
emit_division (tok, ntok, symname)
const expressionS *tok;
int ntok;
const PTR symname;
{
/* DIVISION and MODULUS. Yech.
* Convert
* OP x,y,result
* to
* lda pv,__OP
* mov x,t10
* mov y,t11
* jsr t9,(pv),__OP
* mov t12,result
*
* with appropriate optimizations if t10,t11,t12 are the registers
* specified by the compiler.
*/
int xr, yr, rr;
symbolS *sym;
expressionS newtok[3];
xr = regno (tok[0].X_add_number);
yr = regno (tok[1].X_add_number);
if (ntok < 3)
rr = xr;
else
rr = regno (tok[2].X_add_number);
sym = symbol_find_or_make ((const char *)symname);
/* Move the operands into the right place */
if (yr == AXP_REG_T10 && xr == AXP_REG_T11)
{
/* They are in exactly the wrong order -- swap through AT */
if (alpha_noat_on)
as_bad ("macro requires $at register while noat in effect");
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[1], AXP_REG_AT);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_T11);
set_tok_reg (newtok[1], AXP_REG_T10);
assemble_tokens ("mov", newtok, 2, 1);
set_tok_reg (newtok[0], AXP_REG_AT);
set_tok_reg (newtok[1], AXP_REG_T11);
assemble_tokens ("mov", newtok, 2, 1);
}
else
{
if (yr == AXP_REG_T10)
{
set_tok_reg (newtok[0], AXP_REG_T10);
set_tok_reg (newtok[1], AXP_REG_T11);
assemble_tokens ("mov", newtok, 2, 1);
}
if (xr != AXP_REG_T10)
{
set_tok_reg (newtok[0], xr);
set_tok_reg (newtok[1], AXP_REG_T10);
assemble_tokens ("mov", newtok, 2, 1);
}
if (yr != AXP_REG_T10 && yr != AXP_REG_T11)
{
set_tok_reg (newtok[0], yr);
set_tok_reg (newtok[1], AXP_REG_T11);
assemble_tokens ("mov", newtok, 2, 1);
}
}
/* Call the division routine */
set_tok_reg (newtok[0], AXP_REG_T9);
set_tok_sym (newtok[1], sym, 0);
assemble_tokens ("jsr", newtok, 2, 1);
/* Reload the GP register */
#ifdef OBJ_AOUT
FIXME
#endif
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
set_tok_reg (newtok[0], alpha_gp_register);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_T9);
assemble_tokens ("ldgp", newtok, 3, 1);
#endif
/* Move the result to the right place */
if (rr != AXP_REG_T12)
{
set_tok_reg (newtok[0], AXP_REG_T12);
set_tok_reg (newtok[1], rr);
assemble_tokens ("mov", newtok, 2, 1);
}
}
#endif /* !OBJ_EVAX */
/* The jsr and jmp macros differ from their instruction counterparts
in that they can load the target address and default most
everything. */
static void
emit_jsrjmp (tok, ntok, vopname)
const expressionS *tok;
int ntok;
const PTR vopname;
{
const char *opname = (const char *) vopname;
struct alpha_insn insn;
expressionS newtok[3];
int r, tokidx = 0, lituse = 0;
if (tokidx < ntok && tok[tokidx].X_op == O_register)
r = regno (tok[tokidx++].X_add_number);
else
r = strcmp (opname, "jmp") == 0 ? AXP_REG_ZERO : AXP_REG_RA;
set_tok_reg (newtok[0], r);
if (tokidx < ntok &&
(tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
r = regno (tok[tokidx++].X_add_number);
#ifdef OBJ_EVAX
/* keep register if jsr $n.<sym> */
#else
else
{
int basereg = alpha_gp_register;
lituse = load_expression (r = AXP_REG_PV, &tok[tokidx], &basereg, NULL);
}
#endif
set_tok_cpreg (newtok[1], r);
#ifdef OBJ_EVAX
/* FIXME: Add hint relocs to BFD for evax. */
#else
if (tokidx < ntok)
newtok[2] = tok[tokidx];
else
#endif
set_tok_const (newtok[2], 0);
assemble_tokens_to_insn (opname, newtok, 3, &insn);
/* add the LITUSE fixup */
if (lituse)
{
assert (insn.nfixups < MAX_INSN_FIXUPS);
if (insn.nfixups > 0)
{
memmove (&insn.fixups[1], &insn.fixups[0],
sizeof(struct alpha_fixup) * insn.nfixups);
}
insn.nfixups++;
insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITUSE;
insn.fixups[0].exp.X_op = O_constant;
insn.fixups[0].exp.X_add_number = 3;
}
emit_insn (&insn);
#ifdef OBJ_EVAX
alpha_basereg_clobbered = 0;
/* reload PV from 0(FP) if it is our current base register. */
if (alpha_gp_register == AXP_REG_PV)
{
set_tok_reg (newtok[0], AXP_REG_PV);
set_tok_const (newtok[1], 0);
set_tok_preg (newtok[2], AXP_REG_FP);
assemble_tokens ("ldq", newtok, 3, 0);
}
#endif
}
/* The ret and jcr instructions differ from their instruction
counterparts in that everything can be defaulted. */
static void
emit_retjcr (tok, ntok, vopname)
const expressionS *tok;
int ntok;
const PTR vopname;
{
const char *opname = (const char *)vopname;
expressionS newtok[3];
int r, tokidx = 0;
if (tokidx < ntok && tok[tokidx].X_op == O_register)
r = regno (tok[tokidx++].X_add_number);
else
r = AXP_REG_ZERO;
set_tok_reg (newtok[0], r);
if (tokidx < ntok &&
(tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
r = regno (tok[tokidx++].X_add_number);
else
r = AXP_REG_RA;
set_tok_cpreg (newtok[1], r);
if (tokidx < ntok)
newtok[2] = tok[tokidx];
else
set_tok_const (newtok[2], strcmp(opname, "ret") == 0);
assemble_tokens (opname, newtok, 3, 0);
}
/* Assembler directives */
/* Handle the .text pseudo-op. This is like the usual one, but it
clears alpha_insn_label and restores auto alignment. */
static void
s_alpha_text (i)
int i;
{
s_text (i);
alpha_insn_label = NULL;
alpha_auto_align_on = 1;
alpha_current_align = 0;
}
/* Handle the .data pseudo-op. This is like the usual one, but it
clears alpha_insn_label and restores auto alignment. */
static void
s_alpha_data (i)
int i;
{
s_data (i);
alpha_insn_label = NULL;
alpha_auto_align_on = 1;
alpha_current_align = 0;
}
#ifdef OBJ_ECOFF
/* Handle the OSF/1 .comm pseudo quirks. */
static void
s_alpha_comm (ignore)
int ignore;
{
register char *name;
register char c;
register char *p;
offsetT temp;
register symbolS *symbolP;
name = input_line_pointer;
c = get_symbol_end ();
/* just after name is now '\0' */
p = input_line_pointer;
*p = c;
SKIP_WHITESPACE ();
/* Alpha OSF/1 compiler doesn't provide the comma, gcc does. */
if (*input_line_pointer == ',')
{
input_line_pointer++;
SKIP_WHITESPACE ();
}
if ((temp = get_absolute_expression ()) < 0)
{
as_warn (".COMMon length (%ld.) <0! Ignored.", (long) temp);
ignore_rest_of_line ();
return;
}
*p = 0;
symbolP = symbol_find_or_make (name);
*p = c;
if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
{
as_bad ("Ignoring attempt to re-define symbol");
ignore_rest_of_line ();
return;
}
if (S_GET_VALUE (symbolP))
{
if (S_GET_VALUE (symbolP) != (valueT) temp)
as_bad ("Length of .comm \"%s\" is already %ld. Not changed to %ld.",
S_GET_NAME (symbolP),
(long) S_GET_VALUE (symbolP),
(long) temp);
}
else
{
S_SET_VALUE (symbolP, (valueT) temp);
S_SET_EXTERNAL (symbolP);
}
know (symbolP->sy_frag == &zero_address_frag);
demand_empty_rest_of_line ();
}
#endif /* ! OBJ_ELF */
#ifdef OBJ_ECOFF
/* Handle the .rdata pseudo-op. This is like the usual one, but it
clears alpha_insn_label and restores auto alignment. */
static void
s_alpha_rdata (ignore)
int ignore;
{
int temp;
temp = get_absolute_expression ();
subseg_new (".rdata", 0);
demand_empty_rest_of_line ();
alpha_insn_label = NULL;
alpha_auto_align_on = 1;
alpha_current_align = 0;
}
#endif
#ifdef OBJ_ECOFF
/* Handle the .sdata pseudo-op. This is like the usual one, but it
clears alpha_insn_label and restores auto alignment. */
static void
s_alpha_sdata (ignore)
int ignore;
{
int temp;
temp = get_absolute_expression ();
subseg_new (".sdata", 0);
demand_empty_rest_of_line ();
alpha_insn_label = NULL;
alpha_auto_align_on = 1;
alpha_current_align = 0;
}
#endif
#ifdef OBJ_ELF
/* Handle the .section pseudo-op. This is like the usual one, but it
clears alpha_insn_label and restores auto alignment. */
static void
s_alpha_section (ignore)
int ignore;
{
obj_elf_section (ignore);
alpha_insn_label = NULL;
alpha_auto_align_on = 1;
alpha_current_align = 0;
}
#endif
#ifdef OBJ_EVAX
/* Handle the section specific pseudo-op. */
static void
s_alpha_section (secid)
int secid;
{
int temp;
#define EVAX_SECTION_COUNT 6
static char *section_name[EVAX_SECTION_COUNT+1] =
{ "NULL", ".rdata", ".comm", ".link", ".ctors", ".dtors", ".lcomm" };
if ((secid <= 0) || (secid > EVAX_SECTION_COUNT))
{
as_fatal ("Unknown section directive");
demand_empty_rest_of_line ();
return;
}
temp = get_absolute_expression ();
subseg_new (section_name[secid], 0);
demand_empty_rest_of_line ();
alpha_insn_label = NULL;
alpha_auto_align_on = 1;
alpha_current_align = 0;
}
/* .prologue */
static void
s_alpha_prologue (ignore)
int ignore;
{
alpha_basereg_clobbered = 0;
demand_empty_rest_of_line ();
return;
}
/* Parse .ent directives. */
static void
s_alpha_ent (ignore)
int ignore;
{
symbolS *symbol;
expressionS symexpr;
alpha_evax_proc.pdsckind = 0;
alpha_evax_proc.framereg = -1;
alpha_evax_proc.framesize = 0;
alpha_evax_proc.rsa_offset = 0;
alpha_evax_proc.ra_save = AXP_REG_RA;
alpha_evax_proc.fp_save = -1;
alpha_evax_proc.imask = 0;
alpha_evax_proc.fmask = 0;
alpha_evax_proc.prologue = 0;
alpha_evax_proc.type = 0;
expression (&symexpr);
if (symexpr.X_op != O_symbol)
{
as_fatal (".ent directive has no symbol");
demand_empty_rest_of_line ();
return;
}
symbol = make_expr_symbol (&symexpr);
symbol->bsym->flags |= BSF_FUNCTION;
alpha_evax_proc.symbol = symbol;
demand_empty_rest_of_line ();
return;
}
/* Parse .frame <framreg>,<framesize>,RA,<rsa_offset> directives. */
static void
s_alpha_frame (ignore)
int ignore;
{
long val;
alpha_evax_proc.framereg = tc_get_register (1);
SKIP_WHITESPACE ();
if (*input_line_pointer++ != ','
|| get_absolute_expression_and_terminator (&val) != ',')
{
as_warn ("Bad .frame directive 1./2. param");
--input_line_pointer;
demand_empty_rest_of_line ();
return;
}
alpha_evax_proc.framesize = val;
(void) tc_get_register (1);
SKIP_WHITESPACE ();
if (*input_line_pointer++ != ',')
{
as_warn ("Bad .frame directive 3./4. param");
--input_line_pointer;
demand_empty_rest_of_line ();
return;
}
alpha_evax_proc.rsa_offset = get_absolute_expression ();
return;
}
static void
s_alpha_pdesc (ignore)
int ignore;
{
char *name;
char name_end;
long val;
register char *p;
expressionS exp;
symbolS *entry_sym;
fixS *fixp;
segment_info_type *seginfo = seg_info (alpha_link_section);
if (now_seg != alpha_link_section)
{
as_bad (".pdesc directive not in link (.link) section");
demand_empty_rest_of_line ();
return;
}
if ((alpha_evax_proc.symbol == 0)
|| (!S_IS_DEFINED (alpha_evax_proc.symbol)))
{
as_fatal (".pdesc has no matching .ent");
demand_empty_rest_of_line ();
return;
}
alpha_evax_proc.symbol->sy_obj = (valueT)seginfo->literal_pool_size;
expression (&exp);
if (exp.X_op != O_symbol)
{
as_warn (".pdesc directive has no entry symbol");
demand_empty_rest_of_line ();
return;
}
entry_sym = make_expr_symbol (&exp);
/* Save bfd symbol of proc desc in function symbol. */
alpha_evax_proc.symbol->bsym->udata.p = (PTR)entry_sym->bsym;
SKIP_WHITESPACE ();
if (*input_line_pointer++ != ',')
{
as_warn ("No comma after .pdesc <entryname>");
demand_empty_rest_of_line ();
return;
}
SKIP_WHITESPACE ();
name = input_line_pointer;
name_end = get_symbol_end ();
if (strncmp(name, "stack", 5) == 0)
{
alpha_evax_proc.pdsckind = PDSC_S_K_KIND_FP_STACK;
}
else if (strncmp(name, "reg", 3) == 0)
{
alpha_evax_proc.pdsckind = PDSC_S_K_KIND_FP_REGISTER;
}
else if (strncmp(name, "null", 4) == 0)
{
alpha_evax_proc.pdsckind = PDSC_S_K_KIND_NULL;
}
else
{
as_fatal ("unknown procedure kind");
demand_empty_rest_of_line ();
return;
}
*input_line_pointer = name_end;
demand_empty_rest_of_line ();
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
frag_align (3, 0, 0);
p = frag_more (16);
fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
fixp->fx_done = 1;
seginfo->literal_pool_size += 16;
*p = alpha_evax_proc.pdsckind
| ((alpha_evax_proc.framereg == 29) ? PDSC_S_M_BASE_REG_IS_FP : 0);
*(p+1) = PDSC_S_M_NATIVE
| PDSC_S_M_NO_JACKET;
switch (alpha_evax_proc.pdsckind)
{
case PDSC_S_K_KIND_NULL:
*(p+2) = 0;
*(p+3) = 0;
break;
case PDSC_S_K_KIND_FP_REGISTER:
*(p+2) = alpha_evax_proc.fp_save;
*(p+3) = alpha_evax_proc.ra_save;
break;
case PDSC_S_K_KIND_FP_STACK:
md_number_to_chars (p+2, (valueT)alpha_evax_proc.rsa_offset, 2);
break;
default: /* impossible */
break;
}
*(p+4) = 0;
*(p+5) = alpha_evax_proc.type & 0x0f;
/* Signature offset. */
md_number_to_chars (p+6, (valueT)0, 2);
fix_new_exp (frag_now, p-frag_now->fr_literal+8, 8, &exp, 0, BFD_RELOC_64);
if (alpha_evax_proc.pdsckind == PDSC_S_K_KIND_NULL)
return;
/* Add dummy fix to make add_to_link_pool work. */
p = frag_more (8);
fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
fixp->fx_done = 1;
seginfo->literal_pool_size += 8;
/* pdesc+16: Size. */
md_number_to_chars (p, (valueT)alpha_evax_proc.framesize, 4);
md_number_to_chars (p+4, (valueT)0, 2);
/* Entry length. */
md_number_to_chars (p+6, alpha_evax_proc.prologue, 2);
if (alpha_evax_proc.pdsckind == PDSC_S_K_KIND_FP_REGISTER)
return;
/* Add dummy fix to make add_to_link_pool work. */
p = frag_more (8);
fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
fixp->fx_done = 1;
seginfo->literal_pool_size += 8;
/* pdesc+24: register masks. */
md_number_to_chars (p, alpha_evax_proc.imask, 4);
md_number_to_chars (p+4, alpha_evax_proc.fmask, 4);
return;
}
/* Support for crash debug on vms. */
static void
s_alpha_name (ignore)
int ignore;
{
register char *p;
expressionS exp;
segment_info_type *seginfo = seg_info (alpha_link_section);
if (now_seg != alpha_link_section)
{
as_bad (".name directive not in link (.link) section");
demand_empty_rest_of_line ();
return;
}
expression (&exp);
if (exp.X_op != O_symbol)
{
as_warn (".name directive has no symbol");
demand_empty_rest_of_line ();
return;
}
demand_empty_rest_of_line ();
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
frag_align (3, 0, 0);
p = frag_more (8);
seginfo->literal_pool_size += 8;
fix_new_exp (frag_now, p-frag_now->fr_literal, 8, &exp, 0, BFD_RELOC_64);
return;
}
static void
s_alpha_linkage (ignore)
int ignore;
{
expressionS exp;
char *p;
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
expression (&exp);
if (exp.X_op != O_symbol)
{
as_fatal ("No symbol after .linkage");
}
else
{
p = frag_more (LKP_S_K_SIZE);
memset (p, 0, LKP_S_K_SIZE);
fix_new_exp (frag_now, p - frag_now->fr_literal, LKP_S_K_SIZE, &exp, 0,\
BFD_RELOC_ALPHA_LINKAGE);
}
demand_empty_rest_of_line ();
return;
}
static void
s_alpha_code_address (ignore)
int ignore;
{
expressionS exp;
char *p;
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
expression (&exp);
if (exp.X_op != O_symbol)
{
as_fatal ("No symbol after .code_address");
}
else
{
p = frag_more (8);
memset (p, 0, 8);
fix_new_exp (frag_now, p - frag_now->fr_literal, 8, &exp, 0,\
BFD_RELOC_ALPHA_CODEADDR);
}
demand_empty_rest_of_line ();
return;
}
static void
s_alpha_fp_save (ignore)
int ignore;
{
alpha_evax_proc.fp_save = tc_get_register (1);
demand_empty_rest_of_line ();
return;
}
static void
s_alpha_mask (ignore)
int ignore;
{
long val;
if (get_absolute_expression_and_terminator (&val) != ',')
{
as_warn ("Bad .mask directive");
--input_line_pointer;
}
else
{
alpha_evax_proc.imask = val;
(void)get_absolute_expression ();
}
demand_empty_rest_of_line ();
return;
}
static void
s_alpha_fmask (ignore)
int ignore;
{
long val;
if (get_absolute_expression_and_terminator (&val) != ',')
{
as_warn ("Bad .fmask directive");
--input_line_pointer;
}
else
{
alpha_evax_proc.fmask = val;
(void) get_absolute_expression ();
}
demand_empty_rest_of_line ();
return;
}
static void
s_alpha_end (ignore)
int ignore;
{
char c;
c = get_symbol_end ();
*input_line_pointer = c;
demand_empty_rest_of_line ();
alpha_evax_proc.symbol = 0;
alpha_basereg_clobbered = 0;
return;
}
static void
s_alpha_file (ignore)
int ignore;
{
symbolS *s;
int length;
static char case_hack[32];
extern char *demand_copy_string PARAMS ((int *lenP));
sprintf (case_hack, "<CASE:%01d%01d>",
alpha_flag_hash_long_names, alpha_flag_show_after_trunc);
s = symbol_find_or_make (case_hack);
s->bsym->flags |= BSF_FILE;
get_absolute_expression ();
s = symbol_find_or_make (demand_copy_string (&length));
s->bsym->flags |= BSF_FILE;
demand_empty_rest_of_line ();
return;
}
#endif /* OBJ_EVAX */
/* Handle the .gprel32 pseudo op. */
static void
s_alpha_gprel32 (ignore)
int ignore;
{
expressionS e;
char *p;
SKIP_WHITESPACE ();
expression (&e);
#ifdef OBJ_ELF
switch (e.X_op)
{
case O_constant:
e.X_add_symbol = section_symbol(absolute_section);
e.X_op = O_symbol;
/* FALLTHRU */
case O_symbol:
break;
default:
abort();
}
#else
#ifdef OBJ_ECOFF
switch (e.X_op)
{
case O_constant:
e.X_add_symbol = section_symbol (absolute_section);
/* fall through */
case O_symbol:
e.X_op = O_subtract;
e.X_op_symbol = alpha_gp_symbol;
break;
default:
abort ();
}
#endif
#endif
if (alpha_auto_align_on && alpha_current_align < 2)
alpha_align (2, (char *) NULL, alpha_insn_label);
if (alpha_current_align > 2)
alpha_current_align = 2;
alpha_insn_label = NULL;
p = frag_more (4);
memset (p, 0, 4);
fix_new_exp (frag_now, p-frag_now->fr_literal, 4,
&e, 0, BFD_RELOC_GPREL32);
}
/* Handle floating point allocation pseudo-ops. This is like the
generic vresion, but it makes sure the current label, if any, is
correctly aligned. */
static void
s_alpha_float_cons (type)
int type;
{
int log_size;
switch (type)
{
default:
case 'f':
case 'F':
log_size = 2;
break;
case 'd':
case 'D':
case 'G':
log_size = 3;
break;
case 'x':
case 'X':
case 'p':
case 'P':
log_size = 4;
break;
}
if (alpha_auto_align_on && alpha_current_align < log_size)
alpha_align (log_size, (char *) NULL, alpha_insn_label);
if (alpha_current_align > log_size)
alpha_current_align = log_size;
alpha_insn_label = NULL;
float_cons (type);
}
/* Handle the .proc pseudo op. We don't really do much with it except
parse it. */
static void
s_alpha_proc (is_static)
int is_static;
{
char *name;
char c;
char *p;
symbolS *symbolP;
int temp;
/* Takes ".proc name,nargs" */
SKIP_WHITESPACE ();
name = input_line_pointer;
c = get_symbol_end ();
p = input_line_pointer;
symbolP = symbol_find_or_make (name);
*p = c;
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
*p = 0;
as_warn ("Expected comma after name \"%s\"", name);
*p = c;
temp = 0;
ignore_rest_of_line ();
}
else
{
input_line_pointer++;
temp = get_absolute_expression ();
}
/* symbolP->sy_other = (signed char) temp; */
as_warn ("unhandled: .proc %s,%d", name, temp);
demand_empty_rest_of_line ();
}
/* Handle the .set pseudo op. This is used to turn on and off most of
the assembler features. */
static void
s_alpha_set (x)
int x;
{
char *name, ch, *s;
int yesno = 1;
SKIP_WHITESPACE ();
name = input_line_pointer;
ch = get_symbol_end ();
s = name;
if (s[0] == 'n' && s[1] == 'o')
{
yesno = 0;
s += 2;
}
if (!strcmp ("reorder", s))
/* ignore */ ;
else if (!strcmp ("at", s))
alpha_noat_on = !yesno;
else if (!strcmp ("macro", s))
alpha_macros_on = yesno;
else if (!strcmp ("move", s))
/* ignore */ ;
else if (!strcmp ("volatile", s))
/* ignore */ ;
else
as_warn ("Tried to .set unrecognized mode `%s'", name);
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* Handle the .base pseudo op. This changes the assembler's notion of
the $gp register. */
static void
s_alpha_base (ignore)
int ignore;
{
#if 0
if (first_32bit_quadrant)
{
/* not fatal, but it might not work in the end */
as_warn ("File overrides no-base-register option.");
first_32bit_quadrant = 0;
}
#endif
SKIP_WHITESPACE ();
if (*input_line_pointer == '$')
{ /* $rNN form */
input_line_pointer++;
if (*input_line_pointer == 'r')
input_line_pointer++;
}
alpha_gp_register = get_absolute_expression ();
if (alpha_gp_register < 0 || alpha_gp_register > 31)
{
alpha_gp_register = AXP_REG_GP;
as_warn ("Bad base register, using $%d.", alpha_gp_register);
}
demand_empty_rest_of_line ();
}
/* Handle the .align pseudo-op. This aligns to a power of two. It
also adjusts any current instruction label. We treat this the same
way the MIPS port does: .align 0 turns off auto alignment. */
static void
s_alpha_align (ignore)
int ignore;
{
int align;
char fill, *pfill;
long max_alignment = 15;
align = get_absolute_expression ();
if (align > max_alignment)
{
align = max_alignment;
as_bad ("Alignment too large: %d. assumed", align);
}
else if (align < 0)
{
as_warn ("Alignment negative: 0 assumed");
align = 0;
}
if (*input_line_pointer == ',')
{
input_line_pointer++;
fill = get_absolute_expression ();
pfill = &fill;
}
else
pfill = NULL;
if (align != 0)
{
alpha_auto_align_on = 1;
alpha_align (align, pfill, alpha_insn_label);
}
else
{
alpha_auto_align_on = 0;
}
demand_empty_rest_of_line ();
}
/* Hook the normal string processor to reset known alignment. */
static void
s_alpha_stringer (terminate)
int terminate;
{
alpha_current_align = 0;
alpha_insn_label = NULL;
stringer (terminate);
}
/* Hook the normal space processing to reset known alignment. */
static void
s_alpha_space (ignore)
int ignore;
{
alpha_current_align = 0;
alpha_insn_label = NULL;
s_space (ignore);
}
/* Hook into cons for auto-alignment. */
void
alpha_cons_align (size)
int size;
{
int log_size;
log_size = 0;
while ((size >>= 1) != 0)
++log_size;
if (alpha_auto_align_on && alpha_current_align < log_size)
alpha_align (log_size, (char *) NULL, alpha_insn_label);
if (alpha_current_align > log_size)
alpha_current_align = log_size;
alpha_insn_label = NULL;
}
/* Here come the .uword, .ulong, and .uquad explicitly unaligned
pseudos. We just turn off auto-alignment and call down to cons. */
static void
s_alpha_ucons (bytes)
int bytes;
{
int hold = alpha_auto_align_on;
alpha_auto_align_on = 0;
cons (bytes);
alpha_auto_align_on = hold;
}
/* Switch the working cpu type. */
static void
s_alpha_arch (ignored)
int ignored;
{
char *name, ch;
const struct cpu_type *p;
SKIP_WHITESPACE ();
name = input_line_pointer;
ch = get_symbol_end ();
for (p = cpu_types; p->name; ++p)
if (strcmp(name, p->name) == 0)
{
alpha_target_name = p->name, alpha_target = p->flags;
goto found;
}
as_warn("Unknown CPU identifier `%s'", name);
found:
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
#ifdef DEBUG1
/* print token expression with alpha specific extension. */
static void
alpha_print_token(f, exp)
FILE *f;
const expressionS *exp;
{
switch (exp->X_op)
{
case O_cpregister:
putc (',', f);
/* FALLTHRU */
case O_pregister:
putc ('(', f);
{
expressionS nexp = *exp;
nexp.X_op = O_register;
print_expr (f, &nexp);
}
putc (')', f);
break;
default:
print_expr (f, exp);
break;
}
return;
}
#endif
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{"common", s_comm, 0}, /* is this used? */
#ifdef OBJ_ECOFF
{"comm", s_alpha_comm, 0}, /* osf1 compiler does this */
{"rdata", s_alpha_rdata, 0},
#endif
{"text", s_alpha_text, 0},
{"data", s_alpha_data, 0},
#ifdef OBJ_ECOFF
{"sdata", s_alpha_sdata, 0},
#endif
#ifdef OBJ_ELF
{"section", s_alpha_section, 0},
{"section.s", s_alpha_section, 0},
{"sect", s_alpha_section, 0},
{"sect.s", s_alpha_section, 0},
#endif
#ifdef OBJ_EVAX
{ "pdesc", s_alpha_pdesc, 0},
{ "name", s_alpha_name, 0},
{ "linkage", s_alpha_linkage, 0},
{ "code_address", s_alpha_code_address, 0},
{ "ent", s_alpha_ent, 0},
{ "frame", s_alpha_frame, 0},
{ "fp_save", s_alpha_fp_save, 0},
{ "mask", s_alpha_mask, 0},
{ "fmask", s_alpha_fmask, 0},
{ "end", s_alpha_end, 0},
{ "file", s_alpha_file, 0},
{ "rdata", s_alpha_section, 1},
{ "comm", s_alpha_section, 2},
{ "link", s_alpha_section, 3},
{ "ctors", s_alpha_section, 4},
{ "dtors", s_alpha_section, 5},
{ "lcomm", s_alpha_section, 6},
#endif
{"gprel32", s_alpha_gprel32, 0},
{"t_floating", s_alpha_float_cons, 'd'},
{"s_floating", s_alpha_float_cons, 'f'},
{"f_floating", s_alpha_float_cons, 'F'},
{"g_floating", s_alpha_float_cons, 'G'},
{"d_floating", s_alpha_float_cons, 'D'},
{"proc", s_alpha_proc, 0},
{"aproc", s_alpha_proc, 1},
{"set", s_alpha_set, 0},
{"reguse", s_ignore, 0},
{"livereg", s_ignore, 0},
{"base", s_alpha_base, 0}, /*??*/
{"option", s_ignore, 0},
{"prologue", s_ignore, 0},
{"aent", s_ignore, 0},
{"ugen", s_ignore, 0},
{"eflag", s_ignore, 0},
{"align", s_alpha_align, 0},
{"double", s_alpha_float_cons, 'd'},
{"float", s_alpha_float_cons, 'f'},
{"single", s_alpha_float_cons, 'f'},
{"ascii", s_alpha_stringer, 0},
{"asciz", s_alpha_stringer, 1},
{"string", s_alpha_stringer, 1},
{"space", s_alpha_space, 0},
{"skip", s_alpha_space, 0},
{"zero", s_alpha_space, 0},
/* Unaligned data pseudos. */
{"uword", s_alpha_ucons, 2},
{"ulong", s_alpha_ucons, 4},
{"uquad", s_alpha_ucons, 8},
#ifdef OBJ_ELF
/* Dwarf wants these versions of unaligned. */
{"2byte", s_alpha_ucons, 2},
{"4byte", s_alpha_ucons, 4},
{"8byte", s_alpha_ucons, 8},
#endif
/* We don't do any optimizing, so we can safely ignore these. */
{"noalias", s_ignore, 0},
{"alias", s_ignore, 0},
{"arch", s_alpha_arch, 0},
{NULL, 0, 0},
};
/* Build a BFD section with its flags set appropriately for the .lita,
.lit8, or .lit4 sections. */
static void
create_literal_section (name, secp, symp)
const char *name;
segT *secp;
symbolS **symp;
{
segT current_section = now_seg;
int current_subsec = now_subseg;
segT new_sec;
*secp = new_sec = subseg_new (name, 0);
subseg_set (current_section, current_subsec);
bfd_set_section_alignment (stdoutput, new_sec, 4);
bfd_set_section_flags (stdoutput, new_sec,
SEC_RELOC | SEC_ALLOC | SEC_LOAD | SEC_READONLY
| SEC_DATA);
S_CLEAR_EXTERNAL (*symp = section_symbol (new_sec));
}
#ifdef OBJ_ECOFF
/* @@@ GP selection voodoo. All of this seems overly complicated and
unnecessary; which is the primary reason it's for ECOFF only. */
static inline void
maybe_set_gp (sec)
asection *sec;
{
bfd_vma vma;
if (!sec)
return;
vma = bfd_get_section_vma (foo, sec);
if (vma && vma < alpha_gp_value)
alpha_gp_value = vma;
}
static void
select_gp_value ()
{
assert (alpha_gp_value == 0);
/* Get minus-one in whatever width... */
alpha_gp_value = 0; alpha_gp_value--;
/* Select the smallest VMA of these existing sections. */
maybe_set_gp (alpha_lita_section);
#if 0
/* These were disabled before -- should we use them? */
maybe_set_gp (sdata);
maybe_set_gp (lit8_sec);
maybe_set_gp (lit4_sec);
#endif
/* @@ Will a simple 0x8000 work here? If not, why not? */
#define GP_ADJUSTMENT (0x8000 - 0x10)
alpha_gp_value += GP_ADJUSTMENT;
S_SET_VALUE (alpha_gp_symbol, alpha_gp_value);
#ifdef DEBUG1
printf ("Chose GP value of %lx\n", alpha_gp_value);
#endif
}
#endif /* OBJ_ECOFF */
/* Called internally to handle all alignment needs. This takes care
of eliding calls to frag_align if'n the cached current alignment
says we've already got it, as well as taking care of the auto-align
feature wrt labels. */
static void
alpha_align (n, pfill, label)
int n;
char *pfill;
symbolS *label;
{
if (alpha_current_align >= n)
return;
if (pfill == NULL)
{
if (n > 2
&& (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
{
static char const nop[4] = { 0x1f, 0x04, 0xff, 0x47 };
/* First, make sure we're on a four-byte boundary, in case
someone has been putting .byte values into the text
section. The DEC assembler silently fills with unaligned
no-op instructions. This will zero-fill, then nop-fill
with proper alignment. */
if (alpha_current_align < 2)
frag_align (2, 0, 0);
frag_align_pattern (n, nop, sizeof nop, 0);
}
else
frag_align (n, 0, 0);
}
else
frag_align (n, *pfill, 0);
alpha_current_align = n;
if (label != NULL)
{
assert (S_GET_SEGMENT (label) == now_seg);
label->sy_frag = frag_now;
S_SET_VALUE (label, (valueT) frag_now_fix ());
}
record_alignment(now_seg, n);
}
/* The Alpha has support for some VAX floating point types, as well as for
IEEE floating point. We consider IEEE to be the primary floating point
format, and sneak in the VAX floating point support here. */
#define md_atof vax_md_atof
#include "config/atof-vax.c"