/* Cache and manage the values of registers for GDB, the GNU debugger. Copyright (C) 1986-2015 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "inferior.h" #include "target.h" #include "gdbarch.h" #include "gdbcmd.h" #include "regcache.h" #include "reggroups.h" #include "observer.h" #include "remote.h" #include "valprint.h" #include "regset.h" /* * DATA STRUCTURE * * Here is the actual register cache. */ /* Per-architecture object describing the layout of a register cache. Computed once when the architecture is created. */ struct gdbarch_data *regcache_descr_handle; struct regcache_descr { /* The architecture this descriptor belongs to. */ struct gdbarch *gdbarch; /* The raw register cache. Each raw (or hard) register is supplied by the target interface. The raw cache should not contain redundant information - if the PC is constructed from two registers then those registers and not the PC lives in the raw cache. */ int nr_raw_registers; long sizeof_raw_registers; long sizeof_raw_register_status; /* The cooked register space. Each cooked register in the range [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw register. The remaining [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto both raw registers and memory by the architecture methods gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */ int nr_cooked_registers; long sizeof_cooked_registers; long sizeof_cooked_register_status; /* Offset and size (in 8 bit bytes), of each register in the register cache. All registers (including those in the range [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset. */ long *register_offset; long *sizeof_register; /* Cached table containing the type of each register. */ struct type **register_type; }; static void * init_regcache_descr (struct gdbarch *gdbarch) { int i; struct regcache_descr *descr; gdb_assert (gdbarch != NULL); /* Create an initial, zero filled, table. */ descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr); descr->gdbarch = gdbarch; /* Total size of the register space. The raw registers are mapped directly onto the raw register cache while the pseudo's are either mapped onto raw-registers or memory. */ descr->nr_cooked_registers = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); descr->sizeof_cooked_register_status = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); /* Fill in a table of register types. */ descr->register_type = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *); for (i = 0; i < descr->nr_cooked_registers; i++) descr->register_type[i] = gdbarch_register_type (gdbarch, i); /* Construct a strictly RAW register cache. Don't allow pseudo's into the register cache. */ descr->nr_raw_registers = gdbarch_num_regs (gdbarch); descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch); /* Lay out the register cache. NOTE: cagney/2002-05-22: Only register_type() is used when constructing the register cache. It is assumed that the register's raw size, virtual size and type length are all the same. */ { long offset = 0; descr->sizeof_register = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); descr->register_offset = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); for (i = 0; i < descr->nr_raw_registers; i++) { descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); descr->register_offset[i] = offset; offset += descr->sizeof_register[i]; gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]); } /* Set the real size of the raw register cache buffer. */ descr->sizeof_raw_registers = offset; for (; i < descr->nr_cooked_registers; i++) { descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); descr->register_offset[i] = offset; offset += descr->sizeof_register[i]; gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]); } /* Set the real size of the readonly register cache buffer. */ descr->sizeof_cooked_registers = offset; } return descr; } static struct regcache_descr * regcache_descr (struct gdbarch *gdbarch) { return (struct regcache_descr *) gdbarch_data (gdbarch, regcache_descr_handle); } /* Utility functions returning useful register attributes stored in the regcache descr. */ struct type * register_type (struct gdbarch *gdbarch, int regnum) { struct regcache_descr *descr = regcache_descr (gdbarch); gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); return descr->register_type[regnum]; } /* Utility functions returning useful register attributes stored in the regcache descr. */ int register_size (struct gdbarch *gdbarch, int regnum) { struct regcache_descr *descr = regcache_descr (gdbarch); int size; gdb_assert (regnum >= 0 && regnum < (gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch))); size = descr->sizeof_register[regnum]; return size; } /* The register cache for storing raw register values. */ struct regcache { struct regcache_descr *descr; /* The address space of this register cache (for registers where it makes sense, like PC or SP). */ struct address_space *aspace; /* The register buffers. A read-only register cache can hold the full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write register cache can only hold [0 .. gdbarch_num_regs). */ gdb_byte *registers; /* Register cache status. */ signed char *register_status; /* Is this a read-only cache? A read-only cache is used for saving the target's register state (e.g, across an inferior function call or just before forcing a function return). A read-only cache can only be updated via the methods regcache_dup() and regcache_cpy(). The actual contents are determined by the reggroup_save and reggroup_restore methods. */ int readonly_p; /* If this is a read-write cache, which thread's registers is it connected to? */ ptid_t ptid; }; static struct regcache * regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace, int readonly_p) { struct regcache_descr *descr; struct regcache *regcache; gdb_assert (gdbarch != NULL); descr = regcache_descr (gdbarch); regcache = XNEW (struct regcache); regcache->descr = descr; regcache->readonly_p = readonly_p; if (readonly_p) { regcache->registers = XCNEWVEC (gdb_byte, descr->sizeof_cooked_registers); regcache->register_status = XCNEWVEC (signed char, descr->sizeof_cooked_register_status); } else { regcache->registers = XCNEWVEC (gdb_byte, descr->sizeof_raw_registers); regcache->register_status = XCNEWVEC (signed char, descr->sizeof_raw_register_status); } regcache->aspace = aspace; regcache->ptid = minus_one_ptid; return regcache; } struct regcache * regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace) { return regcache_xmalloc_1 (gdbarch, aspace, 1); } void regcache_xfree (struct regcache *regcache) { if (regcache == NULL) return; xfree (regcache->registers); xfree (regcache->register_status); xfree (regcache); } static void do_regcache_xfree (void *data) { regcache_xfree ((struct regcache *) data); } struct cleanup * make_cleanup_regcache_xfree (struct regcache *regcache) { return make_cleanup (do_regcache_xfree, regcache); } /* Cleanup routines for invalidating a register. */ struct register_to_invalidate { struct regcache *regcache; int regnum; }; static void do_regcache_invalidate (void *data) { struct register_to_invalidate *reg = (struct register_to_invalidate *) data; regcache_invalidate (reg->regcache, reg->regnum); } static struct cleanup * make_cleanup_regcache_invalidate (struct regcache *regcache, int regnum) { struct register_to_invalidate* reg = XNEW (struct register_to_invalidate); reg->regcache = regcache; reg->regnum = regnum; return make_cleanup_dtor (do_regcache_invalidate, (void *) reg, xfree); } /* Return REGCACHE's architecture. */ struct gdbarch * get_regcache_arch (const struct regcache *regcache) { return regcache->descr->gdbarch; } struct address_space * get_regcache_aspace (const struct regcache *regcache) { return regcache->aspace; } /* Return a pointer to register REGNUM's buffer cache. */ static gdb_byte * register_buffer (const struct regcache *regcache, int regnum) { return regcache->registers + regcache->descr->register_offset[regnum]; } void regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read, void *src) { struct gdbarch *gdbarch = dst->descr->gdbarch; gdb_byte buf[MAX_REGISTER_SIZE]; int regnum; /* The DST should be `read-only', if it wasn't then the save would end up trying to write the register values back out to the target. */ gdb_assert (dst->readonly_p); /* Clear the dest. */ memset (dst->registers, 0, dst->descr->sizeof_cooked_registers); memset (dst->register_status, 0, dst->descr->sizeof_cooked_register_status); /* Copy over any registers (identified by their membership in the save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) range is checked since some architectures need to save/restore `cooked' registers that live in memory. */ for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++) { if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup)) { enum register_status status = cooked_read (src, regnum, buf); if (status == REG_VALID) memcpy (register_buffer (dst, regnum), buf, register_size (gdbarch, regnum)); else { gdb_assert (status != REG_UNKNOWN); memset (register_buffer (dst, regnum), 0, register_size (gdbarch, regnum)); } dst->register_status[regnum] = status; } } } static void regcache_restore (struct regcache *dst, regcache_cooked_read_ftype *cooked_read, void *cooked_read_context) { struct gdbarch *gdbarch = dst->descr->gdbarch; gdb_byte buf[MAX_REGISTER_SIZE]; int regnum; /* The dst had better not be read-only. If it is, the `restore' doesn't make much sense. */ gdb_assert (!dst->readonly_p); /* Copy over any registers, being careful to only restore those that were both saved and need to be restored. The full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) range is checked since some architectures need to save/restore `cooked' registers that live in memory. */ for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++) { if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup)) { enum register_status status; status = cooked_read (cooked_read_context, regnum, buf); if (status == REG_VALID) regcache_cooked_write (dst, regnum, buf); } } } static enum register_status do_cooked_read (void *src, int regnum, gdb_byte *buf) { struct regcache *regcache = (struct regcache *) src; return regcache_cooked_read (regcache, regnum, buf); } static void regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src); void regcache_cpy (struct regcache *dst, struct regcache *src) { gdb_assert (src != NULL && dst != NULL); gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); gdb_assert (src != dst); gdb_assert (src->readonly_p || dst->readonly_p); if (!src->readonly_p) regcache_save (dst, do_cooked_read, src); else if (!dst->readonly_p) regcache_restore (dst, do_cooked_read, src); else regcache_cpy_no_passthrough (dst, src); } /* Copy/duplicate the contents of a register cache. Unlike regcache_cpy, which is pass-through, this does not go through to the target. Only values values already in the cache are transferred. The SRC and DST buffers must not overlap. */ static void regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src) { gdb_assert (src != NULL && dst != NULL); gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough move of data into a thread's regcache. Doing this would be silly - it would mean that regcache->register_status would be completely invalid. */ gdb_assert (dst->readonly_p && src->readonly_p); memcpy (dst->registers, src->registers, dst->descr->sizeof_cooked_registers); memcpy (dst->register_status, src->register_status, dst->descr->sizeof_cooked_register_status); } struct regcache * regcache_dup (struct regcache *src) { struct regcache *newbuf; newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src)); regcache_cpy (newbuf, src); return newbuf; } enum register_status regcache_register_status (const struct regcache *regcache, int regnum) { gdb_assert (regcache != NULL); gdb_assert (regnum >= 0); if (regcache->readonly_p) gdb_assert (regnum < regcache->descr->nr_cooked_registers); else gdb_assert (regnum < regcache->descr->nr_raw_registers); return (enum register_status) regcache->register_status[regnum]; } void regcache_invalidate (struct regcache *regcache, int regnum) { gdb_assert (regcache != NULL); gdb_assert (regnum >= 0); gdb_assert (!regcache->readonly_p); gdb_assert (regnum < regcache->descr->nr_raw_registers); regcache->register_status[regnum] = REG_UNKNOWN; } /* Global structure containing the current regcache. */ /* NOTE: this is a write-through cache. There is no "dirty" bit for recording if the register values have been changed (eg. by the user). Therefore all registers must be written back to the target when appropriate. */ struct regcache_list { struct regcache *regcache; struct regcache_list *next; }; static struct regcache_list *current_regcache; struct regcache * get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch, struct address_space *aspace) { struct regcache_list *list; struct regcache *new_regcache; for (list = current_regcache; list; list = list->next) if (ptid_equal (list->regcache->ptid, ptid) && get_regcache_arch (list->regcache) == gdbarch) return list->regcache; new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0); new_regcache->ptid = ptid; list = XNEW (struct regcache_list); list->regcache = new_regcache; list->next = current_regcache; current_regcache = list; return new_regcache; } struct regcache * get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch) { struct address_space *aspace; /* For the benefit of "maint print registers" & co when debugging an executable, allow dumping the regcache even when there is no thread selected (target_thread_address_space internal-errors if no address space is found). Note that normal user commands will fail higher up on the call stack due to no target_has_registers. */ aspace = (ptid_equal (null_ptid, ptid) ? NULL : target_thread_address_space (ptid)); return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace); } static ptid_t current_thread_ptid; static struct gdbarch *current_thread_arch; struct regcache * get_thread_regcache (ptid_t ptid) { if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid)) { current_thread_ptid = ptid; current_thread_arch = target_thread_architecture (ptid); } return get_thread_arch_regcache (ptid, current_thread_arch); } struct regcache * get_current_regcache (void) { return get_thread_regcache (inferior_ptid); } /* See common/common-regcache.h. */ struct regcache * get_thread_regcache_for_ptid (ptid_t ptid) { return get_thread_regcache (ptid); } /* Observer for the target_changed event. */ static void regcache_observer_target_changed (struct target_ops *target) { registers_changed (); } /* Update global variables old ptids to hold NEW_PTID if they were holding OLD_PTID. */ static void regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) { struct regcache_list *list; for (list = current_regcache; list; list = list->next) if (ptid_equal (list->regcache->ptid, old_ptid)) list->regcache->ptid = new_ptid; } /* Low level examining and depositing of registers. The caller is responsible for making sure that the inferior is stopped before calling the fetching routines, or it will get garbage. (a change from GDB version 3, in which the caller got the value from the last stop). */ /* REGISTERS_CHANGED () Indicate that registers may have changed, so invalidate the cache. */ void registers_changed_ptid (ptid_t ptid) { struct regcache_list *list, **list_link; list = current_regcache; list_link = ¤t_regcache; while (list) { if (ptid_match (list->regcache->ptid, ptid)) { struct regcache_list *dead = list; *list_link = list->next; regcache_xfree (list->regcache); list = *list_link; xfree (dead); continue; } list_link = &list->next; list = *list_link; } if (ptid_match (current_thread_ptid, ptid)) { current_thread_ptid = null_ptid; current_thread_arch = NULL; } if (ptid_match (inferior_ptid, ptid)) { /* We just deleted the regcache of the current thread. Need to forget about any frames we have cached, too. */ reinit_frame_cache (); } } void registers_changed (void) { registers_changed_ptid (minus_one_ptid); /* Force cleanup of any alloca areas if using C alloca instead of a builtin alloca. This particular call is used to clean up areas allocated by low level target code which may build up during lengthy interactions between gdb and the target before gdb gives control to the user (ie watchpoints). */ alloca (0); } enum register_status regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf) { gdb_assert (regcache != NULL && buf != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); /* Make certain that the register cache is up-to-date with respect to the current thread. This switching shouldn't be necessary only there is still only one target side register cache. Sigh! On the bright side, at least there is a regcache object. */ if (!regcache->readonly_p && regcache_register_status (regcache, regnum) == REG_UNKNOWN) { struct cleanup *old_chain = save_inferior_ptid (); inferior_ptid = regcache->ptid; target_fetch_registers (regcache, regnum); do_cleanups (old_chain); /* A number of targets can't access the whole set of raw registers (because the debug API provides no means to get at them). */ if (regcache->register_status[regnum] == REG_UNKNOWN) regcache->register_status[regnum] = REG_UNAVAILABLE; } if (regcache->register_status[regnum] != REG_VALID) memset (buf, 0, regcache->descr->sizeof_register[regnum]); else memcpy (buf, register_buffer (regcache, regnum), regcache->descr->sizeof_register[regnum]); return (enum register_status) regcache->register_status[regnum]; } enum register_status regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val) { gdb_byte *buf; enum register_status status; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); status = regcache_raw_read (regcache, regnum, buf); if (status == REG_VALID) *val = extract_signed_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch)); else *val = 0; return status; } enum register_status regcache_raw_read_unsigned (struct regcache *regcache, int regnum, ULONGEST *val) { gdb_byte *buf; enum register_status status; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); status = regcache_raw_read (regcache, regnum, buf); if (status == REG_VALID) *val = extract_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch)); else *val = 0; return status; } void regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val) { gdb_byte *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); store_signed_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch), val); regcache_raw_write (regcache, regnum, buf); } void regcache_raw_write_unsigned (struct regcache *regcache, int regnum, ULONGEST val) { gdb_byte *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch), val); regcache_raw_write (regcache, regnum, buf); } enum register_status regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf) { gdb_assert (regnum >= 0); gdb_assert (regnum < regcache->descr->nr_cooked_registers); if (regnum < regcache->descr->nr_raw_registers) return regcache_raw_read (regcache, regnum, buf); else if (regcache->readonly_p && regcache->register_status[regnum] != REG_UNKNOWN) { /* Read-only register cache, perhaps the cooked value was cached? */ if (regcache->register_status[regnum] == REG_VALID) memcpy (buf, register_buffer (regcache, regnum), regcache->descr->sizeof_register[regnum]); else memset (buf, 0, regcache->descr->sizeof_register[regnum]); return (enum register_status) regcache->register_status[regnum]; } else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch)) { struct value *mark, *computed; enum register_status result = REG_VALID; mark = value_mark (); computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch, regcache, regnum); if (value_entirely_available (computed)) memcpy (buf, value_contents_raw (computed), regcache->descr->sizeof_register[regnum]); else { memset (buf, 0, regcache->descr->sizeof_register[regnum]); result = REG_UNAVAILABLE; } value_free_to_mark (mark); return result; } else return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache, regnum, buf); } struct value * regcache_cooked_read_value (struct regcache *regcache, int regnum) { gdb_assert (regnum >= 0); gdb_assert (regnum < regcache->descr->nr_cooked_registers); if (regnum < regcache->descr->nr_raw_registers || (regcache->readonly_p && regcache->register_status[regnum] != REG_UNKNOWN) || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch)) { struct value *result; result = allocate_value (register_type (regcache->descr->gdbarch, regnum)); VALUE_LVAL (result) = lval_register; VALUE_REGNUM (result) = regnum; /* It is more efficient in general to do this delegation in this direction than in the other one, even though the value-based API is preferred. */ if (regcache_cooked_read (regcache, regnum, value_contents_raw (result)) == REG_UNAVAILABLE) mark_value_bytes_unavailable (result, 0, TYPE_LENGTH (value_type (result))); return result; } else return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch, regcache, regnum); } enum register_status regcache_cooked_read_signed (struct regcache *regcache, int regnum, LONGEST *val) { enum register_status status; gdb_byte *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); status = regcache_cooked_read (regcache, regnum, buf); if (status == REG_VALID) *val = extract_signed_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch)); else *val = 0; return status; } enum register_status regcache_cooked_read_unsigned (struct regcache *regcache, int regnum, ULONGEST *val) { enum register_status status; gdb_byte *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); status = regcache_cooked_read (regcache, regnum, buf); if (status == REG_VALID) *val = extract_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch)); else *val = 0; return status; } void regcache_cooked_write_signed (struct regcache *regcache, int regnum, LONGEST val) { gdb_byte *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); store_signed_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch), val); regcache_cooked_write (regcache, regnum, buf); } void regcache_cooked_write_unsigned (struct regcache *regcache, int regnum, ULONGEST val) { gdb_byte *buf; gdb_assert (regcache != NULL); gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers); buf = (gdb_byte *) alloca (regcache->descr->sizeof_register[regnum]); store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (regcache->descr->gdbarch), val); regcache_cooked_write (regcache, regnum, buf); } void regcache_raw_write (struct regcache *regcache, int regnum, const gdb_byte *buf) { struct cleanup *chain_before_save_inferior; struct cleanup *chain_before_invalidate_register; gdb_assert (regcache != NULL && buf != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); gdb_assert (!regcache->readonly_p); /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum)) return; /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (regcache_register_status (regcache, regnum) == REG_VALID && (memcmp (register_buffer (regcache, regnum), buf, regcache->descr->sizeof_register[regnum]) == 0)) return; chain_before_save_inferior = save_inferior_ptid (); inferior_ptid = regcache->ptid; target_prepare_to_store (regcache); memcpy (register_buffer (regcache, regnum), buf, regcache->descr->sizeof_register[regnum]); regcache->register_status[regnum] = REG_VALID; /* Register a cleanup function for invalidating the register after it is written, in case of a failure. */ chain_before_invalidate_register = make_cleanup_regcache_invalidate (regcache, regnum); target_store_registers (regcache, regnum); /* The target did not throw an error so we can discard invalidating the register and restore the cleanup chain to what it was. */ discard_cleanups (chain_before_invalidate_register); do_cleanups (chain_before_save_inferior); } void regcache_cooked_write (struct regcache *regcache, int regnum, const gdb_byte *buf) { gdb_assert (regnum >= 0); gdb_assert (regnum < regcache->descr->nr_cooked_registers); if (regnum < regcache->descr->nr_raw_registers) regcache_raw_write (regcache, regnum, buf); else gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache, regnum, buf); } /* Perform a partial register transfer using a read, modify, write operation. */ typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum, void *buf); typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum, const void *buf); static enum register_status regcache_xfer_part (struct regcache *regcache, int regnum, int offset, int len, void *in, const void *out, enum register_status (*read) (struct regcache *regcache, int regnum, gdb_byte *buf), void (*write) (struct regcache *regcache, int regnum, const gdb_byte *buf)) { struct regcache_descr *descr = regcache->descr; gdb_byte reg[MAX_REGISTER_SIZE]; gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]); gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]); /* Something to do? */ if (offset + len == 0) return REG_VALID; /* Read (when needed) ... */ if (in != NULL || offset > 0 || offset + len < descr->sizeof_register[regnum]) { enum register_status status; gdb_assert (read != NULL); status = read (regcache, regnum, reg); if (status != REG_VALID) return status; } /* ... modify ... */ if (in != NULL) memcpy (in, reg + offset, len); if (out != NULL) memcpy (reg + offset, out, len); /* ... write (when needed). */ if (out != NULL) { gdb_assert (write != NULL); write (regcache, regnum, reg); } return REG_VALID; } enum register_status regcache_raw_read_part (struct regcache *regcache, int regnum, int offset, int len, gdb_byte *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, regcache_raw_read, regcache_raw_write); } void regcache_raw_write_part (struct regcache *regcache, int regnum, int offset, int len, const gdb_byte *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, regcache_raw_read, regcache_raw_write); } enum register_status regcache_cooked_read_part (struct regcache *regcache, int regnum, int offset, int len, gdb_byte *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, regcache_cooked_read, regcache_cooked_write); } void regcache_cooked_write_part (struct regcache *regcache, int regnum, int offset, int len, const gdb_byte *buf) { struct regcache_descr *descr = regcache->descr; gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, regcache_cooked_read, regcache_cooked_write); } /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */ void regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf) { void *regbuf; size_t size; gdb_assert (regcache != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); gdb_assert (!regcache->readonly_p); regbuf = register_buffer (regcache, regnum); size = regcache->descr->sizeof_register[regnum]; if (buf) { memcpy (regbuf, buf, size); regcache->register_status[regnum] = REG_VALID; } else { /* This memset not strictly necessary, but better than garbage in case the register value manages to escape somewhere (due to a bug, no less). */ memset (regbuf, 0, size); regcache->register_status[regnum] = REG_UNAVAILABLE; } } /* Collect register REGNUM from REGCACHE and store its contents in BUF. */ void regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf) { const void *regbuf; size_t size; gdb_assert (regcache != NULL && buf != NULL); gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); regbuf = register_buffer (regcache, regnum); size = regcache->descr->sizeof_register[regnum]; memcpy (buf, regbuf, size); } /* Transfer a single or all registers belonging to a certain register set to or from a buffer. This is the main worker function for regcache_supply_regset and regcache_collect_regset. */ static void regcache_transfer_regset (const struct regset *regset, const struct regcache *regcache, struct regcache *out_regcache, int regnum, const void *in_buf, void *out_buf, size_t size) { const struct regcache_map_entry *map; int offs = 0, count; for (map = (const struct regcache_map_entry *) regset->regmap; (count = map->count) != 0; map++) { int regno = map->regno; int slot_size = map->size; if (slot_size == 0 && regno != REGCACHE_MAP_SKIP) slot_size = regcache->descr->sizeof_register[regno]; if (regno == REGCACHE_MAP_SKIP || (regnum != -1 && (regnum < regno || regnum >= regno + count))) offs += count * slot_size; else if (regnum == -1) for (; count--; regno++, offs += slot_size) { if (offs + slot_size > size) break; if (out_buf) regcache_raw_collect (regcache, regno, (gdb_byte *) out_buf + offs); else regcache_raw_supply (out_regcache, regno, in_buf ? (const gdb_byte *) in_buf + offs : NULL); } else { /* Transfer a single register and return. */ offs += (regnum - regno) * slot_size; if (offs + slot_size > size) return; if (out_buf) regcache_raw_collect (regcache, regnum, (gdb_byte *) out_buf + offs); else regcache_raw_supply (out_regcache, regnum, in_buf ? (const gdb_byte *) in_buf + offs : NULL); return; } } } /* Supply register REGNUM from BUF to REGCACHE, using the register map in REGSET. If REGNUM is -1, do this for all registers in REGSET. If BUF is NULL, set the register(s) to "unavailable" status. */ void regcache_supply_regset (const struct regset *regset, struct regcache *regcache, int regnum, const void *buf, size_t size) { regcache_transfer_regset (regset, regcache, regcache, regnum, buf, NULL, size); } /* Collect register REGNUM from REGCACHE to BUF, using the register map in REGSET. If REGNUM is -1, do this for all registers in REGSET. */ void regcache_collect_regset (const struct regset *regset, const struct regcache *regcache, int regnum, void *buf, size_t size) { regcache_transfer_regset (regset, regcache, NULL, regnum, NULL, buf, size); } /* Special handling for register PC. */ CORE_ADDR regcache_read_pc (struct regcache *regcache) { struct gdbarch *gdbarch = get_regcache_arch (regcache); CORE_ADDR pc_val; if (gdbarch_read_pc_p (gdbarch)) pc_val = gdbarch_read_pc (gdbarch, regcache); /* Else use per-frame method on get_current_frame. */ else if (gdbarch_pc_regnum (gdbarch) >= 0) { ULONGEST raw_val; if (regcache_cooked_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &raw_val) == REG_UNAVAILABLE) throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available")); pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val); } else internal_error (__FILE__, __LINE__, _("regcache_read_pc: Unable to find PC")); return pc_val; } void regcache_write_pc (struct regcache *regcache, CORE_ADDR pc) { struct gdbarch *gdbarch = get_regcache_arch (regcache); if (gdbarch_write_pc_p (gdbarch)) gdbarch_write_pc (gdbarch, regcache, pc); else if (gdbarch_pc_regnum (gdbarch) >= 0) regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc); else internal_error (__FILE__, __LINE__, _("regcache_write_pc: Unable to update PC")); /* Writing the PC (for instance, from "load") invalidates the current frame. */ reinit_frame_cache (); } static void reg_flush_command (char *command, int from_tty) { /* Force-flush the register cache. */ registers_changed (); if (from_tty) printf_filtered (_("Register cache flushed.\n")); } enum regcache_dump_what { regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups, regcache_dump_remote }; static void regcache_dump (struct regcache *regcache, struct ui_file *file, enum regcache_dump_what what_to_dump) { struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); struct gdbarch *gdbarch = regcache->descr->gdbarch; int regnum; int footnote_nr = 0; int footnote_register_size = 0; int footnote_register_offset = 0; int footnote_register_type_name_null = 0; long register_offset = 0; gdb_byte buf[MAX_REGISTER_SIZE]; #if 0 fprintf_unfiltered (file, "nr_raw_registers %d\n", regcache->descr->nr_raw_registers); fprintf_unfiltered (file, "nr_cooked_registers %d\n", regcache->descr->nr_cooked_registers); fprintf_unfiltered (file, "sizeof_raw_registers %ld\n", regcache->descr->sizeof_raw_registers); fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n", regcache->descr->sizeof_raw_register_status); fprintf_unfiltered (file, "gdbarch_num_regs %d\n", gdbarch_num_regs (gdbarch)); fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n", gdbarch_num_pseudo_regs (gdbarch)); #endif gdb_assert (regcache->descr->nr_cooked_registers == (gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch))); for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++) { /* Name. */ if (regnum < 0) fprintf_unfiltered (file, " %-10s", "Name"); else { const char *p = gdbarch_register_name (gdbarch, regnum); if (p == NULL) p = ""; else if (p[0] == '\0') p = "''"; fprintf_unfiltered (file, " %-10s", p); } /* Number. */ if (regnum < 0) fprintf_unfiltered (file, " %4s", "Nr"); else fprintf_unfiltered (file, " %4d", regnum); /* Relative number. */ if (regnum < 0) fprintf_unfiltered (file, " %4s", "Rel"); else if (regnum < gdbarch_num_regs (gdbarch)) fprintf_unfiltered (file, " %4d", regnum); else fprintf_unfiltered (file, " %4d", (regnum - gdbarch_num_regs (gdbarch))); /* Offset. */ if (regnum < 0) fprintf_unfiltered (file, " %6s ", "Offset"); else { fprintf_unfiltered (file, " %6ld", regcache->descr->register_offset[regnum]); if (register_offset != regcache->descr->register_offset[regnum] || (regnum > 0 && (regcache->descr->register_offset[regnum] != (regcache->descr->register_offset[regnum - 1] + regcache->descr->sizeof_register[regnum - 1]))) ) { if (!footnote_register_offset) footnote_register_offset = ++footnote_nr; fprintf_unfiltered (file, "*%d", footnote_register_offset); } else fprintf_unfiltered (file, " "); register_offset = (regcache->descr->register_offset[regnum] + regcache->descr->sizeof_register[regnum]); } /* Size. */ if (regnum < 0) fprintf_unfiltered (file, " %5s ", "Size"); else fprintf_unfiltered (file, " %5ld", regcache->descr->sizeof_register[regnum]); /* Type. */ { const char *t; if (regnum < 0) t = "Type"; else { static const char blt[] = "builtin_type"; t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum)); if (t == NULL) { char *n; if (!footnote_register_type_name_null) footnote_register_type_name_null = ++footnote_nr; n = xstrprintf ("*%d", footnote_register_type_name_null); make_cleanup (xfree, n); t = n; } /* Chop a leading builtin_type. */ if (startswith (t, blt)) t += strlen (blt); } fprintf_unfiltered (file, " %-15s", t); } /* Leading space always present. */ fprintf_unfiltered (file, " "); /* Value, raw. */ if (what_to_dump == regcache_dump_raw) { if (regnum < 0) fprintf_unfiltered (file, "Raw value"); else if (regnum >= regcache->descr->nr_raw_registers) fprintf_unfiltered (file, ""); else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN) fprintf_unfiltered (file, ""); else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE) fprintf_unfiltered (file, ""); else { regcache_raw_read (regcache, regnum, buf); print_hex_chars (file, buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (gdbarch)); } } /* Value, cooked. */ if (what_to_dump == regcache_dump_cooked) { if (regnum < 0) fprintf_unfiltered (file, "Cooked value"); else { enum register_status status; status = regcache_cooked_read (regcache, regnum, buf); if (status == REG_UNKNOWN) fprintf_unfiltered (file, ""); else if (status == REG_UNAVAILABLE) fprintf_unfiltered (file, ""); else print_hex_chars (file, buf, regcache->descr->sizeof_register[regnum], gdbarch_byte_order (gdbarch)); } } /* Group members. */ if (what_to_dump == regcache_dump_groups) { if (regnum < 0) fprintf_unfiltered (file, "Groups"); else { const char *sep = ""; struct reggroup *group; for (group = reggroup_next (gdbarch, NULL); group != NULL; group = reggroup_next (gdbarch, group)) { if (gdbarch_register_reggroup_p (gdbarch, regnum, group)) { fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group)); sep = ","; } } } } /* Remote packet configuration. */ if (what_to_dump == regcache_dump_remote) { if (regnum < 0) { fprintf_unfiltered (file, "Rmt Nr g/G Offset"); } else if (regnum < regcache->descr->nr_raw_registers) { int pnum, poffset; if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum, &pnum, &poffset)) fprintf_unfiltered (file, "%7d %11d", pnum, poffset); } } fprintf_unfiltered (file, "\n"); } if (footnote_register_size) fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n", footnote_register_size); if (footnote_register_offset) fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n", footnote_register_offset); if (footnote_register_type_name_null) fprintf_unfiltered (file, "*%d: Register type's name NULL.\n", footnote_register_type_name_null); do_cleanups (cleanups); } static void regcache_print (char *args, enum regcache_dump_what what_to_dump) { if (args == NULL) regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump); else { struct cleanup *cleanups; struct ui_file *file = gdb_fopen (args, "w"); if (file == NULL) perror_with_name (_("maintenance print architecture")); cleanups = make_cleanup_ui_file_delete (file); regcache_dump (get_current_regcache (), file, what_to_dump); do_cleanups (cleanups); } } static void maintenance_print_registers (char *args, int from_tty) { regcache_print (args, regcache_dump_none); } static void maintenance_print_raw_registers (char *args, int from_tty) { regcache_print (args, regcache_dump_raw); } static void maintenance_print_cooked_registers (char *args, int from_tty) { regcache_print (args, regcache_dump_cooked); } static void maintenance_print_register_groups (char *args, int from_tty) { regcache_print (args, regcache_dump_groups); } static void maintenance_print_remote_registers (char *args, int from_tty) { regcache_print (args, regcache_dump_remote); } extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */ void _initialize_regcache (void) { regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr); observer_attach_target_changed (regcache_observer_target_changed); observer_attach_thread_ptid_changed (regcache_thread_ptid_changed); add_com ("flushregs", class_maintenance, reg_flush_command, _("Force gdb to flush its register cache (maintainer command)")); add_cmd ("registers", class_maintenance, maintenance_print_registers, _("Print the internal register configuration.\n" "Takes an optional file parameter."), &maintenanceprintlist); add_cmd ("raw-registers", class_maintenance, maintenance_print_raw_registers, _("Print the internal register configuration " "including raw values.\n" "Takes an optional file parameter."), &maintenanceprintlist); add_cmd ("cooked-registers", class_maintenance, maintenance_print_cooked_registers, _("Print the internal register configuration " "including cooked values.\n" "Takes an optional file parameter."), &maintenanceprintlist); add_cmd ("register-groups", class_maintenance, maintenance_print_register_groups, _("Print the internal register configuration " "including each register's group.\n" "Takes an optional file parameter."), &maintenanceprintlist); add_cmd ("remote-registers", class_maintenance, maintenance_print_remote_registers, _("\ Print the internal register configuration including each register's\n\ remote register number and buffer offset in the g/G packets.\n\ Takes an optional file parameter."), &maintenanceprintlist); }