old-cross-binutils/gdb/compile/compile-c-support.c
Jan Kratochvil 36de76f9cc compile: New 'compile print'
It is planned the existing GDB command 'print' will be able to evaluate its
expressions using the compiler.  There will be some option to choose between
the existing GDB evaluation and the compiler evaluation.  But as an
intermediate step this patch provides the expression printing feature as a new
command.

I can imagine it could be also called 'maintenance compile print' as in the
future one should be able to use its functionality by the normal 'print'
command.

There was a discussion with Eli about the command name:
	https://sourceware.org/ml/gdb-patches/2015-03/msg00880.html
As there were no other comments yet I haven't renamed it yet, before there is
some confirmation about settlement on the final name.

Support for the GDB '@' operator to create arrays has been submitted for GCC:
	[gcc patch] libcc1: '@' GDB array operator
	https://gcc.gnu.org/ml/gcc-patches/2015-03/msg01451.html


gdb/ChangeLog
2015-05-16  Jan Kratochvil  <jan.kratochvil@redhat.com>
	    Phil Muldoon  <pmuldoon@redhat.com>

	* NEWS (Changes since GDB 7.9): Add compile print.
	* compile/compile-c-support.c (add_code_header, add_code_footer)
	(c_compute_program): Add COMPILE_I_PRINT_ADDRESS_SCOPE and
	COMPILE_I_PRINT_VALUE_SCOPE.
	* compile/compile-internal.h (COMPILE_I_PRINT_OUT_ARG_TYPE)
	(COMPILE_I_PRINT_OUT_ARG, COMPILE_I_EXPR_VAL, COMPILE_I_EXPR_PTR_TYPE):
	New.
	* compile/compile-object-load.c: Include block.h.
	(get_out_value_type): New function.
	(compile_object_load): Handle COMPILE_I_PRINT_ADDRESS_SCOPE and
	COMPILE_I_PRINT_VALUE_SCOPE.  Set compile_module's OUT_VALUE_ADDR and
	OUT_VALUE_TYPE.
	* compile/compile-object-load.h (struct compile_module): Add fields
	out_value_addr and out_value_type.
	* compile/compile-object-run.c: Include valprint.h and compile.h.
	(struct do_module_cleanup): Add fields out_value_addr and
	out_value_type.
	(do_module_cleanup): Handle COMPILE_I_PRINT_ADDRESS_SCOPE and
	COMPILE_I_PRINT_VALUE_SCOPE.
	(compile_object_run): Propagate out_value_addr and out_value_type.
	Pass OUT_VALUE_ADDR.
	* compile/compile.c: Include valprint.h.
	(compile_print_value, compile_print_command): New functions.
	(eval_compile_command): Handle failed COMPILE_I_PRINT_ADDRESS_SCOPE.
	(_initialize_compile): Update compile code help text.  Install
	compile_print_command.
	* compile/compile.h (compile_print_value): New prototype.
	* defs.h (enum compile_i_scope_types): Add
	COMPILE_I_PRINT_ADDRESS_SCOPE and COMPILE_I_PRINT_VALUE_SCOPE.

gdb/doc/ChangeLog
2015-05-16  Jan Kratochvil  <jan.kratochvil@redhat.com>

	* gdb.texinfo (Compiling and Injecting Code): Add compile print.

gdb/testsuite/ChangeLog
2015-05-16  Jan Kratochvil  <jan.kratochvil@redhat.com>

	* gdb.compile/compile-print.c: New file.
	* gdb.compile/compile-print.exp: New file.
2015-05-16 14:45:06 +02:00

441 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* C language support for compilation.
Copyright (C) 2014-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "compile-internal.h"
#include "compile.h"
#include "gdb-dlfcn.h"
#include "c-lang.h"
#include "macrotab.h"
#include "macroscope.h"
#include "regcache.h"
/* See compile-internal.h. */
const char *
c_get_mode_for_size (int size)
{
const char *mode = NULL;
switch (size)
{
case 1:
mode = "QI";
break;
case 2:
mode = "HI";
break;
case 4:
mode = "SI";
break;
case 8:
mode = "DI";
break;
default:
internal_error (__FILE__, __LINE__, _("Invalid GCC mode size %d."), size);
}
return mode;
}
/* See compile-internal.h. */
char *
c_get_range_decl_name (const struct dynamic_prop *prop)
{
return xstrprintf ("__gdb_prop_%s", host_address_to_string (prop));
}
#define STR(x) #x
#define STRINGIFY(x) STR(x)
/* Helper function for c_get_compile_context. Open the GCC front-end
shared library and return the symbol specified by the current
GCC_C_FE_CONTEXT. */
static gcc_c_fe_context_function *
load_libcc (void)
{
void *handle;
gcc_c_fe_context_function *func;
/* gdb_dlopen will call error () on an error, so no need to check
value. */
handle = gdb_dlopen (STRINGIFY (GCC_C_FE_LIBCC));
func = (gcc_c_fe_context_function *) gdb_dlsym (handle,
STRINGIFY (GCC_C_FE_CONTEXT));
if (func == NULL)
error (_("could not find symbol %s in library %s"),
STRINGIFY (GCC_C_FE_CONTEXT),
STRINGIFY (GCC_C_FE_LIBCC));
return func;
}
/* Return the compile instance associated with the current context.
This function calls the symbol returned from the load_libcc
function. This will provide the gcc_c_context. */
struct compile_instance *
c_get_compile_context (void)
{
static gcc_c_fe_context_function *func;
struct gcc_c_context *context;
if (func == NULL)
{
func = load_libcc ();
gdb_assert (func != NULL);
}
context = (*func) (GCC_FE_VERSION_0, GCC_C_FE_VERSION_0);
if (context == NULL)
error (_("The loaded version of GCC does not support the required version "
"of the API."));
return new_compile_instance (context);
}
/* Write one macro definition. */
static void
print_one_macro (const char *name, const struct macro_definition *macro,
struct macro_source_file *source, int line,
void *user_data)
{
struct ui_file *file = user_data;
/* Don't print command-line defines. They will be supplied another
way. */
if (line == 0)
return;
/* None of -Wno-builtin-macro-redefined, #undef first
or plain #define of the same value would avoid a warning. */
fprintf_filtered (file, "#ifndef %s\n# define %s", name, name);
if (macro->kind == macro_function_like)
{
int i;
fputs_filtered ("(", file);
for (i = 0; i < macro->argc; i++)
{
fputs_filtered (macro->argv[i], file);
if (i + 1 < macro->argc)
fputs_filtered (", ", file);
}
fputs_filtered (")", file);
}
fprintf_filtered (file, " %s\n#endif\n", macro->replacement);
}
/* Write macro definitions at PC to FILE. */
static void
write_macro_definitions (const struct block *block, CORE_ADDR pc,
struct ui_file *file)
{
struct macro_scope *scope;
if (block != NULL)
scope = sal_macro_scope (find_pc_line (pc, 0));
else
scope = default_macro_scope ();
if (scope == NULL)
scope = user_macro_scope ();
if (scope != NULL && scope->file != NULL && scope->file->table != NULL)
macro_for_each_in_scope (scope->file, scope->line, print_one_macro, file);
}
/* Helper function to construct a header scope for a block of code.
Takes a scope argument which selects the correct header to
insert into BUF. */
static void
add_code_header (enum compile_i_scope_types type, struct ui_file *buf)
{
switch (type)
{
case COMPILE_I_SIMPLE_SCOPE:
fputs_unfiltered ("void "
GCC_FE_WRAPPER_FUNCTION
" (struct "
COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG
" *"
COMPILE_I_SIMPLE_REGISTER_ARG_NAME
") {\n",
buf);
break;
case COMPILE_I_PRINT_ADDRESS_SCOPE:
case COMPILE_I_PRINT_VALUE_SCOPE:
/* <string.h> is needed for a memcpy call below. */
fputs_unfiltered ("#include <string.h>\n"
"void "
GCC_FE_WRAPPER_FUNCTION
" (struct "
COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG
" *"
COMPILE_I_SIMPLE_REGISTER_ARG_NAME
", "
COMPILE_I_PRINT_OUT_ARG_TYPE
" "
COMPILE_I_PRINT_OUT_ARG
") {\n",
buf);
break;
case COMPILE_I_RAW_SCOPE:
break;
default:
gdb_assert_not_reached (_("Unknown compiler scope reached."));
}
}
/* Helper function to construct a footer scope for a block of code.
Takes a scope argument which selects the correct footer to
insert into BUF. */
static void
add_code_footer (enum compile_i_scope_types type, struct ui_file *buf)
{
switch (type)
{
case COMPILE_I_SIMPLE_SCOPE:
case COMPILE_I_PRINT_ADDRESS_SCOPE:
case COMPILE_I_PRINT_VALUE_SCOPE:
fputs_unfiltered ("}\n", buf);
break;
case COMPILE_I_RAW_SCOPE:
break;
default:
gdb_assert_not_reached (_("Unknown compiler scope reached."));
}
}
/* Generate a structure holding all the registers used by the function
we're generating. */
static void
generate_register_struct (struct ui_file *stream, struct gdbarch *gdbarch,
const unsigned char *registers_used)
{
int i;
int seen = 0;
fputs_unfiltered ("struct " COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG " {\n",
stream);
if (registers_used != NULL)
for (i = 0; i < gdbarch_num_regs (gdbarch); ++i)
{
if (registers_used[i])
{
struct type *regtype = check_typedef (register_type (gdbarch, i));
char *regname = compile_register_name_mangled (gdbarch, i);
struct cleanup *cleanups = make_cleanup (xfree, regname);
seen = 1;
/* You might think we could use type_print here. However,
target descriptions often use types with names like
"int64_t", which may not be defined in the inferior
(and in any case would not be looked up due to the
#pragma business). So, we take a much simpler
approach: for pointer- or integer-typed registers, emit
the field in the most direct way; and for other
register types (typically flags or vectors), emit a
maximally-aligned array of the correct size. */
fputs_unfiltered (" ", stream);
switch (TYPE_CODE (regtype))
{
case TYPE_CODE_PTR:
fprintf_filtered (stream, "__gdb_uintptr %s", regname);
break;
case TYPE_CODE_INT:
{
const char *mode
= c_get_mode_for_size (TYPE_LENGTH (regtype));
if (mode != NULL)
{
if (TYPE_UNSIGNED (regtype))
fputs_unfiltered ("unsigned ", stream);
fprintf_unfiltered (stream,
"int %s"
" __attribute__ ((__mode__(__%s__)))",
regname,
mode);
break;
}
}
/* Fall through. */
default:
fprintf_unfiltered (stream,
" unsigned char %s[%d]"
" __attribute__((__aligned__("
"__BIGGEST_ALIGNMENT__)))",
regname,
TYPE_LENGTH (regtype));
}
fputs_unfiltered (";\n", stream);
do_cleanups (cleanups);
}
}
if (!seen)
fputs_unfiltered (" char " COMPILE_I_SIMPLE_REGISTER_DUMMY ";\n",
stream);
fputs_unfiltered ("};\n\n", stream);
}
/* Take the source code provided by the user with the 'compile'
command, and compute the additional wrapping, macro, variable and
register operations needed. INPUT is the source code derived from
the 'compile' command, GDBARCH is the architecture to use when
computing above, EXPR_BLOCK denotes the block relevant contextually
to the inferior when the expression was created, and EXPR_PC
indicates the value of $PC. */
char *
c_compute_program (struct compile_instance *inst,
const char *input,
struct gdbarch *gdbarch,
const struct block *expr_block,
CORE_ADDR expr_pc)
{
struct ui_file *buf, *var_stream = NULL;
char *code;
struct cleanup *cleanup;
struct compile_c_instance *context = (struct compile_c_instance *) inst;
buf = mem_fileopen ();
cleanup = make_cleanup_ui_file_delete (buf);
write_macro_definitions (expr_block, expr_pc, buf);
/* Do not generate local variable information for "raw"
compilations. In this case we aren't emitting our own function
and the user's code may only refer to globals. */
if (inst->scope != COMPILE_I_RAW_SCOPE)
{
unsigned char *registers_used;
int i;
/* Generate the code to compute variable locations, but do it
before generating the function header, so we can define the
register struct before the function body. This requires a
temporary stream. */
var_stream = mem_fileopen ();
make_cleanup_ui_file_delete (var_stream);
registers_used = generate_c_for_variable_locations (context,
var_stream, gdbarch,
expr_block, expr_pc);
make_cleanup (xfree, registers_used);
fputs_unfiltered ("typedef unsigned int"
" __attribute__ ((__mode__(__pointer__)))"
" __gdb_uintptr;\n",
buf);
fputs_unfiltered ("typedef int"
" __attribute__ ((__mode__(__pointer__)))"
" __gdb_intptr;\n",
buf);
/* Iterate all log2 sizes in bytes supported by c_get_mode_for_size. */
for (i = 0; i < 4; ++i)
{
const char *mode = c_get_mode_for_size (1 << i);
gdb_assert (mode != NULL);
fprintf_unfiltered (buf,
"typedef int"
" __attribute__ ((__mode__(__%s__)))"
" __gdb_int_%s;\n",
mode, mode);
}
generate_register_struct (buf, gdbarch, registers_used);
}
add_code_header (inst->scope, buf);
if (inst->scope == COMPILE_I_SIMPLE_SCOPE
|| inst->scope == COMPILE_I_PRINT_ADDRESS_SCOPE
|| inst->scope == COMPILE_I_PRINT_VALUE_SCOPE)
{
ui_file_put (var_stream, ui_file_write_for_put, buf);
fputs_unfiltered ("#pragma GCC user_expression\n", buf);
}
/* The user expression has to be in its own scope, so that "extern"
works properly. Otherwise gcc thinks that the "extern"
declaration is in the same scope as the declaration provided by
gdb. */
if (inst->scope != COMPILE_I_RAW_SCOPE)
fputs_unfiltered ("{\n", buf);
fputs_unfiltered ("#line 1 \"gdb command line\"\n", buf);
switch (inst->scope)
{
case COMPILE_I_PRINT_ADDRESS_SCOPE:
case COMPILE_I_PRINT_VALUE_SCOPE:
fprintf_unfiltered (buf,
"__auto_type " COMPILE_I_EXPR_VAL " = %s;\n"
"typeof (%s) *" COMPILE_I_EXPR_PTR_TYPE ";\n"
"memcpy (" COMPILE_I_PRINT_OUT_ARG ", %s" COMPILE_I_EXPR_VAL ",\n"
"sizeof (*" COMPILE_I_EXPR_PTR_TYPE "));\n"
, input, input,
(inst->scope == COMPILE_I_PRINT_ADDRESS_SCOPE
? "&" : ""));
break;
default:
fputs_unfiltered (input, buf);
break;
}
fputs_unfiltered ("\n", buf);
/* For larger user expressions the automatic semicolons may be
confusing. */
if (strchr (input, '\n') == NULL)
fputs_unfiltered (";\n", buf);
if (inst->scope != COMPILE_I_RAW_SCOPE)
fputs_unfiltered ("}\n", buf);
add_code_footer (inst->scope, buf);
code = ui_file_xstrdup (buf, NULL);
do_cleanups (cleanup);
return code;
}