/* tc-tic80.c -- Assemble for the TI TMS320C80 (MV) Copyright (C) 1996 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "as.h" #include "opcode/tic80.h" /* Generic assembler global variables which must be defined by all targets. */ /* Characters which always start a comment. */ const char comment_chars[] = ";"; /* Characters which start a comment at the beginning of a line. */ const char line_comment_chars[] = ";*"; /* Characters which may be used to separate multiple commands on a single line. */ const char line_separator_chars[] = ";"; /* Characters which are used to indicate an exponent in a floating point number. */ const char EXP_CHARS[] = "eE"; /* Characters which mean that a number is a floating point constant, as in 0d1.0. */ const char FLT_CHARS[] = "dD"; /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function */ const pseudo_typeS md_pseudo_table[] = { {"word", cons, 4}, { NULL, NULL, 0 } }; /* Opcode hash table. */ static struct hash_control *tic80_hash; static struct tic80_opcode * find_opcode PARAMS ((struct tic80_opcode *, expressionS [])); static unsigned long build_insn PARAMS ((struct tic80_opcode *, expressionS *, unsigned long insn)); static int get_operands PARAMS ((expressionS exp[])); static int reg_name_search PARAMS ((char *name)); static int register_name PARAMS ((expressionS *expressionP)); int md_estimate_size_before_relax (fragP, segment_type) fragS *fragP; segT segment_type; { as_fatal ("Relaxation is a luxury we can't afford\n"); return (-1); } /* We have no need to default values of symbols. */ /* ARGSUSED */ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP . An error message is returned, or NULL on OK. */ #define MAX_LITTLENUMS 4 char * md_atof (type, litP, sizeP) int type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; LITTLENUM_TYPE *wordP; char *t; char *atof_ieee (); switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; default: *sizeP = 0; return "bad call to md_atof ()"; } t = atof_ieee (input_line_pointer, type, words); if (t) { input_line_pointer = t; } *sizeP = prec * sizeof (LITTLENUM_TYPE); for (wordP = words; prec--;) { md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } return (NULL); } /* reg_name_search does a binary search of the tic80_pre_defined_registers array to see if "name" is a valid regiter name. Returns the register number from the array on success, or -1 on failure. */ static int reg_name_search (name) char *name; { int middle, low, high; int cmp; low = 0; high = tic80_num_regs - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, tic80_pre_defined_registers[middle].name); if (cmp < 0) { high = middle - 1; } else if (cmp > 0) { low = middle + 1; } else { return (tic80_pre_defined_registers[middle].value); } } while (low <= high); return (-1); } /* register_name() checks the string at input_line_pointer to see if it is a valid register name */ static int register_name (expressionP) expressionS *expressionP; { int reg_number; char c; char *p = input_line_pointer; while (*p != '\000' && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')') p++; c = *p; if (c) { *p++ = '\000'; } /* look to see if it's in the register table */ reg_number = reg_name_search (input_line_pointer); if (reg_number >= 0) { expressionP -> X_op = O_register; /* temporarily store a pointer to the string here */ expressionP -> X_op_symbol = (struct symbol *) input_line_pointer; expressionP -> X_add_number = reg_number; input_line_pointer = p; return (1); } if (c) { *(p - 1) = c; } return (0); } /* get_operands() parses a string of operands and fills in a passed array of expressions in EXP. Note that we use O_absent expressions to record additional information about the previous non-O_absent expression, such as ":m" or ":s" modifiers or register numbers enclosed in parens like "(r10)". Returns the number of expressions that were placed in EXP. */ static int get_operands (exp) expressionS exp[]; { char *p = input_line_pointer; int numexp = 0; int mflag = 0; int sflag = 0; int parens = 0; while (*p) { /* Skip leading whitespace */ while (*p == ' ' || *p == '\t' || *p == ',') { p++; } /* Check to see if we have any operands left to parse */ if (*p == 0 || *p == '\n' || *p == '\r') { break; } /* Notice scaling or direct memory operand modifiers and save them in an O_absent expression after the expression that they modify. */ if (*p == ':') { p++; exp[numexp].X_op = O_absent; if (*p == 'm') { p++; exp[numexp].X_add_number = TIC80_OPERAND_M_SI | TIC80_OPERAND_M_LI; } else if (*p == 's') { p++; exp[numexp].X_add_number = TIC80_OPERAND_SCALED; } else { as_bad ("':' not followed by 'm' or 's'"); } numexp++; continue; } /* Handle leading '(' on operands that use them, by recording that we have entered a paren nesting level and then continuing. We complain about multiple nesting. */ if (*p == '(') { if (++parens != 1) { as_bad ("paren nesting"); } p++; continue; } /* Handle trailing ')' on operands that use them, by reducing the nesting level and then continuing. We complain if there were too many closures. */ if (*p == ')') { /* Record that we have left a paren group and continue */ if (--parens < 0) { as_bad ("mismatched parenthesis"); } p++; continue; } /* Begin operand parsing at the current scan point. */ input_line_pointer = p; /* Check to see if it might be a register name */ if (!register_name (&exp[numexp])) { /* parse as an expression */ expression (&exp[numexp]); } if (exp[numexp].X_op == O_illegal) { as_bad ("illegal operand"); } else if (exp[numexp].X_op == O_absent) { as_bad ("missing operand"); } numexp++; p = input_line_pointer; } if (parens) { exp[numexp].X_op = O_absent; exp[numexp++].X_add_number = TIC80_OPERAND_PARENS; } exp[numexp].X_op = 0; return (numexp); } /* find_opcode() gets a pointer to the entry in the opcode table that matches the instruction being assembled, or returns NULL if no such match is found. First it parses all the operands and save them as expressions. Note that we use O_absent expressions to record additional information about the previous non-O_absent expression, such as ":m" or ":s" modifiers or register numbers enclosed in parens like "(r10)". It then looks at all opcodes with the same name and use the operands to choose the correct opcode. */ static struct tic80_opcode * find_opcode (opcode, myops) struct tic80_opcode *opcode; expressionS myops[]; { int i, match, done, numops; struct tic80_opcode *next_opcode; match = 0; /* First parse all the operands so we only have to do it once. */ get_operands (myops); /* Now search the opcode table table for one with operands that matches what we've got. */ while (!match) { match = 1; for (i = 0; opcode -> operands[i]; i++) { int flags = tic80_operands[opcode->operands[i]].flags; int X_op = myops[i].X_op; int num = myops[i].X_add_number; if (X_op == 0) { match = 0; break; } if (flags & TIC80_OPERAND_GPR) { if ((X_op != O_register) || ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) || ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) || ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL))) { match=0; break; } } if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) || ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) || ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) || ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) || ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN)))) { match=0; break; } } /* we're only done if the operands matched so far AND there are no more to check */ if (match && myops[i].X_op==0) break; else match = 0; next_opcode = opcode+1; if (next_opcode->opcode == 0) break; if (strcmp(next_opcode->name, opcode->name)) break; opcode = next_opcode; } if (!match) { as_bad ("bad opcode or operands"); return (0); } /* Check that all registers that are required to be even are. */ /* Also, if any operands were marked as registers, but were really symbols */ /* fix that here. */ for (i=0; opcode->operands[i]; i++) { if ((tic80_operands[opcode->operands[i]].flags & OPERAND_EVEN) && (myops[i].X_add_number & 1)) as_fatal("Register number must be EVEN"); if (myops[i].X_op == O_register) { if (!(tic80_operands[opcode->operands[i]].flags & OPERAND_REG)) { myops[i].X_op = O_symbol; myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol); myops[i].X_add_number = 0; myops[i].X_op_symbol = NULL; } } } return opcode; } /* build_insn takes a pointer to the opcode entry in the opcode table and the array of operand expressions and returns the instruction */ static unsigned long build_insn (opcode, opers, insn) struct tic80_opcode *opcode; expressionS *opers; unsigned long insn; { return (0); } /* This is the main entry point for the machine-dependent assembler. STR points to a machine dependent instruction. This function is supposed to emit the frags/bytes it assembles to. */ void md_assemble (str) char *str; { char *scan; unsigned char *input_line_save; struct tic80_opcode *opcode; expressionS myops[6]; unsigned long insn; /* Ensure there is something there to assemble. */ assert (str); /* Drop any leading whitespace. */ while (isspace (*str)) { str++; } /* Isolate the mnemonic from the rest of the string by finding the first whitespace character and zapping it to a null byte. */ for (scan = str; *scan != '\000' && !isspace (*scan); scan++) {;} if (*scan != '\000') { *scan++ = '\000'; } /* Try to find this mnemonic in the hash table */ if ((opcode = (struct tic80_opcode *) hash_find (tic80_hash, str)) == NULL) { as_bad ("Invalid mnemonic: '%s'", str); return; } str = scan; while (isspace (*scan)) { scan++; } input_line_save = input_line_pointer; input_line_pointer = str; opcode = find_opcode (opcode, myops); if (opcode == NULL) { return; } input_line_pointer = input_line_save; insn = build_insn (opcode, myops, 0); /* FIXME - finish this */ } /* This function is called once, at assembler startup time. It should set up all the tables, etc., that the MD part of the assembler will need. */ void md_begin () { char *prev_name = ""; register const struct tic80_opcode *op; register const struct tic80_opcode *op_end; tic80_hash = hash_new(); /* Insert unique names into hash table. The TIc80 instruction set has many identical opcode names that have different opcodes based on the operands. This hash table then provides a quick index to the first opcode with a particular name in the opcode table. */ op_end = tic80_opcodes + tic80_num_opcodes; for (op = tic80_opcodes; op < op_end; op++) { if (strcmp (prev_name, op -> name) != 0) { prev_name = (char *) op -> name; hash_insert (tic80_hash, op -> name, (char *) op); } } } CONST char *md_shortopts = ""; struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); /* Take care of the target-specific command-line options. */ int md_parse_option (c, arg) int c; char *arg; { return (0); } /* Print a description of the command-line options that we accept. */ void md_show_usage (stream) FILE *stream; { } /* Attempt to simplify or even eliminate a fixup. The return value is ignored; perhaps it was once meaningful, but now it is historical. To indicate that a fixup has been eliminated, set fixP->fx_done. */ void md_apply_fix (fixP, val) fixS *fixP; long val; { as_fatal ("md_apply_fix() not implemented yet\n"); abort (); } /* Functions concerning relocs. */ /* The location from which a PC relative jump should be calculated, given a PC relative reloc. */ long md_pcrel_from (fixP) fixS *fixP; { as_fatal ("md_pcrel_from() not implemented yet\n"); abort (); } /* * Called after relax() is finished. * In: Address of frag. * fr_type == rs_machine_dependent. * fr_subtype is what the address relaxed to. * * Out: Any fixSs and constants are set up. * Caller will turn frag into a ".space 0". */ void md_convert_frag (headers, seg, fragP) object_headers *headers; segT seg; fragS *fragP; { as_fatal ("md_convert_frag() not implemented yet\n"); abort (); } /*ARGSUSED*/ void tc_coff_symbol_emit_hook (ignore) symbolS *ignore; { } #if defined OBJ_COFF short tc_coff_fix2rtype (fixP) fixS *fixP; { as_fatal ("tc_coff_fix2rtype() not implemented yet\n"); abort (); } #endif /* OBJ_COFF */ /* end of tc-tic80.c */