old-cross-binutils/sim/ppc/ppc-instructions

4483 lines
155 KiB
Text
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# This file is part of the program psim.
#
# Copyright (C) 1994-1995, Andrew Cagney <cagney@highland.com.au>
#
# --
#
# The pseudo-code that appears below, translated into C, was copied
# by Andrew Cagney of Moss Vale, Australia.
#
# This pseudo-code is copied by permission from the publication
# "The PowerPC Architecture: A Specification for A New Family of
# RISC Processors" (ISBN 1-55860-316-6) copyright 1993, 1994 by
# International Business Machines Corporation.
#
# THIS PERMISSION IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER
# EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#
# --
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# --
#
#
# Fields:
#
# 1 Instruction format as a `start-bit,content' pairs.
# the content is one of a digit, field name or `/' (aka.0)
#
# 2 Format specifier
#
# 3 Flags: 64 - 64bit only
# f - floating point enabled required
#
# 4 short name
#
# 5 Description
#
#
# For flags marked 'model', the fields are interpreted as follows:
#
# 1 Not used
#
# 2 Not used
#
# 3 "macro"
#
# 4 String name for model
#
# 5 Specific CPU model, must be an identifier
#
# 6 Comma separated list of functional units
# PowerPC models
::model:604:ppc604: PPC_UNIT_BAD, PPC_UNIT_BAD, 1, 1, 0
::model:603e:ppc603e:PPC_UNIT_BAD, PPC_UNIT_BAD, 1, 1, 0
::model:603:ppc603: PPC_UNIT_BAD, PPC_UNIT_BAD, 1, 1, 0
::model:601:ppc601: PPC_UNIT_BAD, PPC_UNIT_BAD, 1, 1, 0
# Flags for model.h
::model-macro:::
#define PPC_INSN_INT(OUT_MASK, IN_MASK, RC) \
if (WITH_MODEL_ISSUE) \
ppc_insn_int(my_index, processor, cpu_model(processor), OUT_MASK, IN_MASK, (RC) ? (1 << 0) : 0)
#define PPC_INSN_INT_CR(OUT_MASK, IN_MASK, CR_MASK) \
if (WITH_MODEL_ISSUE) \
ppc_insn_int(my_index, processor, cpu_model(processor), OUT_MASK, IN_MASK, CR_MASK)
#define PPC_INSN_CR(OUT_MASK, IN_MASK) \
if (WITH_MODEL_ISSUE) \
ppc_insn_cr(my_index, processor, cpu_model(processor), OUT_MASK, IN_MASK)
#define PPC_INSN_FLOAT(OUT_MASK, IN_MASK, RC) \
if (WITH_MODEL_ISSUE) \
ppc_insn_float(my_index, processor, cpu_model(processor), OUT_MASK, IN_MASK, (RC) ? (1 << 1) : 0)
#define PPC_INSN_FLOAT_CR(OUT_MASK, IN_MASK, CR_MASK) \
if (WITH_MODEL_ISSUE) \
ppc_insn_float(my_index, processor, cpu_model(processor), OUT_MASK, IN_MASK, CR_MASK)
#define PPC_INSN_INT_FLOAT(OUT_INT_MASK, OUT_FP_MASK, IN_INT_MASK, IN_FP_MASK) \
if (WITH_MODEL_ISSUE) \
ppc_insn_int_float(my_index, processor, cpu_model(processor), OUT_INT_MASK, OUT_FP_MASK, IN_INT_MASK, IN_FP_MASK)
#define PPC_INSN_FROM_SPR(INT_MASK, SPR) \
if (WITH_MODEL_ISSUE) \
ppc_insn_from_spr(my_index, processor, cpu_model(processor), INT_MASK, SPR)
#define PPC_INSN_TO_SPR(INT_MASK, SPR) \
if (WITH_MODEL_ISSUE) \
ppc_insn_to_spr(my_index, processor, cpu_model(processor), INT_MASK, SPR)
#define PPC_INSN_MFCR(INT_MASK) \
if (WITH_MODEL_ISSUE) \
ppc_insn_mfcr(my_index, processor, cpu_model(processor), INT_MASK)
::model-data:::
typedef enum _ppc_function_unit {
PPC_UNIT_BAD, /* unknown function unit */
PPC_UNIT_IU, /* integer unit (601/603 style) */
PPC_UNIT_SRU, /* system register unit (601/603 style) */
PPC_UNIT_SCIU1, /* 1st single cycle integer unit (604 style) */
PPC_UNIT_SCIU2, /* 2nd single cycle integer unit (604 style) */
PPC_UNIT_MCIU, /* multiple cycle integer unit (604 style) */
PPC_UNIT_FPU, /* floating point unit */
PPC_UNIT_LSU, /* load/store unit */
PPC_UNIT_BPU, /* branch unit */
nr_ppc_function_units
} ppc_function_unit;
/* Structure to hold timing information on a per instruction basis */
struct _model_time {
ppc_function_unit first_unit; /* first functional unit this insn could use */
ppc_function_unit second_unit; /* second functional unit this insn could use */
signed16 issue; /* # cycles before function unit can process other insns */
signed16 done; /* # cycles before insn is done */
unsigned32 flags; /* any flags that are needed */
};
/* Register mappings in status masks */
#define PPC_CR_REG 0 /* start of CR0 .. CR7 */
#define PPC_FPSCR_REG (PPC_CR_REG + 8) /* start of fpscr register */
#define PPC_NO_SPR (-1) /* flag for no SPR register */
/* Structure for each functional unit that is busy */
typedef struct _model_busy model_busy;
struct _model_busy {
model_busy *next; /* next function unit */
ppc_function_unit unit; /* function unit name */
unsigned32 int_busy; /* int registers that are busy */
unsigned32 fp_busy; /* floating point registers that are busy */
unsigned32 cr_fpscr_busy; /* CR/FPSCR registers that are busy */
signed16 spr_busy; /* SPR register that is busy or PPC_NO_SPR */
signed8 issue; /* # of cycles until unit can accept another insn */
signed8 done; /* # of cycles until insn is done */
};
/* Structure to hold the current state information for the simulated CPU model */
struct _model_data {
cpu *processor; /* point back to processor */
const char *name; /* model name */
const model_time *timing; /* timing information */
model_busy *busy_list; /* list of busy function units */
model_busy *free_list; /* list of model_busy structs not in use */
count_type nr_cycles; /* # cycles */
count_type nr_branches; /* # branches */
count_type nr_branches_fallthrough; /* # conditional branches that fell through */
count_type nr_branch_predict_trues; /* # branches predicted correctly */
count_type nr_branch_predict_falses; /* # branches predicted incorrectly */
count_type nr_branch_conditional[32]; /* # of each type of bc */
count_type nr_stalls_data; /* # of stalls for data */
count_type nr_stalls_unit; /* # of stalls waiting for a function unit */
count_type nr_stalls_serialize; /* # of stalls waiting for things to quiet down */
count_type nr_units[nr_ppc_function_units]; /* function unit counts */
unsigned32 int_busy; /* int registers that are busy */
unsigned32 fp_busy; /* floating point registers that are busy */
unsigned32 cr_fpscr_busy; /* CR/FPSCR registers that are busy */
unsigned8 spr_busy[nr_of_sprs]; /* SPR registers that are busy */
unsigned8 busy[nr_ppc_function_units]; /* whether a function is busy or not */
};
STATIC_MODEL const char *const ppc_function_unit_name[ (int)nr_ppc_function_units ] = {
"unknown functional unit instruction",
"integer functional unit instruction",
"system register functional unit instruction",
"1st single cycle integer functional unit instruction",
"2nd single cycle integer functional unit instruction",
"multiple cycle integer functional unit instruction",
"floating point functional unit instruction",
"load/store functional unit instruction",
"branch functional unit instruction",
};
STATIC_MODEL const char *const ppc_branch_conditional_name[32] = {
"branch if --CTR != 0 and condition is FALSE", /* 0000y */
"branch if --CTR != 0 and condition is FALSE, reverse branch likely",
"branch if --CTR == 0 and condition is FALSE", /* 0001y */
"branch if --CTR == 0 and condition is FALSE, reverse branch likely",
"branch if the condition is FALSE", /* 001zy */
"branch if the condition is FALSE, reverse branch likely",
"branch if the condition is FALSE (ignored bit 1 set to 1)", /* 001zy */
"branch if the condition is FALSE, reverse branch likely (ignored bit 4 set to 1)",
"branch if --CTR != 0 and condition is TRUE", /* 0100y */
"branch if --CTR != 0 and condition is TRUE, reverse branch likely",
"branch if --CTR == 0 and condition is TRUE", /* 0101y */
"branch if --CTR == 0 and condition is TRUE, reverse branch likely",
"branch if the condition is TRUE", /* 011zy */
"branch if the condition is TRUE, reverse branch likely",
"branch if the condition is TRUE (ignored bit 1 set to 1)", /* 011zy */
"branch if the condition is TRUE, reverse branch likely (ignored bit 4 set to 1)",
"branch if --CTR != 0", /* 1z00y */
"branch if --CTR != 0, reverse branch likely",
"branch if --CTR == 0", /* 1z01y */
"branch if --CTR == 0, reverse branch likely",
"branch always", /* 1z1zz */
"branch always (ignored bit 5 set to 1)",
"branch always (ignored bit 4 set to 1)", /* 1z1zz */
"branch always (ignored bits 4,5 set to 1)",
"branch if --CTR != 0 (ignored bit 1 set to 1)", /* 1z00y */
"branch if --CTR != 0, reverse branch likely (ignored bit 1 set to 1)",
"branch if --CTR == 0 (ignored bit 1 set to 1)", /* 1z01y */
"branch if --CTR == 0, reverse branch likely (ignored bit 1 set to 1)",
"branch always (ignored bit 1 set to 1)", /* 1z1zz */
"branch always (ignored bits 1,5 set to 1)",
"branch always (ignored bits 1,4 set to 1)", /* 1z1zz */
"branch always (ignored bits 1,4,5 set to 1)",
};
# Trace releasing resources
void::model-static::model_trace_release:model_data *model_ptr, model_busy *busy
int i;
TRACE(trace_model,("done, %s\n", ppc_function_unit_name[busy->unit]));
if (busy->int_busy) {
for(i = 0; i < 32; i++) {
if (((1 << i) & busy->int_busy) != 0) {
TRACE(trace_model, ("Register r%d is now available.\n", i));
}
}
}
if (busy->fp_busy) {
for(i = 0; i < 32; i++) {
if (((1 << i) & busy->fp_busy) != 0) {
TRACE(trace_model, ("Register f%d is now available.\n", i));
}
}
}
if (busy->cr_fpscr_busy) {
for(i = 0; i < 8; i++) {
if (((1 << i) & busy->cr_fpscr_busy) != 0) {
TRACE(trace_model, ("Register cr%d is now available.\n", i));
}
}
if (busy->cr_fpscr_busy & 0x100)
TRACE(trace_model, ("Register fpscr is now available.\n"));
}
if (busy->spr_busy != PPC_NO_SPR)
TRACE(trace_model, ("Register %s is now available.\n", spr_name(busy->spr_busy)));
# Trace making registers busy
void::model-static::model_trace_make_busy:model_data *model_ptr, unsigned32 int_mask, unsigned32 fp_mask, unsigned32 cr_mask
int i;
if (int_mask) {
for(i = 0; i < 32; i++) {
if (((1 << i) & int_mask) != 0) {
TRACE(trace_model, ("Register r%d is now busy.\n", i));
}
}
}
if (fp_mask) {
for(i = 0; i < 32; i++) {
if (((1 << i) & fp_mask) != 0) {
TRACE(trace_model, ("Register f%d is now busy.\n", i));
}
}
}
if (cr_mask) {
for(i = 0; i < 8; i++) {
if (((1 << i) & cr_mask) != 0) {
TRACE(trace_model, ("Register cr%d is now busy.\n", i));
}
}
}
# Trace waiting for registers to become available
void::model-static::model_trace_busy_p:model_data *model_ptr, unsigned32 int_busy, unsigned32 fp_busy, unsigned32 cr_or_fpscr_busy, int spr_busy
int i;
if (int_busy) {
int_busy &= model_ptr->int_busy;
for(i = 0; i < 32; i++) {
if (((1 << i) & int_busy) != 0) {
TRACE(trace_model, ("Waiting for register r%d.\n", i));
}
}
}
if (fp_busy) {
fp_busy &= model_ptr->fp_busy;
for(i = 0; i < 32; i++) {
if (((1 << i) & fp_busy) != 0) {
TRACE(trace_model, ("Waiting for register f%d.\n", i));
}
}
}
if (cr_or_fpscr_busy) {
cr_or_fpscr_busy &= model_ptr->cr_fpscr_busy;
for(i = 0; i < 8; i++) {
if (((1 << i) & cr_or_fpscr_busy) != 0) {
TRACE(trace_model, ("Waiting for register cr%d.\n", i));
}
}
if (cr_or_fpscr_busy & 0x100)
TRACE(trace_model, ("Waiting for register fpscr.\n"));
}
if (spr_busy != PPC_NO_SPR && model_ptr->spr_busy[spr_busy])
TRACE(trace_model, ("Waiting for register %s.\n", spr_name(spr_busy)));
# Advance state to next cycle, releasing any registers allocated
void::model-internal::model_new_cycle:model_data *model_ptr
model_busy *cur_busy = model_ptr->busy_list;
model_busy *free_list = model_ptr->free_list;
model_busy *next_busy = (model_busy *)0;
model_busy *next;
model_ptr->nr_cycles++;
for ( ; cur_busy; cur_busy = next) {
next = cur_busy->next;
if (--cur_busy->done <= 0) { /* function unit done, release registers */
model_ptr->int_busy &= ~cur_busy->int_busy;
model_ptr->fp_busy &= ~cur_busy->fp_busy;
model_ptr->cr_fpscr_busy &= ~cur_busy->cr_fpscr_busy;
if (cur_busy->spr_busy != PPC_NO_SPR)
model_ptr->spr_busy[cur_busy->spr_busy] = 0;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_release(model_ptr, cur_busy);
model_ptr->busy[cur_busy->unit] = 0;
cur_busy->next = free_list;
free_list = cur_busy;
}
else if (--cur_busy->issue <= 0) { /* function unit pipelined, allow new use */
TRACE(trace_model,("pipeline, %s ready for next client\n", ppc_function_unit_name[cur_busy->unit]));
model_ptr->busy[cur_busy->unit] = 0;
cur_busy->next = next_busy;
next_busy = cur_busy;
}
else {
TRACE(trace_model,("%s still working, issue = %d, done = %d\n",
ppc_function_unit_name[cur_busy->unit],
cur_busy->issue,
cur_busy->done));
cur_busy->next = next_busy;
next_busy = cur_busy;
}
}
model_ptr->busy_list = next_busy;
model_ptr->free_list = free_list;
# Mark a function unit as busy, return the busy structure
model_busy *::model-internal::model_make_busy:model_data *model_ptr, ppc_function_unit unit, int issue, int done
model_busy *busy;
TRACE(trace_model,("unit = %s, issue = %d, done = %d\n", ppc_function_unit_name[unit], issue, done));
if (!model_ptr->free_list) {
busy = ZALLOC(model_busy);
}
else {
busy = model_ptr->free_list;
model_ptr->free_list = busy->next;
}
busy->next = model_ptr->busy_list;
busy->unit = unit;
busy->issue = issue;
busy->done = done;
busy->int_busy = 0;
busy->fp_busy = 0;
busy->cr_fpscr_busy = 0;
busy->spr_busy = PPC_NO_SPR;
model_ptr->busy_list = busy;
model_ptr->busy[unit] = 1;
model_ptr->nr_units[unit]++;
return busy;
# Make a given CR register busy
void::model-internal::model_make_cr_reg_busy:model_data *model_ptr, model_busy *busy_ptr, int regno
TRACE(trace_model,("Marking register cr%d as busy\n", regno));
busy_ptr->cr_fpscr_busy |= (1 << regno);
model_ptr->cr_fpscr_busy |= (1 << regno);
# Wait until a function unit is non-busy, and then allocate a busy pointer & return the pointer
model_busy *::model-internal::model_wait_for_unit:itable_index index, model_data *const model_ptr, const model_time *const time_ptr
ppc_function_unit first_unit = time_ptr->first_unit;
ppc_function_unit second_unit = time_ptr->second_unit;
int stall_increment = 0;
for (;;) {
if (!model_ptr->busy[first_unit])
return model_make_busy(model_ptr, first_unit,
model_ptr->timing[index].issue,
model_ptr->timing[index].done);
if (!model_ptr->busy[second_unit])
return model_make_busy(model_ptr, second_unit,
model_ptr->timing[index].issue,
model_ptr->timing[index].done);
TRACE(trace_model,("all function units are busy for %s\n", itable[index].name));
model_ptr->nr_stalls_unit += stall_increment; /* don't count first stall */
stall_increment = 1;
model_new_cycle(model_ptr);
}
# Serialize the processor, waiting for all instructions to drain out before adding an instruction.
void::model-function::model_serialize:itable_index index, model_data *model_ptr
while (model_ptr->busy_list) {
TRACE(trace_model,("waiting for pipeline to empty\n"));
model_ptr->nr_stalls_serialize++;
model_new_cycle(model_ptr);
}
(void) model_make_busy(model_ptr,
model_ptr->timing[index].first_unit,
model_ptr->timing[index].issue,
model_ptr->timing[index].done);
# Wait for a CR to become unbusy
void::model-function::model_wait_for_cr:model_data *model_ptr, unsigned CRBIT
unsigned u;
unsigned32 cr_mask;
int cr_var = 0;
for (u = 0xc0000000; (u != 0) && (CRBIT & u) == 0; u >>= 4 )
cr_var++;
cr_mask = (1 << cr_var);
while ((model_ptr->cr_fpscr_busy & cr_mask) != 0) {
TRACE(trace_model,("waiting for CR %d\n", cr_var));
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
# Schedule an instruction that takes integer input registers and produces output registers & possibly sets some CR registers
void::model-function::ppc_insn_int:itable_index index, cpu *processor, model_data *model_ptr, const unsigned32 out_mask, const unsigned32 in_mask, const unsigned32 cr_mask
const unsigned32 int_mask = out_mask | in_mask;
model_busy *busy_ptr;
if (!cr_mask) {
if ((model_ptr->int_busy & int_mask) != 0) {
model_new_cycle(model_ptr); /* don't count first dependency as a stall */
while ((model_ptr->int_busy & int_mask) != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, int_mask, 0, 0, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_ptr->int_busy |= out_mask;
busy_ptr->int_busy |= out_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, out_mask, 0, 0);
return;
}
else {
if ((model_ptr->int_busy & int_mask) || (model_ptr->cr_fpscr_busy & cr_mask)) {
model_new_cycle(model_ptr); /* don't count first dependency as a stall */
while ((model_ptr->int_busy & int_mask) || (model_ptr->cr_fpscr_busy & cr_mask)) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, int_mask, 0, cr_mask, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_ptr->int_busy |= out_mask;
busy_ptr->int_busy |= out_mask;
model_ptr->cr_fpscr_busy |= cr_mask;
busy_ptr->cr_fpscr_busy |= cr_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, out_mask, 0, cr_mask);
return;
}
# Schedule an instruction that takes floating point input registers and produces output fp registers & possibly sets some CR regs
void::model-function::ppc_insn_float:itable_index index, cpu *processor, model_data *model_ptr, const unsigned32 out_mask, const unsigned32 in_mask, const unsigned32 cr_mask
const unsigned32 fp_mask = out_mask | in_mask;
model_busy *busy_ptr;
if (!cr_mask) {
if ((model_ptr->fp_busy & fp_mask) != 0) {
model_new_cycle(model_ptr); /* don't count first dependency as a stall */
while ((model_ptr->fp_busy & fp_mask) != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, 0, fp_mask, 0, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_ptr->fp_busy |= out_mask;
busy_ptr->fp_busy |= out_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, 0, out_mask, 0);
return;
}
else {
if ((model_ptr->fp_busy & fp_mask) || (model_ptr->cr_fpscr_busy & cr_mask)) {
model_new_cycle(model_ptr); /* don't count first dependency as a stall */
while ((model_ptr->fp_busy & fp_mask) || (model_ptr->cr_fpscr_busy & cr_mask)) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, 0, fp_mask, cr_mask, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_ptr->fp_busy |= out_mask;
busy_ptr->fp_busy |= out_mask;
model_ptr->cr_fpscr_busy |= cr_mask;
busy_ptr->cr_fpscr_busy |= cr_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, 0, out_mask, cr_mask);
return;
}
# Schedule an instruction that takes both int/float input registers and produces output int/float registers
void::model-function::ppc_insn_int_float:itable_index index, cpu *processor, model_data *model_ptr, const unsigned32 out_int_mask, const unsigned32 out_fp_mask, const unsigned32 in_int_mask, const unsigned32 in_fp_mask
const unsigned32 int_mask = out_int_mask | in_int_mask;
const unsigned32 fp_mask = out_fp_mask | in_fp_mask;
model_busy *busy_ptr;
if ((model_ptr->int_busy & int_mask) || (model_ptr->fp_busy & fp_mask)) {
model_new_cycle(model_ptr); /* don't count first dependency as a stall */
while ((model_ptr->int_busy & int_mask) || (model_ptr->fp_busy & fp_mask)) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, int_mask, fp_mask, 0, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_ptr->int_busy |= out_int_mask;
busy_ptr->int_busy |= out_int_mask;
model_ptr->fp_busy |= out_fp_mask;
busy_ptr->fp_busy |= out_fp_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, out_int_mask, out_fp_mask, 0);
return;
}
# Schedule an MFSPR instruction that takes 1 special purpose register and produces an integer output register
void::model-function::ppc_insn_from_spr:itable_index index, cpu *processor, model_data *model_ptr, const unsigned32 int_mask, const unsigned nSPR
model_busy *busy_ptr;
while ((model_ptr->int_busy & int_mask) != 0 || model_ptr->spr_busy[nSPR] != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, int_mask, 0, 0, nSPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_ptr->int_busy |= int_mask;
busy_ptr->int_busy |= int_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, int_mask, 0, 0);
# Schedule an MTSPR instruction that takes 1 integer register and produces a special purpose output register
void::model-function::ppc_insn_to_spr:itable_index index, cpu *processor, model_data *model_ptr, const unsigned32 int_mask, const unsigned nSPR
model_busy *busy_ptr;
while ((model_ptr->int_busy & int_mask) != 0 || model_ptr->spr_busy[nSPR] != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, int_mask, 0, 0, nSPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
busy_ptr->spr_busy = nSPR;
model_ptr->spr_busy[nSPR] = 1;
TRACE(trace_model,("Making register %s busy.\n", spr_name(nSPR)));
# Schedule a MFCR instruction that moves the CR into an integer regsiter
void::model-function::ppc_insn_mfcr:itable_index index, cpu *processor, model_data *model_ptr, unsigned32 int_mask
const unsigned32 cr_mask = 0xff;
model_busy *busy_ptr;
while (((model_ptr->int_busy & int_mask) | (model_ptr->cr_fpscr_busy & cr_mask)) != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, int_mask, 0, cr_mask, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_ptr->int_busy |= int_mask;
busy_ptr->int_busy |= int_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, int_mask, 0, 0);
# Schedule a MTCR instruction that moves an integer register into the CR
void::model-function::ppc_insn_mtcr:itable_index index, cpu *processor, model_data *model_ptr, signed_word *rT, unsigned FXM
if (!WITH_MODEL_ISSUE)
return;
else {
registers *cpu_regs = cpu_registers(processor);
const unsigned ppc_RT = (rT - &cpu_regs->gpr[0]);
const unsigned32 int_mask = (1 << ppc_RT);
const unsigned32 cr_mask = 0xff;
const model_time *normal_time = &model_ptr->timing[index];
static const model_time ppc604_1bit_time = { PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0 };
model_busy *busy_ptr;
while (((model_ptr->int_busy & int_mask) | (model_ptr->cr_fpscr_busy & cr_mask)) != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, int_mask, 0, cr_mask, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
/* If only one bit is being moved, use the SCIU, not the MCIU on the 604 */
if (CURRENT_MODEL == MODEL_ppc604 && (FXM & (FXM-1)) == 0) {
normal_time = &ppc604_1bit_time;
}
busy_ptr = model_wait_for_unit(index, model_ptr, normal_time);
busy_ptr->cr_fpscr_busy |= cr_mask;
model_ptr->cr_fpscr_busy |= cr_mask;
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_make_busy(model_ptr, 0, 0, cr_mask);
}
# Convert a BIT32(x) number back into the original number
int::model-internal::ppc_undo_bit32:unsigned bitmask
unsigned u = 0x80000000;
int i = 0;
while (u && (u & bitmask) == 0) {
u >>= 1;
i++;
}
return i;
# Schedule an instruction that takes 2 CR input registers and produces an output CR register
void::model-function::ppc_insn_cr2:itable_index index, cpu *processor, model_data *model_ptr, unsigned crD, unsigned crA_bit, unsigned crB_bit
if (!WITH_MODEL_ISSUE)
return;
else {
const unsigned ppc_CRA = ppc_undo_bit32(crA_bit);
const unsigned ppc_CRB = ppc_undo_bit32(crB_bit);
const unsigned32 cr_mask = (1 << ppc_CRA) | (1 << ppc_CRB) | (1 << crD);
model_busy *busy_ptr;
while ((model_ptr->cr_fpscr_busy & cr_mask) != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, 0, 0, cr_mask, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_make_cr_reg_busy(model_ptr, busy_ptr, crD);
}
# Schedule an instruction that takes 1 CR input registers and produces an output CR register
void::model-function::ppc_insn_cr1:itable_index index, cpu *processor, model_data *model_ptr, unsigned crD, unsigned CRA
if (!WITH_MODEL_ISSUE)
return;
else {
const unsigned32 cr_mask = (1 << CRA) | (1 << crD);
model_busy *busy_ptr;
while ((model_ptr->cr_fpscr_busy & cr_mask) != 0) {
if (WITH_TRACE && ppc_trace[trace_model])
model_trace_busy_p(model_ptr, 0, 0, cr_mask, PPC_NO_SPR);
model_ptr->nr_stalls_data++;
model_new_cycle(model_ptr);
}
busy_ptr = model_wait_for_unit(index, model_ptr, &model_ptr->timing[index]);
model_make_cr_reg_busy(model_ptr, busy_ptr, crD);
}
model_data *::model-function::model_create:cpu *processor
model_data *model_ptr = ZALLOC(model_data);
ASSERT(CURRENT_MODEL > 0 && CURRENT_MODEL < nr_models);
model_ptr->name = model_name[CURRENT_MODEL];
model_ptr->timing = model_time_mapping[CURRENT_MODEL];
model_ptr->processor = processor;
model_ptr->nr_cycles = 1;
return model_ptr;
void::model-function::model_init:model_data *model_ptr
void::model-function::model_halt:model_data *model_ptr
/* Let pipeline drain */
while (model_ptr->busy_list)
model_new_cycle(model_ptr);
model_print *::model-function::model_mon_info:model_data *model_ptr
model_print *head;
model_print *tail;
ppc_function_unit i;
count_type nr_insns;
int j;
head = tail = ZALLOC(model_print);
tail->count = model_ptr->nr_cycles;
tail->name = "cycle";
tail->suffix_plural = "s";
tail->suffix_singular = "";
if (model_ptr->nr_stalls_data) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_stalls_data;
tail->name = "stall";
tail->suffix_plural = "s waiting for data";
tail->suffix_singular = " waiting for data";
}
if (model_ptr->nr_stalls_unit) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_stalls_unit;
tail->name = "stall";
tail->suffix_plural = "s waiting for a function unit";
tail->suffix_singular = " waiting for a function unit";
}
if (model_ptr->nr_stalls_serialize) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_stalls_serialize;
tail->name = "stall";
tail->suffix_plural = "s waiting for serialization";
tail->suffix_singular = " waiting for serialization";
}
if (model_ptr->nr_branches) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_branches;
tail->name = "branch";
tail->suffix_plural = "es";
tail->suffix_singular = "";
}
if (model_ptr->nr_branches_fallthrough) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_branches_fallthrough;
tail->name = "conditional branch";
tail->suffix_plural = "es fell through";
tail->suffix_singular = " fell through";
}
if (model_ptr->nr_branch_predict_trues) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_branch_predict_trues;
tail->name = "successful branch prediction";
tail->suffix_plural = "s";
tail->suffix_singular = "";
}
if (model_ptr->nr_branch_predict_falses) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_branch_predict_falses;
tail->name = "unsuccessful branch prediction";
tail->suffix_plural = "s";
tail->suffix_singular = "";
}
for (j = 0; j < (sizeof(ppc_branch_conditional_name) / sizeof(ppc_branch_conditional_name[0])) ; j++) {
if (model_ptr->nr_branch_conditional[j]) {
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_branch_conditional[j];
tail->name = ppc_branch_conditional_name[j];
tail->suffix_plural = " conditional branches";
tail->suffix_singular = " conditional branch";
}
}
nr_insns = 0;
for (i = PPC_UNIT_BAD; i < nr_ppc_function_units; i++) {
if (model_ptr->nr_units[i]) {
nr_insns += model_ptr->nr_units[i];
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = model_ptr->nr_units[i];
tail->name = ppc_function_unit_name[i];
tail->suffix_plural = "s";
tail->suffix_singular = "";
}
}
tail->next = ZALLOC(model_print);
tail = tail->next;
tail->count = nr_insns;
tail->name = "instruction";
tail->suffix_plural = "s that were accounted for in timing info";
tail->suffix_singular = " that was accounted for in timing info";
tail->next = (model_print *)0;
return head;
void::model-function::model_mon_info_free:model_data *model_ptr, model_print *ptr
while (ptr) {
model_print *next = ptr->next;
free((void *)ptr);
ptr = next;
}
void::model-function::model_branches:model_data *model_ptr, int failed, int conditional
model_ptr->nr_units[PPC_UNIT_BPU]++;
if (failed)
model_ptr->nr_branches_fallthrough++;
else
model_ptr->nr_branches++;
if (conditional >= 0)
model_ptr->nr_branch_conditional[conditional]++;
model_new_cycle(model_ptr); /* A branch always ends the current cycle */
void::model-function::model_branch_predict:model_data *model_ptr, int success
if (success)
model_ptr->nr_branch_predict_trues++;
else
model_ptr->nr_branch_predict_falses++;
# The following (illegal) instruction is `known' by gen and is
# called when ever an illegal instruction is encountered
::internal::illegal
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
return 0;
# The following (floating point unavailable) instruction is `known' by gen
# and is called when ever an a floating point instruction is to be
# executed but floating point is make unavailable by the MSR
::internal::floating_point_unavailable
floating_point_unavailable_interrupt(processor, cia);
return 0;
#
# Floating point support functions
#
# Convert 32bit single to 64bit double
unsigned64::function::DOUBLE:unsigned32 WORD
unsigned64 FRT;
if (EXTRACTED32(WORD, 1, 8) > 0
&& EXTRACTED32(WORD, 1, 8) < 255) {
/* normalized operand */
int not_word_1_1 = !EXTRACTED32(WORD, 1, 1); /*2.6.3 bug*/
FRT = (INSERTED64(EXTRACTED32(WORD, 0, 1), 0, 1)
| INSERTED64(not_word_1_1, 2, 2)
| INSERTED64(not_word_1_1, 3, 3)
| INSERTED64(not_word_1_1, 4, 4)
| INSERTED64(EXTRACTED32(WORD, 2, 31), 5, (63 - 29)));
}
else if (EXTRACTED32(WORD, 1, 8) == 0
&& EXTRACTED32(WORD, 9, 31) != 0) {
/* denormalized operand */
int sign = EXTRACTED32(WORD, 0, 0);
int exp = -126;
unsigned64 frac = INSERTED64(EXTRACTED32(WORD, 9, 31), 1, (52 - 29));
/* normalize the operand */
while (MASKED64(frac, 0, 0) == 0) {
frac <<= 1;
exp -= 1;
}
FRT = (INSERTED64(sign, 0, 0)
| INSERTED64(exp + 1023, 1, 11)
| INSERTED64(EXTRACTED64(frac, 1, 52), 12, 63));
}
else if (EXTRACTED32(WORD, 1, 8) == 255
|| EXTRACTED32(WORD, 1, 31) == 0) {
FRT = (INSERTED64(EXTRACTED32(WORD, 0, 1), 0, 1)
| INSERTED64(EXTRACTED32(WORD, 1, 1), 2, 2)
| INSERTED64(EXTRACTED32(WORD, 1, 1), 3, 3)
| INSERTED64(EXTRACTED32(WORD, 1, 1), 4, 4)
| INSERTED64(EXTRACTED32(WORD, 2, 31), 5, (63 - 29)));
}
else {
error("DOUBLE - unknown case\n");
FRT = 0;
}
return FRT;
# Convert 64bit single to 32bit double
unsigned32::function::SINGLE:unsigned64 FRS
unsigned32 WORD;
if (EXTRACTED64(FRS, 1, 11) > 896
|| EXTRACTED64(FRS, 1, 63) == 0) {
/* no denormalization required (includes Zero/Infinity/NaN) */
WORD = (INSERTED32(EXTRACTED64(FRS, 0, 1), 0, 1)
| INSERTED32(EXTRACTED64(FRS, 5, 34), 2, 31));
}
else if (874 <= EXTRACTED64(FRS, 1, 11)
&& EXTRACTED64(FRS, 1, 11) <= 896) {
/* denormalization required */
int sign = EXTRACTED64(FRS, 0, 0);
int exp = EXTRACTED64(FRS, 1, 11) - 1023;
unsigned64 frac = (BIT64(0)
| INSERTED64(EXTRACTED64(FRS, 12, 63), 1, 52));
/* denormalize the operand */
while (exp < -126) {
frac = INSERTED64(EXTRACTED64(frac, 0, 62), 1, 63);
exp += 1;
}
WORD = (INSERTED32(sign, 0, 0)
| INSERTED32(0x00, 1, 8)
| INSERTED32(EXTRACTED64(frac, 1, 23), 9, 31));
}
else {
WORD = 0x0; /* ??? */
}
return WORD;
# round 64bit double to 64bit but single
void::function::Round_Single:cpu *processor, int sign, int *exp, unsigned64 *frac_grx
/* comparisons ignore u bits */
unsigned64 out;
int inc = 0;
int lsb = EXTRACTED64(*frac_grx, 23, 23);
int gbit = EXTRACTED64(*frac_grx, 24, 24);
int rbit = EXTRACTED64(*frac_grx, 25, 25);
int xbit = EXTRACTED64(*frac_grx, 26, 55) != 0;
if ((FPSCR & fpscr_rn) == fpscr_rn_round_to_nearest) {
if (lsb == 1 && gbit == 1) inc = 1;
if (lsb == 0 && gbit == 1 && rbit == 1) inc = 1;
if (lsb == 0 && gbit == 1 && xbit == 1) inc = 1;
}
if ((FPSCR & fpscr_rn) == fpscr_rn_round_towards_pos_infinity) {
if (sign == 0 && gbit == 1) inc = 1;
if (sign == 0 && rbit == 1) inc = 1;
if (sign == 0 && xbit == 1) inc = 1;
}
if ((FPSCR & fpscr_rn) == fpscr_rn_round_towards_neg_infinity) {
if (sign == 1 && gbit == 1) inc = 1;
if (sign == 1 && rbit == 1) inc = 1;
if (sign == 1 && xbit == 1) inc = 1;
}
/* work out addition in low 25 bits of out */
out = EXTRACTED64(*frac_grx, 0, 23) + inc;
*frac_grx = INSERTED64(out, 0, 23);
if (out & BIT64(64 - 23 - 1 - 1)) {
*frac_grx = (BIT64(0) |
INSERTED64(EXTRACTED64(*frac_grx, 0, 22), 1, 23));
*exp = *exp + 1;
}
/* frac_grx[24:52] = 0 already */
FPSCR_SET_FR(inc);
FPSCR_SET_FI(gbit || rbit || xbit);
#
void::function::Round_Integer:cpu *processor, int sign, unsigned64 *frac, int *frac64, int gbit, int rbit, int xbit, fpscreg round_mode
int inc = 0;
if (round_mode == fpscr_rn_round_to_nearest) {
if (*frac64 == 1 && gbit == 1) inc = 1;
if (*frac64 == 0 && gbit == 1 && rbit == 1) inc = 1;
if (*frac64 == 0 && gbit == 1 && xbit == 1) inc = 1;
}
if (round_mode == fpscr_rn_round_towards_pos_infinity) {
if (sign == 0 && gbit == 1) inc = 1;
if (sign == 0 && rbit == 1) inc = 1;
if (sign == 0 && xbit == 1) inc = 1;
}
if (round_mode == fpscr_rn_round_towards_neg_infinity) {
if (sign == 1 && gbit == 1) inc = 1;
if (sign == 1 && rbit == 1) inc = 1;
if (sign == 1 && xbit == 1) inc = 1;
}
/* frac[0:64] = frac[0:64} + inc */
*frac += (*frac64 && inc ? 1 : 0);
*frac64 = (*frac64 + inc) & 0x1;
FPSCR_SET_FR(inc);
FPSCR_SET_FI(gbit | rbit | xbit);
void::function::Round_Float:cpu *processor, int sign, int *exp, unsigned64 *frac, fpscreg round_mode
int carry_out;
int inc = 0;
int lsb = EXTRACTED64(*frac, 52, 52);
int gbit = EXTRACTED64(*frac, 53, 53);
int rbit = EXTRACTED64(*frac, 54, 54);
int xbit = EXTRACTED64(*frac, 55, 55);
if (round_mode == fpscr_rn_round_to_nearest) {
if (lsb == 1 && gbit == 1) inc = 1;
if (lsb == 0 && gbit == 1 && rbit == 1) inc = 1;
if (lsb == 0 && gbit == 1 && xbit == 1) inc = 1;
}
if (round_mode == fpscr_rn_round_towards_pos_infinity) {
if (sign == 0 && gbit == 1) inc = 1;
if (sign == 0 && rbit == 1) inc = 1;
if (sign == 0 && xbit == 1) inc = 1;
}
if (round_mode == fpscr_rn_round_towards_neg_infinity) {
if (sign == 1 && gbit == 1) inc = 1;
if (sign == 1 && rbit == 1) inc = 1;
if (sign == 1 && xbit == 1) inc = 1;
}
/* frac//carry_out = frac + inc */
*frac = (*frac >> 1) + (INSERTED64(inc, 52, 52) >> 1);
carry_out = EXTRACTED64(*frac, 0, 0);
*frac <<= 1;
if (carry_out == 1) *exp = *exp + 1;
FPSCR_SET_FR(inc);
FPSCR_SET_FI(gbit | rbit | xbit);
FPSCR_SET_XX(FPSCR & fpscr_fi);
# conversion of FP to integer
void::function::convert_to_integer:cpu *processor, unsigned_word cia, unsigned64 *frt, unsigned64 frb, fpscreg round_mode, int tgt_precision
int i;
int exp = 0;
unsigned64 frac = 0;
int frac64 = 0;
int gbit = 0;
int rbit = 0;
int xbit = 0;
int sign = EXTRACTED64(frb, 0, 0);
if (EXTRACTED64(frb, 1, 11) == 2047 && EXTRACTED64(frb, 12, 63) == 0)
goto Infinity_Operand;
if (EXTRACTED64(frb, 1, 11) == 2047 && EXTRACTED64(frb, 12, 12) == 0)
goto SNaN_Operand;
if (EXTRACTED64(frb, 1, 11) == 2047 && EXTRACTED64(frb, 12, 12) == 1)
goto QNaN_Operand;
if (EXTRACTED64(frb, 1, 11) > 1086) goto Large_Operand;
if (EXTRACTED64(frb, 1, 11) > 0) exp = EXTRACTED64(frb, 1, 11) - 1023;
if (EXTRACTED64(frb, 1, 11) == 0) exp = -1022;
if (EXTRACTED64(frb, 1, 11) > 0) { /* normal */
frac = BIT64(1) | INSERTED64(EXTRACTED64(frb, 12, 63), 2, 53);
frac64 = 0;
}
if (EXTRACTED64(frb, 1, 11) == 0) { /* denorm */
frac = INSERTED64(EXTRACTED64(frb, 12, 63), 2, 53);
frac64 = 0;
}
gbit = 0, rbit = 0, xbit = 0;
for (i = 1; i <= 63 - exp; i++) {
xbit = rbit | xbit;
rbit = gbit;
gbit = frac64;
frac64 = EXTRACTED64(frac, 63, 63);
frac = INSERTED64(EXTRACTED64(frac, 0, 62), 1, 63);
}
Round_Integer(processor, sign, &frac, &frac64, gbit, rbit, xbit, round_mode);
if (sign == 1) { /* frac[0:64] = ~frac[0:64] + 1 */
frac = ~frac;
frac64 ^= 1;
frac += (frac64 ? 1 : 0);
frac64 = (frac64 + 1) & 0x1;
}
if (tgt_precision == 32 /* can ignore frac64 in compare */
&& (signed64)frac > (signed64)MASK64(33+1, 63)/*2^31-1 >>1*/)
goto Large_Operand;
if (tgt_precision == 64 /* can ignore frac64 in compare */
&& (signed64)frac > (signed64)MASK64(1+1, 63)/*2^63-1 >>1*/)
goto Large_Operand;
if (tgt_precision == 32 /* can ignore frac64 in compare */
&& (signed64)frac < (signed64)MASK64(0, 32+1)/*-2^31 >>1*/)
goto Large_Operand;
if (tgt_precision == 64 /* can ignore frac64 in compare */
&& (signed64)frac < (signed64)MASK64(0, 0+1)/*-2^63 >>1*/)
goto Large_Operand;
FPSCR_SET_XX(FPSCR & fpscr_fi);
if (tgt_precision == 32)
*frt = MASKED64(*frt, 0, 31) | (EXTRACTED64(frac, 33, 63) << 1) | frac64;
if (tgt_precision == 64)
*frt = (EXTRACTED64(frac, 1, 63) << 1) | frac64;
/*FPSCR[fprf] = undefined */
goto Done;
/**/
Infinity_Operand:
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
FPSCR_OR_VX(fpscr_vxcvi);
if ((FPSCR & fpscr_ve) == 0) {
if (tgt_precision == 32) {
if (sign == 0) *frt = MASKED64(*frt, 0, 31) | 0x7FFFFFFF;
if (sign == 1) *frt = MASKED64(*frt, 0, 31) | 0x80000000;
}
else {
if (sign == 0) *frt = MASK64(1, 63); /*0x7FFF_FFFF_FFFF_FFFF*/
if (sign == 1) *frt = BIT64(0); /*0x8000_0000_0000_0000*/
}
/* FPSCR[FPRF] = undefined */
}
goto Done;
/**/
SNaN_Operand:
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
FPSCR_OR_VX(fpscr_vxsnan | fpscr_vxcvi);
if ((FPSCR & fpscr_ve) == 0) {
if (tgt_precision == 32) *frt = MASKED64(*frt, 0, 31) | 0x80000000;
if (tgt_precision == 64) *frt = BIT64(0); /*0x8000_0000_0000_0000*/
/* FPSCR[fprf] = undefined */
}
goto Done;
/**/
QNaN_Operand:
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
FPSCR_OR_VX(fpscr_vxcvi);
if ((FPSCR & fpscr_ve) == 0) {
if (tgt_precision == 32) *frt = MASKED64(*frt, 0, 31) | 0x80000000;
if (tgt_precision == 64) *frt = BIT64(0);/*0x8000_0000_0000_0000*/
/* FPSCR[fprf] = undefined */
}
goto Done;
/**/
Large_Operand:
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
FPSCR_OR_VX(fpscr_vxcvi);
if ((FPSCR & fpscr_ve) == 0) {
if (tgt_precision == 32) {
if (sign == 0) *frt = MASKED64(*frt, 0, 31) | 0x7fffffff;
if (sign == 1) *frt = MASKED64(*frt, 0, 31) | 0x80000000;
}
else {
if (sign == 0) *frt = MASK64(1, 63); /*0x7FFF_FFFF_FFFF_FFFF*/
if (sign == 1) *frt = BIT64(0); /*0x8000_0000_0000_0000*/
}
/* FPSCR[fprf] = undefined */
}
/**/
Done:
# extract out raw fields of a FP number
int::function::sign:unsigned64 FRS
return (MASKED64(FRS, 0, 0)
? -1
: 1);
int::function::biased_exp:unsigned64 frs, int single
if (single)
return EXTRACTED64(frs, 1, 8);
else
return EXTRACTED64(frs, 1, 11);
unsigned64::function::fraction:unsigned64 frs, int single
if (single)
return EXTRACTED64(frs, 9, 31);
else
return EXTRACTED64(frs, 12, 63);
# a number?, each of the below return +1 or -1 (based on sign bit)
# if true.
int::function::is_nor:unsigned64 frs, int single
int exp = biased_exp(frs, single);
return (exp >= 1
&& exp <= (single ? 254 : 2046));
int::function::is_zero:unsigned64 FRS
return (MASKED64(FRS, 1, 63) == 0
? sign(FRS)
: 0);
int::function::is_den:unsigned64 frs, int single
int exp = biased_exp(frs, single);
unsigned64 frac = fraction(frs, single);
return (exp == 0 && frac != 0
? sign(frs)
: 0);
int::function::is_inf:unsigned64 frs, int single
int exp = biased_exp(frs, single);
int frac = fraction(frs, single);
return (exp == (single ? 255 : 2047) && frac == 0
? sign(frs)
: 0);
int::function::is_NaN:unsigned64 frs, int single
int exp = biased_exp(frs, single);
int frac = fraction(frs, single);
return (exp == (single ? 255 : 2047) && frac != 0
? sign(frs)
: 0);
int::function::is_SNaN:unsigned64 frs, int single
return (is_NaN(frs, single)
&& !(frs & (single ? MASK64(9, 9) : MASK64(12, 12)))
? sign(frs)
: 0);
int::function::is_QNaN:unsigned64 frs, int single
return (is_NaN(frs, single) && !is_SNaN(frs, single));
int::function::is_less_than:unsigned64 *fra, unsigned64 *frb
return *(double*)fra < *(double*)frb;
int::function::is_greater_than:unsigned64 *fra, unsigned64 *frb
return *(double*)fra > *(double*)frb;
int::function::is_equan_to:unsigned64 *fra, unsigned64 *frb
return *(double*)fra == *(double*)frb;
# which quiet nan should become the result
unsigned64::function::select_qnan:unsigned64 fra, unsigned64 frb, unsigned64 frc, int instruction_is_frsp, int generate_qnan, int single
unsigned64 frt = 0;
if (is_NaN(fra, single))
frt = fra;
else if (is_NaN(frb, single))
if (instruction_is_frsp)
frt = MASKED64(frb, 0, 34);
else
frt = frb;
else if (is_NaN(frc, single))
frt = frc;
else if (generate_qnan)
frt = MASK64(1, 12); /* 0x7FF8_0000_0000_0000 */
else
error("select_qnan - default reached\n");
return frt;
# detect invalid operation
int::function::is_invalid_operation:cpu *processor, unsigned_word cia, unsigned64 fra, unsigned64 frb, fpscreg check, int single, int negate
int fail = 0;
if ((check & fpscr_vxsnan)
&& (is_SNaN(fra, single) || is_SNaN(frb, single))) {
FPSCR_OR_VX(fpscr_vxsnan);
fail = 1;
}
if ((check & fpscr_vxisi)
&& (is_inf(fra, single) && is_inf(frb, single))
&& ((negate && sign(fra) != sign(frb))
|| (!negate && sign(fra) == sign(frb)))) {
/*FIXME: don't handle inf-inf VS inf+-inf */
FPSCR_OR_VX(fpscr_vxisi);
fail = 1;
}
if ((check & fpscr_vxidi)
&& (is_inf(fra, single) && is_inf(frb, single))) {
FPSCR_OR_VX(fpscr_vxidi);
fail = 1;
}
if ((check & fpscr_vxzdz)
&& (is_zero(fra) && is_zero(frb))) {
FPSCR_OR_VX(fpscr_vxzdz);
fail = 1;
}
if ((check & fpscr_vximz)
&& (is_zero(fra) && is_inf(frb, single))) {
FPSCR_OR_VX(fpscr_vximz);
fail = 1;
}
if ((check & fpscr_vxvc)
&& (is_NaN(fra, single) || is_NaN(frb, single))) {
FPSCR_OR_VX(fpscr_vxvc);
fail = 1;
}
if ((check & fpscr_vxsoft)) {
FPSCR_OR_VX(fpscr_vxsoft);
fail = 1;
}
if ((check & fpscr_vxsqrt)
&& sign(fra) < 0) {
FPSCR_OR_VX(fpscr_vxsqrt);
fail = 1;
}
/* if ((check && fpscr_vxcvi) {
&& (is_inf(fra, single) || is_NaN(fra, single) || is_large(fra, single)))
FPSCR_OR_VX(fpscr_vxcvi);
fail = 1;
}
*/
return fail;
# handle case of invalid operation
void::function::invalid_arithemetic_operation:cpu *processor, unsigned_word cia, unsigned64 *frt, unsigned64 fra, unsigned64 frb, unsigned64 frc, int instruction_is_frsp, int instruction_is_convert_to_64bit, int instruction_is_convert_to_32bit, int single
if (FPSCR & fpscr_ve) {
/* invalid operation exception enabled */
/* FRT unchaged */
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
/* fpscr_FPRF unchanged */
}
else {
/* invalid operation exception disabled */
if (instruction_is_convert_to_64bit) {
error("oopsi");
}
else if (instruction_is_convert_to_32bit) {
error("oopsi");
}
else { /* arrith, frsp */
*frt = select_qnan(fra, frb, frc,
instruction_is_frsp, 0/*generate*/, single);
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
FPSCR_SET_FPRF(fpscr_rf_quiet_nan);
}
}
#
# I.2.4.1 Branch Instructions
#
0.18,6.LI,30.AA,31.LK:I:t::Branch
*601: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603e:PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
if (AA) NIA = IEA(EXTS(LI_0b00));
else NIA = IEA(CIA + EXTS(LI_0b00));
if (LK) LR = (spreg)CIA+4;
model_branches(cpu_model(processor), 1, -1);
0.16,6.BO,11.BI,16.BD,30.AA,31.LK:B:t::Branch Conditional
*601: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603e:PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
int M, ctr_ok, cond_ok, succeed;
if (! BO{0})
model_wait_for_cr(cpu_model(processor), BIT32_BI);
if (is_64bit_implementation && is_64bit_mode) M = 0;
else M = 32;
if (!BO{2}) CTR = CTR - 1;
ctr_ok = BO{2} || ((MASKED(CTR, M, 63) != 0) != (BO{3}));
cond_ok = BO{0} || ((CR{BI}) == (BO{1}));
if (ctr_ok && cond_ok) {
if (AA) NIA = IEA(EXTS(BD_0b00));
else NIA = IEA(CIA + EXTS(BD_0b00));
succeed = 1;
}
else
succeed = 0;
if (LK) LR = (spreg)IEA(CIA + 4);
model_branches(cpu_model(processor), succeed, BO);
if (! BO{0}) {
int reverse;
if (BO{4}) { /* branch prediction bit set, reverse sense of test */
reverse = EXTS(BD_0b00) < 0;
} else { /* branch prediction bit not set */
reverse = EXTS(BD_0b00) >= 0;
}
model_branch_predict(cpu_model(processor), reverse ? !succeed : succeed);
}
0.19,6.BO,11.BI,16./,21.16,31.LK:XL:t::Branch Conditional to Link Register
*601: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603e:PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
int M, ctr_ok, cond_ok, succeed;
if (is_64bit_implementation && is_64bit_mode) M = 0;
else M = 32;
if (! BO{0})
model_wait_for_cr(cpu_model(processor), BIT32_BI);
if (!BO{2}) CTR = CTR - 1;
ctr_ok = BO{2} || ((MASKED(CTR, M, 63) != 0) != BO{3});
cond_ok = BO{0} || (CR{BI} == BO{1});
if (ctr_ok && cond_ok) {
NIA = IEA(LR_0b00);
succeed = 1;
}
else
succeed = 0;
if (LK) LR = (spreg)IEA(CIA + 4);
model_branches(cpu_model(processor), succeed, BO);
if (! BO{0})
model_branch_predict(cpu_model(processor), BO{4} ? !succeed : succeed);
0.19,6.BO,11.BI,16./,21.528,31.LK:XL:t::Branch Conditional to Count Register
*601: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*603e:PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
int cond_ok, succeed;
if (! BO{0})
model_wait_for_cr(cpu_model(processor), BIT32_BI);
cond_ok = BO{0} || (CR{BI} == BO{1});
if (cond_ok) {
NIA = IEA(CTR_0b00);
succeed = 1;
}
else
succeed = 0;
if (LK) LR = (spreg)IEA(CIA + 4);
model_branches(cpu_model(processor), succeed, BO);
if (! BO{0})
model_branch_predict(cpu_model(processor), BO{4} ? !succeed : succeed);
#
# I.2.4.2 System Call Instruction
#
0.17,6./,11./,16./,30.1,31./:SC:t::System Call
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
model_serialize(my_index, cpu_model(processor));
system_call_interrupt(processor, cia);
#
# I.2.4.3 Condition Register Logical Instructions
#
0.19,6.BT,11.BA,16.BB,21.257,31./:XL::crand:Condition Register AND
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, CR{BA} && CR{BB});
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
0.19,6.BT,11.BA,16.BB,21.449,31./:XL::cror:Condition Register OR
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, CR{BA} || CR{BB});
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
0.19,6.BT,11.BA,16.BB,21.193,31./:XL::crxor:Condition Register XOR
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, CR{BA} != CR{BB});
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
0.19,6.BT,11.BA,16.BB,21.225,31./:XL::crnand:Condition Register NAND
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, !(CR{BA} && CR{BB}));
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
0.19,6.BT,11.BA,16.BB,21.33,31./:XL::crnor:Condition Register NOR
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, !(CR{BA} || CR{BB}));
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
0.19,6.BT,11.BA,16.BB,21.289,31./:XL::creqv:Condition Register Equivalent
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, CR{BA} == CR{BB});
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
0.19,6.BT,11.BA,16.BB,21.129,31./:XL::crandc:Condition Register AND with Complement
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, CR{BA} && !CR{BB});
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
0.19,6.BT,11.BA,16.BB,21.417,31./:XL::crorc:Condition Register OR with Complement
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
BLIT32(CR, BT, CR{BA} || !CR{BB});
ppc_insn_cr2(my_index, processor, cpu_model(processor), BT, BIT32_BA, BIT32_BB);
#
# I.2.4.4 Condition Register Field Instruction
#
0.19,6.BF,9./,11.BFA,14./,16./,21.0,31./:XL:::Move Condition Register Field
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 1, 0
MBLIT32(CR, 4*BF, 4*BF+3, EXTRACTED32(CR, 4*BFA, 4*BFA+3));
ppc_insn_cr1(my_index, processor, cpu_model(processor), BF, BFA);
#
# I.3.3.2 Fixed-Point Load Instructions
#
0.34,6.RT,11.RA,16.D:D:::Load Byte and Zero
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
*rT = MEM(unsigned, EA, 1);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.RT,11.RA,16.RB,21.87,31./:X:::Load Byte and Zero Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*rT = MEM(unsigned, EA, 1);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.35,6.RT,11.RA,16.D:D:::Load Byte and Zero with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
*rT = MEM(unsigned, EA, 1);
*rA = EA;
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK, 0);
0.31,6.RT,11.RA,16.RB,21.119,31./:X:::Load Byte and Zero with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
*rT = MEM(unsigned, EA, 1);
*rA = EA;
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK | RB_BITMASK, 0);
0.40,6.RT,11.RA,16.D:D:::Load Halfword and Zero
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
*rT = MEM(unsigned, EA, 2);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.RT,11.RA,16.RB,21.279,31./:X:::Load Halfword and Zero Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*rT = MEM(unsigned, EA, 2);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.41,6.RT,11.RA,16.D:D:::Load Halfword and Zero with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
*rT = MEM(unsigned, EA, 2);
*rA = EA;
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK, 0);
0.31,6.RT,11.RA,16.RB,21.311,31./:X:::Load Halfword and Zero with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
*rT = MEM(unsigned, EA, 2);
*rA = EA;
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK | RB_BITMASK, 0);
0.42,6.RT,11.RA,16.D:D:::Load Halfword Algebraic
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
*rT = MEM(signed, EA, 2);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.RT,11.RA,16.RB,21.343,31./:X:::Load Halfword Algebraic Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*rT = MEM(signed, EA, 2);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.43,6.RT,11.RA,16.D:D:::Load Halfword Algebraic with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
*rT = MEM(signed, EA, 2);
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK, 0);
0.31,6.RT,11.RA,16.RB,21.375,31./:X:::Load Halfword Algebraic with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
*rT = MEM(signed, EA, 2);
*rA = EA;
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK | RB_BITMASK, 0);
0.32,6.RT,11.RA,16.D:D:::Load Word and Zero
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
*rT = MEM(unsigned, EA, 4);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.RT,11.RA,16.RB,21.23,31./:X:::Load Word and Zero Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*rT = MEM(unsigned, EA, 4);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.33,6.RT,11.RA,16.D:D:::Load Word and Zero with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
*rT = MEM(unsigned, EA, 4);
*rA = EA;
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK, 0);
0.31,6.RT,11.RA,16.RB,21.55,31./:X:::Load Word and Zero with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
unsigned_word EA;
if (RA == 0 || RA == RT)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
*rT = MEM(unsigned, EA, 4);
*rA = EA;
PPC_INSN_INT(RT_BITMASK | RA_BITMASK, RA_BITMASK | RB_BITMASK, 0);
0.58,6.RT,11.RA,16.DS,30.2:DS:64::Load Word Algebraic
# unsigned_word b;
# unsigned_word EA;
# if (RA == 0) b = 0;
# else b = *rA;
# EA = b + EXTS(DS_0b00);
# *rT = MEM(signed, EA, 4);
0.31,6.RT,11.RA,16.RB,21.341,31./:X:64::Load Word Algebraic Indexed
# unsigned_word b;
# unsigned_word EA;
# if (RA == 0) b = 0;
# else b = *rA;
# EA = b + *rB;;
# *rT = MEM(signed, EA, 4);
0.31,6.RT,11.RA,16.RB,21.373,31./:X:64::Load Word Algebraic with Update Indexed
# unsigned_word EA;
# if (RA == 0 || RA == RT)
# program_interrupt(processor, cia
# illegal_instruction_program_interrupt);
# EA = *rA + *rB;
# *rT = MEM(signed, EA, 4);
# *rA = EA;
0.58,6.RT,11.RA,16.DS,30.0:DS:64::Load Doubleword
# unsigned_word b;
# unsigned_word EA;
# if (RA == 0) b = 0;
# else b = *rA;
# EA = b + EXTS(DS_0b00);
# *rT = MEM(unsigned, EA, 8);
0.31,6.RT,11.RA,16.RB,21.21,31./:X:64::Load Doubleword Indexed
# unsigned_word b;
# unsigned_word EA;
# if (RA == 0) b = 0;
# else b = *rA;
# EA = b + *rB;
# *rT = MEM(unsigned, EA, 8);
0.58,6.RT,11.RA,16.DS,30.1:DS:64::Load Doubleword with Update
# unsigned_word EA;
# if (RA == 0 || RA == RT)
# program_interrupt(processor, cia
# illegal_instruction_program_interrupt);
# EA = *rA + EXTS(DS_0b00);
# *rT = MEM(unsigned, EA, 8);
# *rA = EA;
0.31,6.RT,11.RA,16.RB,21.53,31./:DS:64::Load Doubleword with Update Indexed
# unsigned_word EA;
# if (RA == 0 || RA == RT)
# program_interrupt(processor, cia
# illegal_instruction_program_interrupt);
# EA = *rA + *rB;
# *rT = MEM(unsigned, EA, 8);
# *rA = EA;
#
# I.3.3.3 Fixed-Point Store Instructions
#
0.38,6.RS,11.RA,16.D:D:::Store Byte
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
STORE(EA, 1, *rS);
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RS_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.215,31./:X:::Store Byte Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
STORE(EA, 1, *rS);
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK | RS_BITMASK, 0);
0.39,6.RS,11.RA,16.D:D:::Store Byte with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
STORE(EA, 1, *rS);
*rA = EA;
PPC_INSN_INT(RA_BITMASK, RA_BITMASK | RS_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.247,31./:X:::Store Byte with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
STORE(EA, 1, *rS);
*rA = EA;
PPC_INSN_INT(RA_BITMASK, RA_BITMASK | RB_BITMASK | RS_BITMASK, 0);
0.44,6.RS,11.RA,16.D:D:::Store Half Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
STORE(EA, 2, *rS);
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RS_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.407,31./:X:::Store Half Word Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
STORE(EA, 2, *rS);
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK | RS_BITMASK, 0);
0.45,6.RS,11.RA,16.D:D:::Store Half Word with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
STORE(EA, 2, *rS);
*rA = EA;
PPC_INSN_INT(RA_BITMASK, RA_BITMASK | RS_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.439,31./:X:::Store Half Word with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
STORE(EA, 2, *rS);
*rA = EA;
PPC_INSN_INT(RA_BITMASK, RA_BITMASK | RB_BITMASK | RS_BITMASK, 0);
0.36,6.RS,11.RA,16.D:D:::Store Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
STORE(EA, 4, *rS);
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RS_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.151,31./:X:::Store Word Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
STORE(EA, 4, *rS);
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK | RS_BITMASK, 0);
0.37,6.RS,11.RA,16.D:D:::Store Word with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
STORE(EA, 4, *rS);
*rA = EA;
PPC_INSN_INT(RA_BITMASK, RA_BITMASK | RS_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.183,31./:X:::Store Word with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
STORE(EA, 4, *rS);
*rA = EA;
PPC_INSN_INT(RA_BITMASK, RA_BITMASK | RB_BITMASK | RS_BITMASK, 0);
0.62,6.RS,11.RA,16.DS,30.0:DS:64::Store Doubleword
# unsigned_word b;
# unsigned_word EA;
# if (RA == 0) b = 0;
# else b = *rA;
# EA = b + EXTS(DS_0b00);
# STORE(EA, 8, *rS);
0.31,6.RS,11.RA,16.RB,21.149,31./:X:64::Store Doubleword Indexed
# unsigned_word b;
# unsigned_word EA;
# if (RA == 0) b = 0;
# else b = *rA;
# EA = b + *rB;
# STORE(EA, 8, *rS);
0.62,6.RS,11.RA,16.DS,30.1:DS:64::Store Doubleword with Update
# unsigned_word EA;
# if (RA == 0)
# program_interrupt(processor, cia
# illegal_instruction_program_interrupt);
# EA = *rA + EXTS(DS_0b00);
# STORE(EA, 8, *rS);
# *rA = EA;
0.31,6.RS,11.RA,16.RB,21.181,31./:X:64::Store Doubleword with Update Indexed
# unsigned_word EA;
# if (RA == 0)
# program_interrupt(processor, cia
# illegal_instruction_program_interrupt);
# EA = *rA + *rB;
# STORE(EA, 8, *rS);
# *rA = EA;
#
# I.3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions
#
0.31,6.RT,11.RA,16.RB,21.790,31./:X:::Load Halfword Byte-Reverse Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*rT = SWAP_2(MEM(unsigned, EA, 2));
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.31,6.RT,11.RA,16.RB,21.534,31./:X:::Load Word Byte-Reverse Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*rT = SWAP_4(MEM(unsigned, EA, 4));
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.918,31./:X:::Store Half Word Byte-Reversed Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
STORE(EA, 2, SWAP_2(*rS));
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK | RS_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.662,31./:X:::Store Word Byte-Reversed Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
STORE(EA, 4, SWAP_4(*rS));
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK | RS_BITMASK, 0);
#
# I.3.3.5 Fixed-Point Load and Store Multiple Instrctions
#
0.46,6.RT,11.RA,16.D:D:be::Load Multiple Word
0.47,6.RS,11.RA,16.D:D:be::Store Multiple Word
#
# I.3.3.6 Fixed-Point Move Assist Instructions
#
0.31,6.RT,11.RA,16.NB,21.597,31./:X:be::Load String Word Immediate
0.31,6.RT,11.RA,16.RB,21.533,31./:X:be::Load String Word Indexed
0.31,6.RS,11.RA,16.NB,21.725,31./:X:be::Store String Word Immedate
0.31,6.RS,11.RA,16.RB,21.661,31./:X:be::Store String Word Indexed
#
# I.3.3.7 Storage Synchronization Instructions
#
# HACK: Rather than monitor addresses looking for a reason
# to cancel a reservation. This code instead keeps
# a copy of the data read from memory. Before performing
# a store, the memory area is checked to see if it has
# been changed.
0.31,6.RT,11.RA,16.RB,21.20,31./:X:::Load Word And Reserve Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*603: PPC_UNIT_LSU, PPC_UNIT_IU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_IU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
RESERVE = 1;
RESERVE_ADDR = real_addr(EA, 1/*is-read?*/);
RESERVE_DATA = MEM(unsigned, EA, 4);
*rT = RESERVE_DATA;
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.31,6.RT,11.RA,16.RB,21.84,31./:X:64::Load Doubleword And Reserve Indexed
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
RESERVE = 1;
RESERVE_ADDR = real_addr(EA, 1/*is-read?*/);
RESERVE_DATA = MEM(unsigned, EA, 8);
*rT = RESERVE_DATA;
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.31,6.RS,11.RA,16.RB,21.150,31.1:X:::Store Word Conditional Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 8, 8, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 8, 8, 0
*604: PPC_UNIT_BPU, PPC_UNIT_BPU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
if (RESERVE) {
if (RESERVE_ADDR == real_addr(EA, 0/*is-read?*/)
&& /*HACK*/ RESERVE_DATA == MEM(unsigned, EA, 4)) {
STORE(EA, 4, *rS);
CR_SET_XER_SO(0, cr_i_zero);
}
else {
/* ment to randomly to store, we never do! */
CR_SET_XER_SO(0, 0);
}
RESERVE = 0;
}
else {
CR_SET_XER_SO(0, 0);
}
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK | RS_BITMASK, 1/*Rc*/);
0.31,6.RS,11.RA,16.RB,21.214,31.1:X:64::Store Doubleword Conditional Indexed
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
if (RESERVE) {
if (RESERVE_ADDR == real_addr(EA, 0/*is-read?*/)
&& /*HACK*/ RESERVE_DATA == MEM(unsigned, EA, 8)) {
STORE(EA, 8, *rS);
CR_SET_XER_SO(0, cr_i_zero);
}
else {
/* ment to randomly to store, we never do */
CR_SET_XER_SO(0, 0);
}
RESERVE = 0;
}
else {
CR_SET_XER_SO(0, 0);
}
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK | RS_BITMASK, 1/*Rc*/);
0.31,6./,11./,16./,21.598,31./:X::sync:Synchronize
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 1, 0
/* do nothing */
#
# I.3.3.9 Fixed-Point Arithmetic Instructions
#
0.14,6.RT,11.RA,16.SI:D:T::Add Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
if (RA_is_0) *rT = EXTS(SI);
else *rT = *rA + EXTS(SI);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1), 0);
0.15,6.RT,11.RA,16.SI:D:::Add Immediate Shifted
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
if (RA_is_0) *rT = EXTS(SI) << 16;
else *rT = *rA + (EXTS(SI) << 16);
PPC_INSN_INT(RT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.RT,11.RA,16.RB,21.OE,22.266,31.Rc:XO:::Add
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_ADD(*rB);
ALU_END(*rT, 0/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21.OE,22.40,31.Rc:XO:::Subtract From
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_NOT;
ALU_ADD(*rB);
ALU_ADD(1);
ALU_END(*rT, 0/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.12,6.RT,11.RA,16.SI:D:::Add Immediate Carrying
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_ADD(EXTS(SI));
ALU_END(*rT, 1/*CA*/, 0/*OE*/, 0/*Rc*/);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK, 0/*Rc*/);
0.13,6.RT,11.RA,16.SI:D:::Add Immediate Carrying and Record
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_ADD(EXTS(SI));
ALU_END(*rT, 1/*CA*/, 0/*OE*/, 1/*Rc*/);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK, 1/*Rc*/);
0.8,6.RT,11.RA,16.SI:D:::Subtract From Immediate Carrying
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_NOT;
ALU_ADD(EXTS(SI));
ALU_ADD(1);
ALU_END(*rT, 1/*CA*/, 0/*OE*/, 0/*Rc*/);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK, 0/*Rc*/);
0.31,6.RT,11.RA,16.RB,21.OE,22.10,31.Rc:XO:::Add Carrying
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_ADD(*rB);
ALU_END(*rT, 1/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21.OE,22.8,31.Rc:XO:::Subtract From Carrying
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
/* RT <- ~RA + RB + 1 === RT <- RB - RA */
ALU_BEGIN(*rA);
ALU_NOT;
ALU_ADD(*rB);
ALU_ADD(1);
ALU_END(*rT, 1/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21.OE,22.138,31.Rc:XO:::Add Extended
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_ADD(*rB);
ALU_ADD_CA;
ALU_END(*rT, 1/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21.OE,22.136,31.Rc:XO:::Subtract From Extended
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_NOT;
ALU_ADD(*rB);
ALU_ADD_CA;
ALU_END(*rT, 1/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16./,21.OE,22.234,31.Rc:XO:::Add to Minus One Extended
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
# ALU_BEGIN(*rA);
# ALU_ADD_CA;
# ALU_SUB(1);
# ALU_END(*rT, 1/*CA*/, OE, Rc);
0.31,6.RT,11.RA,16./,21.OE,22.232,31.Rc:XO:::Subtract From Minus One Extended
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
# ALU_BEGIN(*rA);
# ALU_NOT;
# ALU_ADD_CA;
# ALU_SUB(1);
# ALU_END(*rT, 1/*CA*/, OE, Rc);
0.31,6.RT,11.RA,16./,21.OE,22.202,31.Rc:XO::addze:Add to Zero Extended
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_ADD_CA;
ALU_END(*rT, 1/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK, Rc);
0.31,6.RT,11.RA,16./,21.OE,22.200,31.Rc:XO:::Subtract from Zero Extended
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_NOT;
ALU_ADD_CA;
ALU_END(*rT, 1/*CA*/, OE, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK, Rc);
0.31,6.RT,11.RA,16./,21.OE,22.104,31.Rc:XO:::Negate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
ALU_BEGIN(*rA);
ALU_NOT;
ALU_ADD(1);
ALU_END(*rT,0/*CA*/,OE,Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK, Rc);
0.7,6.RT,11.RA,16.SI:D::mulli:Multiply Low Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 5, 5, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 3, 3, 0
signed_word prod = *rA * EXTS(SI);
*rT = prod;
PPC_INSN_INT(RT_BITMASK, RA_BITMASK, 0/*Rc*/);
0.31,6.RT,11.RA,16.RB,21.OE,22.233,31.Rc:D:64::Multiply Low Doubleword
0.31,6.RT,11.RA,16.RB,21.OE,22.235,31.Rc:XO::mullw:Multiply Low Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 5, 5, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 5, 5, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 5, 5, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 4, 4, 0
signed64 a = (signed32)(*rA);
signed64 b = (signed32)(*rB);
signed64 prod = a * b;
signed_word t = prod;
*rT = *rA * *rB;
if (t != prod && OE)
XER |= (xer_overflow | xer_summary_overflow);
CR0_COMPARE(t, 0, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21./,22.73,31.Rc:XO:64::Multiply High Doubleword
0.31,6.RT,11.RA,16.RB,21./,22.75,31.Rc:XO::mulhw:Multiply High Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 5, 5, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 5, 5, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 5, 5, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 4, 4, 0
signed64 a = (signed32)(*rA);
signed64 b = (signed32)(*rB);
signed64 prod = a * b;
signed_word t = EXTRACTED64(prod, 0, 31);
*rT = t;
CR0_COMPARE(t, 0, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21./,22.9,31.Rc:XO:64::Multiply High Doubleword Unsigned
0.31,6.RT,11.RA,16.RB,21./,22.11,31.Rc:XO::milhwu:Multiply High Word Unsigned
*601: PPC_UNIT_IU, PPC_UNIT_IU, 10, 10, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 6, 6, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 6, 6, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 4, 4, 0
unsigned64 a = (unsigned32)(*rA);
unsigned64 b = (unsigned32)(*rB);
unsigned64 prod = a * b;
signed_word t = EXTRACTED64(prod, 0, 31);
*rT = t;
CR0_COMPARE(t, 0, Rc);
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21.OE,22.489,31.Rc:XO:64::Divide Doubleword
0.31,6.RT,11.RA,16.RB,21.OE,22.491,31.Rc:XO::divw:Divide Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 36, 36, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 37, 37, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 37, 37, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 20, 20, 0
signed64 dividend = (signed32)(*rA);
signed64 divisor = (signed32)(*rB);
if (divisor == 0 /* nb 0x8000..0 is sign extended */
|| (dividend == 0x80000000 && divisor == -1)) {
if (OE)
XER |= (xer_overflow | xer_summary_overflow);
CR0_COMPARE(0, 0, Rc);
}
else {
signed64 quotent = dividend / divisor;
*rT = quotent;
CR0_COMPARE((signed_word)quotent, 0, Rc);
}
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
0.31,6.RT,11.RA,16.RB,21.OE,22.457,31.Rc:XO:64::Divide Doubleword Unsigned
0.31,6.RT,11.RA,16.RB,21.OE,22.459,31.Rc:XO::divwu:Divide Word Unsigned
*601: PPC_UNIT_IU, PPC_UNIT_IU, 36, 36, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 37, 37, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 37, 37, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 20, 20, 0
unsigned64 dividend = (unsigned32)(*rA);
unsigned64 divisor = (unsigned32)(*rB);
if (divisor == 0) {
if (OE)
XER |= (xer_overflow | xer_summary_overflow);
CR0_COMPARE(0, 0, Rc);
}
else {
unsigned64 quotent = dividend / divisor;
*rT = quotent;
CR0_COMPARE((signed_word)quotent, 0, Rc);
}
PPC_INSN_INT(RT_BITMASK, RA_BITMASK | RB_BITMASK, Rc);
#
# I.3.3.10 Fixed-Point Compare Instructions
#
0.11,6.BF,9./,10.L,11.RA,16.SI:D:::Compare Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
if (!is_64bit_mode && L)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
signed_word a;
signed_word b = EXTS(SI);
if (L == 0)
a = EXTENDED(*rA);
else
a = *rA;
CR_COMPARE(BF, a, b);
}
PPC_INSN_INT_CR(0, RA_BITMASK, BF_BITMASK);
0.31,6.BF,9./,10.L,11.RA,16.RB,21.0,31./:X:::Compare
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
if (!is_64bit_mode && L)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
signed_word a;
signed_word b;
if (L == 0) {
a = EXTENDED(*rA);
b = EXTENDED(*rB);
}
else {
a = *rA;
b = *rB;
}
CR_COMPARE(BF, a, b);
}
PPC_INSN_INT_CR(0, RA_BITMASK | RB_BITMASK, BF_BITMASK);
0.10,6.BF,9./,10.L,11.RA,16.UI:D:::Compare Logical Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
if (!is_64bit_mode && L)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
unsigned_word a;
unsigned_word b = UI;
if (L == 0)
a = MASKED(*rA, 32, 63);
else
a = *rA;
CR_COMPARE(BF, a, b);
}
PPC_INSN_INT_CR(0, RA_BITMASK, BF_BITMASK);
0.31,6.BF,9./,10.L,11.RA,16.RB,21.32,31./:X:::Compare Logical
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
if (!is_64bit_mode && L)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
unsigned_word a;
unsigned_word b;
if (L == 0) {
a = MASKED(*rA, 32, 63);
b = MASKED(*rB, 32, 63);
}
else {
a = *rA;
b = *rB;
}
CR_COMPARE(BF, a, b);
}
PPC_INSN_INT_CR(0, RA_BITMASK | RB_BITMASK, BF_BITMASK);
#
# I.3.3.11 Fixed-Point Trap Instructions
#
0.2,6.TO,11.RA,16.SI:D:64::Trap Doubleword Immediate
if (!is_64bit_mode)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
signed_word a = *rA;
signed_word b = EXTS(SI);
if ((a < b && TO{0})
|| (a > b && TO{1})
|| (a == b && TO{2})
|| ((unsigned_word)a < (unsigned_word)b && TO{3})
|| ((unsigned_word)a > (unsigned_word)b && TO{4})
)
program_interrupt(processor, cia,
trap_program_interrupt);
}
0.3,6.TO,11.RA,16.SI:D:::Trap Word Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
signed_word a = EXTENDED(*rA);
signed_word b = EXTS(SI);
if ((a < b && TO{0})
|| (a > b && TO{1})
|| (a == b && TO{2})
|| ((unsigned_word)a < (unsigned_word)b && TO{3})
|| ((unsigned_word)a > (unsigned_word)b && TO{4})
)
program_interrupt(processor, cia,
trap_program_interrupt);
0.31,6.TO,11.RA,16.RB,21.68,31./:X:64::Trap Doubleword
if (!is_64bit_mode)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
signed_word a = *rA;
signed_word b = *rB;
if ((a < b && TO{0})
|| (a > b && TO{1})
|| (a == b && TO{2})
|| ((unsigned_word)a < (unsigned_word)b && TO{3})
|| ((unsigned_word)a > (unsigned_word)b && TO{4})
)
program_interrupt(processor, cia,
trap_program_interrupt);
}
0.31,6.TO,11.RA,16.RB,21.4,31./:X:::Trap Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
signed_word a = EXTENDED(*rA);
signed_word b = EXTENDED(*rB);
if (TO == 12 && rA == rB) {
ITRACE(trace_breakpoint, ("breakpoint\n"));
cpu_halt(processor, cia, was_trap, 0);
}
else if ((a < b && TO{0})
|| (a > b && TO{1})
|| (a == b && TO{2})
|| ((unsigned_word)a < (unsigned_word)b && TO{3})
|| ((unsigned_word)a > (unsigned_word)b && TO{4})
)
program_interrupt(processor, cia,
trap_program_interrupt);
#
# I.3.3.12 Fixed-Point Logical Instructions
#
0.28,6.RS,11.RA,16.UI:D:::AND Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS & UI;
CR0_COMPARE(*rA, 0, 1/*Rc*/);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, 1/*Rc*/);
0.29,6.RS,11.RA,16.UI:D:::AND Immediate Shifted
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS & (UI << 16);
CR0_COMPARE(*rA, 0, 1/*Rc*/);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, 1/*Rc*/);
0.24,6.RS,11.RA,16.UI:D:::OR Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS | UI;
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, 0/*Rc*/);
0.25,6.RS,11.RA,16.UI:D:::OR Immediate Shifted
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS | (UI << 16);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, 0/*Rc*/);
0.26,6.RS,11.RA,16.UI:D:::XOR Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS ^ UI;
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, 0/*Rc*/);
0.27,6.RS,11.RA,16.UI:D:::XOR Immediate Shifted
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS ^ (UI << 16);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, 0/*Rc*/);
0.31,6.RS,11.RA,16.RB,21.28,31.Rc:X:::AND
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS & *rB;
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK | RB_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.444,31.Rc:X:::OR
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS | *rB;
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK | RB_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.316,31.Rc:X:::XOR
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS ^ *rB;
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK | RB_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.476,31.Rc:X:::NAND
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = ~(*rS & *rB);
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK | RB_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.124,31.Rc:X:::NOR
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = ~(*rS | *rB);
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK | RB_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.284,31.Rc:X:::Equivalent
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
# *rA = ~(*rS ^ *rB); /* A === B */
# CR0_COMPARE(*rA, 0, Rc);
0.31,6.RS,11.RA,16.RB,21.60,31.Rc:X:::AND with Complement
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS & ~*rB;
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK | RB_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.412,31.Rc:X:::OR with Complement
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = *rS | ~*rB;
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK | RB_BITMASK, Rc);
0.31,6.RS,11.RA,16./,21.954,31.Rc:X::extsb:Extend Sign Byte
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = (signed_word)(signed8)*rS;
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
0.31,6.RS,11.RA,16./,21.922,31.Rc:X::extsh:Extend Sign Half Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
*rA = (signed_word)(signed16)*rS;
CR0_COMPARE(*rA, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
0.31,6.RS,11.RA,16./,21.986,31.Rc:X:64::Extend Sign Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
# *rA = (signed_word)(signed32)*rS;
# CR0_COMPARE(*rA, 0, Rc);
0.31,6.RS,11.RA,16./,21.58,31.Rc:X:64::Count Leading Zeros Doubleword
# int count = 0;
# unsigned64 mask = BIT64(0);
# unsigned64 source = *rS;
# while (!(source & mask) && mask != 0) {
# mask >>= 1;
# count++;
# }
# *rA = count;
# CR0_COMPARE(count, 0, Rc); /* FIXME - is this correct */
0.31,6.RS,11.RA,16./,21.26,31.Rc:X:::Count Leading Zeros Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
int count = 0;
unsigned32 mask = BIT32(0);
unsigned32 source = *rS;
while (!(source & mask) && mask != 0) {
mask >>= 1;
count++;
}
*rA = count;
CR0_COMPARE(count, 0, Rc); /* FIXME - is this correct */
#
# I.3.3.13 Fixed-Point Rotate and Shift Instructions
#
0.30,6.RS,11.RA,16.sh_0_4,21.mb,27.0,30.sh_5,31.Rc:MD:64::Rotate Left Doubleword Immediate then Clear Left
# long n = (sh_5 << 4) | sh_0_4;
# unsigned_word r = ROTL64(*rS, n);
# long b = (mb_5 << 4) | mb_0_4;
# unsigned_word m = MASK(b, 63);
# signed_word result = r & m;
# *rA = result;
# CR0_COMPARE(result, 0, Rc); /* FIXME - is this correct */
0.30,6.RS,11.RA,16.sh_0_4,21.me,27.1,30.sh_5,31.Rc:MD:64::Rotate Left Doubleword Immediate then Clear Right
# long n = (sh_5 << 4) | sh_0_4;
# unsigned_word r = ROTL64(*rS, n);
# long e = (me_5 << 4) | me_0_4;
# unsigned_word m = MASK(0, e);
# signed_word result = r & m;
# *rA = result;
# CR0_COMPARE(result, 0, Rc); /* FIXME - is this correct */
0.30,6.RS,11.RA,16.sh_0_4,21.mb,27.2,30.sh_5,31.Rc:MD:64::Rotate Left Doubleword Immediate then Clear
# long n = (sh_5 << 4) | sh_0_4;
# unsigned_word r = ROTL64(*rS, n);
# long b = (mb_5 << 4) | mb_0_4;
# unsigned_word m = MASK(0, (64-n));
# signed_word result = r & m;
# *rA = result;
# CR0_COMPARE(result, 0, Rc); /* FIXME - is this correct */
0.21,6.RS,11.RA,16.SH,21.MB,26.ME,31.Rc:M:::Rotate Left Word Immediate then AND with Mask
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
long n = SH;
unsigned32 s = *rS;
unsigned32 r = ROTL32(s, n);
unsigned32 m = MASK(MB+32, ME+32);
signed_word result = r & m;
*rA = result;
CR0_COMPARE(result, 0, Rc);
ITRACE(trace_alu,
("n=%ld, s=0x%lx, r=0x%lx, m=0x%lx, result=0x%lx, cr=0x%lx\n",
n, (unsigned long)s, (unsigned long)r, (unsigned long)m,
(unsigned long)result, (unsigned long)CR));
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
0.30,6.RS,11.RA,16.RB,21.mb,27.8,31.Rc:MDS:64::Rotate Left Doubleword then Clear Left
# long n = MASKED(*rB, 58, 63);
# unsigned_word r = ROTL64(*rS, n);
# long b = (mb_5 << 4) | mb_0_4;
# unsigned_word m = MASK(b, 63);
# signed_word result = r & m;
# *rA = result;
# CR0_COMPARE(result, 0, Rc);
0.30,6.RS,11.RA,16.RB,21.me,27.9,31.Rc:MDS:64::Rotate Left Doubleword then Clear Right
# long n = MASKED(*rB, 58, 63);
# unsigned_word r = ROTL64(*rS, n);
# long e = (me_5 << 4) | me_0_4;
# unsigned_word m = MASK(0, e);
# signed_word result = r & m;
# *rA = result;
# CR0_COMPARE(result, 0, Rc);
0.23,6.RS,11.RA,16.RB,21.MB,26.ME,31.Rc:M:::Rotate Left Word then AND with Mask
# long n = MASKED(*rB, 59, 63);
# unsigned32 r = ROTL32(*rS, n);
# unsigned32 m = MASK(MB+32, ME+32);
# signed_word result = r & m;
# *rA = result;
# CR0_COMPARE(result, 0, Rc);
0.30,6.RS,11.RA,16.sh_0_4,21.mb,27.3,30.sh_5,31.Rc:MD:64::Rotate Left Doubleword Immediate then Mask Insert
# long n = (sh_5 << 4) | sh_0_4;
# unsigned_word r = ROTL64(*rS, n);
# long b = (mb_5 << 4) | mb_0_4;
# unsigned_word m = MASK(b, (64-n));
# signed_word result = (r & m) | (*rA & ~m)
# *rA = result;
# CR0_COMPARE(result, 0, Rc);
0.20,6.RS,11.RA,16.SH,21.MB,26.ME,31.Rc:M::rlwimi:Rotate Left Word Immediate then Mask Insert
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
long n = SH;
unsigned32 r = ROTL32(*rS, n);
unsigned32 m = MASK(MB+32, ME+32);
signed_word result = (r & m) | (*rA & ~m);
*rA = result;
ITRACE(trace_alu, (": n=%ld *rS=0x%lx r=0x%lx m=0x%lx result=0x%lx\n",
n, (unsigned long)*rS, (unsigned long)r, (unsigned long)m,
(unsigned long)result));
CR0_COMPARE(result, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.27,31.Rc:X:64::Shift Left Doubleword
0.31,6.RS,11.RA,16.RB,21.24,31.Rc:X:::Shift Left Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
int n = MASKED(*rB, 59, 63);
unsigned32 source = *rS;
signed_word shifted;
if (n < 32)
shifted = (source << n);
else
shifted = 0;
*rA = shifted;
CR0_COMPARE(shifted, 0, Rc);
ITRACE(trace_alu,
("n=%d, source=0x%lx, shifted=0x%lx\n",
n, (unsigned long)source, (unsigned long)shifted));
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.539,31.Rc:X:64::Shift Right Doubleword
0.31,6.RS,11.RA,16.RB,21.536,31.Rc:X:::Shift Right Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
int n = MASKED(*rB, 59, 63);
unsigned32 source = *rS;
signed_word shifted;
if (n < 32)
shifted = (source >> n);
else
shifted = 0;
*rA = shifted;
CR0_COMPARE(shifted, 0, Rc);
ITRACE(trace_alu, \
("n=%d, source=0x%lx, shifted=0x%lx\n",
n, (unsigned long)source, (unsigned long)shifted));
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
0.31,6.RS,11.RA,16.sh_0_4,21.413,30.sh_5,31.Rc:XS:64::Shift Right Algebraic Doubleword Immediate
0.31,6.RS,11.RA,16.SH,21.824,31.Rc:X:::Shift Right Algebraic Word Immediate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
int n = SH;
signed_word r = ROTL32(*rS, /*64*/32-n);
signed_word m = MASK(n+32, 63);
int S = MASKED(*rS, 32, 32);
signed_word shifted = (r & m) | (S ? ~m : 0);
*rA = shifted;
if (S && ((r & ~m) & MASK(32, 63)) != 0)
XER |= xer_carry;
else
XER &= ~xer_carry;
CR0_COMPARE(shifted, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
0.31,6.RS,11.RA,16.RB,21.794,31.Rc:X:64::Shift Right Algebraic Doubleword
0.31,6.RS,11.RA,16.RB,21.792,31.Rc:X:::Shift Right Algebraic Word
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603e:PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*604: PPC_UNIT_SCIU1, PPC_UNIT_SCIU2, 1, 1, 0
int n = MASKED(*rB, 58, 63);
int shift = (n >= 31 ? 31 : n);
signed32 source = (signed32)*rS; /* signed to keep sign bit */
signed32 shifted = source >> shift;
unsigned32 mask = ((unsigned32)-1) >> (31-shift);
*rA = (signed_word)shifted; /* if 64bit will sign extend */
if (source < 0 && (source & mask))
XER |= xer_carry;
else
XER &= ~xer_carry;
CR0_COMPARE(shifted, 0, Rc);
PPC_INSN_INT(RA_BITMASK, RS_BITMASK, Rc);
#
# I.3.3.14 Move to/from System Register Instructions
#
0.31,6.RS,11.spr,21.467,31./:XFX::mtspr %SPR, %RS:Move to Special Purpose Register
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 1, 1, 0
int n = (spr{5:9} << 5) | spr{0:4};
if (spr{0} && IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else if (!spr_is_valid(n)
|| spr_is_readonly(n))
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
spreg new_val = (spr_length(n) == 64
? *rS
: MASKED(*rS, 32, 63));
/* HACK - time base registers need to be updated immediatly */
if (WITH_TIME_BASE) {
switch (n) {
case spr_tbu:
cpu_set_time_base(processor,
(MASKED64(cpu_get_time_base(processor), 32, 63)
| INSERTED64(new_val, 0, 31)));
break;
case spr_tbl:
cpu_set_time_base(processor,
(MASKED64(cpu_get_time_base(processor), 0, 31)
| INSERTED64(new_val, 32, 63)));
break;
case spr_dec:
cpu_set_decrementer(processor, new_val);
break;
default:
SPREG(n) = new_val;
break;
}
}
else {
SPREG(n) = new_val;
}
}
PPC_INSN_TO_SPR(RS_BITMASK, n);
0.31,6.RT,11.spr,21.339,31./:XFX::mfspr %RT, %SPR:Move from Special Purpose Register
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 3, 3, 0
int n = (spr{5:9} << 5) | spr{0:4};
if (spr{0} && IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else if (!spr_is_valid(n))
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
else {
/* HACK - some SPR's need to get their value extracted specially */
*rT = SPREG(n);
}
PPC_INSN_FROM_SPR(RT_BITMASK, n);
0.31,6.RS,11./,12.FXM,20./,21.144,31./:XFX::mtfcr:Move to Condition Register Fields
*601: PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 1, 1, 0
if (FXM == 0xff) {
CR = *rS;
}
else {
unsigned_word mask = 0;
unsigned_word f;
for (f = 0; f < 8; f++) {
if (FXM & (0x80 >> f))
mask |= (0xf << 4*(7-f));
}
CR = (MASKED(*rS, 32, 63) & mask) | (CR & ~mask);
}
ppc_insn_mtcr(my_index, processor, cpu_model(processor), rS, FXM);
0.31,6.BF,9./,11./,16./,21.512,31./:X:::Move to Condition Register from XER
0.31,6.RT,11./,16./,21.19,31./:X:::Move From Condition Register
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 3, 3, 0
*rT = (unsigned32)CR;
PPC_INSN_MFCR(RT_BITMASK);
#
# I.4.6.2 Floating-Point Load Instructions
#
0.48,6.FRT,11.RA,16.D:D:f:lfs:Load Floating-Point Single
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
*frT = DOUBLE(MEM(unsigned, EA, 4));
PPC_INSN_INT_FLOAT(0, FRT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.FRT,11.RA,16.RB,21.535,31./:X:f::Load Floating-Point Single Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*frT = DOUBLE(MEM(unsigned, EA, 4));
PPC_INSN_INT_FLOAT(0, FRT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.49,6.FRT,11.RA,16.D:D:f::Load Floating-Point Single with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
*frT = DOUBLE(MEM(unsigned, EA, 4));
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, FRT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.FRT,11.RA,16.RB,21.576,31./:X:f::Load Floating-Point Single with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
*frT = DOUBLE(MEM(unsigned, EA, 4));
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, FRT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.50,6.FRT,11.RA,16.D:D:f::Load Floating-Point Double
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
*frT = MEM(unsigned, EA, 8);
PPC_INSN_INT_FLOAT(0, FRT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.FRT,11.RA,16.RB,21.599,31./:X:f::Load Floating-Point Double Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
*frT = MEM(unsigned, EA, 8);
PPC_INSN_INT_FLOAT(0, FRT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.51,6.FRT,11.RA,16.D:D:f::Load Floating-Point Double with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
*frT = MEM(unsigned, EA, 8);
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, FRT_BITMASK, (RA_BITMASK & ~1), 0);
0.31,6.FRT,11.RA,16.RB,21.631,31./:X:f::Load Floating-Point Double with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 3, 3, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
*frT = MEM(unsigned, EA, 8);
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, FRT_BITMASK, (RA_BITMASK & ~1) | RB_BITMASK, 0);
#
# I.4.6.3 Floating-Point Store Instructions
#
0.52,6.FRS,11.RA,16.D:D:f::Store Floating-Point Single
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
STORE(EA, 4, SINGLE(*frS));
PPC_INSN_INT_FLOAT(0, 0, (RA_BITMASK & ~1), FRS_BITMASK);
0.31,6.FRS,11.RA,16.RB,21.663,31./:X:f::Store Floating-Point Single Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
STORE(EA, 4, SINGLE(*frS));
PPC_INSN_INT_FLOAT(0, 0, (RA_BITMASK & ~1) | RB_BITMASK, FRS_BITMASK);
0.53,6.FRS,11.RA,16.D:D:f::Store Floating-Point Single with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
STORE(EA, 4, SINGLE(*frS));
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, 0, (RA_BITMASK & ~1), FRS_BITMASK);
0.31,6.FRS,11.RA,16.RB,21.695,31./:X:f::Store Floating-Point Single with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
STORE(EA, 4, SINGLE(*frS));
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, 0, (RA_BITMASK & ~1) | RB_BITMASK, FRS_BITMASK);
0.54,6.FRS,11.RA,16.D:D:f::Store Floating-Point Double
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + EXTS(D);
STORE(EA, 8, *frS);
PPC_INSN_INT_FLOAT(0, 0, (RA_BITMASK & ~1), FRS_BITMASK);
0.31,6.FRS,11.RA,16.RB,21.727,31./:X:f::Store Floating-Point Double Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word b;
unsigned_word EA;
if (RA == 0) b = 0;
else b = *rA;
EA = b + *rB;
STORE(EA, 8, *frS);
PPC_INSN_INT_FLOAT(0, 0, (RA_BITMASK & ~1) | RB_BITMASK, FRS_BITMASK);
0.55,6.FRS,11.RA,16.D:D:f::Store Floating-Point Double with Update
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + EXTS(D);
STORE(EA, 8, *frS);
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, 0, (RA_BITMASK & ~1), FRS_BITMASK);
0.31,6.FRS,11.RA,16.RB,21.759,31./:X:f::Store Floating-Point Double with Update Indexed
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
unsigned_word EA;
if (RA == 0)
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
EA = *rA + *rB;
STORE(EA, 8, *frS);
*rA = EA;
PPC_INSN_INT_FLOAT(RA_BITMASK, 0, (RA_BITMASK & ~1) | RB_BITMASK, FRS_BITMASK);
#
# I.4.6.4 Floating-Point Move Instructions
#
0.63,6.FRT,11./,16.FRB,21.72,31.Rc:X:f::Floating Move Register
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*frT = *frB;
CR1_UPDATE(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRB_BITMASK, Rc);
0.63,6.FRT,11./,16.FRB,21.40,31.Rc:X:f::Floating Negate
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*frT = *frB ^ BIT64(0);
CR1_UPDATE(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRB_BITMASK, Rc);
0.63,6.FRT,11./,16.FRB,21.264,31.Rc:X:f::Floating Absolute Value
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*frT = *frB & ~BIT64(0);
CR1_UPDATE(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRB_BITMASK, Rc);
0.63,6.FRT,11./,16.FRB,21.136,31.Rc:X:f::Floating Negative Absolute Value
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*frT = *frB | BIT64(0);
CR1_UPDATE(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRB_BITMASK, Rc);
#
# I.4.6.5 Floating-Point Arithmetic Instructions
#
0.63,6.FRT,11.FRA,16.FRB,21./,26.21,31.Rc:A:f:fadd:Floating Add
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frB,
fpscr_vxsnan | fpscr_vxisi,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = *(double*)frA + *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK, Rc);
0.59,6.FRT,11.FRA,16.FRB,21./,26.21,31.Rc:A:f:fadds:Floating Add Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frB,
fpscr_vxsnan | fpscr_vxisi,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
1); /*single-precision*/
}
else {
/*HACK!*/
float s = *(double*)frA + *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK, Rc);
0.63,6.FRT,11.FRA,16.FRB,21./,26.20,31.Rc:A:f:fsub:Floating Subtract
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frB,
fpscr_vxsnan | fpscr_vxisi,
0, /*single?*/
1) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = *(double*)frA - *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK, Rc);
0.59,6.FRT,11.FRA,16.FRB,21./,26.20,31.Rc:A:f:fsubs:Floating Subtract Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frB,
fpscr_vxsnan | fpscr_vxisi,
1, /*single?*/
1) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
1); /*single-precision*/
}
else {
/*HACK!*/
float s = *(double*)frA - *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK, Rc);
0.63,6.FRT,11.FRA,16./,21.FRC,26.25,31.Rc:A:f:fmul:Floating Multiply
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 5, 5, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = *(double*)frA * *(double*)frC;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRC_BITMASK, Rc);
0.59,6.FRT,11.FRA,16./,21.FRC,26.25,31.Rc:A:f:fmuls:Floating Multiply Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
1); /*single-precision*/
}
else {
/*HACK!*/
float s = *(double*)frA * *(double*)frC;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRC_BITMASK, Rc);
0.63,6.FRT,11.FRA,16.FRB,21./,26.18,31.Rc:A:f:fdiv:Floating Divide
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 31, 31, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 33, 33, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 33, 33, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 32, 32, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frB,
fpscr_vxsnan | fpscr_vxzdz,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = *(double*)frA / *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK, Rc);
0.59,6.FRT,11.FRA,16.FRB,21./,26.18,31.Rc:A:f:fdivs:Floating Divide Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 17, 17, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 18, 18, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 18, 18, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 18, 18, 0
FPSCR_BEGIN;
if (is_invalid_operation(processor, cia,
*frA, *frB,
fpscr_vxsnan | fpscr_vxzdz,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, *frA, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
1); /*single-precision*/
}
else {
/*HACK!*/
float s = *(double*)frA / *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK, Rc);
0.63,6.FRT,11.FRA,16.FRB,21.FRC,26.29,31.Rc:A:f:fmadd:Floating Multiply-Add
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 5, 5, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
double product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the add */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = product + *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
0.59,6.FRT,11.FRA,16.FRB,21.FRC,26.29,31.Rc:A:f::Floating Multiply-Add Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
float product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the add */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
float s = product + *(double*)frB;
*(double*)frT = (double)s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
0.63,6.FRT,11.FRA,16.FRB,21.FRC,26.28,31.Rc:A:f::Floating Multiply-Subtract
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 5, 5, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
double product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the subtract */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = product - *(double*)frB;
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
0.59,6.FRT,11.FRA,16.FRB,21.FRC,26.28,31.Rc:A:f::Floating Multiply-Subtract Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
float product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the subtract */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
float s = product - *(double*)frB;
*(double*)frT = (double)s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
0.63,6.FRT,11.FRA,16.FRB,21.FRC,26.31,31.Rc:A:f::Floating Negative Multiply-Add
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 5, 5, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
double product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the add */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = -(product + *(double*)frB);
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
0.59,6.FRT,11.FRA,16.FRB,21.FRC,26.31,31.Rc:A:f::Floating Negative Multiply-Add Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
float product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the add */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
float s = -(product + *(double*)frB);
*(double*)frT = (double)s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
0.63,6.FRT,11.FRA,16.FRB,21.FRC,26.30,31.Rc:A:f::Floating Negative Multiply-Subtract
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 5, 5, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 2, 4, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
double product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the subtract */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
0, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
double s = -(product - *(double*)frB);
*(double*)frT = s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
0.59,6.FRT,11.FRA,16.FRB,21.FRC,26.30,31.Rc:A:f::Floating Negative Multiply-Subtract Single
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
float product; /*HACK! - incorrectly loosing precision ... */
/* compute the multiply */
if (is_invalid_operation(processor, cia,
*frA, *frC,
fpscr_vxsnan | fpscr_vximz,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
(unsigned64*)&product, *frA, 0, *frC,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
product = *(double*)frA * *(double*)frC;
}
/* compute the subtract */
if (is_invalid_operation(processor, cia,
product, *frB,
fpscr_vxsnan | fpscr_vxisi,
1, /*single?*/
0) /*negate?*/) {
invalid_arithemetic_operation(processor, cia,
frT, product, *frB, 0,
0, /*instruction_is_frsp*/
0, /*instruction_is_convert_to_64bit*/
0, /*instruction_is_convert_to_32bit*/
0); /*single-precision*/
}
else {
/*HACK!*/
float s = -(product - *(double*)frB);
*(double*)frT = (double)s;
}
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRA_BITMASK | FRB_BITMASK | FRC_BITMASK, Rc);
#
# I.4.6.6 Floating-Point Rounding and Conversion Instructions
#
0.63,6.FRT,11./,16.FRB,21.12,31.Rc:X:f::Floating Round to Single-Precision
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
int sign;
int exp;
unsigned64 frac_grx;
/* split off cases for what to do */
if (EXTRACTED64(*frB, 1, 11) < 897
&& EXTRACTED64(*frB, 1, 63) > 0) {
if ((FPSCR & fpscr_ue) == 0) goto Disabled_Exponent_Underflow;
if ((FPSCR & fpscr_ue) != 0) goto Enabled_Exponent_Underflow;
}
if (EXTRACTED64(*frB, 1, 11) > 1150
&& EXTRACTED64(*frB, 1, 11) < 2047) {
if ((FPSCR & fpscr_oe) == 0) goto Disabled_Exponent_Overflow;
if ((FPSCR & fpscr_oe) != 0) goto Enabled_Exponent_Overflow;
}
if (EXTRACTED64(*frB, 1, 11) > 896
&& EXTRACTED64(*frB, 1, 11) < 1151) goto Normal_Operand;
if (EXTRACTED64(*frB, 1, 63) == 0) goto Zero_Operand;
if (EXTRACTED64(*frB, 1, 11) == 2047) {
if (EXTRACTED64(*frB, 12, 63) == 0) goto Infinity_Operand;
if (EXTRACTED64(*frB, 12, 12) == 1) goto QNaN_Operand;
if (EXTRACTED64(*frB, 12, 12) == 0
&& EXTRACTED64(*frB, 13, 63) > 0) goto SNaN_Operand;
}
/* handle them */
Disabled_Exponent_Underflow:
sign = EXTRACTED64(*frB, 0, 0);
if (EXTRACTED64(*frB, 1, 11) == 0) {
exp = -1022;
frac_grx = INSERTED64(EXTRACTED64(*frB, 12, 63), 1, 52);
}
if (EXTRACTED64(*frB, 1, 11) > 0) {
exp = EXTRACTED64(*frB, 1, 11) - 1023;
frac_grx = BIT64(0) | INSERTED64(EXTRACTED64(*frB, 12, 63), 1, 52);
}
/* G|R|X == zero from above */
while (exp < -126) {
exp = exp - 1;
frac_grx = (INSERTED64(EXTRACTED64(frac_grx, 0, 54), 1, 55)
| MASKED64(frac_grx, 55, 55));
}
FPSCR_SET_UX(EXTRACTED64(frac_grx, 24, 55) > 0);
Round_Single(processor, sign, &exp, &frac_grx);
FPSCR_SET_XX(FPSCR & fpscr_fi);
if (EXTRACTED64(frac_grx, 0, 52) == 0) {
*frT = INSERTED64(sign, 0, 0);
if (sign == 0) FPSCR_SET_FPRF(fpscr_rf_pos_zero);
if (sign == 1) FPSCR_SET_FPRF(fpscr_rf_neg_zero);
}
if (EXTRACTED64(frac_grx, 0, 52) > 0) {
if (EXTRACTED64(frac_grx, 0, 0) == 1) {
if (sign == 0) FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
if (sign == 1) FPSCR_SET_FPRF(fpscr_rf_neg_normal_number);
}
if (EXTRACTED64(frac_grx, 0, 0) == 0) {
if (sign == 0) FPSCR_SET_FPRF(fpscr_rf_pos_denormalized_number);
if (sign == 1) FPSCR_SET_FPRF(fpscr_rf_neg_denormalized_number);
}
/*Normalize_Operand:*/
while (EXTRACTED64(frac_grx, 0, 0) == 0) {
exp = exp - 1;
frac_grx = INSERTED64(EXTRACTED64(frac_grx, 1, 52), 0, 51);
}
*frT = (INSERTED64(sign, 0, 0)
| INSERTED64(exp + 1023, 1, 11)
| INSERTED64(EXTRACTED64(frac_grx, 1, 52), 12, 63));
}
goto Done;
Enabled_Exponent_Underflow:
FPSCR_SET_UX(1);
sign = EXTRACTED64(*frB, 0, 0);
if (EXTRACTED64(*frB, 1, 11) == 0) {
exp = -1022;
frac_grx = INSERTED64(EXTRACTED64(*frB, 12, 63), 1, 52);
}
if (EXTRACTED64(*frB, 1, 11) > 0) {
exp = EXTRACTED64(*frB, 1, 11) - 1023;
frac_grx = (BIT64(0) |
INSERTED64(EXTRACTED64(*frB, 12, 63), 1, 52));
}
/*Normalize_Operand:*/
while (EXTRACTED64(frac_grx, 0, 0) == 0) {
exp = exp - 1;
frac_grx = INSERTED64(EXTRACTED64(frac_grx, 1, 52), 0, 51);
}
Round_Single(processor, sign, &exp, &frac_grx);
FPSCR_SET_XX(FPSCR & fpscr_fi);
exp = exp + 192;
*frT = (INSERTED64(sign, 0, 0)
| INSERTED64(exp + 1023, 1, 11)
| INSERTED64(EXTRACTED64(frac_grx, 1, 52), 12, 63));
if (sign == 0) FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
if (sign == 1) FPSCR_SET_FPRF(fpscr_rf_neg_normal_number);
goto Done;
Disabled_Exponent_Overflow:
FPSCR_SET_OX(1);
if ((FPSCR & fpscr_rn) == fpscr_rn_round_to_nearest) {
if (EXTRACTED64(*frB, 0, 0) == 0) {
*frT = INSERTED64(0x7FF00000, 0, 31) | 0x00000000;
FPSCR_SET_FPRF(fpscr_rf_pos_infinity);
}
if (EXTRACTED64(*frB, 0, 0) == 1) {
*frT = INSERTED64(0xFFF00000, 0, 31) | 0x00000000;
FPSCR_SET_FPRF(fpscr_rf_neg_infinity);
}
}
if ((FPSCR & fpscr_rn) == fpscr_rn_round_towards_zero) {
if (EXTRACTED64(*frB, 0, 0) == 0) {
*frT = INSERTED64(0x47EFFFFF, 0, 31) | 0xE0000000;
FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
}
if (EXTRACTED64(*frB, 0, 0) == 1) {
*frT = INSERTED64(0xC7EFFFFF, 0, 31) | 0xE0000000;
FPSCR_SET_FPRF(fpscr_rf_neg_normal_number);
}
}
if ((FPSCR & fpscr_rn) == fpscr_rn_round_towards_pos_infinity) {
if (EXTRACTED64(*frB, 0, 0) == 0) {
*frT = INSERTED64(0x7FF00000, 0, 31) | 0x00000000;
FPSCR_SET_FPRF(fpscr_rf_pos_infinity);
}
if (EXTRACTED64(*frB, 0, 0) == 1) {
*frT = INSERTED64(0xC7EFFFFF, 0, 31) | 0xE0000000;
FPSCR_SET_FPRF(fpscr_rf_neg_normal_number);
}
}
if ((FPSCR & fpscr_rn) == fpscr_rn_round_towards_neg_infinity) {
if (EXTRACTED64(*frB, 0, 0) == 0) {
*frT = INSERTED64(0x47EFFFFF, 0, 31) | 0xE0000000;
FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
}
if (EXTRACTED64(*frB, 0, 0) == 1) {
*frT = INSERTED64(0xFFF00000, 0, 31) | 0x00000000;
FPSCR_SET_FPRF(fpscr_rf_neg_infinity);
}
}
/* FPSCR[FR] <- undefined */
FPSCR_SET_FI(1);
FPSCR_SET_XX(1);
goto Done;
Enabled_Exponent_Overflow:
sign = EXTRACTED64(*frB, 0, 0);
exp = EXTRACTED64(*frB, 1, 11) - 1023;
frac_grx = BIT64(0) | INSERTED64(EXTRACTED64(*frB, 12, 63), 1, 52);
Round_Single(processor, sign, &exp, &frac_grx);
FPSCR_SET_XX(FPSCR & fpscr_fi);
Enabled_Overflow:
FPSCR_SET_OX(1);
exp = exp - 192;
*frT = (INSERTED64(sign, 0, 0)
| INSERTED64(exp + 1023, 1, 11)
| INSERTED64(EXTRACTED64(frac_grx, 1, 52), 12, 63));
if (sign == 0) FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
if (sign == 1) FPSCR_SET_FPRF(fpscr_rf_neg_normal_number);
goto Done;
Zero_Operand:
*frT = *frB;
if (EXTRACTED64(*frB, 0, 0) == 0) FPSCR_SET_FPRF(fpscr_rf_pos_zero);
if (EXTRACTED64(*frB, 0, 0) == 1) FPSCR_SET_FPRF(fpscr_rf_neg_zero);
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
goto Done;
Infinity_Operand:
*frT = *frB;
if (EXTRACTED64(*frB, 0, 0) == 0) FPSCR_SET_FPRF(fpscr_rf_pos_infinity);
if (EXTRACTED64(*frB, 0, 0) == 1) FPSCR_SET_FPRF(fpscr_rf_neg_infinity);
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
goto Done;
QNaN_Operand:
*frT = INSERTED64(EXTRACTED64(*frB, 0, 34), 0, 34);
FPSCR_SET_FPRF(fpscr_rf_quiet_nan);
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
goto Done;
SNaN_Operand:
FPSCR_OR_VX(fpscr_vxsnan);
if ((FPSCR & fpscr_ve) == 0) {
*frT = (MASKED64(*frB, 0, 11)
| BIT64(12)
| MASKED64(*frB, 13, 34));
FPSCR_SET_FPRF(fpscr_rf_quiet_nan);
}
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
goto Done;
Normal_Operand:
sign = EXTRACTED64(*frB, 0, 0);
exp = EXTRACTED64(*frB, 1, 11) - 1023;
frac_grx = BIT64(0) | INSERTED64(EXTRACTED64(*frB, 12, 63), 1, 52);
Round_Single(processor, sign, &exp, &frac_grx);
FPSCR_SET_XX(FPSCR & fpscr_fi);
if (exp > 127 && (FPSCR & fpscr_oe) == 0) goto Disabled_Exponent_Overflow;
if (exp > 127 && (FPSCR & fpscr_oe) != 0) goto Enabled_Overflow;
*frT = (INSERTED64(sign, 0, 0)
| INSERTED64(exp + 1023, 1, 11)
| INSERTED64(EXTRACTED64(frac_grx, 1, 52), 12, 63));
if (sign == 0) FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
if (sign == 1) FPSCR_SET_FPRF(fpscr_rf_neg_normal_number);
goto Done;
Done:
PPC_INSN_FLOAT(FRT_BITMASK, FRB_BITMASK, Rc);
0.63,6.FRT,11./,16.FRB,21.814,31.Rc:X:64,f::Floating Convert To Integer Doubleword
0.63,6.FRT,11./,16.FRB,21.815,31.Rc:X:64,f::Floating Convert To Integer Doubleword with round towards Zero
0.63,6.FRT,11./,16.FRB,21.14,31.Rc:X:f::Floating Convert To Integer Word
0.63,6.FRT,11./,16.FRB,21.15,31.Rc:X:f:fctiwz:Floating Convert To Integer Word with round towards Zero
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
convert_to_integer(processor, cia,
frT, *frB,
fpscr_rn_round_towards_zero, 32);
FPSCR_END(Rc);
PPC_INSN_FLOAT(FRT_BITMASK, FRB_BITMASK, Rc);
0.63,6.FRT,11./,16.FRB,21.846,31.Rc:X:64,f::Floating Convert from Integer Doubleword
int sign = EXTRACTED64(*frB, 0, 0);
int exp = 63;
unsigned64 frac = *frB;
if (frac == 0) goto Zero_Operand;
if (sign == 1) frac = ~frac + 1;
while (EXTRACTED64(frac, 0, 0) == 0) {
/*??? do the loop 0 times if (FRB) = max negative integer */
frac = INSERTED64(EXTRACTED64(frac, 1, 63), 0, 62);
exp = exp - 1;
}
Round_Float(processor, sign, &exp, &frac, FPSCR & fpscr_rn);
if (sign == 0) FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
if (sign == 1) FPSCR_SET_FPRF(fpscr_rf_pos_normal_number);
*frT = (INSERTED64(sign, 0, 0)
| INSERTED64(exp + 1023, 1, 11)
| INSERTED64(EXTRACTED64(frac, 1, 52), 12, 63));
goto Done;
/**/
Zero_Operand:
FPSCR_SET_FR(0);
FPSCR_SET_FI(0);
FPSCR_SET_FPRF(fpscr_rf_pos_zero);
*frT = 0;
goto Done;
/**/
Done:
PPC_INSN_FLOAT(FRT_BITMASK, FRB_BITMASK, Rc);
#
# I.4.6.7 Floating-Point Compare Instructions
#
0.63,6.BF,9./,11.FRA,16.FRB,21.0,31./:X:f:fcmpu:Floating Compare Unordered
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
unsigned c;
if (is_NaN(*frA, 0) || is_NaN(*frB, 0))
c = cr_i_summary_overflow; /* 0b0001 - (FRA) ? (FRB) */
else if (is_less_than(frA, frB))
c = cr_i_negative; /* 0b1000 - (FRA) < (FRB) */
else if (is_greater_than(frA, frB))
c = cr_i_positive; /* 0b0100 - (FRA) > (FRB) */
else
c = cr_i_zero; /* 0b0010 - (FRA) = (FRB) */
FPSCR_SET_FPCC(c);
CR_SET(BF, c); /* CR[4*BF..4*BF+3] = c */
if (is_SNaN(*frA, 0) || is_SNaN(*frB, 0))
FPSCR_OR_VX(fpscr_vxsnan);
FPSCR_END(0);
PPC_INSN_FLOAT_CR(0, FRA_BITMASK | FRB_BITMASK, BF_BITMASK);
0.63,6.BF,9./,11.FRA,16.FRB,21.32,31./:X:f:fcmpo:Floating Compare Ordered
*601: PPC_UNIT_FPU, PPC_UNIT_FPU, 4, 4, 0
*603: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*603e:PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
*604: PPC_UNIT_FPU, PPC_UNIT_FPU, 1, 3, 0
FPSCR_BEGIN;
unsigned c;
if (is_NaN(*frA, 0) || is_NaN(*frB, 0))
c = cr_i_summary_overflow; /* 0b0001 - (FRA) ? (FRB) */
else if (is_less_than(frA, frB))
c = cr_i_negative; /* 0b1000 - (FRA) < (FRB) */
else if (is_greater_than(frA, frB))
c = cr_i_positive; /* 0b0100 - (FRA) > (FRB) */
else
c = cr_i_zero; /* 0b0010 - (FRA) = (FRB) */
FPSCR_SET_FPCC(c);
CR_SET(BF, c); /* CR[4*BF..4*BF+3] = c */
if (is_SNaN(*frA, 0) || is_SNaN(*frB, 0)) {
FPSCR_OR_VX(fpscr_vxsnan);
if ((FPSCR & fpscr_ve) == 0)
FPSCR_OR_VX(fpscr_vxvc);
}
else if (is_QNaN(*frA, 0) || is_QNaN(*frB, 0)) {
FPSCR_OR_VX(fpscr_vxvc);
}
FPSCR_END(0);
PPC_INSN_FLOAT_CR(0, FRA_BITMASK | FRB_BITMASK, BF_BITMASK);
#
# I.4.6.8 Floating-Point Status and Control Register Instructions
#
0.63,6.FRT,11./,16./,21.583,31.Rc:X:f::Move From FPSCR
0.63,6.BF,9./,11.BFA,14./,16./,21.64,31./:X:f::Move to Condition Register from FPSCR
0.64,6.BF,9./,11./,16.U,20./,21.134,31.Rc:X:f::Move To FPSCR Field Immediate
0.63,6./,7.FLM,15./,16.FRB,21.711,31.Rc:XFL:f::Move To FPSCR Fields
0.63,6.BT,11./,16./,21.70,31.Rc:X:f::Move To FPSCR Bit 0
0.63,6.BT,11./,16./,21.38,31.Rc:X:f::Move To FPSCR Bit 1
#
# I.A.1.1 Floating-Point Store Instruction
#
0.31,6.FRS,11.RA,16.RB,21.983,31./:X:f::Store Floating-Point as Integer Word Indexed
#
# I.A.1.2 Floating-Point Arithmetic Instructions
#
0.63,6.FRT,11./,16.FRB,21./,26.22,31.Rc:A:f::Floating Square Root
0.59,6.FRT,11./,16.FRB,21./,26.22,31.Rc:A:f::Floating Square Root Single
0.59,6.FRT,11./,16.FRB,21./,26.24,31.Rc:A:f::Floating Reciprocal Estimate Single
0.63,6.FRT,11./,16.FRB,21./,26.26,31.Rc:A:f::Floating Reciprocal Square Root Estimate
#
# I.A.1.3 Floating-Point Select Instruction
#
0.63,6.FRT,11.FRA,16.FRB,21.FRC,26.23,31.Rc:A:f::Floating Select
#
# II.3.2 Cache Management Instructions
#
0.31,6./,11.RA,16.RB,21.982,31./:X::icbi:Instruction Cache Block Invalidate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 1, 0
/* blindly flush all instruction cache entries */
#if WITH_IDECODE_CACHE_SIZE
cpu_flush_icache(processor);
#endif
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK, 0);
0.19,6./,11./,16./,21.150,31./:XL::isync:Instruction Synchronize
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 1, 0
cpu_synchronize_context(processor);
PPC_INSN_INT(0, 0, 0);
#
# II.3.2.2 Data Cache Instructions
#
0.31,6./,11.RA,16.RB,21.278,31./:X:::Data Cache Block Touch
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 2, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 2, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 1, 0
TRACE(trace_tbd,("Data Cache Block Touch\n"));
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK, 0/*Rc*/);
0.31,6./,11.RA,16.RB,21.246,31./:X:::Data Cache Block Touch for Store
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 2, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 2, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
TRACE(trace_tbd,("Data Cache Block Touch for Store\n"));
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK, 0/*Rc*/);
0.31,6./,11.RA,16.RB,21.1014,31./:X:::Data Cache Block set to Zero
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 10, 10, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 10, 10, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
TRACE(trace_tbd,("Data Cache Block set to Zero\n"));
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK, 0/*Rc*/);
0.31,6./,11.RA,16.RB,21.54,31./:X:::Data Cache Block Store
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 5, 5, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 5, 5, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 1, 0
TRACE(trace_tbd,("Data Cache Block Store\n"));
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK, 0/*Rc*/);
0.31,6./,11.RA,16.RB,21.86,31./:X:::Data Cache Block Flush
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 5, 5, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 5, 5, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 1, 0
TRACE(trace_tbd,("Data Cache Block Flush\n"));
PPC_INSN_INT(0, (RA_BITMASK & ~1) | RB_BITMASK, 0/*Rc*/);
#
# II.3.3 Enforce In-order Execution of I/O Instruction
#
0.31,6./,11./,16./,21.854,31./:X::eieio:Enforce In-order Execution of I/O
/* Since this model has no instruction overlap
this instruction need do nothing */
#
# II.4.1 Time Base Instructions
#
0.31,6.RT,11.tbr,21.371,31./:XFX::mftb:Move From Time Base
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 3, 3, 0
int n = (tbr{5:9} << 5) | tbr{0:4};
if (n == 268) {
if (is_64bit_implementation) *rT = TB;
else *rT = EXTRACTED64(TB, 32, 63);
}
else if (n == 269) {
if (is_64bit_implementation) *rT = EXTRACTED64(TB, 0, 31);
else *rT = EXTRACTED64(TB, 0, 31);
}
else
program_interrupt(processor, cia,
illegal_instruction_program_interrupt);
#
# III.2.3.1 System Linkage Instructions
#
0.19,6./,11./,16./,21.50,31./:XL::rfi:Return From Interrupt
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 3, 3, 0
if (IS_PROBLEM_STATE(processor)) {
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
}
else {
MSR = (MASKED(SRR1, 0, 32)
| MASKED(SRR1, 37, 41)
| MASKED(SRR1, 48, 63));
NIA = MASKED(SRR0, 0, 61);
cpu_synchronize_context(processor);
}
#
# III.3.4.1 Move to/from System Register Instructions
#
#0.31,6.RS,11.spr,21.467,31./:XFX:::Move To Special Purpose Register
#0.31,6.RT,11.spr,21.339,31./:XFX:::Move From Special Purpose Register
0.31,6.RS,11./,16./,21.146,31./:X:::Move To Machine State Register
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 1, 1, 0
if (IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else
MSR = *rS;
0.31,6.RT,11./,16./,21.83,31./:X:::Move From Machine State Register
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 1, 1, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 3, 3, 0
if (IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else
*rT = MSR;
#
# III.4.11.1 Cache Management Instructions
#
0.31,6./,11.RA,16.RB,21.470,31./:X::dcbi:Data Cache Block Invalidate
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_LSU, PPC_UNIT_LSU, 2, 2, 0
*603e:PPC_UNIT_LSU, PPC_UNIT_LSU, 2, 2, 0
*604: PPC_UNIT_LSU, PPC_UNIT_LSU, 1, 3, 0
if (IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else
TRACE(trace_tbd,("Data Cache Block Invalidate\n"));
#
# III.4.11.2 Segment Register Manipulation Instructions
#
0.31,6.RS,11./,12.SR,16./,21.210,31./:X:32:mtsr %SR,%RS:Move To Segment Register
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 1, 1, 0
if (IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else
SEGREG(SR) = *rS;
0.31,6.RS,11./,16.RB,21.242,31./:X:32:mtsrin %RS,%RB:Move To Segment Register Indirect
*601: PPC_UNIT_IU, PPC_UNIT_IU, 1, 1, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 2, 2, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 1, 1, 0
if (IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else
SEGREG(EXTRACTED32(*rB, 0, 3)) = *rS;
0.31,6.RT,11./,12.SR,16./,21.595,31./:X:32:mfsr %RT,%RS:Move From Segment Register
*601: PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 1, 1, 0
if (IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else
*rT = SEGREG(SR);
0.31,6.RT,11./,16.RB,21.659,31./:X:32:mfsrin %RT,%RB:Move From Segment Register Indirect
*601: PPC_UNIT_IU, PPC_UNIT_IU, 2, 2, 0
*603: PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*603e:PPC_UNIT_SRU, PPC_UNIT_SRU, 3, 3, 0
*604: PPC_UNIT_MCIU, PPC_UNIT_MCIU, 1, 1, 0
if (IS_PROBLEM_STATE(processor))
program_interrupt(processor, cia,
privileged_instruction_program_interrupt);
else
*rT = SEGREG(EXTRACTED32(*rB, 0, 3));
#
# III.4.11.3 Lookaside Buffer Management Instructions (Optional)
#
0.31,6./,11./,16.RB,21.434,31./:X:64::SLB Invalidate Entry
0.31,6./,11./,16./,21.498,31./:X:64::SLB Invalidate All
0.31,6./,11./,16.RB,21.306,31./:X:::TLB Invalidate Entry
0.31,6./,11./,16./,21.370,31./:X:::TLB Invalidate All
0.31,6./,11./,16./,21.566,31./:X:::TLB Sychronize
#
# III.A.1.2 External Access Instructions
#
0.31,6.RT,11.RA,16.RB,21.310,31./:X:earwax::External Control In Word Indexed
0.31,6.RS,11.RA,16.RB,21.438,31./:X:earwax::External Control Out Word Indexed