old-cross-binutils/gdb/frame.h
Andrew Cagney b9d26eb9b8 2004-02-14 Andrew Cagney <cagney@redhat.com>
* gdbarch.sh (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED): Delete.
	(DEPRECATED_CALL_DUMMY_STACK_ADJUST): Delete.
	(DEPRECATED_CALL_DUMMY_ADDRESS): Delete.
	* gdbarch.h, gdbarch.c: Re-generate.
	* frame.c (deprecated_get_next_frame_hack): Delete function.
	* frame.h (deprecated_get_next_frame_hack): Delete declaration.
	* blockframe.c (deprecated_pc_in_call_dummy_at_entry_point):
	Update.
	* infcall.c (call_function_by_hand): Update.

Index: doc/ChangeLog
2004-02-14  Andrew Cagney  <cagney@redhat.com>

	* gdbint.texinfo (Target Architecture Definition): Delete
	description of DEPRECATED_CALL_DUMMY_STACK_ADJUST.
2004-02-14 17:01:01 +00:00

705 lines
30 KiB
C

/* Definitions for dealing with stack frames, for GDB, the GNU debugger.
Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1996,
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#if !defined (FRAME_H)
#define FRAME_H 1
/* The following is the intended naming schema for frame functions.
It isn't 100% consistent, but it is aproaching that. Frame naming
schema:
Prefixes:
get_frame_WHAT...(): Get WHAT from the THIS frame (functionaly
equivalent to THIS->next->unwind->what)
frame_unwind_WHAT...(): Unwind THIS frame's WHAT from the NEXT
frame.
put_frame_WHAT...(): Put a value into this frame (unsafe, need to
invalidate the frame / regcache afterwards) (better name more
strongly hinting at its unsafeness)
safe_....(): Safer version of various functions, doesn't throw an
error (leave this for later?). Returns non-zero if the fetch
succeeds. Return a freshly allocated error message?
Suffixes:
void /frame/_WHAT(): Read WHAT's value into the buffer parameter.
ULONGEST /frame/_WHAT_unsigned(): Return an unsigned value (the
alternative is *frame_unsigned_WHAT).
LONGEST /frame/_WHAT_signed(): Return WHAT signed value.
What:
/frame/_memory* (frame, coreaddr, len [, buf]): Extract/return
*memory.
/frame/_register* (frame, regnum [, buf]): extract/return register.
CORE_ADDR /frame/_{pc,sp,...} (frame): Resume address, innner most
stack *address, ...
*/
struct symtab_and_line;
struct frame_unwind;
struct frame_base;
struct block;
struct gdbarch;
struct ui_file;
/* A legacy unwinder to prop up architectures using the old style
saved regs array. */
extern const struct frame_unwind *legacy_saved_regs_unwind;
/* The frame object. */
struct frame_info;
/* The frame object's ID. This provides a per-frame unique identifier
that can be used to relocate a `struct frame_info' after a target
resume or a frame cache destruct. It of course assumes that the
inferior hasn't unwound the stack past that frame. */
struct frame_id
{
/* The frame's stack address. This shall be constant through out
the lifetime of a frame. Note that this requirement applies to
not just the function body, but also the prologue and (in theory
at least) the epilogue. Since that value needs to fall either on
the boundary, or within the frame's address range, the frame's
outer-most address (the inner-most address of the previous frame)
is used. Watch out for all the legacy targets that still use the
function pointer register or stack pointer register. They are
wrong. */
CORE_ADDR stack_addr;
/* The frame's code address. This shall be constant through out the
lifetime of the frame. While the PC (a.k.a. resume address)
changes as the function is executed, this code address cannot.
Typically, it is set to the address of the entry point of the
frame's function (as returned by frame_func_unwind(). */
CORE_ADDR code_addr;
/* The frame's special address. This shall be constant through out the
lifetime of the frame. This is used for architectures that may have
frames that do not change the stack but are still distinct and have
some form of distinct identifier (e.g. the ia64 which uses a 2nd
stack for registers). This field is treated as unordered - i.e. will
not be used in frame ordering comparisons such as frame_id_inner().
A zero in this field will be treated as a wild-card when comparing
frames for equality. */
CORE_ADDR special_addr;
};
/* Methods for constructing and comparing Frame IDs.
NOTE: Given stackless functions A and B, where A calls B (and hence
B is inner-to A). The relationships: !eq(A,B); !eq(B,A);
!inner(A,B); !inner(B,A); all hold.
This is because, while B is inner-to A, B is not strictly inner-to A.
Being stackless, they have an identical .stack_addr value, and differ
only by their unordered .code_addr and/or .special_addr values.
Because frame_id_inner is only used as a safety net (e.g.,
detect a corrupt stack) the lack of strictness is not a problem.
Code needing to determine an exact relationship between two frames
must instead use frame_id_eq and frame_id_unwind. For instance,
in the above, to determine that A stepped-into B, the equation
"A.id != B.id && A.id == id_unwind (B)" can be used. */
/* For convenience. All fields are zero. */
extern const struct frame_id null_frame_id;
/* Construct a frame ID. The first parameter is the frame's constant
stack address (typically the outer-bound), and the second the
frame's constant code address (typically the entry point) (or zero,
to indicate a wild card). The special identifier address is
defaulted to zero. */
extern struct frame_id frame_id_build (CORE_ADDR stack_addr,
CORE_ADDR code_addr);
/* Construct a special frame ID. The first parameter is the frame's constant
stack address (typically the outer-bound), the second is the
frame's constant code address (typically the entry point) (or zero,
to indicate a wild card), and the third parameter is the frame's
special identifier address (or zero to indicate a wild card or
unused default). */
extern struct frame_id frame_id_build_special (CORE_ADDR stack_addr,
CORE_ADDR code_addr,
CORE_ADDR special_addr);
/* Returns non-zero when L is a valid frame (a valid frame has a
non-zero .base). */
extern int frame_id_p (struct frame_id l);
/* Returns non-zero when L and R identify the same frame, or, if
either L or R have a zero .func, then the same frame base. */
extern int frame_id_eq (struct frame_id l, struct frame_id r);
/* Returns non-zero when L is strictly inner-than R (they have
different frame .bases). Neither L, nor R can be `null'. See note
above about frameless functions. */
extern int frame_id_inner (struct frame_id l, struct frame_id r);
/* Write the internal representation of a frame ID on the specified
stream. */
extern void fprint_frame_id (struct ui_file *file, struct frame_id id);
/* For every stopped thread, GDB tracks two frames: current and
selected. Current frame is the inner most frame of the selected
thread. Selected frame is the one being examined by the the GDB
CLI (selected using `up', `down', ...). The frames are created
on-demand (via get_prev_frame()) and then held in a frame cache. */
/* FIXME: cagney/2002-11-28: Er, there is a lie here. If you do the
sequence: `thread 1; up; thread 2; thread 1' you loose thread 1's
selected frame. At present GDB only tracks the selected frame of
the current thread. But be warned, that might change. */
/* FIXME: cagney/2002-11-14: At any time, only one thread's selected
and current frame can be active. Switching threads causes gdb to
discard all that cached frame information. Ulgh! Instead, current
and selected frame should be bound to a thread. */
/* On demand, create the inner most frame using information found in
the inferior. If the inner most frame can't be created, throw an
error. */
extern struct frame_info *get_current_frame (void);
/* Invalidates the frame cache (this function should have been called
invalidate_cached_frames).
FIXME: cagney/2002-11-28: The only difference between
flush_cached_frames() and reinit_frame_cache() is that the latter
explicitly sets the selected frame back to the current frame there
isn't any real difference (except that one delays the selection of
a new frame). Code can instead simply rely on get_selected_frame()
to reinit's the selected frame as needed. As for invalidating the
cache, there should be two methods one that reverts the thread's
selected frame back to current frame (for when the inferior
resumes) and one that does not (for when the user modifies the
target invalidating the frame cache). */
extern void flush_cached_frames (void);
extern void reinit_frame_cache (void);
/* On demand, create the selected frame and then return it. If the
selected frame can not be created, this function throws an error. */
/* FIXME: cagney/2002-11-28: At present, when there is no selected
frame, this function always returns the current (inner most) frame.
It should instead, when a thread has previously had its frame
selected (but not resumed) and the frame cache invalidated, find
and then return that thread's previously selected frame. */
extern struct frame_info *get_selected_frame (void);
/* Select a specific frame. NULL, apparently implies re-select the
inner most frame. */
extern void select_frame (struct frame_info *);
/* Given a FRAME, return the next (more inner, younger) or previous
(more outer, older) frame. */
extern struct frame_info *get_prev_frame (struct frame_info *);
extern struct frame_info *get_next_frame (struct frame_info *);
/* Given a frame's ID, relocate the frame. Returns NULL if the frame
is not found. */
extern struct frame_info *frame_find_by_id (struct frame_id id);
/* Base attributes of a frame: */
/* The frame's `resume' address. Where the program will resume in
this frame.
This replaced: frame->pc; */
extern CORE_ADDR get_frame_pc (struct frame_info *);
/* An address (not necessarily alligned to an instruction boundary)
that falls within THIS frame's code block.
When a function call is the last statement in a block, the return
address for the call may land at the start of the next block.
Similarly, if a no-return function call is the last statement in
the function, the return address may end up pointing beyond the
function, and possibly at the start of the next function.
These methods make an allowance for this. For call frames, this
function returns the frame's PC-1 which "should" be an address in
the frame's block. */
extern CORE_ADDR get_frame_address_in_block (struct frame_info *this_frame);
extern CORE_ADDR frame_unwind_address_in_block (struct frame_info *next_frame);
/* The frame's inner-most bound. AKA the stack-pointer. Confusingly
known as top-of-stack. */
extern CORE_ADDR get_frame_sp (struct frame_info *);
extern CORE_ADDR frame_sp_unwind (struct frame_info *);
/* Following on from the `resume' address. Return the entry point
address of the function containing that resume address, or zero if
that function isn't known. */
extern CORE_ADDR frame_func_unwind (struct frame_info *fi);
extern CORE_ADDR get_frame_func (struct frame_info *fi);
/* Closely related to the resume address, various symbol table
attributes that are determined by the PC. Note that for a normal
frame, the PC refers to the resume address after the return, and
not the call instruction. In such a case, the address is adjusted
so that it (approximatly) identifies the call site (and not return
site).
NOTE: cagney/2002-11-28: The frame cache could be used to cache the
computed value. Working on the assumption that the bottle-neck is
in the single step code, and that code causes the frame cache to be
constantly flushed, caching things in a frame is probably of little
benefit. As they say `show us the numbers'.
NOTE: cagney/2002-11-28: Plenty more where this one came from:
find_frame_block(), find_frame_partial_function(),
find_frame_symtab(), find_frame_function(). Each will need to be
carefully considered to determine if the real intent was for it to
apply to the PC or the adjusted PC. */
extern void find_frame_sal (struct frame_info *frame,
struct symtab_and_line *sal);
/* Return the frame base (what ever that is) (DEPRECATED).
Old code was trying to use this single method for two conflicting
purposes. Such code needs to be updated to use either of:
get_frame_id: A low level frame unique identifier, that consists of
both a stack and a function address, that can be used to uniquely
identify a frame. This value is determined by the frame's
low-level unwinder, the stack part [typically] being the
top-of-stack of the previous frame, and the function part being the
function's start address. Since the correct identification of a
frameless function requires both the a stack and function address,
the old get_frame_base method was not sufficient.
get_frame_base_address: get_frame_locals_address:
get_frame_args_address: A set of high-level debug-info dependant
addresses that fall within the frame. These addresses almost
certainly will not match the stack address part of a frame ID (as
returned by get_frame_base).
This replaced: frame->frame; */
extern CORE_ADDR get_frame_base (struct frame_info *);
/* Return the per-frame unique identifer. Can be used to relocate a
frame after a frame cache flush (and other similar operations). If
FI is NULL, return the null_frame_id. */
extern struct frame_id get_frame_id (struct frame_info *fi);
/* Assuming that a frame is `normal', return its base-address, or 0 if
the information isn't available. NOTE: This address is really only
meaningful to the frame's high-level debug info. */
extern CORE_ADDR get_frame_base_address (struct frame_info *);
/* Assuming that a frame is `normal', return the base-address of the
local variables, or 0 if the information isn't available. NOTE:
This address is really only meaningful to the frame's high-level
debug info. Typically, the argument and locals share a single
base-address. */
extern CORE_ADDR get_frame_locals_address (struct frame_info *);
/* Assuming that a frame is `normal', return the base-address of the
parameter list, or 0 if that information isn't available. NOTE:
This address is really only meaningful to the frame's high-level
debug info. Typically, the argument and locals share a single
base-address. */
extern CORE_ADDR get_frame_args_address (struct frame_info *);
/* The frame's level: 0 for innermost, 1 for its caller, ...; or -1
for an invalid frame). */
extern int frame_relative_level (struct frame_info *fi);
/* Return the frame's type. Some are real, some are signal
trampolines, and some are completely artificial (dummy). */
enum frame_type
{
/* The frame's type hasn't yet been defined. This is a catch-all
for legacy code that uses really strange technicques, such as
deprecated_set_frame_type, to set the frame's type. New code
should not use this value. */
UNKNOWN_FRAME,
/* A true stack frame, created by the target program during normal
execution. */
NORMAL_FRAME,
/* A fake frame, created by GDB when performing an inferior function
call. */
DUMMY_FRAME,
/* In a signal handler, various OSs handle this in various ways.
The main thing is that the frame may be far from normal. */
SIGTRAMP_FRAME
};
extern enum frame_type get_frame_type (struct frame_info *);
/* FIXME: cagney/2002-11-10: Some targets want to directly mark a
frame as being of a specific type. This shouldn't be necessary.
PC_IN_SIGTRAMP() indicates a SIGTRAMP_FRAME and
DEPRECATED_PC_IN_CALL_DUMMY() indicates a DUMMY_FRAME. I suspect
the real problem here is that get_prev_frame() only sets
initialized after DEPRECATED_INIT_EXTRA_FRAME_INFO as been called.
Consequently, some targets found that the frame's type was wrong
and tried to fix it. The correct fix is to modify get_prev_frame()
so that it initializes the frame's type before calling any other
functions. */
extern void deprecated_set_frame_type (struct frame_info *,
enum frame_type type);
/* Unwind the stack frame so that the value of REGNUM, in the previous
(up, older) frame is returned. If VALUEP is NULL, don't
fetch/compute the value. Instead just return the location of the
value. */
extern void frame_register_unwind (struct frame_info *frame, int regnum,
int *optimizedp, enum lval_type *lvalp,
CORE_ADDR *addrp, int *realnump,
void *valuep);
/* Fetch a register from this, or unwind a register from the next
frame. Note that the get_frame methods are wrappers to
frame->next->unwind. They all [potentially] throw an error if the
fetch fails. */
extern void frame_unwind_register (struct frame_info *frame,
int regnum, void *buf);
extern void get_frame_register (struct frame_info *frame,
int regnum, void *buf);
extern LONGEST frame_unwind_register_signed (struct frame_info *frame,
int regnum);
extern LONGEST get_frame_register_signed (struct frame_info *frame,
int regnum);
extern ULONGEST frame_unwind_register_unsigned (struct frame_info *frame,
int regnum);
extern ULONGEST get_frame_register_unsigned (struct frame_info *frame,
int regnum);
/* Use frame_unwind_register_signed. */
extern void frame_unwind_unsigned_register (struct frame_info *frame,
int regnum, ULONGEST *val);
/* Get the value of the register that belongs to this FRAME. This
function is a wrapper to the call sequence ``frame_unwind_register
(get_next_frame (FRAME))''. As per frame_register_unwind(), if
VALUEP is NULL, the registers value is not fetched/computed. */
extern void frame_register (struct frame_info *frame, int regnum,
int *optimizedp, enum lval_type *lvalp,
CORE_ADDR *addrp, int *realnump,
void *valuep);
/* The reverse. Store a register value relative to the specified
frame. Note: this call makes the frame's state undefined. The
register and frame caches must be flushed. */
extern void put_frame_register (struct frame_info *frame, int regnum,
const void *buf);
/* Map between a frame register number and its name. A frame register
space is a superset of the cooked register space --- it also
includes builtin registers. If NAMELEN is negative, use the NAME's
length when doing the comparison. */
extern int frame_map_name_to_regnum (struct frame_info *frame,
const char *name, int namelen);
extern const char *frame_map_regnum_to_name (struct frame_info *frame,
int regnum);
/* Unwind the PC. Strictly speaking return the resume address of the
calling frame. For GDB, `pc' is the resume address and not a
specific register. */
extern CORE_ADDR frame_pc_unwind (struct frame_info *frame);
/* Discard the specified frame. Restoring the registers to the state
of the caller. */
extern void frame_pop (struct frame_info *frame);
/* Return memory from the specified frame. A frame knows its thread /
LWP and hence can find its way down to a target. The assumption
here is that the current and previous frame share a common address
space.
If the memory read fails, these methods throw an error.
NOTE: cagney/2003-06-03: Should there be unwind versions of these
methods? That isn't clear. Can code, for instance, assume that
this and the previous frame's memory or architecture are identical?
If architecture / memory changes are always separated by special
adaptor frames this should be ok. */
extern void get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
void *buf, int len);
extern LONGEST get_frame_memory_signed (struct frame_info *this_frame,
CORE_ADDR memaddr, int len);
extern ULONGEST get_frame_memory_unsigned (struct frame_info *this_frame,
CORE_ADDR memaddr, int len);
/* Return this frame's architecture. */
extern struct gdbarch *get_frame_arch (struct frame_info *this_frame);
/* Values for the source flag to be used in print_frame_info_base(). */
enum print_what
{
/* Print only the source line, like in stepi. */
SRC_LINE = -1,
/* Print only the location, i.e. level, address (sometimes)
function, args, file, line, line num. */
LOCATION,
/* Print both of the above. */
SRC_AND_LOC,
/* Print location only, but always include the address. */
LOC_AND_ADDRESS
};
/* Allocate additional space for appendices to a struct frame_info.
NOTE: Much of GDB's code works on the assumption that the allocated
saved_regs[] array is the size specified below. If you try to make
that array smaller, GDB will happily walk off its end. */
#ifdef SIZEOF_FRAME_SAVED_REGS
#error "SIZEOF_FRAME_SAVED_REGS can not be re-defined"
#endif
#define SIZEOF_FRAME_SAVED_REGS \
(sizeof (CORE_ADDR) * (NUM_REGS+NUM_PSEUDO_REGS))
/* Allocate zero initialized memory from the frame cache obstack.
Appendices to the frame info (such as the unwind cache) should
allocate memory using this method. */
extern void *frame_obstack_zalloc (unsigned long size);
#define FRAME_OBSTACK_ZALLOC(TYPE) ((TYPE *) frame_obstack_zalloc (sizeof (TYPE)))
#define FRAME_OBSTACK_CALLOC(NUMBER,TYPE) ((TYPE *) frame_obstack_zalloc ((NUMBER) * sizeof (TYPE)))
/* If legacy_frame_chain_valid() returns zero it means that the given
frame is the outermost one and has no caller.
This method has been superseeded by the per-architecture
frame_unwind_pc() (returns 0 to indicate an invalid return address)
and per-frame this_id() (returns a NULL frame ID to indicate an
invalid frame). */
extern int legacy_frame_chain_valid (CORE_ADDR, struct frame_info *);
extern void generic_save_dummy_frame_tos (CORE_ADDR sp);
extern struct block *get_frame_block (struct frame_info *,
CORE_ADDR *addr_in_block);
/* Return the `struct block' that belongs to the selected thread's
selected frame. If the inferior has no state, return NULL.
NOTE: cagney/2002-11-29:
No state? Does the inferior have any execution state (a core file
does, an executable does not). At present the code tests
`target_has_stack' but I'm left wondering if it should test
`target_has_registers' or, even, a merged target_has_state.
Should it look at the most recently specified SAL? If the target
has no state, should this function try to extract a block from the
most recently selected SAL? That way `list foo' would give it some
sort of reference point. Then again, perhaphs that would confuse
things.
Calls to this function can be broken down into two categories: Code
that uses the selected block as an additional, but optional, data
point; Code that uses the selected block as a prop, when it should
have the relevant frame/block/pc explicitly passed in.
The latter can be eliminated by correctly parameterizing the code,
the former though is more interesting. Per the "address" command,
it occures in the CLI code and makes it possible for commands to
work, even when the inferior has no state. */
extern struct block *get_selected_block (CORE_ADDR *addr_in_block);
extern struct symbol *get_frame_function (struct frame_info *);
extern CORE_ADDR get_pc_function_start (CORE_ADDR);
extern int frameless_look_for_prologue (struct frame_info *);
extern struct frame_info *find_relative_frame (struct frame_info *, int *);
extern void show_and_print_stack_frame (struct frame_info *fi, int level,
int source);
extern void print_stack_frame (struct frame_info *, int, int);
extern void show_stack_frame (struct frame_info *);
extern void print_frame_info (struct frame_info *, int, int, int);
extern void show_frame_info (struct frame_info *, int, int, int);
extern struct frame_info *block_innermost_frame (struct block *);
/* NOTE: cagney/2002-09-13: There is no need for this function. */
extern CORE_ADDR deprecated_read_register_dummy (CORE_ADDR pc,
CORE_ADDR fp, int);
extern void generic_push_dummy_frame (void);
extern void generic_pop_current_frame (void (*)(struct frame_info *));
extern void generic_pop_dummy_frame (void);
extern int generic_pc_in_call_dummy (CORE_ADDR pc,
CORE_ADDR sp, CORE_ADDR fp);
/* NOTE: cagney/2002-06-26: Targets should no longer use this
function. Instead, the contents of a dummy frames registers can be
obtained by applying: frame_register_unwind to the dummy frame; or
frame_register_unwind() to the next outer frame. */
extern char *deprecated_generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp);
/* The DEPRECATED_GET_SAVED_REGISTER architecture interface is
entirely redundant. New architectures should implement per-frame
unwinders (ref "frame-unwind.h"). */
extern void deprecated_generic_get_saved_register (char *, int *, CORE_ADDR *,
struct frame_info *, int,
enum lval_type *);
extern void generic_save_call_dummy_addr (CORE_ADDR lo, CORE_ADDR hi);
/* FIXME: cagney/2003-02-02: Should be deprecated or replaced with a
function called get_frame_register_p(). This slightly weird (and
older) variant of get_frame_register() returns zero (indicating the
register is unavailable) if either: the register isn't cached; or
the register has been optimized out. Problem is, neither check is
exactly correct. A register can't be optimized out (it may not
have been saved as part of a function call); The fact that a
register isn't in the register cache doesn't mean that the register
isn't available (it could have been fetched from memory). */
extern int frame_register_read (struct frame_info *frame, int regnum,
void *buf);
/* From stack.c. */
extern void args_info (char *, int);
extern void locals_info (char *, int);
extern void (*selected_frame_level_changed_hook) (int);
extern void return_command (char *, int);
/* NOTE: cagney/2002-11-27:
You might think that the below global can simply be replaced by a
call to either get_selected_frame() or select_frame().
Unfortunately, it isn't that easy.
The relevant code needs to be audited to determine if it is
possible (or pratical) to instead pass the applicable frame in as a
parameter. For instance, DEPRECATED_DO_REGISTERS_INFO() relied on
the deprecated_selected_frame global, while its replacement,
PRINT_REGISTERS_INFO(), is parameterized with the selected frame.
The only real exceptions occure at the edge (in the CLI code) where
user commands need to pick up the selected frame before proceeding.
This is important. GDB is trying to stamp out the hack:
saved_frame = deprecated_selected_frame;
deprecated_selected_frame = ...;
hack_using_global_selected_frame ();
deprecated_selected_frame = saved_frame;
Take care! */
extern struct frame_info *deprecated_selected_frame;
/* NOTE: drow/2003-09-06:
This function is "a step sideways" for uses of deprecated_selected_frame.
They should be fixed as above, but meanwhile, we needed a solution for
cases where functions are called with a NULL frame meaning either "the
program is not running" or "use the selected frame". Lazy building of
deprecated_selected_frame confuses the situation, because now
deprecated_selected_frame can be NULL even when the inferior is running.
This function calls get_selected_frame if the inferior should have a
frame, or returns NULL otherwise. */
extern struct frame_info *deprecated_safe_get_selected_frame (void);
/* Create a frame using the specified BASE and PC. */
extern struct frame_info *create_new_frame (CORE_ADDR base, CORE_ADDR pc);
/* Create/access the frame's `extra info'. The extra info is used by
older code to store information such as the analyzed prologue. The
zalloc() should only be called by the INIT_EXTRA_INFO method. */
extern struct frame_extra_info *frame_extra_info_zalloc (struct frame_info *fi,
long size);
extern struct frame_extra_info *get_frame_extra_info (struct frame_info *fi);
/* Create/access the frame's `saved_regs'. The saved regs are used by
older code to store the address of each register (except for
SP_REGNUM where the value of the register in the previous frame is
stored). */
extern CORE_ADDR *frame_saved_regs_zalloc (struct frame_info *);
extern CORE_ADDR *deprecated_get_frame_saved_regs (struct frame_info *);
/* FIXME: cagney/2002-12-06: Has the PC in the current frame changed?
"infrun.c", Thanks to DECR_PC_AFTER_BREAK, can change the PC after
the initial frame create. This puts things back in sync.
This replaced: frame->pc = ....; */
extern void deprecated_update_frame_pc_hack (struct frame_info *frame,
CORE_ADDR pc);
/* FIXME: cagney/2002-12-18: Has the frame's base changed? Or to be
more exact, was that initial guess at the frame's base as returned
by deprecated_read_fp() wrong? If it was, fix it. This shouldn't
be necessary since the code should be getting the frame's base
correct from the outset.
This replaced: frame->frame = ....; */
extern void deprecated_update_frame_base_hack (struct frame_info *frame,
CORE_ADDR base);
/* FIXME: cagney/2003-01-05: Allocate a frame, along with the
saved_regs and extra_info. Set up cleanups for all three. Same as
for deprecated_frame_xmalloc, targets are calling this when
creating a scratch `struct frame_info'. The frame overhaul makes
this unnecessary since all frame queries are parameterized with a
common cache parameter and a frame. */
extern struct frame_info *deprecated_frame_xmalloc_with_cleanup (long sizeof_saved_regs,
long sizeof_extra_info);
/* Return non-zero if the architecture is relying on legacy frame
code. */
extern int legacy_frame_p (struct gdbarch *gdbarch);
#endif /* !defined (FRAME_H) */