old-cross-binutils/gdb/solib-irix.c
Pedro Alves 6c95b8df7f 2009-10-19 Pedro Alves <pedro@codesourcery.com>
Stan Shebs	<stan@codesourcery.com>

	Add base multi-executable/process support to GDB.

	gdb/
	* Makefile.in (SFILES): Add progspace.c.
	(COMMON_OBS): Add progspace.o.
	* progspace.h: New.
	* progspace.c: New.

	* breakpoint.h (struct bp_target_info) <placed_address_space>: New
	field.
	(struct bp_location) <pspace>: New field.
	(struct breakpoint) <pspace>: New field.
	(bpstat_stop_status, breakpoint_here_p)
	(moribund_breakpoint_here_p, breakpoint_inserted_here_p)
	(regular_breakpoint_inserted_here_p)
	(software_breakpoint_inserted_here_p, breakpoint_thread_match)
	(set_default_breakpoint): Adjust prototypes.
	(remove_breakpoints_pid, breakpoint_program_space_exit): Declare.
	(insert_single_step_breakpoint, deprecated_insert_raw_breakpoint):
	Adjust prototypes.
	* breakpoint.c (executing_startup): Delete.
	(default_breakpoint_sspace): New.
	(breakpoint_restore_shadows): Skip if the address space doesn't
	match.
	(update_watchpoint): Record the frame's program space in the
	breakpoint location.
	(insert_bp_location): Record the address space in target_info.
	Adjust to pass the symbol space to solib_name_from_address.
	(breakpoint_program_space_exit): New.
	(insert_breakpoint_locations): Switch the symbol space and thread
	when inserting breakpoints.  Don't insert breakpoints in a vfork
	parent waiting for vfork done if we're not attached to the vfork
	child.
	(remove_breakpoints_pid): New.
	(reattach_breakpoints): Switch to a thread of PID.  Ignore
	breakpoints of other symbol spaces.
	(create_internal_breakpoint): Store the symbol space in the sal.
	(create_longjmp_master_breakpoint): Iterate over all symbol
	spaces.
	(update_breakpoints_after_exec): Ignore breakpoints for other
	symbol spaces.
	(remove_breakpoint): Rename to ...
	(remove_breakpoint_1): ... this.  Pass the breakpoints symbol
	space to solib_name_from_address.
	(remove_breakpoint): New.
	(mark_breakpoints_out): Ignore breakpoints from other symbol
	spaces.
	(breakpoint_init_inferior): Ditto.
	(breakpoint_here_p): Add an address space argument and adjust to
	use breakpoint_address_match.
	(moribund_breakpoint_here_p): Ditto.
	(regular_breakpoint_inserted_here_p): Ditto.
	(breakpoint_inserted_here_p): Ditto.
	(software_breakpoint_inserted_here_p): Ditto.
	(breakpoint_thread_match): Ditto.
	(bpstat_check_location): Ditto.
	(bpstat_stop_status): Ditto.
	(print_breakpoint_location): If there's a location to print,
	switch the current symbol space.
	(print_one_breakpoint_location): Add `allflag' argument.
	(print_one_breakpoint): Ditto.	Adjust.
	(do_captured_breakpoint_query): Adjust.
	(breakpoint_1): Adjust.
	(breakpoint_has_pc): Also match the symbol space.
	(describe_other_breakpoints): Add a symbol space argument and
	adjust.
	(set_default_breakpoint): Add a symbol space argument.	Set
	default_breakpoint_sspace.
	(breakpoint_address_match): New.
	(check_duplicates_for): Add an address space argument, and adjust.
	(set_raw_breakpoint): Record the symbol space in the location and
	in the breakpoint.
	(set_longjmp_breakpoint): Skip longjmp master breakpoints from
	other symbol spaces.
	(remove_thread_event_breakpoints, remove_solib_event_breakpoints)
	(disable_breakpoints_in_shlibs): Skip breakpoints from other
	symbol spaces.
	(disable_breakpoints_in_unloaded_shlib): Match symbol spaces.
	(create_catchpoint): Set the symbol space in the sal.
	(disable_breakpoints_before_startup): Skip breakpoints from other
	symbol spaces.	Set executing_startup in the current symbol space.
	(enable_breakpoints_after_startup): Clear executing_startup in the
	current symbol space.  Skip breakpoints from other symbol spaces.
	(clone_momentary_breakpoint): Also copy the symbol space.
	(add_location_to_breakpoint): Set the location's symbol space.
	(bp_loc_is_permanent): Switch thread and symbol space.
	(create_breakpoint): Adjust.
	(expand_line_sal_maybe): Expand comment to mention symbol spaces.
	Switch thread and symbol space when reading memory.
	(parse_breakpoint_sals): Set the symbol space in the sal.
	(break_command_really): Ditto.
	(skip_prologue_sal): Switch and space.
	(resolve_sal_pc): Ditto.
	(watch_command_1): Record the symbol space in the sal.
	(create_ada_exception_breakpoint): Adjust.
	(clear_command): Adjust.  Match symbol spaces.
	(update_global_location_list): Use breakpoint_address_match.
	(breakpoint_re_set_one): Switch thread and space.
	(breakpoint_re_set): Save symbol space.
	(breakpoint_re_set_thread): Also reset the symbol space.
	(deprecated_insert_raw_breakpoint): Add an address space argument.
	Adjust.
	(insert_single_step_breakpoint): Ditto.
	(single_step_breakpoint_inserted_here_p): Ditto.
	(clear_syscall_counts): New.
	(_initialize_breakpoint): Install it as inferior_exit observer.

	* exec.h: Include "progspace.h".
	(exec_bfd, exec_bfd_mtime): New defines.
	(exec_close): Declare.
	* exec.c: Include "gdbthread.h" and "progspace.h".
	(exec_bfd, exec_bfd_mtime, current_target_sections_1): Delete.
	(using_exec_ops): New.
	(exec_close_1): Rename to exec_close, and make public.
	(exec_close): Rename to exec_close_1, and adjust all callers.  Add
	description.  Remove target sections and close executables from
	all program spaces.
	(exec_file_attach): Add comment.
	(add_target_sections): Check on `using_exec_ops' to check if the
	target should be pushed.
	(remove_target_sections): Only unpush the target if there are no
	more target sections in any symbol space.
	* gdbcore.h: Include "exec.h".
	(exec_bfd, exec_bfd_mtime): Remove declarations.

	* frame.h (get_frame_program_space, get_frame_address_space)
	(frame_unwind_program_space): Declare.
	* frame.c (struct frame_info) <pspace, aspace>: New fields.
	(create_sentinel_frame): Add program space argument.  Set the
	pspace and aspace fields of the frame object.
	(get_current_frame, create_new_frame): Adjust.
	(get_frame_program_space): New.
	(frame_unwind_program_space): New.
	(get_frame_address_space): New.
	* stack.c (print_frame_info): Adjust.
	(print_frame): Use the frame's program space.

	* gdbthread.h (any_live_thread_of_process): Declare.
	* thread.c (any_live_thread_of_process): New.
	(switch_to_thread): Switch the program space as well.
	(restore_selected_frame): Don't warn if trying to restore frame
	level 0.

	* inferior.h: Include "progspace.h".
	(detach_fork): Declare.
	(struct inferior) <removable, aspace, pspace>
	<vfork_parent, vfork_child, pending_detach>
	<waiting_for_vfork_done>: New fields.
	<terminal_info>: Remove field.
	<data, num_data>: New fields.
	(register_inferior_data, register_inferior_data_with_cleanup)
	(clear_inferior_data, set_inferior_data, inferior_data): Declare.
	(exit_inferior, exit_inferior_silent, exit_inferior_num_silent)
	(inferior_appeared): Declare.
	(find_inferior_pid): Typo.
	(find_inferior_id, find_inferior_for_program_space): Declare.
	(set_current_inferior, save_current_inferior, prune_inferiors)
	(number_of_inferiors): Declare.
	(inferior_list): Declare.
	* inferior.c: Include "gdbcore.h" and "symfile.h".
	(inferior_list): Make public.
	(delete_inferior_1): Always delete thread silently.
	(find_inferior_id): Make public.
	(current_inferior_): New.
	(current_inferior): Use it.
	(set_current_inferior): New.
	(restore_inferior): New.
	(save_current_inferior): New.
	(free_inferior): Free the per-inferior data.
	(add_inferior_silent): Allocate per-inferior data.
	Call inferior_appeared.
	(delete_threads_of_inferior): New.
	(delete_inferior_1): Adjust interface to take an inferior pointer.
	(delete_inferior): Adjust.
	(delete_inferior_silent): Adjust.
	(exit_inferior_1): New.
	(exit_inferior): New.
	(exit_inferior_silent): New.
	(exit_inferior_num_silent): New.
	(detach_inferior): Adjust.
	(inferior_appeared): New.
	(discard_all_inferiors): Adjust.
	(find_inferior_id): Make public.  Assert pid is not zero.
	(find_inferior_for_program_space): New.
	(have_inferiors): Check if we have any inferior with pid not zero.
	(have_live_inferiors): Go over all pushed targets looking for
	process_stratum.
	(prune_inferiors): New.
	(number_of_inferiors): New.
	(print_inferior): Add executable column.  Print vfork parent/child
	relationships.
	(inferior_command): Adjust to cope with not running inferiors.
	(remove_inferior_command): New.
	(add_inferior_command): New.
	(clone_inferior_command): New.
	(struct inferior_data): New.
	(struct inferior_data_registration): New.
	(struct inferior_data_registry): New.
	(inferior_data_registry): New.
	(register_inferior_data_with_cleanup): New.
	(register_inferior_data): New.
	(inferior_alloc_data): New.
	(inferior_free_data): New.
	(clear_inferior_data): New.
	(set_inferior_data): New.
	(inferior_data): New.
	(initialize_inferiors): New.
	(_initialize_inferiors): Register "add-inferior",
	"remove-inferior" and "clone-inferior" commands.

	* objfiles.h: Include "progspace.h".
	(struct objfile) <pspace>: New field.
	(symfile_objfile, object_files): Don't declare.
	(ALL_PSPACE_OBJFILES): New.
	(ALL_PSPACE_OBJFILES_SAFE): New.
	(ALL_OBJFILES, ALL_OBJFILES_SAFE): Adjust.
	(ALL_PSPACE_SYMTABS): New.
	(ALL_PRIMARY_SYMTABS): Adjust.
	(ALL_PSPACE_PRIMARY_SYMTABS): New.
	(ALL_PSYMTABS): Adjust.
	(ALL_PSPACE_PSYMTABS): New.
	* objfiles.c (object_files, symfile_objfile): Delete.
	(struct objfile_sspace_info): New.
	(objfiles_pspace_data): New.
	(objfiles_pspace_data_cleanup): New.
	(get_objfile_pspace_data): New.
	(objfiles_changed_p): Delete.
	(allocate_objfile): Set the objfile's program space.  Adjust to
	reference objfiles_changed_p in pspace data.
	(free_objfile): Adjust to reference objfiles_changed_p in pspace
	data.
	(objfile_relocate): Ditto.
	(update_section_map): Add pspace argument.  Adjust to iterate over
	objfiles in the passed in pspace.
	(find_pc_section): Delete sections and num_sections statics.
	Adjust to refer to program space's objfiles_changed_p.	Adjust to
	refer to sections and num_sections store in the objfile's pspace
	data.
	(objfiles_changed): Adjust to reference objfiles_changed_p in
	pspace data.
	(_initialize_objfiles): New.
	* linespec.c (decode_all_digits, decode_dollar): Set the sal's
	program space.
	* source.c (current_source_pspace): New.
	(get_current_source_symtab_and_line): Set the sal's program space.
	(set_current_source_symtab_and_line): Set current_source_pspace.
	(select_source_symtab): Ditto.	Use ALL_OBJFILES.
	(forget_cached_source_info): Iterate over all program spaces.
	* symfile.c (clear_symtab_users): Adjust.
	* symmisc.c (print_symbol_bcache_statistics): Iterate over all
	program spaces.
	(print_objfile_statistics): Ditto.
	(maintenance_print_msymbols): Ditto.
	(maintenance_print_objfiles): Ditto.
	(maintenance_info_symtabs): Ditto.
	(maintenance_info_psymtabs): Ditto.
	* symtab.h (SYMTAB_PSPACE): New.
	(struct symtab_and_line) <pspace>: New field.
	* symtab.c (init_sal): Clear the sal's program space.
	(find_pc_sect_symtab): Set the sal's program space.  Switch thread
	and space.
	(append_expanded_sal): Add program space argument.  Iterate over
	all program spaces.
	(expand_line_sal): Iterate over all program spaces.  Switch
	program space.

	* target.h (enum target_waitkind) <TARGET_WAITKIND_VFORK_DONE>: New.
	(struct target_ops) <to_thread_address_space>: New field.
	(target_thread_address_space): Define.
	* target.c (target_detach): Only remove breakpoints from the
	inferior we're detaching.
	(target_thread_address_space): New.

	* defs.h (initialize_progspace): Declare.
	* top.c (gdb_init): Call it.

	* solist.h (struct so_list) <sspace>: New field.
	* solib.h (struct program_space): Forward declare.
	(solib_name_from_address): Adjust prototype.
	* solib.c (so_list_head): Replace with a macro referencing the
	program space.
	(update_solib_list): Set the so's program space.
	(solib_name_from_address): Add a program space argument and adjust.

	* solib-svr4.c (struct svr4_info) <pid>: Delete field.
	<interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low>
	<interp_plt_sect_high>: New fields.
	(svr4_info_p, svr4_info): Delete.
	(solib_svr4_sspace_data): New.
	(get_svr4_info): Rewrite.
	(svr4_sspace_data_cleanup): New.
	(open_symbol_file_object): Adjust.
	(svr4_default_sos): Adjust.
	(svr4_fetch_objfile_link_map): Adjust.
	(interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low)
	(interp_plt_sect_high): Delete.
	(svr4_in_dynsym_resolve_code): Adjust.
	(enable_break): Adjust.
	(svr4_clear_solib): Revert bit that removed the svr4_info here,
	and reinstate clearing debug_base, debug_loader_offset_p,
	debug_loader_offset and debug_loader_name.
	(_initialize_svr4_solib): Register solib_svr4_pspace_data.  Don't
	install an inferior_exit observer anymore.

	* printcmd.c (struct display) <pspace>: New field.
	(display_command): Set the display's sspace.
	(do_one_display): Match the display's sspace.
	(display_uses_solib_p): Ditto.

	* linux-fork.c (detach_fork): Moved to infrun.c.
	(_initialize_linux_fork): Moved "detach-on-fork" command to
	infrun.c.
	* infrun.c (detach_fork): Moved from linux-fork.c.
	(proceed_after_vfork_done): New.
	(handle_vfork_child_exec_or_exit): New.
	(follow_exec_mode_replace, follow_exec_mode_keep)
	(follow_exec_mode_names, follow_exec_mode_string)
	(show_follow_exec_mode_string): New.
	(follow_exec): New.  Reinstate the mark_breakpoints_out call.
	Remove shared libraries before attaching new executable.  If user
	wants to keep the inferior, keep it.
	(displaced_step_fixup): Adjust to pass an address space to the
	breakpoints module.
	(resume): Ditto.
	(clear_proceed_status): In all-stop mode, always clear the proceed
	status of all threads.
	(prepare_to_proceed): Adjust to pass an address space to the
	breakpoints module.
	(proceed): Ditto.
	(adjust_pc_after_break): Ditto.
	(handle_inferior_event): When handling a process exit, switch the
	program space to the inferior's that had exited.  Call
	handle_vfork_child_exec_or_exit.  Adjust to pass an address space
	to the breakpoints module.  In non-stop mode, when following a
	fork and detach-fork is off, also resume the other branch.  Handle
	TARGET_WAITKIND_VFORK_DONE.  Set the program space in sals.
	(normal_stop): Prune inferiors.
	(_initialize_infrun): Install the new "follow-exec-mode" command.
	"detach-on-fork" moved here.

	* regcache.h (get_regcache_aspace): Declare.
	* regcache.c (struct regcache) <aspace>: New field.
	(regcache_xmalloc): Clear the aspace.
	(get_regcache_aspace): New.
	(regcache_cpy): Copy the aspace field.
	(regcache_cpy_no_passthrough): Ditto.
	(get_thread_regcache): Fetch the thread's address space from the
	target, and store it in the regcache.

	* infcall.c (call_function_by_hand): Set the sal's pspace.

	* arch-utils.c (default_has_shared_address_space): New.
	* arch-utils.h (default_has_shared_address_space): Declare.

	* gdbarch.sh (has_shared_address_space): New.
	* gdbarch.h, gdbarch.c: Regenerate.

	* linux-tdep.c: Include auxv.h, target.h, elf/common.h.
	(linux_has_shared_address_space): New.
	(_initialize_linux_tdep): Declare.

	* arm-tdep.c (arm_software_single_step): Pass the frame's address
	space to insert_single_step_breakpoint.
	* arm-linux-tdep.c (arm_linux_software_single_step): Pass the
	frame's pspace to breakpoint functions.
	* cris-tdep.c (crisv32_single_step_through_delay): Ditto.
	(cris_software_single_step): Ditto.
	* mips-tdep.c (deal_with_atomic_sequence): Add frame argument.
	Pass the frame's pspace to breakpoint functions.
	(mips_software_single_step): Adjust.
	(mips_single_step_through_delay): Adjust.
	* rs6000-aix-tdep.c (rs6000_software_single_step): Adjust.
	* rs6000-tdep.c (ppc_deal_with_atomic_sequence): Adjust.
	* solib-irix.c (enable_break): Adjust to pass the current frame's
	address space to breakpoint functions.
	* sparc-tdep.c (sparc_software_single_step): Ditto.
	* spu-tdep.c (spu_software_single_step): Ditto.
	* alpha-tdep.c (alpha_software_single_step): Ditto.
	* record.c (record_wait): Adjust to pass an address space to the
	breakpoints module.

	* fork-child.c (fork_inferior): Set the new inferior's program and
	address spaces.
	* inf-ptrace.c (inf_ptrace_follow_fork): Copy the parent's program
	and address spaces.
	(inf_ptrace_attach): Set the inferior's program and address spaces.
	* linux-nat.c: Include "solib.h".
	(linux_child_follow_fork): Manage parent and child's program and
	address spaces.	 Clone the parent's program space if necessary.
	Don't wait for the vfork to be done here.  Refuse to resume if
	following the vfork parent while leaving the child stopped.
	(resume_callback): Don't resume a vfork parent.
	(linux_nat_resume): Also check for pending events in the
	lp->waitstatus field.
	(linux_handle_extended_wait): Report TARGET_WAITKIND_VFORK_DONE
	events to the core.
	(stop_wait_callback): Don't wait for SIGSTOP on vfork parents.
	(cancel_breakpoint): Adjust.
	* linux-thread-db.c (thread_db_wait): Don't remove thread event
	breakpoints here.
	(thread_db_mourn_inferior): Don't mark breakpoints out here.
	Remove thread event breakpoints after mourning.
	* corelow.c: Include progspace.h.
	(core_open): Set the inferior's program and address spaces.
	* remote.c (remote_add_inferior): Set the new inferior's program
	and address spaces.
	(remote_start_remote): Update address spaces.
	(extended_remote_create_inferior_1): Don't init the thread list if
	we already debugging other inferiors.
	* darwin-nat.c (darwin_attach): Set the new inferior's program and
	address spaces.
	* gnu-nat.c (gnu_attach): Ditto.
	* go32-nat.c (go32_create_inferior): Ditto.
	* inf-ttrace.c (inf_ttrace_follow_fork, inf_ttrace_attach): Ditto.
	* monitor.c (monitor_open): Ditto.
	* nto-procfs.c (procfs_attach, procfs_create_inferior): Ditto.
	* procfs.c (do_attach): Ditto.
	* windows-nat.c (do_initial_windows_stuff): Ditto.

	* inflow.c (inferior_process_group)
	(terminal_init_inferior_with_pgrp, terminal_inferior,
	(terminal_ours_1, inflow_inferior_exit, copy_terminal_info)
	(child_terminal_info, new_tty_postfork, set_sigint_trap): Adjust
	to use per-inferior data instead of inferior->terminal_info.
	(inflow_inferior_data): New.
	(inflow_new_inferior): Delete.
	(inflow_inferior_data_cleanup): New.
	(get_inflow_inferior_data): New.

	* mi/mi-interp.c (mi_new_inferior): Rename to...
	(mi_inferior_appeared): ... this.
	(mi_interpreter_init): Adjust.

	* tui/tui-disasm.c: Include "progspace.h".
	(tui_set_disassem_content): Pass an address space to
	breakpoint_here_p.

	* NEWS: Mention multi-program debugging support.  Mention new
	commands "add-inferior", "clone-inferior", "remove-inferior",
	"maint info program-spaces", and new option "set
	follow-exec-mode".

2009-10-19  Pedro Alves	 <pedro@codesourcery.com>
	    Stan Shebs	<stan@codesourcery.com>

	gdb/doc/
	* observer.texi (new_inferior): Rename to...
	(inferior_appeared): ... this.

2009-10-19  Pedro Alves	 <pedro@codesourcery.com>
	    Stan Shebs	<stan@codesourcery.com>

	gdb/testsuite/
	* gdb.base/foll-vfork.exp: Adjust to spell out "follow-fork".
	* gdb.base/foll-exec.exp: Adjust to expect a process id before
	"Executing new program".
	* gdb.base/foll-fork.exp: Adjust to spell out "follow-fork".
	* gdb.base/multi-forks.exp: Ditto.  Adjust to the inferior being
	left listed after having been killed.
	* gdb.base/attach.exp: Adjust to spell out "symbol-file".
	* gdb.base/maint.exp: Adjust test.

	* Makefile.in (ALL_SUBDIRS): Add gdb.multi.
	* gdb.multi/Makefile.in: New.
	* gdb.multi/base.exp: New.
	* gdb.multi/goodbye.c: New.
	* gdb.multi/hangout.c: New.
	* gdb.multi/hello.c: New.
	* gdb.multi/bkpt-multi-exec.c: New.
	* gdb.multi/bkpt-multi-exec.exp: New.
	* gdb.multi/crashme.c: New.

2009-10-19  Pedro Alves	 <pedro@codesourcery.com>
	    Stan Shebs	<stan@codesourcery.com>

	gdb/doc/
	* gdb.texinfo (Inferiors): Rename node to ...
	(Inferiors and Programs): ... this.  Mention running multiple
	programs in the same debug session.
	<info inferiors>: Mention the new 'Executable' column if "info
	inferiors".  Update examples.  Document the "add-inferior",
	"clone-inferior", "remove-inferior" and "maint info
	program-spaces" commands.
	(Process): Rename node to...
	(Forks): ... this.  Document "set|show follow-exec-mode".
2009-10-19 09:51:43 +00:00

748 lines
22 KiB
C

/* Shared library support for IRIX.
Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
2007, 2008, 2009 Free Software Foundation, Inc.
This file was created using portions of irix5-nat.c originally
contributed to GDB by Ian Lance Taylor.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "symtab.h"
#include "bfd.h"
/* FIXME: ezannoni/2004-02-13 Verify that the include below is
really needed. */
#include "symfile.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "target.h"
#include "inferior.h"
#include "gdbthread.h"
#include "solist.h"
#include "solib.h"
#include "solib-irix.h"
/* Link map info to include in an allocate so_list entry. Unlike some
of the other solib backends, this (Irix) backend chooses to decode
the link map info obtained from the target and store it as (mostly)
CORE_ADDRs which need no further decoding. This is more convenient
because there are three different link map formats to worry about.
We use a single routine (fetch_lm_info) to read (and decode) the target
specific link map data. */
struct lm_info
{
CORE_ADDR addr; /* address of obj_info or obj_list
struct on target (from which the
following information is obtained). */
CORE_ADDR next; /* address of next item in list. */
CORE_ADDR reloc_offset; /* amount to relocate by */
CORE_ADDR pathname_addr; /* address of pathname */
int pathname_len; /* length of pathname */
};
/* It's not desirable to use the system header files to obtain the
structure of the obj_list or obj_info structs. Therefore, we use a
platform neutral representation which has been derived from the IRIX
header files. */
typedef struct
{
gdb_byte b[4];
}
gdb_int32_bytes;
typedef struct
{
gdb_byte b[8];
}
gdb_int64_bytes;
/* The "old" obj_list struct. This is used with old (o32) binaries.
The ``data'' member points at a much larger and more complicated
struct which we will only refer to by offsets. See
fetch_lm_info(). */
struct irix_obj_list
{
gdb_int32_bytes data;
gdb_int32_bytes next;
gdb_int32_bytes prev;
};
/* The ELF32 and ELF64 versions of the above struct. The oi_magic value
corresponds to the ``data'' value in the "old" struct. When this value
is 0xffffffff, the data will be in one of the following formats. The
``oi_size'' field is used to decide which one we actually have. */
struct irix_elf32_obj_info
{
gdb_int32_bytes oi_magic;
gdb_int32_bytes oi_size;
gdb_int32_bytes oi_next;
gdb_int32_bytes oi_prev;
gdb_int32_bytes oi_ehdr;
gdb_int32_bytes oi_orig_ehdr;
gdb_int32_bytes oi_pathname;
gdb_int32_bytes oi_pathname_len;
};
struct irix_elf64_obj_info
{
gdb_int32_bytes oi_magic;
gdb_int32_bytes oi_size;
gdb_int64_bytes oi_next;
gdb_int64_bytes oi_prev;
gdb_int64_bytes oi_ehdr;
gdb_int64_bytes oi_orig_ehdr;
gdb_int64_bytes oi_pathname;
gdb_int32_bytes oi_pathname_len;
gdb_int32_bytes padding;
};
/* Union of all of the above (plus a split out magic field). */
union irix_obj_info
{
gdb_int32_bytes magic;
struct irix_obj_list ol32;
struct irix_elf32_obj_info oi32;
struct irix_elf64_obj_info oi64;
};
/* MIPS sign extends its 32 bit addresses. We could conceivably use
extract_typed_address here, but to do so, we'd have to construct an
appropriate type. Calling extract_signed_integer seems simpler. */
static CORE_ADDR
extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
{
return extract_signed_integer (addr, len, byte_order);
}
/* Fetch and return the link map data associated with ADDR. Note that
this routine automatically determines which (of three) link map
formats is in use by the target. */
static struct lm_info
fetch_lm_info (CORE_ADDR addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
struct lm_info li;
union irix_obj_info buf;
li.addr = addr;
/* The smallest region that we'll need is for buf.ol32. We'll read
that first. We'll read more of the buffer later if we have to deal
with one of the other cases. (We don't want to incur a memory error
if we were to read a larger region that generates an error due to
being at the end of a page or the like.) */
read_memory (addr, (char *) &buf, sizeof (buf.ol32));
if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
!= 0xffffffff)
{
/* Use buf.ol32... */
char obj_buf[432];
CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
sizeof (buf.ol32.data),
byte_order);
li.next = extract_mips_address (&buf.ol32.next,
sizeof (buf.ol32.next), byte_order);
read_memory (obj_addr, obj_buf, sizeof (obj_buf));
li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
li.pathname_len = 0; /* unknown */
li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
- extract_mips_address (&obj_buf[248], 4, byte_order);
}
else if (extract_unsigned_integer (buf.oi32.oi_size.b,
sizeof (buf.oi32.oi_size), byte_order)
== sizeof (buf.oi32))
{
/* Use buf.oi32... */
/* Read rest of buffer. */
read_memory (addr + sizeof (buf.ol32),
((char *) &buf) + sizeof (buf.ol32),
sizeof (buf.oi32) - sizeof (buf.ol32));
/* Fill in fields using buffer contents. */
li.next = extract_mips_address (&buf.oi32.oi_next,
sizeof (buf.oi32.oi_next), byte_order);
li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
sizeof (buf.oi32.oi_ehdr),
byte_order)
- extract_mips_address (&buf.oi32.oi_orig_ehdr,
sizeof (buf.oi32.oi_orig_ehdr), byte_order);
li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
sizeof (buf.oi32.oi_pathname),
byte_order);
li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
sizeof (buf.oi32.
oi_pathname_len),
byte_order);
}
else if (extract_unsigned_integer (buf.oi64.oi_size.b,
sizeof (buf.oi64.oi_size), byte_order)
== sizeof (buf.oi64))
{
/* Use buf.oi64... */
/* Read rest of buffer. */
read_memory (addr + sizeof (buf.ol32),
((char *) &buf) + sizeof (buf.ol32),
sizeof (buf.oi64) - sizeof (buf.ol32));
/* Fill in fields using buffer contents. */
li.next = extract_mips_address (&buf.oi64.oi_next,
sizeof (buf.oi64.oi_next), byte_order);
li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
sizeof (buf.oi64.oi_ehdr),
byte_order)
- extract_mips_address (&buf.oi64.oi_orig_ehdr,
sizeof (buf.oi64.oi_orig_ehdr), byte_order);
li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
sizeof (buf.oi64.oi_pathname),
byte_order);
li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
sizeof (buf.oi64.
oi_pathname_len),
byte_order);
}
else
{
error (_("Unable to fetch shared library obj_info or obj_list info."));
}
return li;
}
/* The symbol which starts off the list of shared libraries. */
#define DEBUG_BASE "__rld_obj_head"
static void *base_breakpoint;
static CORE_ADDR debug_base; /* Base of dynamic linker structures */
/*
LOCAL FUNCTION
locate_base -- locate the base address of dynamic linker structs
SYNOPSIS
CORE_ADDR locate_base (void)
DESCRIPTION
For both the SunOS and SVR4 shared library implementations, if the
inferior executable has been linked dynamically, there is a single
address somewhere in the inferior's data space which is the key to
locating all of the dynamic linker's runtime structures. This
address is the value of the symbol defined by the macro DEBUG_BASE.
The job of this function is to find and return that address, or to
return 0 if there is no such address (the executable is statically
linked for example).
For SunOS, the job is almost trivial, since the dynamic linker and
all of it's structures are statically linked to the executable at
link time. Thus the symbol for the address we are looking for has
already been added to the minimal symbol table for the executable's
objfile at the time the symbol file's symbols were read, and all we
have to do is look it up there. Note that we explicitly do NOT want
to find the copies in the shared library.
The SVR4 version is much more complicated because the dynamic linker
and it's structures are located in the shared C library, which gets
run as the executable's "interpreter" by the kernel. We have to go
to a lot more work to discover the address of DEBUG_BASE. Because
of this complexity, we cache the value we find and return that value
on subsequent invocations. Note there is no copy in the executable
symbol tables.
Irix 5 is basically like SunOS.
Note that we can assume nothing about the process state at the time
we need to find this address. We may be stopped on the first instruc-
tion of the interpreter (C shared library), the first instruction of
the executable itself, or somewhere else entirely (if we attached
to the process for example).
*/
static CORE_ADDR
locate_base (void)
{
struct minimal_symbol *msymbol;
CORE_ADDR address = 0;
msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
{
address = SYMBOL_VALUE_ADDRESS (msymbol);
}
return (address);
}
/*
LOCAL FUNCTION
disable_break -- remove the "mapping changed" breakpoint
SYNOPSIS
static int disable_break ()
DESCRIPTION
Removes the breakpoint that gets hit when the dynamic linker
completes a mapping change.
*/
static int
disable_break (void)
{
int status = 1;
/* Note that breakpoint address and original contents are in our address
space, so we just need to write the original contents back. */
if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
{
status = 0;
}
base_breakpoint = NULL;
/* Note that it is possible that we have stopped at a location that
is different from the location where we inserted our breakpoint.
On mips-irix, we can actually land in __dbx_init(), so we should
not check the PC against our breakpoint address here. See procfs.c
for more details. */
return (status);
}
/*
LOCAL FUNCTION
enable_break -- arrange for dynamic linker to hit breakpoint
SYNOPSIS
int enable_break (void)
DESCRIPTION
This functions inserts a breakpoint at the entry point of the
main executable, where all shared libraries are mapped in.
*/
static int
enable_break (void)
{
if (symfile_objfile != NULL && has_stack_frames ())
{
struct frame_info *frame = get_current_frame ();
struct address_space *aspace = get_frame_address_space (frame);
base_breakpoint
= deprecated_insert_raw_breakpoint (target_gdbarch,
aspace,
entry_point_address ());
if (base_breakpoint != NULL)
return 1;
}
return 0;
}
/*
LOCAL FUNCTION
irix_solib_create_inferior_hook -- shared library startup support
SYNOPSIS
void solib_create_inferior_hook ()
DESCRIPTION
When gdb starts up the inferior, it nurses it along (through the
shell) until it is ready to execute it's first instruction. At this
point, this function gets called via expansion of the macro
SOLIB_CREATE_INFERIOR_HOOK.
For SunOS executables, this first instruction is typically the
one at "_start", or a similar text label, regardless of whether
the executable is statically or dynamically linked. The runtime
startup code takes care of dynamically linking in any shared
libraries, once gdb allows the inferior to continue.
For SVR4 executables, this first instruction is either the first
instruction in the dynamic linker (for dynamically linked
executables) or the instruction at "start" for statically linked
executables. For dynamically linked executables, the system
first exec's /lib/libc.so.N, which contains the dynamic linker,
and starts it running. The dynamic linker maps in any needed
shared libraries, maps in the actual user executable, and then
jumps to "start" in the user executable.
For both SunOS shared libraries, and SVR4 shared libraries, we
can arrange to cooperate with the dynamic linker to discover the
names of shared libraries that are dynamically linked, and the
base addresses to which they are linked.
This function is responsible for discovering those names and
addresses, and saving sufficient information about them to allow
their symbols to be read at a later time.
FIXME
Between enable_break() and disable_break(), this code does not
properly handle hitting breakpoints which the user might have
set in the startup code or in the dynamic linker itself. Proper
handling will probably have to wait until the implementation is
changed to use the "breakpoint handler function" method.
Also, what if child has exit()ed? Must exit loop somehow.
*/
static void
irix_solib_create_inferior_hook (void)
{
struct inferior *inf;
struct thread_info *tp;
if (!enable_break ())
{
warning (_("shared library handler failed to enable breakpoint"));
return;
}
/* Now run the target. It will eventually hit the breakpoint, at
which point all of the libraries will have been mapped in and we
can go groveling around in the dynamic linker structures to find
out what we need to know about them. */
inf = current_inferior ();
tp = inferior_thread ();
clear_proceed_status ();
inf->stop_soon = STOP_QUIETLY;
tp->stop_signal = TARGET_SIGNAL_0;
do
{
target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
wait_for_inferior (0);
}
while (tp->stop_signal != TARGET_SIGNAL_TRAP);
/* We are now either at the "mapping complete" breakpoint (or somewhere
else, a condition we aren't prepared to deal with anyway), so adjust
the PC as necessary after a breakpoint, disable the breakpoint, and
add any shared libraries that were mapped in. */
if (!disable_break ())
{
warning (_("shared library handler failed to disable breakpoint"));
}
/* solib_add will call reinit_frame_cache.
But we are stopped in the startup code and we might not have symbols
for the startup code, so heuristic_proc_start could be called
and will put out an annoying warning.
Delaying the resetting of stop_soon until after symbol loading
suppresses the warning. */
solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
inf->stop_soon = NO_STOP_QUIETLY;
}
/* LOCAL FUNCTION
current_sos -- build a list of currently loaded shared objects
SYNOPSIS
struct so_list *current_sos ()
DESCRIPTION
Build a list of `struct so_list' objects describing the shared
objects currently loaded in the inferior. This list does not
include an entry for the main executable file.
Note that we only gather information directly available from the
inferior --- we don't examine any of the shared library files
themselves. The declaration of `struct so_list' says which fields
we provide values for. */
static struct so_list *
irix_current_sos (void)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
CORE_ADDR lma;
char addr_buf[8];
struct so_list *head = 0;
struct so_list **link_ptr = &head;
int is_first = 1;
struct lm_info lm;
/* Make sure we've looked up the inferior's dynamic linker's base
structure. */
if (!debug_base)
{
debug_base = locate_base ();
/* If we can't find the dynamic linker's base structure, this
must not be a dynamically linked executable. Hmm. */
if (!debug_base)
return 0;
}
read_memory (debug_base, addr_buf, addr_size);
lma = extract_mips_address (addr_buf, addr_size, byte_order);
while (lma)
{
lm = fetch_lm_info (lma);
if (!is_first)
{
int errcode;
char *name_buf;
int name_size;
struct so_list *new
= (struct so_list *) xmalloc (sizeof (struct so_list));
struct cleanup *old_chain = make_cleanup (xfree, new);
memset (new, 0, sizeof (*new));
new->lm_info = xmalloc (sizeof (struct lm_info));
make_cleanup (xfree, new->lm_info);
*new->lm_info = lm;
/* Extract this shared object's name. */
name_size = lm.pathname_len;
if (name_size == 0)
name_size = SO_NAME_MAX_PATH_SIZE - 1;
if (name_size >= SO_NAME_MAX_PATH_SIZE)
{
name_size = SO_NAME_MAX_PATH_SIZE - 1;
warning
("current_sos: truncating name of %d characters to only %d characters",
lm.pathname_len, name_size);
}
target_read_string (lm.pathname_addr, &name_buf,
name_size, &errcode);
if (errcode != 0)
warning (_("Can't read pathname for load map: %s."),
safe_strerror (errcode));
else
{
strncpy (new->so_name, name_buf, name_size);
new->so_name[name_size] = '\0';
xfree (name_buf);
strcpy (new->so_original_name, new->so_name);
}
new->next = 0;
*link_ptr = new;
link_ptr = &new->next;
discard_cleanups (old_chain);
}
is_first = 0;
lma = lm.next;
}
return head;
}
/*
LOCAL FUNCTION
irix_open_symbol_file_object
SYNOPSIS
void irix_open_symbol_file_object (void *from_tty)
DESCRIPTION
If no open symbol file, attempt to locate and open the main symbol
file. On IRIX, this is the first link map entry. If its name is
here, we can open it. Useful when attaching to a process without
first loading its symbol file.
If FROM_TTYP dereferences to a non-zero integer, allow messages to
be printed. This parameter is a pointer rather than an int because
open_symbol_file_object() is called via catch_errors() and
catch_errors() requires a pointer argument. */
static int
irix_open_symbol_file_object (void *from_ttyp)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
CORE_ADDR lma;
char addr_buf[8];
struct lm_info lm;
struct cleanup *cleanups;
int errcode;
int from_tty = *(int *) from_ttyp;
char *filename;
if (symfile_objfile)
if (!query (_("Attempt to reload symbols from process? ")))
return 0;
if ((debug_base = locate_base ()) == 0)
return 0; /* failed somehow... */
/* First link map member should be the executable. */
read_memory (debug_base, addr_buf, addr_size);
lma = extract_mips_address (addr_buf, addr_size, byte_order);
if (lma == 0)
return 0; /* failed somehow... */
lm = fetch_lm_info (lma);
if (lm.pathname_addr == 0)
return 0; /* No filename. */
/* Now fetch the filename from target memory. */
target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
&errcode);
if (errcode)
{
warning (_("failed to read exec filename from attached file: %s"),
safe_strerror (errcode));
return 0;
}
cleanups = make_cleanup (xfree, filename);
/* Have a pathname: read the symbol file. */
symbol_file_add_main (filename, from_tty);
do_cleanups (cleanups);
return 1;
}
/*
LOCAL FUNCTION
irix_special_symbol_handling -- additional shared library symbol handling
SYNOPSIS
void irix_special_symbol_handling ()
DESCRIPTION
Once the symbols from a shared object have been loaded in the usual
way, we are called to do any system specific symbol handling that
is needed.
For SunOS4, this consisted of grunging around in the dynamic
linkers structures to find symbol definitions for "common" symbols
and adding them to the minimal symbol table for the runtime common
objfile.
However, for IRIX, there's nothing to do.
*/
static void
irix_special_symbol_handling (void)
{
}
/* Using the solist entry SO, relocate the addresses in SEC. */
static void
irix_relocate_section_addresses (struct so_list *so,
struct target_section *sec)
{
sec->addr += so->lm_info->reloc_offset;
sec->endaddr += so->lm_info->reloc_offset;
}
/* Free the lm_info struct. */
static void
irix_free_so (struct so_list *so)
{
xfree (so->lm_info);
}
/* Clear backend specific state. */
static void
irix_clear_solib (void)
{
debug_base = 0;
}
/* Return 1 if PC lies in the dynamic symbol resolution code of the
run time loader. */
static int
irix_in_dynsym_resolve_code (CORE_ADDR pc)
{
return 0;
}
struct target_so_ops irix_so_ops;
/* Provide a prototype to silence -Wmissing-prototypes. */
extern initialize_file_ftype _initialize_irix_solib;
void
_initialize_irix_solib (void)
{
irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
irix_so_ops.free_so = irix_free_so;
irix_so_ops.clear_solib = irix_clear_solib;
irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
irix_so_ops.current_sos = irix_current_sos;
irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
irix_so_ops.bfd_open = solib_bfd_open;
}