/* BFD back-end for Hitachi Super-H COFF binaries.
   Copyright 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
   Contributed by Cygnus Support.
   Written by Steve Chamberlain, <sac@cygnus.com>.
   Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.

This file is part of BFD, the Binary File Descriptor library.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "bfd.h"
#include "sysdep.h"
#include "obstack.h"
#include "libbfd.h"
#include "bfdlink.h"
#include "coff/sh.h"
#include "coff/internal.h"
#include "libcoff.h"

/* Internal functions.  */
static bfd_reloc_status_type sh_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static long get_symbol_value PARAMS ((asymbol *));
static boolean sh_relax_section
  PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
static boolean sh_relax_delete_bytes
  PARAMS ((bfd *, asection *, bfd_vma, int));
static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
static boolean sh_align_loads
  PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *, boolean *));
static boolean sh_swap_insns
  PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *, bfd_vma));
static boolean sh_relocate_section
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
	   struct internal_reloc *, struct internal_syment *, asection **));
static bfd_byte *sh_coff_get_relocated_section_contents
  PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
	   bfd_byte *, boolean, asymbol **));

/* Default section alignment to 2**2.  */
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (2)

/* Generate long file names.  */
#define COFF_LONG_FILENAMES

/* The supported relocations.  There are a lot of relocations defined
   in coff/internal.h which we do not expect to ever see.  */
static reloc_howto_type sh_coff_howtos[] =
{
  { 0 },
  { 1 },
  { 2 },
  { 3 }, /* R_SH_PCREL8 */
  { 4 }, /* R_SH_PCREL16 */
  { 5 }, /* R_SH_HIGH8 */
  { 6 }, /* R_SH_IMM24 */
  { 7 }, /* R_SH_LOW16 */
  { 8 },
  { 9 }, /* R_SH_PCDISP8BY4 */

  HOWTO (R_SH_PCDISP8BY2,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_signed, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcdisp8by2",	/* name */
	 true,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 true),			/* pcrel_offset */

  { 11 }, /* R_SH_PCDISP8 */

  HOWTO (R_SH_PCDISP,		/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 12,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_signed, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcdisp12by2",	/* name */
	 true,			/* partial_inplace */
	 0xfff,			/* src_mask */
	 0xfff,			/* dst_mask */
	 true),			/* pcrel_offset */

  { 13 },

  HOWTO (R_SH_IMM32,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm32",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  { 15 },
  { 16 }, /* R_SH_IMM8 */
  { 17 }, /* R_SH_IMM8BY2 */
  { 18 }, /* R_SH_IMM8BY4 */
  { 19 }, /* R_SH_IMM4 */
  { 20 }, /* R_SH_IMM4BY2 */
  { 21 }, /* R_SH_IMM4BY4 */

  HOWTO (R_SH_PCRELIMM8BY2,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_unsigned, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcrelimm8by2",	/* name */
	 true,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 true),			/* pcrel_offset */

  HOWTO (R_SH_PCRELIMM8BY4,	/* type */
	 2,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_unsigned, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcrelimm8by4",	/* name */
	 true,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 true),			/* pcrel_offset */

  HOWTO (R_SH_IMM16,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm16",		/* name */
	 true,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH16,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch16",		/* name */
	 true,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH32,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch32",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_USES,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_uses",		/* name */
	 true,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_COUNT,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_count",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_ALIGN,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_align",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_CODE,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_code",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_DATA,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_data",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_LABEL,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_label",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false)			/* pcrel_offset */
};

#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])

/* Check for a bad magic number.  */
#define BADMAG(x) SHBADMAG(x)

/* Customize coffcode.h (this is not currently used).  */
#define SH 1

/* FIXME: This should not be set here.  */
#define __A_MAGIC_SET__

/* Swap the r_offset field in and out.  */
#define SWAP_IN_RELOC_OFFSET  bfd_h_get_32
#define SWAP_OUT_RELOC_OFFSET bfd_h_put_32

/* Swap out extra information in the reloc structure.  */
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)	\
  do						\
    {						\
      dst->r_stuff[0] = 'S';			\
      dst->r_stuff[1] = 'C';			\
    }						\
  while (0)

/* Get the value of a symbol, when performing a relocation.  */

static long
get_symbol_value (symbol)       
     asymbol *symbol;
{                                             
  bfd_vma relocation;

  if (bfd_is_com_section (symbol->section))
    relocation = 0;                           
  else 
    relocation = (symbol->value +
		  symbol->section->output_section->vma +
		  symbol->section->output_offset);

  return relocation;
}

/* This macro is used in coffcode.h to get the howto corresponding to
   an internal reloc.  */

#define RTYPE2HOWTO(relent, internal)		\
  ((relent)->howto =				\
   ((internal)->r_type < SH_COFF_HOWTO_COUNT	\
    ? &sh_coff_howtos[(internal)->r_type]	\
    : (reloc_howto_type *) NULL))

/* This is the same as the macro in coffcode.h, except that it copies
   r_offset into reloc_entry->addend for some relocs.  */
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)                \
  {                                                             \
    coff_symbol_type *coffsym = (coff_symbol_type *) NULL;      \
    if (ptr && bfd_asymbol_bfd (ptr) != abfd)                   \
      coffsym = (obj_symbols (abfd)                             \
                 + (cache_ptr->sym_ptr_ptr - symbols));         \
    else if (ptr)                                               \
      coffsym = coff_symbol_from (abfd, ptr);                   \
    if (coffsym != (coff_symbol_type *) NULL                    \
        && coffsym->native->u.syment.n_scnum == 0)              \
      cache_ptr->addend = 0;                                    \
    else if (ptr && bfd_asymbol_bfd (ptr) == abfd               \
             && ptr->section != (asection *) NULL)              \
      cache_ptr->addend = - (ptr->section->vma + ptr->value);   \
    else                                                        \
      cache_ptr->addend = 0;                                    \
    if ((reloc).r_type == R_SH_SWITCH16				\
	|| (reloc).r_type == R_SH_SWITCH32			\
	|| (reloc).r_type == R_SH_USES				\
	|| (reloc).r_type == R_SH_COUNT				\
	|| (reloc).r_type == R_SH_ALIGN)			\
      cache_ptr->addend = (reloc).r_offset;			\
  }

/* This is the howto function for the SH relocations.  */

static bfd_reloc_status_type
sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
	  error_message)
     bfd *abfd;
     arelent *reloc_entry;
     asymbol *symbol_in;
     PTR data;
     asection *input_section;
     bfd *output_bfd;
     char **error_message;
{
  unsigned long insn;
  bfd_vma sym_value;
  unsigned short r_type;
  bfd_vma addr = reloc_entry->address;
  bfd_byte *hit_data = addr + (bfd_byte *) data;

  r_type = reloc_entry->howto->type;

  if (output_bfd != NULL)
    {
      /* Partial linking--do nothing.  */
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
    }

  /* Almost all relocs have to do with relaxing.  If any work must be
     done for them, it has been done in sh_relax_section.  */
  if (r_type != R_SH_IMM32
      && (r_type != R_SH_PCDISP
	  || (symbol_in->flags & BSF_LOCAL) != 0))
    return bfd_reloc_ok;

  if (symbol_in != NULL
      && bfd_is_und_section (symbol_in->section))
    return bfd_reloc_undefined;

  sym_value = get_symbol_value (symbol_in);

  switch (r_type)
    {
    case R_SH_IMM32:
      insn = bfd_get_32 (abfd, hit_data);
      insn += sym_value + reloc_entry->addend;
      bfd_put_32 (abfd, insn, hit_data);
      break;
    case R_SH_PCDISP:
      insn = bfd_get_16 (abfd, hit_data);
      sym_value += reloc_entry->addend;
      sym_value -= (input_section->output_section->vma
		    + input_section->output_offset
		    + addr
		    + 4);
      sym_value += (insn & 0xfff) << 1;
      if (insn & 0x800)
	sym_value -= 0x1000;
      insn = (insn & 0xf000) | (sym_value & 0xfff);
      bfd_put_16 (abfd, insn, hit_data);
      if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
	return bfd_reloc_overflow;
      break;
    default:
      abort ();
      break;
    }

  return bfd_reloc_ok;
}

/* We can do relaxing.  */
#define coff_bfd_relax_section sh_relax_section

/* We use the special COFF backend linker.  */
#define coff_relocate_section sh_relocate_section

/* When relaxing, we need to use special code to get the relocated
   section contents.  */
#define coff_bfd_get_relocated_section_contents \
  sh_coff_get_relocated_section_contents

#include "coffcode.h"

/* This function handles relaxing on the SH.

   Function calls on the SH look like this:

       movl  L1,r0
       ...
       jsr   @r0
       ...
     L1:
       .long function

   The compiler and assembler will cooperate to create R_SH_USES
   relocs on the jsr instructions.  The r_offset field of the
   R_SH_USES reloc is the PC relative offset to the instruction which
   loads the register (the r_offset field is computed as though it
   were a jump instruction, so the offset value is actually from four
   bytes past the instruction).  The linker can use this reloc to
   determine just which function is being called, and thus decide
   whether it is possible to replace the jsr with a bsr.

   If multiple function calls are all based on a single register load
   (i.e., the same function is called multiple times), the compiler
   guarantees that each function call will have an R_SH_USES reloc.
   Therefore, if the linker is able to convert each R_SH_USES reloc
   which refers to that address, it can safely eliminate the register
   load.

   When the assembler creates an R_SH_USES reloc, it examines it to
   determine which address is being loaded (L1 in the above example).
   It then counts the number of references to that address, and
   creates an R_SH_COUNT reloc at that address.  The r_offset field of
   the R_SH_COUNT reloc will be the number of references.  If the
   linker is able to eliminate a register load, it can use the
   R_SH_COUNT reloc to see whether it can also eliminate the function
   address.

   SH relaxing also handles another, unrelated, matter.  On the SH, if
   a load or store instruction is not aligned on a four byte boundary,
   the memory cycle interferes with the 32 bit instruction fetch,
   causing a one cycle bubble in the pipeline.  Therefore, we try to
   align load and store instructions on four byte boundaries if we
   can, by swapping them with one of the adjacent instructions.  */

static boolean 
sh_relax_section (abfd, sec, link_info, again)
     bfd *abfd;
     asection *sec;
     struct bfd_link_info *link_info;
     boolean *again;
{
  struct internal_reloc *internal_relocs;
  struct internal_reloc *free_relocs = NULL;
  boolean have_code;
  struct internal_reloc *irel, *irelend;
  bfd_byte *contents = NULL;
  bfd_byte *free_contents = NULL;

  *again = false;

  if (link_info->relocateable
      || (sec->flags & SEC_RELOC) == 0
      || sec->reloc_count == 0)
    return true;

  /* If this is the first time we have been called for this section,
     initialize the cooked size.  */
  if (sec->_cooked_size == 0)
    sec->_cooked_size = sec->_raw_size;

  internal_relocs = (_bfd_coff_read_internal_relocs
		     (abfd, sec, link_info->keep_memory,
		      (bfd_byte *) NULL, false,
		      (struct internal_reloc *) NULL));
  if (internal_relocs == NULL)
    goto error_return;
  if (! link_info->keep_memory)
    free_relocs = internal_relocs;

  have_code = false;

  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma laddr, paddr, symval;
      unsigned short insn;
      struct internal_reloc *irelfn, *irelscan, *irelcount;
      struct internal_syment sym;
      bfd_signed_vma foff;

      if (irel->r_type == R_SH_CODE)
	have_code = true;

      if (irel->r_type != R_SH_USES)
	continue;

      /* Get the section contents.  */
      if (contents == NULL)
	{
	  if (coff_section_data (abfd, sec) != NULL
	      && coff_section_data (abfd, sec)->contents != NULL)
	    contents = coff_section_data (abfd, sec)->contents;
	  else
	    {
	      contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
	      if (contents == NULL)
		goto error_return;
	      free_contents = contents;

	      if (! bfd_get_section_contents (abfd, sec, contents,
					      (file_ptr) 0, sec->_raw_size))
		goto error_return;
	    }
	}

      /* The r_offset field of the R_SH_USES reloc will point us to
         the register load.  The 4 is because the r_offset field is
         computed as though it were a jump offset, which are based
         from 4 bytes after the jump instruction.  */
      laddr = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
      if (laddr >= sec->_raw_size)
	{
	  (*_bfd_error_handler) ("%s: 0x%lx: warning: bad R_SH_USES offset",
				 bfd_get_filename (abfd),
				 (unsigned long) irel->r_vaddr);
	  continue;
	}
      insn = bfd_get_16 (abfd, contents + laddr);

      /* If the instruction is not mov.l NN,rN, we don't know what to
         do.  */
      if ((insn & 0xf000) != 0xd000)
	{
	  ((*_bfd_error_handler)
	   ("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
	    bfd_get_filename (abfd), (unsigned long) irel->r_vaddr, insn));
	  continue;
	}

      /* Get the address from which the register is being loaded.  The
      	 displacement in the mov.l instruction is quadrupled.  It is a
      	 displacement from four bytes after the movl instruction, but,
      	 before adding in the PC address, two least significant bits
      	 of the PC are cleared.  We assume that the section is aligned
      	 on a four byte boundary.  */
      paddr = insn & 0xff;
      paddr *= 4;
      paddr += (laddr + 4) &~ 3;
      if (paddr >= sec->_raw_size)
	{
	  ((*_bfd_error_handler)
	   ("%s: 0x%lx: warning: bad R_SH_USES load offset",
	    bfd_get_filename (abfd), (unsigned long) irel->r_vaddr));
	  continue;
	}

      /* Get the reloc for the address from which the register is
         being loaded.  This reloc will tell us which function is
         actually being called.  */
      paddr += sec->vma;
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
	if (irelfn->r_vaddr == paddr
	    && irelfn->r_type == R_SH_IMM32)
	  break;
      if (irelfn >= irelend)
	{
	  ((*_bfd_error_handler)
	   ("%s: 0x%lx: warning: could not find expected reloc",
	    bfd_get_filename (abfd), (unsigned long) paddr));
	  continue;
	}

      /* Get the value of the symbol referred to by the reloc.  */
      if (! _bfd_coff_get_external_symbols (abfd))
	goto error_return;
      bfd_coff_swap_sym_in (abfd,
			    ((bfd_byte *) obj_coff_external_syms (abfd)
			     + (irelfn->r_symndx
				* bfd_coff_symesz (abfd))),
			    &sym);
      if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
	{
	  ((*_bfd_error_handler)
	   ("%s: 0x%lx: warning: symbol in unexpected section",
	    bfd_get_filename (abfd), (unsigned long) paddr));
	  continue;
	}

      if (sym.n_sclass != C_EXT)
	{
	  symval = (sym.n_value
		    - sec->vma
		    + sec->output_section->vma
		    + sec->output_offset);
	}
      else
	{
	  struct coff_link_hash_entry *h;

	  h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
	  BFD_ASSERT (h != NULL);
	  if (h->root.type != bfd_link_hash_defined
	      && h->root.type != bfd_link_hash_defweak)
	    {
	      /* This appears to be a reference to an undefined
                 symbol.  Just ignore it--it will be caught by the
                 regular reloc processing.  */
	      continue;
	    }

	  symval = (h->root.u.def.value
		    + h->root.u.def.section->output_section->vma
		    + h->root.u.def.section->output_offset);
	}

      symval += bfd_get_32 (abfd, contents + paddr - sec->vma);

      /* See if this function call can be shortened.  */
      foff = (symval
	      - (irel->r_vaddr
		 - sec->vma
		 + sec->output_section->vma
		 + sec->output_offset
		 + 4));
      if (foff < -0x1000 || foff >= 0x1000)
	{
	  /* After all that work, we can't shorten this function call.  */
	  continue;
	}

      /* Shorten the function call.  */

      /* For simplicity of coding, we are going to modify the section
	 contents, the section relocs, and the BFD symbol table.  We
	 must tell the rest of the code not to free up this
	 information.  It would be possible to instead create a table
	 of changes which have to be made, as is done in coff-mips.c;
	 that would be more work, but would require less memory when
	 the linker is run.  */

      if (coff_section_data (abfd, sec) == NULL)
	{
	  sec->used_by_bfd =
	    ((PTR) bfd_zalloc (abfd, sizeof (struct coff_section_tdata)));
	  if (sec->used_by_bfd == NULL)
	    goto error_return;
	}

      coff_section_data (abfd, sec)->relocs = internal_relocs;
      coff_section_data (abfd, sec)->keep_relocs = true;
      free_relocs = NULL;

      coff_section_data (abfd, sec)->contents = contents;
      coff_section_data (abfd, sec)->keep_contents = true;
      free_contents = NULL;

      obj_coff_keep_syms (abfd) = true;

      /* Replace the jsr with a bsr.  */

      /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
         replace the jsr with a bsr.  */
      irel->r_type = R_SH_PCDISP;
      irel->r_symndx = irelfn->r_symndx;
      if (sym.n_sclass != C_EXT)
	{
	  /* If this needs to be changed because of future relaxing,
             it will be handled here like other internal PCDISP
             relocs.  */
	  bfd_put_16 (abfd,
		      0xb000 | ((foff >> 1) & 0xfff),
		      contents + irel->r_vaddr - sec->vma);
	}
      else
	{
	  /* We can't fully resolve this yet, because the external
             symbol value may be changed by future relaxing.  We let
             the final link phase handle it.  */
	  bfd_put_16 (abfd, 0xb000, contents + irel->r_vaddr - sec->vma);
	}

      /* See if there is another R_SH_USES reloc referring to the same
         register load.  */
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
	if (irelscan->r_type == R_SH_USES
	    && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
	  break;
      if (irelscan < irelend)
	{
	  /* Some other function call depends upon this register load,
	     and we have not yet converted that function call.
	     Indeed, we may never be able to convert it.  There is
	     nothing else we can do at this point.  */
	  continue;
	}

      /* Look for a R_SH_COUNT reloc on the location where the
         function address is stored.  Do this before deleting any
         bytes, to avoid confusion about the address.  */
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
	if (irelcount->r_vaddr == paddr
	    && irelcount->r_type == R_SH_COUNT)
	  break;

      /* Delete the register load.  */
      if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
	goto error_return;

      /* That will change things, so, just in case it permits some
         other function call to come within range, we should relax
         again.  Note that this is not required, and it may be slow.  */
      *again = true;

      /* Now check whether we got a COUNT reloc.  */
      if (irelcount >= irelend)
	{
	  ((*_bfd_error_handler)
	   ("%s: 0x%lx: warning: could not find expected COUNT reloc",
	    bfd_get_filename (abfd), (unsigned long) paddr));
	  continue;
	}

      /* The number of uses is stored in the r_offset field.  We've
         just deleted one.  */
      if (irelcount->r_offset == 0)
	{
	  ((*_bfd_error_handler) ("%s: 0x%lx: warning: bad count",
				  bfd_get_filename (abfd),
				  (unsigned long) paddr));
	  continue;
	}

      --irelcount->r_offset;

      /* If there are no more uses, we can delete the address.  Reload
         the address from irelfn, in case it was changed by the
         previous call to sh_relax_delete_bytes.  */
      if (irelcount->r_offset == 0)
	{
	  if (! sh_relax_delete_bytes (abfd, sec,
				       irelfn->r_vaddr - sec->vma, 4))
	    goto error_return;
	}

      /* We've done all we can with that function call.  */
    }

  /* Look for load and store instructions that we can align on four
     byte boundaries.  */
  if (have_code)
    {
      boolean swapped;

      /* Get the section contents.  */
      if (contents == NULL)
	{
	  if (coff_section_data (abfd, sec) != NULL
	      && coff_section_data (abfd, sec)->contents != NULL)
	    contents = coff_section_data (abfd, sec)->contents;
	  else
	    {
	      contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
	      if (contents == NULL)
		goto error_return;
	      free_contents = contents;

	      if (! bfd_get_section_contents (abfd, sec, contents,
					      (file_ptr) 0, sec->_raw_size))
		goto error_return;
	    }
	}

      if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
	goto error_return;

      if (swapped)
	{
	  if (coff_section_data (abfd, sec) == NULL)
	    {
	      sec->used_by_bfd =
		((PTR) bfd_zalloc (abfd, sizeof (struct coff_section_tdata)));
	      if (sec->used_by_bfd == NULL)
		goto error_return;
	    }

	  coff_section_data (abfd, sec)->relocs = internal_relocs;
	  coff_section_data (abfd, sec)->keep_relocs = true;
	  free_relocs = NULL;

	  coff_section_data (abfd, sec)->contents = contents;
	  coff_section_data (abfd, sec)->keep_contents = true;
	  free_contents = NULL;

	  obj_coff_keep_syms (abfd) = true;
	}
    }

  if (free_relocs != NULL)
    {
      free (free_relocs);
      free_relocs = NULL;
    }

  if (free_contents != NULL)
    {
      if (! link_info->keep_memory)
	free (free_contents);
      else
	{
	  /* Cache the section contents for coff_link_input_bfd.  */
	  if (coff_section_data (abfd, sec) == NULL)
	    {
	      sec->used_by_bfd =
		((PTR) bfd_zalloc (abfd, sizeof (struct coff_section_tdata)));
	      if (sec->used_by_bfd == NULL)
		goto error_return;
	      coff_section_data (abfd, sec)->relocs = NULL;
	    }
	  coff_section_data (abfd, sec)->contents = contents;
	}
    }

  return true;

 error_return:
  if (free_relocs != NULL)
    free (free_relocs);
  if (free_contents != NULL)
    free (free_contents);
  return false;
}

/* Delete some bytes from a section while relaxing.  */

static boolean
sh_relax_delete_bytes (abfd, sec, addr, count)
     bfd *abfd;
     asection *sec;
     bfd_vma addr;
     int count;
{
  bfd_byte *contents;
  struct internal_reloc *irel, *irelend;
  struct internal_reloc *irelalign;
  bfd_vma toaddr;
  bfd_byte *esym, *esymend;
  bfd_size_type symesz;
  struct coff_link_hash_entry **sym_hash;
  asection *o;

  contents = coff_section_data (abfd, sec)->contents;

  /* The deletion must stop at the next ALIGN reloc for an aligment
     power larger than the number of bytes we are deleting.  */

  irelalign = NULL;
  toaddr = sec->_cooked_size;

  irel = coff_section_data (abfd, sec)->relocs;
  irelend = irel + sec->reloc_count;
  for (; irel < irelend; irel++)
    {
      if (irel->r_type == R_SH_ALIGN
	  && irel->r_vaddr - sec->vma > addr
	  && count < (1 << irel->r_offset))
	{
	  irelalign = irel;
	  toaddr = irel->r_vaddr - sec->vma;
	  break;
	}
    }

  /* Actually delete the bytes.  */
  memmove (contents + addr, contents + addr + count, toaddr - addr - count);
  if (irelalign == NULL)
    sec->_cooked_size -= count;
  else
    {
      int i;

#define NOP_OPCODE (0x0009)

      BFD_ASSERT ((count & 1) == 0);
      for (i = 0; i < count; i += 2)
	bfd_put_16 (abfd, NOP_OPCODE, contents + toaddr - count + i);
    }

  /* Adjust all the relocs.  */
  for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
    {
      bfd_vma nraddr, start, stop;
      int insn = 0;
      struct internal_syment sym;
      int off, adjust, oinsn;
      bfd_signed_vma voff;
      boolean overflow;

      /* Get the new reloc address.  */
      nraddr = irel->r_vaddr - sec->vma;
      if ((irel->r_vaddr - sec->vma > addr
	   && irel->r_vaddr - sec->vma < toaddr)
	  || (irel->r_type == R_SH_ALIGN
	      && irel->r_vaddr - sec->vma == toaddr))
	nraddr -= count;

      /* See if this reloc was for the bytes we have deleted, in which
	 case we no longer care about it.  Don't delete relocs which
	 represent addresses, though.  */
      if (irel->r_vaddr - sec->vma >= addr
	  && irel->r_vaddr - sec->vma < addr + count
	  && irel->r_type != R_SH_ALIGN
	  && irel->r_type != R_SH_CODE
	  && irel->r_type != R_SH_DATA)
	irel->r_type = R_SH_UNUSED;

      /* If this is a PC relative reloc, see if the range it covers
         includes the bytes we have deleted.  */
      switch (irel->r_type)
	{
	default:
	  break;

	case R_SH_PCDISP8BY2:
	case R_SH_PCDISP:
	case R_SH_PCRELIMM8BY2:
	case R_SH_PCRELIMM8BY4:
	  start = irel->r_vaddr - sec->vma;
	  insn = bfd_get_16 (abfd, contents + nraddr);
	  break;
	}

      switch (irel->r_type)
	{
	default:
	  start = stop = addr;
	  break;

	case R_SH_IMM32:
	  /* If this reloc is against a symbol defined in this
             section, and the symbol will not be adjusted below, we
             must check the addend to see it will put the value in
             range to be adjusted, and hence must be changed.  */
	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irel->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass != C_EXT
	      && sym.n_scnum == sec->target_index
	      && ((bfd_vma) sym.n_value <= addr
		  || (bfd_vma) sym.n_value >= toaddr))
	    {
	      bfd_vma val;

	      val = bfd_get_32 (abfd, contents + nraddr);
	      val += sym.n_value;
	      if (val >= addr && val < toaddr)
		bfd_put_32 (abfd, val - count, contents + nraddr);
	    }
	  start = stop = addr;
	  break;

	case R_SH_PCDISP8BY2:
	  off = insn & 0xff;
	  if (off & 0x80)
	    off -= 0x100;
	  stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
	  break;

	case R_SH_PCDISP:
	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irel->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass == C_EXT)
	    start = stop = addr;
	  else
	    {
	      off = insn & 0xfff;
	      if (off & 0x800)
		off -= 0x1000;
	      stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
	    }
	  break;

	case R_SH_PCRELIMM8BY2:
	  off = insn & 0xff;
	  stop = start + 4 + off * 2;
	  break;

	case R_SH_PCRELIMM8BY4:
	  off = insn & 0xff;
	  stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
	  break;

	case R_SH_SWITCH16:
	case R_SH_SWITCH32:
	  /* These relocs types represent
	       .word L2-L1
	     The r_offset field holds the difference between the reloc
	     address and L1.  That is the start of the reloc, and
	     adding in the contents gives us the top.  We must adjust
	     both the r_offset field and the section contents.  */

	  start = irel->r_vaddr - sec->vma;
	  stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);

	  if (start > addr
	      && start < toaddr
	      && (stop <= addr || stop >= toaddr))
	    irel->r_offset += count;
	  else if (stop > addr
		   && stop < toaddr
		   && (start <= addr || start >= toaddr))
	    irel->r_offset -= count;

	  start = stop;

	  if (irel->r_type == R_SH_SWITCH16)
	    voff = bfd_get_signed_16 (abfd, contents + nraddr);
	  else
	    voff = bfd_get_signed_32 (abfd, contents + nraddr);
	  stop = (bfd_vma) ((bfd_signed_vma) start + voff);

	  break;

	case R_SH_USES:
	  start = irel->r_vaddr - sec->vma;
	  stop = (bfd_vma) ((bfd_signed_vma) start
			    + (long) irel->r_offset
			    + 4);
	  break;
	}

      if (start > addr
	  && start < toaddr
	  && (stop <= addr || stop >= toaddr))
	adjust = count;
      else if (stop > addr
	       && stop < toaddr
	       && (start <= addr || start >= toaddr))
	adjust = - count;
      else
	adjust = 0;

      if (adjust != 0)
	{
	  oinsn = insn;
	  overflow = false;
	  switch (irel->r_type)
	    {
	    default:
	      abort ();
	      break;

	    case R_SH_PCDISP8BY2:
	    case R_SH_PCRELIMM8BY2:
	      insn += adjust / 2;
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = true;
	      bfd_put_16 (abfd, insn, contents + nraddr);
	      break;

	    case R_SH_PCDISP:
	      insn += adjust / 2;
	      if ((oinsn & 0xf000) != (insn & 0xf000))
		overflow = true;
	      bfd_put_16 (abfd, insn, contents + nraddr);
	      break;

	    case R_SH_PCRELIMM8BY4:
	      BFD_ASSERT (adjust == count || count >= 4);
	      if (count >= 4)
		insn += adjust / 4;
	      else
		{
		  if ((irel->r_vaddr & 3) == 0)
		    ++insn;
		}
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = true;
	      bfd_put_16 (abfd, insn, contents + nraddr);
	      break;

	    case R_SH_SWITCH16:
	      voff += adjust;
	      if (voff < - 0x8000 || voff >= 0x8000)
		overflow = true;
	      bfd_put_signed_16 (abfd, voff, contents + nraddr);
	      break;

	    case R_SH_SWITCH32:
	      voff += adjust;
	      bfd_put_signed_32 (abfd, voff, contents + nraddr);
	      break;

	    case R_SH_USES:
	      irel->r_offset += adjust;
	      break;
	    }

	  if (overflow)
	    {
	      ((*_bfd_error_handler)
	       ("%s: 0x%lx: fatal: reloc overflow while relaxing",
		bfd_get_filename (abfd), (unsigned long) irel->r_vaddr));
	      bfd_set_error (bfd_error_bad_value);
	      return false;
	    }
	}

      irel->r_vaddr = nraddr + sec->vma;
    }

  /* Look through all the other sections.  If there contain any IMM32
     relocs against internal symbols which we are not going to adjust
     below, we may need to adjust the addends.  */
  for (o = abfd->sections; o != NULL; o = o->next)
    {
      struct internal_reloc *internal_relocs;
      struct internal_reloc *irelscan, *irelscanend;
      bfd_byte *ocontents;

      if (o == sec
	  || (o->flags & SEC_RELOC) == 0
	  || o->reloc_count == 0)
	continue;

      /* We always cache the relocs.  Perhaps, if info->keep_memory is
         false, we should free them, if we are permitted to, when we
         leave sh_coff_relax_section.  */
      internal_relocs = (_bfd_coff_read_internal_relocs
			 (abfd, o, true, (bfd_byte *) NULL, false,
			  (struct internal_reloc *) NULL));
      if (internal_relocs == NULL)
	return false;

      ocontents = NULL;
      irelscanend = internal_relocs + o->reloc_count;
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
	{
	  struct internal_syment sym;

	  if (irelscan->r_type != R_SH_IMM32)
	    continue;

	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irelscan->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass != C_EXT
	      && sym.n_scnum == sec->target_index
	      && ((bfd_vma) sym.n_value <= addr
		  || (bfd_vma) sym.n_value >= toaddr))
	    {
	      bfd_vma val;

	      if (ocontents == NULL)
		{
		  if (coff_section_data (abfd, o)->contents != NULL)
		    ocontents = coff_section_data (abfd, o)->contents;
		  else
		    {
		      /* We always cache the section contents.
                         Perhaps, if info->keep_memory is false, we
                         should free them, if we are permitted to,
                         when we leave sh_coff_relax_section.  */
		      ocontents = (bfd_byte *) bfd_malloc (o->_raw_size);
		      if (ocontents == NULL)
			return false;
		      if (! bfd_get_section_contents (abfd, o, ocontents,
						      (file_ptr) 0,
						      o->_raw_size))
			return false;
		      coff_section_data (abfd, o)->contents = ocontents;
		    }
		}

	      val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
	      val += sym.n_value;
	      if (val >= addr && val < toaddr)
		bfd_put_32 (abfd, val - count,
			    ocontents + irelscan->r_vaddr - o->vma);

	      coff_section_data (abfd, o)->keep_contents = true;
	    }
	}
    }

  /* Adjusting the internal symbols will not work if something has
     already retrieved the generic symbols.  It would be possible to
     make this work by adjusting the generic symbols at the same time.
     However, this case should not arise in normal usage.  */
  if (obj_symbols (abfd) != NULL
      || obj_raw_syments (abfd) != NULL)
    {
      ((*_bfd_error_handler)
       ("%s: fatal: generic symbols retrieved before relaxing",
	bfd_get_filename (abfd)));
      bfd_set_error (bfd_error_invalid_operation);
      return false;
    }

  /* Adjust all the symbols.  */
  sym_hash = obj_coff_sym_hashes (abfd);
  symesz = bfd_coff_symesz (abfd);
  esym = (bfd_byte *) obj_coff_external_syms (abfd);
  esymend = esym + obj_raw_syment_count (abfd) * symesz;
  while (esym < esymend)
    {
      struct internal_syment isym;

      bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);

      if (isym.n_scnum == sec->target_index
	  && (bfd_vma) isym.n_value > addr
	  && (bfd_vma) isym.n_value < toaddr)
	{
	  isym.n_value -= count;

	  bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);

	  if (*sym_hash != NULL)
	    {
	      BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
			  || (*sym_hash)->root.type == bfd_link_hash_defweak);
	      BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
			  && (*sym_hash)->root.u.def.value < toaddr);
	      (*sym_hash)->root.u.def.value -= count;
	    }
	}

      esym += (isym.n_numaux + 1) * symesz;
      sym_hash += isym.n_numaux + 1;
    }

  /* See if we can move the ALIGN reloc forward.  We have adjusted
     r_vaddr for it already.  */
  if (irelalign != NULL)
    {
      bfd_vma alignaddr;

      alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
			     1 << irelalign->r_offset);
      if (alignaddr != toaddr)
	{
	  /* Tail recursion.  */
	  return sh_relax_delete_bytes (abfd, sec,
					irelalign->r_vaddr - sec->vma,
					1 << irelalign->r_offset);
	}
    }

  return true;
}

/* This is yet another version of the SH opcode table, used to rapidly
   get information about a particular instruction.  */

/* The opcode map is represented by an array of these structures.  The
   array is indexed by the high order four bits in the instruction.  */

struct sh_major_opcode
{
  /* A pointer to the instruction list.  This is an array which
     contains all the instructions with this major opcode.  */
  const struct sh_minor_opcode *minor_opcodes;
  /* The number of elements in minor_opcodes.  */
  unsigned short count;
};

/* This structure holds information for a set of SH opcodes.  The
   instruction code is anded with the mask value, and the resulting
   value is used to search the order opcode list.  */

struct sh_minor_opcode
{
  /* The sorted opcode list.  */
  const struct sh_opcode *opcodes;
  /* The number of elements in opcodes.  */
  unsigned short count;
  /* The mask value to use when searching the opcode list.  */
  unsigned short mask;
};

/* This structure holds information for an SH instruction.  An array
   of these structures is sorted in order by opcode.  */

struct sh_opcode
{
  /* The code for this instruction, after it has been anded with the
     mask value in the sh_major_opcode structure.  */
  unsigned short opcode;
  /* Flags for this instruction.  */
  unsigned short flags;
};

/* Flag which appear in the sh_opcode structure.  */

/* This instruction loads a value from memory.  */
#define LOAD (0x1)

/* This instruction stores a value to memory.  */
#define STORE (0x2)

/* This instruction is a branch.  */
#define BRANCH (0x4)

/* This instruction has a delay slot.  */
#define DELAY (0x8)

/* This instruction uses the value in the register in the field at
   mask 0x0f00 of the instruction.  */
#define USES1 (0x10)

/* This instruction uses the value in the register in the field at
   mask 0x00f0 of the instruction.  */
#define USES2 (0x20)

/* This instruction uses the value in register 0.  */
#define USESR0 (0x40)

/* This instruction sets the value in the register in the field at
   mask 0x0f00 of the instruction.  */
#define SETS1 (0x80)

/* This instruction sets the value in the register in the field at
   mask 0x00f0 of the instruction.  */
#define SETS2 (0x100)

/* This instruction sets register 0.  */
#define SETSR0 (0x200)

/* This instruction sets a special register.  */
#define SETSSP (0x400)

/* This instruction uses a special register.  */
#define USESSP (0x800)

/* This instruction uses the floating point register in the field at
   mask 0x0f00 of the instruction.  */
#define USESF1 (0x1000)

/* This instruction uses the floating point register in the field at
   mask 0x00f0 of the instruction.  */
#define USESF2 (0x2000)

/* This instruction uses floating point register 0.  */
#define USESF0 (0x4000)

/* This instruction sets the floating point register in the field at
   mask 0x0f00 of the instruction.  */
#define SETSF1 (0x8000)

static boolean sh_insn_uses_reg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static boolean sh_insn_uses_freg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static boolean sh_insns_conflict
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
	   const struct sh_opcode *));
static boolean sh_load_use
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
	   const struct sh_opcode *));

/* The opcode maps.  */

#define MAP(a) a, sizeof a / sizeof a[0]

static const struct sh_opcode sh_opcode00[] =
{
  { 0x0008, SETSSP },			/* clrt */
  { 0x0009, 0 },			/* nop */
  { 0x000b, BRANCH | DELAY | USESSP },	/* rts */
  { 0x0018, SETSSP },			/* sett */
  { 0x0019, SETSSP },			/* div0u */
  { 0x001b, 0 },			/* sleep */
  { 0x0028, SETSSP },			/* clrmac */
  { 0x002b, BRANCH | DELAY | SETSSP },	/* rte */
  { 0x0038, USESSP | SETSSP },		/* ldtlb */
  { 0x0048, SETSSP },			/* clrs */
  { 0x0058, SETSSP }			/* sets */
};

static const struct sh_opcode sh_opcode01[] =
{
  { 0x0002, SETS1 | USESSP },			/* stc sr,rn */
  { 0x0003, BRANCH | DELAY | USES1 | SETSSP },	/* bsrf rn */
  { 0x000a, SETS1 | USESSP },			/* sts mach,rn */
  { 0x0012, SETS1 | USESSP },			/* stc gbr,rn */
  { 0x001a, SETS1 | USESSP },			/* sts macl,rn */
  { 0x0022, SETS1 | USESSP },			/* stc vbr,rn */
  { 0x0023, BRANCH | DELAY | USES1 },		/* braf rn */
  { 0x0029, SETS1 | USESSP },			/* movt rn */
  { 0x002a, SETS1 | USESSP },			/* sts pr,rn */
  { 0x0032, SETS1 | USESSP },			/* stc ssr,rn */
  { 0x0042, SETS1 | USESSP },			/* stc spc,rn */
  { 0x005a, SETS1 | USESSP },			/* sts fpul,rn */
  { 0x006a, SETS1 | USESSP },			/* sts fpscr,rn */
  { 0x0082, SETS1 | USESSP },			/* stc r0_bank,rn */
  { 0x0083, LOAD | USES1 },			/* pref @rn */
  { 0x0092, SETS1 | USESSP },			/* stc r1_bank,rn */
  { 0x00a2, SETS1 | USESSP },			/* stc r2_bank,rn */
  { 0x00b2, SETS1 | USESSP },			/* stc r3_bank,rn */
  { 0x00c2, SETS1 | USESSP },			/* stc r4_bank,rn */
  { 0x00d2, SETS1 | USESSP },			/* stc r5_bank,rn */
  { 0x00e2, SETS1 | USESSP },			/* stc r6_bank,rn */
  { 0x00f2, SETS1 | USESSP }			/* stc r7_bank,rn */
};

static const struct sh_opcode sh_opcode02[] =
{
  { 0x0004, STORE | USES1 | USES2 | USESR0 },	/* mov.b rm,@(r0,rn) */
  { 0x0005, STORE | USES1 | USES2 | USESR0 },	/* mov.w rm,@(r0,rn) */
  { 0x0006, STORE | USES1 | USES2 | USESR0 },	/* mov.l rm,@(r0,rn) */
  { 0x0007, SETSSP | USES1 | USES2 },		/* mul.l rm,rn */
  { 0x000c, LOAD | SETS1 | USES2 | USESR0 },	/* mov.b @(r0,rm),rn */
  { 0x000d, LOAD | SETS1 | USES2 | USESR0 },	/* mov.w @(r0,rm),rn */
  { 0x000e, LOAD | SETS1 | USES2 | USESR0 },	/* mov.l @(r0,rm),rn */
  { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
};

static const struct sh_minor_opcode sh_opcode0[] =
{
  { MAP (sh_opcode00), 0xffff },
  { MAP (sh_opcode01), 0xf0ff },
  { MAP (sh_opcode02), 0xf00f }
};

static const struct sh_opcode sh_opcode10[] =
{
  { 0x1000, STORE | USES1 | USES2 }	/* mov.l rm,@(disp,rn) */
};

static const struct sh_minor_opcode sh_opcode1[] =
{
  { MAP (sh_opcode10), 0xf000 }
};

static const struct sh_opcode sh_opcode20[] =
{
  { 0x2000, STORE | USES1 | USES2 },		/* mov.b rm,@rn */
  { 0x2001, STORE | USES1 | USES2 },		/* mov.w rm,@rn */
  { 0x2002, STORE | USES1 | USES2 },		/* mov.l rm,@rn */
  { 0x2004, STORE | SETS1 | USES1 | USES2 },	/* mov.b rm,@-rn */
  { 0x2005, STORE | SETS1 | USES1 | USES2 },	/* mov.w rm,@-rn */
  { 0x2006, STORE | SETS1 | USES1 | USES2 },	/* mov.l rm,@-rn */
  { 0x2007, SETSSP | USES1 | USES2 | USESSP },	/* div0s */
  { 0x2008, SETSSP | USES1 | USES2 },		/* tst rm,rn */
  { 0x2009, SETS1 | USES1 | USES2 },		/* and rm,rn */
  { 0x200a, SETS1 | USES1 | USES2 },		/* xor rm,rn */
  { 0x200b, SETS1 | USES1 | USES2 },		/* or rm,rn */
  { 0x200c, SETSSP | USES1 | USES2 },		/* cmp/str rm,rn */
  { 0x200d, SETS1 | USES1 | USES2 },		/* xtrct rm,rn */
  { 0x200e, SETSSP | USES1 | USES2 },		/* mulu.w rm,rn */
  { 0x200f, SETSSP | USES1 | USES2 }		/* muls.w rm,rn */
};

static const struct sh_minor_opcode sh_opcode2[] =
{
  { MAP (sh_opcode20), 0xf00f }
};

static const struct sh_opcode sh_opcode30[] =
{
  { 0x3000, SETSSP | USES1 | USES2 },		/* cmp/eq rm,rn */
  { 0x3002, SETSSP | USES1 | USES2 },		/* cmp/hs rm,rn */
  { 0x3003, SETSSP | USES1 | USES2 },		/* cmp/ge rm,rn */
  { 0x3004, SETSSP | USESSP | USES1 | USES2 },	/* div1 rm,rn */
  { 0x3005, SETSSP | USES1 | USES2 },		/* dmulu.l rm,rn */
  { 0x3006, SETSSP | USES1 | USES2 },		/* cmp/hi rm,rn */
  { 0x3007, SETSSP | USES1 | USES2 },		/* cmp/gt rm,rn */
  { 0x3008, SETS1 | USES1 | USES2 },		/* sub rm,rn */
  { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
  { 0x300b, SETS1 | SETSSP | USES1 | USES2 },	/* subv rm,rn */
  { 0x300c, SETS1 | USES1 | USES2 },		/* add rm,rn */
  { 0x300d, SETSSP | USES1 | USES2 },		/* dmuls.l rm,rn */
  { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
  { 0x300f, SETS1 | SETSSP | USES1 | USES2 }	/* addv rm,rn */
};

static const struct sh_minor_opcode sh_opcode3[] =
{
  { MAP (sh_opcode30), 0xf00f }
};

static const struct sh_opcode sh_opcode40[] =
{
  { 0x4000, SETS1 | SETSSP | USES1 },		/* shll rn */
  { 0x4001, SETS1 | SETSSP | USES1 },		/* shlr rn */
  { 0x4002, STORE | SETS1 | USES1 | USESSP },	/* sts.l mach,@-rn */
  { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l sr,@-rn */
  { 0x4004, SETS1 | SETSSP | USES1 },		/* rotl rn */
  { 0x4005, SETS1 | SETSSP | USES1 },		/* rotr rn */
  { 0x4006, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,mach */
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,sr */
  { 0x4008, SETS1 | USES1 },			/* shll2 rn */
  { 0x4009, SETS1 | USES1 },			/* shlr2 rn */
  { 0x400a, SETSSP | USES1 },			/* lds rm,mach */
  { 0x400b, BRANCH | DELAY | USES1 },		/* jsr @rn */
  { 0x400e, SETSSP | USES1 },			/* ldc rm,sr */
  { 0x4010, SETS1 | SETSSP | USES1 },		/* dt rn */
  { 0x4011, SETSSP | USES1 },			/* cmp/pz rn */
  { 0x4012, STORE | SETS1 | USES1 | USESSP },	/* sts.l macl,@-rn */
  { 0x4013, STORE | SETS1 | USES1 | USESSP },	/* stc.l gbr,@-rn */
  { 0x4015, SETSSP | USES1 },			/* cmp/pl rn */
  { 0x4016, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,macl */
  { 0x4017, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,gbr */
  { 0x4018, SETS1 | USES1 },			/* shll8 rn */
  { 0x4019, SETS1 | USES1 },			/* shlr8 rn */
  { 0x401a, SETSSP | USES1 },			/* lds rm,macl */
  { 0x401b, LOAD | SETSSP | USES1 },		/* tas.b @rn */
  { 0x401e, SETSSP | USES1 },			/* ldc rm,gbr */
  { 0x4020, SETS1 | SETSSP | USES1 },		/* shal rn */
  { 0x4021, SETS1 | SETSSP | USES1 },		/* shar rn */
  { 0x4022, STORE | SETS1 | USES1 | USESSP },	/* sts.l pr,@-rn */
  { 0x4023, STORE | SETS1 | USES1 | USESSP },	/* stc.l vbr,@-rn */
  { 0x4024, SETS1 | SETSSP | USES1 | USESSP },	/* rotcl rn */
  { 0x4025, SETS1 | SETSSP | USES1 | USESSP },	/* rotcr rn */
  { 0x4026, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,pr */
  { 0x4027, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,vbr */
  { 0x4028, SETS1 | USES1 },			/* shll16 rn */
  { 0x4029, SETS1 | USES1 },			/* shlr16 rn */
  { 0x402a, SETSSP | USES1 },			/* lds rm,pr */
  { 0x402b, BRANCH | DELAY | USES1 },		/* jmp @rn */
  { 0x402e, SETSSP | USES1 },			/* ldc rm,vbr */
  { 0x4033, STORE | SETS1 | USES1 | USESSP },	/* stc.l ssr,@-rn */
  { 0x4037, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,ssr */
  { 0x403e, SETSSP | USES1 },			/* ldc rm,ssr */
  { 0x4043, STORE | SETS1 | USES1 | USESSP },	/* stc.l spc,@-rn */
  { 0x4047, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,spc */
  { 0x404e, SETSSP | USES1 },			/* ldc rm,spc */
  { 0x4052, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpul,@-rn */
  { 0x4056, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpul */
  { 0x405a, SETSSP | USES1 },			/* lds.l rm,fpul */
  { 0x4062, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpscr,@-rn */
  { 0x4066, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpscr */
  { 0x406a, SETSSP | USES1 }			/* lds rm,fpscr */
};

static const struct sh_opcode sh_opcode41[] =
{
  { 0x4083, STORE | SETS1 | USES1 | USESSP },	/* stc.l rx_bank,@-rn */
  { 0x4087, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,rx_bank */
  { 0x408e, SETSSP | USES1 }			/* ldc rm,rx_bank */
};

static const struct sh_opcode sh_opcode42[] =
{
  { 0x400c, SETS1 | USES1 | USES2 },			/* shad rm,rn */
  { 0x400d, SETS1 | USES1 | USES2 },			/* shld rm,rn */
  { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
};

static const struct sh_minor_opcode sh_opcode4[] =
{
  { MAP (sh_opcode40), 0xf0ff },
  { MAP (sh_opcode41), 0xf08f },
  { MAP (sh_opcode42), 0xf00f }
};

static const struct sh_opcode sh_opcode50[] =
{
  { 0x5000, LOAD | SETS1 | USES2 }	/* mov.l @(disp,rm),rn */
};

static const struct sh_minor_opcode sh_opcode5[] =
{
  { MAP (sh_opcode50), 0xf000 }
};

static const struct sh_opcode sh_opcode60[] =
{
  { 0x6000, LOAD | SETS1 | USES2 },		/* mov.b @rm,rn */
  { 0x6001, LOAD | SETS1 | USES2 },		/* mov.w @rm,rn */
  { 0x6002, LOAD | SETS1 | USES2 },		/* mov.l @rm,rn */
  { 0x6003, SETS1 | USES2 },			/* mov rm,rn */
  { 0x6004, LOAD | SETS1 | SETS2 | USES2 },	/* mov.b @rm+,rn */
  { 0x6005, LOAD | SETS1 | SETS2 | USES2 },	/* mov.w @rm+,rn */
  { 0x6006, LOAD | SETS1 | SETS2 | USES2 },	/* mov.l @rm+,rn */
  { 0x6007, SETS1 | USES2 },			/* not rm,rn */
  { 0x6008, SETS1 | USES2 },			/* swap.b rm,rn */
  { 0x6009, SETS1 | USES2 },			/* swap.w rm,rn */
  { 0x600a, SETS1 | SETSSP | USES2 | USESSP },	/* negc rm,rn */
  { 0x600b, SETS1 | USES2 },			/* neg rm,rn */
  { 0x600c, SETS1 | USES2 },			/* extu.b rm,rn */
  { 0x600d, SETS1 | USES2 },			/* extu.w rm,rn */
  { 0x600e, SETS1 | USES2 },			/* exts.b rm,rn */
  { 0x600f, SETS1 | USES2 }			/* exts.w rm,rn */
};

static const struct sh_minor_opcode sh_opcode6[] =
{
  { MAP (sh_opcode60), 0xf00f }
};

static const struct sh_opcode sh_opcode70[] =
{
  { 0x7000, SETS1 | USES1 }		/* add #imm,rn */
};

static const struct sh_minor_opcode sh_opcode7[] =
{
  { MAP (sh_opcode70), 0xf000 }
};

static const struct sh_opcode sh_opcode80[] =
{
  { 0x8000, STORE | USES2 | USESR0 },	/* mov.b r0,@(disp,rn) */
  { 0x8100, STORE | USES2 | USESR0 },	/* mov.w r0,@(disp,rn) */
  { 0x8400, LOAD | SETSR0 | USES2 },	/* mov.b @(disp,rm),r0 */
  { 0x8500, LOAD | SETSR0 | USES2 },	/* mov.w @(disp,rn),r0 */
  { 0x8800, SETSSP | USESR0 },		/* cmp/eq #imm,r0 */
  { 0x8900, BRANCH | USESSP },		/* bt label */
  { 0x8b00, BRANCH | USESSP },		/* bf label */
  { 0x8d00, BRANCH | DELAY | USESSP },	/* bt/s label */
  { 0x8f00, BRANCH | DELAY | USESSP }	/* bf/s label */
};

static const struct sh_minor_opcode sh_opcode8[] =
{
  { MAP (sh_opcode80), 0xff00 }
};

static const struct sh_opcode sh_opcode90[] =
{
  { 0x9000, LOAD | SETS1 }	/* mov.w @(disp,pc),rn */
};

static const struct sh_minor_opcode sh_opcode9[] =
{
  { MAP (sh_opcode90), 0xf000 }
};

static const struct sh_opcode sh_opcodea0[] =
{
  { 0xa000, BRANCH | DELAY }	/* bra label */
};

static const struct sh_minor_opcode sh_opcodea[] =
{
  { MAP (sh_opcodea0), 0xf000 }
};

static const struct sh_opcode sh_opcodeb0[] =
{
  { 0xb000, BRANCH | DELAY }	/* bsr label */
};

static const struct sh_minor_opcode sh_opcodeb[] =
{
  { MAP (sh_opcodeb0), 0xf000 }
};

static const struct sh_opcode sh_opcodec0[] =
{
  { 0xc000, STORE | USESR0 | USESSP },		/* mov.b r0,@(disp,gbr) */
  { 0xc100, STORE | USESR0 | USESSP },		/* mov.w r0,@(disp,gbr) */
  { 0xc200, STORE | USESR0 | USESSP },		/* mov.l r0,@(disp,gbr) */
  { 0xc300, BRANCH | USESSP },			/* trapa #imm */
  { 0xc400, LOAD | SETSR0 | USESSP },		/* mov.b @(disp,gbr),r0 */
  { 0xc500, LOAD | SETSR0 | USESSP },		/* mov.w @(disp,gbr),r0 */
  { 0xc600, LOAD | SETSR0 | USESSP },		/* mov.l @(disp,gbr),r0 */
  { 0xc700, SETSR0 },				/* mova @(disp,pc),r0 */
  { 0xc800, SETSSP | USESR0 },			/* tst #imm,r0 */
  { 0xc900, SETSR0 | USESR0 },			/* and #imm,r0 */
  { 0xca00, SETSR0 | USESR0 },			/* xor #imm,r0 */
  { 0xcb00, SETSR0 | USESR0 },			/* or #imm,r0 */
  { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },	/* tst.b #imm,@(r0,gbr) */
  { 0xcd00, LOAD | STORE | USESR0 | USESSP },	/* and.b #imm,@(r0,gbr) */
  { 0xce00, LOAD | STORE | USESR0 | USESSP },	/* xor.b #imm,@(r0,gbr) */
  { 0xcf00, LOAD | STORE | USESR0 | USESSP }	/* or.b #imm,@(r0,gbr) */
};

static const struct sh_minor_opcode sh_opcodec[] =
{
  { MAP (sh_opcodec0), 0xff00 }
};

static const struct sh_opcode sh_opcoded0[] =
{
  { 0xd000, LOAD | SETS1 }		/* mov.l @(disp,pc),rn */
};

static const struct sh_minor_opcode sh_opcoded[] =
{
  { MAP (sh_opcoded0), 0xf000 }
};

static const struct sh_opcode sh_opcodee0[] =
{
  { 0xe000, SETS1 }		/* mov #imm,rn */
};

static const struct sh_minor_opcode sh_opcodee[] =
{
  { MAP (sh_opcodee0), 0xf000 }
};

static const struct sh_opcode sh_opcodef0[] =
{
  { 0xf000, SETSF1 | USESF1 | USESF2 },		/* fadd fm,fn */
  { 0xf001, SETSF1 | USESF1 | USESF2 },		/* fsub fm,fn */
  { 0xf002, SETSF1 | USESF1 | USESF2 },		/* fmul fm,fn */
  { 0xf003, SETSF1 | USESF1 | USESF2 },		/* fdiv fm,fn */
  { 0xf004, SETSSP | USESF1 | USESF2 },		/* fcmp/eq fm,fn */
  { 0xf005, SETSSP | USESF1 | USESF2 },		/* fcmp/gt fm,fn */
  { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },	/* fmov.s @(r0,rm),fn */
  { 0xf007, STORE | USES1 | USESF2 | USESR0 },	/* fmov.s fm,@(r0,rn) */
  { 0xf008, LOAD | SETSF1 | USES2 },		/* fmov.s @rm,fn */
  { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },	/* fmov.s @rm+,fn */
  { 0xf00a, STORE | USES1 | USESF2 },		/* fmov.s fm,@rn */
  { 0xf00b, STORE | SETS1 | USES1 | USESF2 },	/* fmov.s fm,@-rn */
  { 0xf00c, SETSF1 | USESF2 },			/* fmov fm,fn */
  { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 }	/* fmac f0,fm,fn */
};

static const struct sh_opcode sh_opcodef1[] =
{
  { 0xf00d, SETSF1 | USESSP },	/* fsts fpul,fn */
  { 0xf01d, SETSSP | USESF1 },	/* flds fn,fpul */
  { 0xf02d, SETSF1 | USESSP },	/* float fpul,fn */
  { 0xf03d, SETSSP | USESF1 },	/* ftrc fn,fpul */
  { 0xf04d, SETSF1 | USESF1 },	/* fneg fn */
  { 0xf05d, SETSF1 | USESF1 },	/* fabs fn */
  { 0xf06d, SETSF1 | USESF1 },	/* fsqrt fn */
  { 0xf07d, SETSSP | USESF1 },	/* ftst/nan fn */
  { 0xf08d, SETSF1 },		/* fldi0 fn */
  { 0xf09d, SETSF1 }		/* fldi1 fn */
};

static const struct sh_minor_opcode sh_opcodef[] =
{
  { MAP (sh_opcodef0), 0xf00f },
  { MAP (sh_opcodef1), 0xf0ff }
};

static const struct sh_major_opcode sh_opcodes[] =
{
  { MAP (sh_opcode0) },
  { MAP (sh_opcode1) },
  { MAP (sh_opcode2) },
  { MAP (sh_opcode3) },
  { MAP (sh_opcode4) },
  { MAP (sh_opcode5) },
  { MAP (sh_opcode6) },
  { MAP (sh_opcode7) },
  { MAP (sh_opcode8) },
  { MAP (sh_opcode9) },
  { MAP (sh_opcodea) },
  { MAP (sh_opcodeb) },
  { MAP (sh_opcodec) },
  { MAP (sh_opcoded) },
  { MAP (sh_opcodee) },
  { MAP (sh_opcodef) }
};

/* Given an instruction, return a pointer to the corresponding
   sh_opcode structure.  Return NULL if the instruction is not
   recognized.  */

static const struct sh_opcode *
sh_insn_info (insn)
     unsigned int insn;
{
  const struct sh_major_opcode *maj;
  const struct sh_minor_opcode *min, *minend;

  maj = &sh_opcodes[(insn & 0xf000) >> 12];
  min = maj->minor_opcodes;
  minend = min + maj->count;
  for (; min < minend; min++)
    {
      unsigned int l;
      const struct sh_opcode *op, *opend;

      l = insn & min->mask;
      op = min->opcodes;
      opend = op + min->count;

      /* Since the opcodes tables are sorted, we could use a binary
         search here if the count were above some cutoff value.  */
      for (; op < opend; op++)
	if (op->opcode == l)
	  return op;
    }

  return NULL;  
}

/* See whether an instruction uses a general purpose register.  */

static boolean
sh_insn_uses_reg (insn, op, reg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int reg;
{
  unsigned int f;

  f = op->flags;

  if ((f & USES1) != 0
      && ((insn & 0x0f00) >> 8) == reg)
    return true;
  if ((f & USES2) != 0
      && ((insn & 0x00f0) >> 4) == reg)
    return true;
  if ((f & USESR0) != 0
      && reg == 0)
    return true;

  return false;
}

/* See whether an instruction uses a floating point register.  */

static boolean
sh_insn_uses_freg (insn, op, freg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int freg;
{
  unsigned int f;

  f = op->flags;

  if ((f & USESF1) != 0
      && ((insn & 0x0f00) >> 8) == freg)
    return true;
  if ((f & USESF2) != 0
      && ((insn & 0x00f0) >> 4) == freg)
    return true;
  if ((f & USESF0) != 0
      && freg == 0)
    return true;

  return false;
}

/* See whether instructions I1 and I2 conflict, assuming I1 comes
   before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
   This should return true if the instructions can be swapped safely.  */

static boolean
sh_insns_conflict (i1, op1, i2, op2)
     unsigned int i1;
     const struct sh_opcode *op1;
     unsigned int i2;
     const struct sh_opcode *op2;
{
  unsigned int f1, f2;

  f1 = op1->flags;
  f2 = op2->flags;

  if ((f1 & (BRANCH | DELAY)) != 0
      || (f2 & (BRANCH | DELAY)) != 0)
    return true;

  if ((f1 & SETSSP) != 0 && (f2 & USESSP) != 0)
    return false;
  if ((f2 & SETSSP) != 0 && (f1 & USESSP) != 0)
    return true;

  if ((f1 & SETS1) != 0
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
    return true;
  if ((f1 & SETS2) != 0
      && sh_insn_uses_reg (i2, op2, (i1 & 0x00f0) >> 4))
    return true;
  if ((f1 & SETSR0) != 0
      && sh_insn_uses_reg (i2, op2, 0))
    return true;
  if ((f1 & SETSF1) != 0
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
    return true;

  if ((f2 & SETS1) != 0
      && sh_insn_uses_reg (i1, op1, (i2 & 0x0f00) >> 8))
    return true;
  if ((f2 & SETS2) != 0
      && sh_insn_uses_reg (i1, op1, (i2 & 0x00f0) >> 4))
    return true;
  if ((f2 & SETSR0) != 0
      && sh_insn_uses_reg (i1, op1, 0))
    return true;
  if ((f2 & SETSF1) != 0
      && sh_insn_uses_freg (i1, op1, (i2 & 0x0f00) >> 8))
    return true;

  /* The instructions do not conflict.  */
  return false;
}

/* I1 is a load instruction, and I2 is some other instruction.  Return
   true if I1 loads a register which I2 uses.  */

static boolean
sh_load_use (i1, op1, i2, op2)
     unsigned int i1;
     const struct sh_opcode *op1;
     unsigned int i2;
     const struct sh_opcode *op2;
{
  unsigned int f1;

  f1 = op1->flags;

  if ((f1 & LOAD) == 0)
    return false;

  /* If both SETS1 and SETSSP are set, that means a load to a special
     register using postincrement addressing mode, which we don't care
     about here.  */
  if ((f1 & SETS1) != 0
      && (f1 & SETSSP) == 0
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
    return true;

  if ((f1 & SETSR0) != 0
      && sh_insn_uses_reg (i2, op2, 0))
    return true;

  if ((f1 & SETSF1) != 0
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
    return true;

  return false;
}

/* Look for loads and stores which we can align to four byte
   boundaries.  See the longer comment above sh_relax_section for why
   this is desirable.  This sets *PSWAPPED if some instruction was
   swapped.  */

static boolean
sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
     bfd *abfd;
     asection *sec;
     struct internal_reloc *internal_relocs;
     bfd_byte *contents;
     boolean *pswapped;
{
  struct internal_reloc *irel, *irelend;
  bfd_vma *labels = NULL;
  bfd_vma *label, *label_end;

  *pswapped = false;

  irelend = internal_relocs + sec->reloc_count;

  /* Get all the addresses with labels on them.  */
  labels = (bfd_vma *) bfd_malloc (sec->reloc_count * sizeof (bfd_vma));
  if (labels == NULL)
    goto error_return;
  label_end = labels;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      if (irel->r_type == R_SH_LABEL)
	{
	  *label_end = irel->r_vaddr - sec->vma;
	  ++label_end;
	}
    }

  /* Note that the assembler currently always outputs relocs in
     address order.  If that ever changes, this code will need to sort
     the label values and the relocs.  */

  label = labels;

  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma start, stop, i;

      if (irel->r_type != R_SH_CODE)
	continue;

      start = irel->r_vaddr - sec->vma;

      for (irel++; irel < irelend; irel++)
	if (irel->r_type == R_SH_DATA)
	  break;
      if (irel < irelend)
	stop = irel->r_vaddr - sec->vma;
      else
	stop = sec->_cooked_size;

      /* Instructions should be aligned on 2 byte boundaries.  */
      if ((start & 1) == 1)
	++start;

      /* Now look through the unaligned addresses.  */
      i = start;
      if ((i & 2) == 0)
	i += 2;
      for (; i < stop; i += 4)
	{
	  unsigned int insn;
	  const struct sh_opcode *op;
	  unsigned int prev_insn = 0;
	  const struct sh_opcode *prev_op = NULL;

	  insn = bfd_get_16 (abfd, contents + i);
	  op = sh_insn_info (insn);
	  if (op == NULL
	      || (op->flags & (LOAD | STORE)) == 0)
	    continue;

	  /* This is a load or store which is not on a four byte
             boundary.  */

	  while (label < label_end && *label < i)
	    ++label;

	  if (i > start)
	    {
	      prev_insn = bfd_get_16 (abfd, contents + i - 2);
	      prev_op = sh_insn_info (prev_insn);

	      /* If the load/store instruction is in a delay slot, we
		 can't swap.  */
	      if (prev_op == NULL
		  || (prev_op->flags & DELAY) != 0)
		continue;
	    }
	  if (i > start
	      && (label >= label_end || *label != i)
	      && prev_op != NULL
	      && (prev_op->flags & (LOAD | STORE)) == 0
	      && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
	    {
	      boolean ok;

	      /* The load/store instruction does not have a label, and
		 there is a previous instruction; PREV_INSN is not
		 itself a load/store instruction, and PREV_INSN and
		 INSN do not conflict.  */

	      ok = true;

	      if (i >= start + 4)
		{
		  unsigned int prev2_insn;
		  const struct sh_opcode *prev2_op;

		  prev2_insn = bfd_get_16 (abfd, contents + i - 4);
		  prev2_op = sh_insn_info (prev2_insn);

		  /* If the instruction before PREV_INSN has a delay
		     slot--that is, PREV_INSN is in a delay slot--we
		     can not swap.  */
		  if (prev2_op == NULL
		      || (prev2_op->flags & DELAY) != 0)
		    ok = false;

		  /* If the instruction before PREV_INSN is a load,
                     and it sets a register which INSN uses, then
                     putting INSN immediately after PREV_INSN will
                     cause a pipeline bubble, so there is no point to
                     making the swap.  */
		  if (ok
		      && (prev2_op->flags & LOAD) != 0
		      && sh_load_use (prev2_insn, prev2_op, insn, op))
		    ok = false;
		}

	      if (ok)
		{
		  if (! sh_swap_insns (abfd, sec, internal_relocs,
				       contents, i - 2))
		    goto error_return;
		  *pswapped = true;
		  continue;
		}
	    }

	  while (label < label_end && *label < i + 2)
	    ++label;

	  if (i + 2 < stop
	      && (label >= label_end || *label != i + 2))
	    {
	      unsigned int next_insn;
	      const struct sh_opcode *next_op;

	      /* There is an instruction after the load/store
                 instruction, and it does not have a label.  */
	      next_insn = bfd_get_16 (abfd, contents + i + 2);
	      next_op = sh_insn_info (next_insn);
	      if (next_op != NULL
		  && (next_op->flags & (LOAD | STORE)) == 0
		  && ! sh_insns_conflict (insn, op, next_insn, next_op))
		{
		  boolean ok;

		  /* NEXT_INSN is not itself a load/store instruction,
                     and it does not conflict with INSN.  */

		  ok = true;

		  /* If PREV_INSN is a load, and it sets a register
		     which NEXT_INSN uses, then putting NEXT_INSN
		     immediately after PREV_INSN will cause a pipeline
		     bubble, so there is no reason to make this swap.  */
		  if (prev_op != NULL
		      && (prev_op->flags & LOAD) != 0
		      && sh_load_use (prev_insn, prev_op, next_insn, next_op))
		    ok = false;

		  /* If INSN is a load, and it sets a register which
                     the insn after NEXT_INSN uses, then doing the
                     swap will cause a pipeline bubble, so there is no
                     reason to make the swap.  However, if the insn
                     after NEXT_INSN is itself a load or store
                     instruction, then it is misaligned, so
                     optimistically hope that it will be swapped
                     itself, and just live with the pipeline bubble if
                     it isn't.  */
		  if (ok
		      && i + 4 < stop
		      && (op->flags & LOAD) != 0)
		    {
		      unsigned int next2_insn;
		      const struct sh_opcode *next2_op;

		      next2_insn = bfd_get_16 (abfd, contents + i + 4);
		      next2_op = sh_insn_info (next2_insn);
		      if ((next2_op->flags & (LOAD | STORE)) == 0
			   && sh_load_use (insn, op, next2_insn, next2_op))
			ok = false;
		    }

		  if (ok)
		    {
		      if (! sh_swap_insns (abfd, sec, internal_relocs,
					   contents, i))
			goto error_return;
		      *pswapped = true;
		      continue;
		    }
		}
	    }
	}
    }

  free (labels);

  return true;

 error_return:
  if (labels != NULL)
    free (labels);
  return false;
}

/* Swap two SH instructions.  */

static boolean
sh_swap_insns (abfd, sec, internal_relocs, contents, addr)
     bfd *abfd;
     asection *sec;
     struct internal_reloc *internal_relocs;
     bfd_byte *contents;
     bfd_vma addr;
{
  unsigned short i1, i2;
  struct internal_reloc *irel, *irelend;

  /* Swap the instructions themselves.  */
  i1 = bfd_get_16 (abfd, contents + addr);
  i2 = bfd_get_16 (abfd, contents + addr + 2);
  bfd_put_16 (abfd, i2, contents + addr);
  bfd_put_16 (abfd, i1, contents + addr + 2);

  /* Adjust all reloc addresses.  */
  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      int type, add;

      /* There are a few special types of relocs that we don't want to
         adjust.  These relocs do not apply to the instruction itself,
         but are only associated with the address.  */
      type = irel->r_type;
      if (type == R_SH_ALIGN
	  || type == R_SH_CODE
	  || type == R_SH_DATA
	  || type == R_SH_LABEL)
	continue;

      /* If an R_SH_USES reloc points to one of the addresses being
         swapped, we must adjust it.  It would be incorrect to do this
         for a jump, though, since we want to execute both
         instructions after the jump.  (We have avoided swapping
         around a label, so the jump will not wind up executing an
         instruction it shouldn't).  */
      if (type == R_SH_USES)
	{
	  bfd_vma off;

	  off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
	  if (off == addr)
	    irel->r_offset += 2;
	  else if (off == addr + 2)
	    irel->r_offset -= 2;
	}

      if (irel->r_vaddr - sec->vma == addr)
	{
	  irel->r_vaddr += 2;
	  add = -2;
	}
      else if (irel->r_vaddr - sec->vma == addr + 2)
	{
	  irel->r_vaddr -= 2;
	  add = 2;
	}
      else
	add = 0;

      if (add != 0)
	{
	  bfd_byte *loc;
	  unsigned short insn, oinsn;
	  boolean overflow;

	  loc = contents + irel->r_vaddr - sec->vma;
	  overflow = false;
	  switch (type)
	    {
	    default:
	      break;

	    case R_SH_PCDISP8BY2:
	    case R_SH_PCRELIMM8BY2:
	      insn = bfd_get_16 (abfd, loc);
	      oinsn = insn;
	      insn += add / 2;
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = true;
	      bfd_put_16 (abfd, insn, loc);
	      break;

	    case R_SH_PCDISP:
	      insn = bfd_get_16 (abfd, loc);
	      oinsn = insn;
	      insn += add / 2;
	      if ((oinsn & 0xf000) != (insn & 0xf000))
		overflow = true;
	      bfd_put_16 (abfd, insn, loc);
	      break;

	    case R_SH_PCRELIMM8BY4:
	      /* This reloc ignores the least significant 3 bits of
                 the program counter before adding in the offset.
                 This means that if ADDR is at an even address, the
                 swap will not affect the offset.  If ADDR is an at an
                 odd address, then the instruction will be crossing a
                 four byte boundary, and must be adjusted.  */
	      if ((addr & 3) != 0)
		{
		  insn = bfd_get_16 (abfd, loc);
		  oinsn = insn;
		  insn += add / 2;
		  if ((oinsn & 0xff00) != (insn & 0xff00))
		    overflow = true;
		  bfd_put_16 (abfd, insn, loc);
		}

	      break;
	    }

	  if (overflow)
	    {
	      ((*_bfd_error_handler)
	       ("%s: 0x%lx: fatal: reloc overflow while relaxing",
		bfd_get_filename (abfd), (unsigned long) irel->r_vaddr));
	      bfd_set_error (bfd_error_bad_value);
	      return false;
	    }
	}
    }

  return true;
}

/* This is a modification of _bfd_coff_generic_relocate_section, which
   will handle SH relaxing.  */

static boolean
sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
		     relocs, syms, sections)
     bfd *output_bfd;
     struct bfd_link_info *info;
     bfd *input_bfd;
     asection *input_section;
     bfd_byte *contents;
     struct internal_reloc *relocs;
     struct internal_syment *syms;
     asection **sections;
{
  struct internal_reloc *rel;
  struct internal_reloc *relend;

  rel = relocs;
  relend = rel + input_section->reloc_count;
  for (; rel < relend; rel++)
    {
      long symndx;
      struct coff_link_hash_entry *h;
      struct internal_syment *sym;
      bfd_vma addend;
      bfd_vma val;
      reloc_howto_type *howto;
      bfd_reloc_status_type rstat;

      /* Almost all relocs have to do with relaxing.  If any work must
         be done for them, it has been done in sh_relax_section.  */
      if (rel->r_type != R_SH_IMM32
	  && rel->r_type != R_SH_PCDISP)
	continue;

      symndx = rel->r_symndx;

      if (symndx == -1)
	{
	  h = NULL;
	  sym = NULL;
	}
      else
	{    
	  h = obj_coff_sym_hashes (input_bfd)[symndx];
	  sym = syms + symndx;
	}

      if (sym != NULL && sym->n_scnum != 0)
	addend = - sym->n_value;
      else
	addend = 0;

      if (rel->r_type == R_SH_PCDISP)
	addend -= 4;

      if (rel->r_type >= SH_COFF_HOWTO_COUNT)
	howto = NULL;
      else
	howto = &sh_coff_howtos[rel->r_type];

      if (howto == NULL)
	{
	  bfd_set_error (bfd_error_bad_value);
	  return false;
	}

      val = 0;

      if (h == NULL)
	{
	  asection *sec;

	  /* There is nothing to do for an internal PCDISP reloc.  */
	  if (rel->r_type == R_SH_PCDISP)
	    continue;

	  if (symndx == -1)
	    {
	      sec = bfd_abs_section_ptr;
	      val = 0;
	    }
	  else
	    {
	      sec = sections[symndx];
              val = (sec->output_section->vma
		     + sec->output_offset
		     + sym->n_value
		     - sec->vma);
	    }
	}
      else
	{
	  if (h->root.type == bfd_link_hash_defined
	      || h->root.type == bfd_link_hash_defweak)
	    {
	      asection *sec;

	      sec = h->root.u.def.section;
	      val = (h->root.u.def.value
		     + sec->output_section->vma
		     + sec->output_offset);
	    }
	  else if (! info->relocateable)
	    {
	      if (! ((*info->callbacks->undefined_symbol)
		     (info, h->root.root.string, input_bfd, input_section,
		      rel->r_vaddr - input_section->vma)))
		return false;
	    }
	}

      rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
					contents,
					rel->r_vaddr - input_section->vma,
					val, addend);

      switch (rstat)
	{
	default:
	  abort ();
	case bfd_reloc_ok:
	  break;
	case bfd_reloc_overflow:
	  {
	    const char *name;
	    char buf[SYMNMLEN + 1];

	    if (symndx == -1)
	      name = "*ABS*";
	    else if (h != NULL)
	      name = h->root.root.string;
	    else if (sym->_n._n_n._n_zeroes == 0
		     && sym->_n._n_n._n_offset != 0)
	      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
	    else
	      {
 		strncpy (buf, sym->_n._n_name, SYMNMLEN);
		buf[SYMNMLEN] = '\0';
		name = buf;
	      }

	    if (! ((*info->callbacks->reloc_overflow)
		   (info, name, howto->name, (bfd_vma) 0, input_bfd,
		    input_section, rel->r_vaddr - input_section->vma)))
	      return false;
	  }
	}
    }

  return true;
}

/* This is a version of bfd_generic_get_relocated_section_contents
   which uses sh_relocate_section.  */

static bfd_byte *
sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
					data, relocateable, symbols)
     bfd *output_bfd;
     struct bfd_link_info *link_info;
     struct bfd_link_order *link_order;
     bfd_byte *data;
     boolean relocateable;
     asymbol **symbols;
{
  asection *input_section = link_order->u.indirect.section;
  bfd *input_bfd = input_section->owner;
  asection **sections = NULL;
  struct internal_reloc *internal_relocs = NULL;
  struct internal_syment *internal_syms = NULL;

  /* We only need to handle the case of relaxing, or of having a
     particular set of section contents, specially.  */
  if (relocateable
      || coff_section_data (input_bfd, input_section) == NULL
      || coff_section_data (input_bfd, input_section)->contents == NULL)
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
						       link_order, data,
						       relocateable,
						       symbols);

  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
	  input_section->_raw_size);

  if ((input_section->flags & SEC_RELOC) != 0
      && input_section->reloc_count > 0)
    {
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
      bfd_byte *esym, *esymend;
      struct internal_syment *isymp;
      asection **secpp;

      if (! _bfd_coff_get_external_symbols (input_bfd))
	goto error_return;

      internal_relocs = (_bfd_coff_read_internal_relocs
			 (input_bfd, input_section, false, (bfd_byte *) NULL,
			  false, (struct internal_reloc *) NULL));
      if (internal_relocs == NULL)
	goto error_return;

      internal_syms = ((struct internal_syment *)
		       bfd_malloc (obj_raw_syment_count (input_bfd)
				   * sizeof (struct internal_syment)));
      if (internal_syms == NULL)
	goto error_return;

      sections = (asection **) bfd_malloc (obj_raw_syment_count (input_bfd)
					   * sizeof (asection *));
      if (sections == NULL)
	goto error_return;

      isymp = internal_syms;
      secpp = sections;
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
      while (esym < esymend)
	{
	  bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);

	  if (isymp->n_scnum != 0)
	    *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
	  else
	    {
	      if (isymp->n_value == 0)
		*secpp = bfd_und_section_ptr;
	      else
		*secpp = bfd_com_section_ptr;
	    }

	  esym += (isymp->n_numaux + 1) * symesz;
	  secpp += isymp->n_numaux + 1;
	  isymp += isymp->n_numaux + 1;
	}

      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
				 input_section, data, internal_relocs,
				 internal_syms, sections))
	goto error_return;

      free (sections);
      sections = NULL;
      free (internal_syms);
      internal_syms = NULL;
      free (internal_relocs);
      internal_relocs = NULL;
    }

  return data;

 error_return:
  if (internal_relocs != NULL)
    free (internal_relocs);
  if (internal_syms != NULL)
    free (internal_syms);
  if (sections != NULL)
    free (sections);
  return NULL;
}

/* The target vectors.  */

const bfd_target shcoff_vec =
{
  "coff-sh",			/* name */
  bfd_target_coff_flavour,
  BFD_ENDIAN_BIG,		/* data byte order is big */
  BFD_ENDIAN_BIG,		/* header byte order is big */

  (HAS_RELOC | EXEC_P |		/* object flags */
   HAS_LINENO | HAS_DEBUG |
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),

  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
  '_',				/* leading symbol underscore */
  '/',				/* ar_pad_char */
  15,				/* ar_max_namelen */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */

  {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
     bfd_generic_archive_p, _bfd_dummy_target},
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
     bfd_false},
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
     _bfd_write_archive_contents, bfd_false},

  BFD_JUMP_TABLE_GENERIC (coff),
  BFD_JUMP_TABLE_COPY (coff),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
  BFD_JUMP_TABLE_SYMBOLS (coff),
  BFD_JUMP_TABLE_RELOCS (coff),
  BFD_JUMP_TABLE_WRITE (coff),
  BFD_JUMP_TABLE_LINK (coff),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),

  COFF_SWAP_TABLE,
};

const bfd_target shlcoff_vec =
{
  "coff-shl",			/* name */
  bfd_target_coff_flavour,
  BFD_ENDIAN_LITTLE,		/* data byte order is little */
  BFD_ENDIAN_LITTLE,		/* header byte order is little endian too*/

  (HAS_RELOC | EXEC_P |		/* object flags */
   HAS_LINENO | HAS_DEBUG |
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),

  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
  '_',				/* leading symbol underscore */
  '/',				/* ar_pad_char */
  15,				/* ar_max_namelen */
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */

  {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
     bfd_generic_archive_p, _bfd_dummy_target},   
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
     bfd_false},
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
     _bfd_write_archive_contents, bfd_false},

  BFD_JUMP_TABLE_GENERIC (coff),
  BFD_JUMP_TABLE_COPY (coff),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
  BFD_JUMP_TABLE_SYMBOLS (coff),
  BFD_JUMP_TABLE_RELOCS (coff),
  BFD_JUMP_TABLE_WRITE (coff),
  BFD_JUMP_TABLE_LINK (coff),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),

  COFF_SWAP_TABLE,
};