# Copyright 1999-2014 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This file was based on a file written by Fred Fish. (fnf@cygnus.com) # Test setup routines that work with the MI interpreter. load_lib gdb-utils.exp # The variable mi_gdb_prompt is a regexp which matches the gdb mi prompt. # Set it if it is not already set. global mi_gdb_prompt if ![info exists mi_gdb_prompt] then { set mi_gdb_prompt "\[(\]gdb\[)\] \r\n" } global mi_inferior_spawn_id global mi_inferior_tty_name set MIFLAGS "-i=mi" set thread_selected_re "=thread-selected,id=\"\[0-9\]+\"\r\n" set gdbindex_warning_re "&\"warning: Skipping \[^\r\n\]+ \.gdb_index section in \[^\r\n\]+\"\r\n(?:&\"\\\\n\"\r\n)?" set library_loaded_re "=library-loaded\[^\n\]+\"\r\n(?:$gdbindex_warning_re)?" set breakpoint_re "=(?:breakpoint-created|breakpoint-deleted)\[^\n\]+\"\r\n" # # mi_gdb_exit -- exit the GDB, killing the target program if necessary # proc mi_gdb_exit {} { catch mi_uncatched_gdb_exit } proc mi_uncatched_gdb_exit {} { global GDB global INTERNAL_GDBFLAGS GDBFLAGS global verbose global gdb_spawn_id global gdb_prompt global mi_gdb_prompt global MIFLAGS gdb_stop_suppressing_tests if { [info procs sid_exit] != "" } { sid_exit } if ![info exists gdb_spawn_id] { return } verbose "Quitting $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS" if { [is_remote host] && [board_info host exists fileid] } { send_gdb "999-gdb-exit\n" gdb_expect 10 { -re "y or n" { send_gdb "y\n" exp_continue } -re "Undefined command.*$gdb_prompt $" { send_gdb "quit\n" exp_continue } -re "DOSEXIT code" { } default { } } } if ![is_remote host] { remote_close host } unset gdb_spawn_id } # # default_mi_gdb_start [INFERIOR_PTY] -- start gdb running, default procedure # # INFERIOR_PTY should be set to separate-inferior-tty to have the inferior work # with it's own PTY. If set to same-inferior-tty, the inferior shares GDB's PTY. # The default value is same-inferior-tty. # # When running over NFS, particularly if running many simultaneous # tests on different hosts all using the same server, things can # get really slow. Give gdb at least 3 minutes to start up. # proc default_mi_gdb_start { args } { global verbose use_gdb_stub global GDB global INTERNAL_GDBFLAGS GDBFLAGS global gdb_prompt global mi_gdb_prompt global timeout global gdb_spawn_id global MIFLAGS gdb_stop_suppressing_tests set inferior_pty no-tty # Set the default value, it may be overriden later by specific testfile. set use_gdb_stub [target_info exists use_gdb_stub] if { [llength $args] == 1} { set inferior_pty [lindex $args 0] } set separate_inferior_pty [string match $inferior_pty separate-inferior-tty] # Start SID. if { [info procs sid_start] != "" } { verbose "Spawning SID" sid_start } verbose "Spawning $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS" if [info exists gdb_spawn_id] { return 0 } if ![is_remote host] { if { [which $GDB] == 0 } then { perror "$GDB does not exist." exit 1 } } # Create the new PTY for the inferior process. if { $separate_inferior_pty } { spawn -pty global mi_inferior_spawn_id global mi_inferior_tty_name set mi_inferior_spawn_id $spawn_id set mi_inferior_tty_name $spawn_out(slave,name) } set res [remote_spawn host "$GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS [host_info gdb_opts]"] if { $res < 0 || $res == "" } { perror "Spawning $GDB failed." return 1 } gdb_expect { -re "~\"GNU.*\r\n~\".*$mi_gdb_prompt$" { # We have a new format mi startup prompt. If we are # running mi1, then this is an error as we should be # using the old-style prompt. if { $MIFLAGS == "-i=mi1" } { perror "(mi startup) Got unexpected new mi prompt." remote_close host return -1 } verbose "GDB initialized." } -re "\[^~\].*$mi_gdb_prompt$" { # We have an old format mi startup prompt. If we are # not running mi1, then this is an error as we should be # using the new-style prompt. if { $MIFLAGS != "-i=mi1" } { perror "(mi startup) Got unexpected old mi prompt." remote_close host return -1 } verbose "GDB initialized." } -re ".*unrecognized option.*for a complete list of options." { untested "Skip mi tests (not compiled with mi support)." remote_close host return -1 } -re ".*Interpreter `mi' unrecognized." { untested "Skip mi tests (not compiled with mi support)." remote_close host return -1 } timeout { perror "(timeout) GDB never initialized after 10 seconds." remote_close host return -1 } } set gdb_spawn_id -1 # FIXME: mi output does not go through pagers, so these can be removed. # force the height to "unlimited", so no pagers get used send_gdb "100-gdb-set height 0\n" gdb_expect 10 { -re ".*100-gdb-set height 0\r\n100\\\^done\r\n$mi_gdb_prompt$" { verbose "Setting height to 0." 2 } timeout { warning "Couldn't set the height to 0" } } # force the width to "unlimited", so no wraparound occurs send_gdb "101-gdb-set width 0\n" gdb_expect 10 { -re ".*101-gdb-set width 0\r\n101\\\^done\r\n$mi_gdb_prompt$" { verbose "Setting width to 0." 2 } timeout { warning "Couldn't set the width to 0." } } # If allowing the inferior to have its own PTY then assign the inferior # its own terminal device here. if { $separate_inferior_pty } { send_gdb "102-inferior-tty-set $mi_inferior_tty_name\n" gdb_expect 10 { -re ".*102\\\^done\r\n$mi_gdb_prompt$" { verbose "redirect inferior output to new terminal device." } timeout { warning "Couldn't redirect inferior output." 2 } } } mi_detect_async return 0 } # # Overridable function. You can override this function in your # baseboard file. # proc mi_gdb_start { args } { return [default_mi_gdb_start $args] } # Many of the tests depend on setting breakpoints at various places and # running until that breakpoint is reached. At times, we want to start # with a clean-slate with respect to breakpoints, so this utility proc # lets us do this without duplicating this code everywhere. # proc mi_delete_breakpoints {} { global mi_gdb_prompt # FIXME: The mi operation won't accept a prompt back and will use the 'all' arg send_gdb "102-break-delete\n" gdb_expect 30 { -re "Delete all breakpoints.*y or n.*$" { send_gdb "y\n" exp_continue } -re "102-break-delete\r\n102\\\^done\r\n$mi_gdb_prompt$" { # This happens if there were no breakpoints } timeout { perror "Delete all breakpoints in mi_delete_breakpoints (timeout)" ; return } } # The correct output is not "No breakpoints or watchpoints." but an # empty BreakpointTable. Also, a query is not acceptable with mi. send_gdb "103-break-list\n" gdb_expect 30 { -re "103-break-list\r\n103\\\^done,BreakpointTable=\{\}\r\n$mi_gdb_prompt$" {} -re "103-break-list\r\n103\\\^done,BreakpointTable=\{nr_rows=\".\",nr_cols=\".\",hdr=\\\[\{width=\".*\",alignment=\".*\",col_name=\"number\",colhdr=\"Num\"\}.*colhdr=\"Type\".*colhdr=\"Disp\".*colhdr=\"Enb\".*colhdr=\"Address\".*colhdr=\"What\".*\\\],body=\\\[\\\]\}\r\n$mi_gdb_prompt$" {} -re "103-break-list\r\n103\\\^doneNo breakpoints or watchpoints.\r\n\r\n$mi_gdb_prompt$" {warning "Unexpected console text received"} -re "$mi_gdb_prompt$" { perror "Breakpoints not deleted" ; return } -re "Delete all breakpoints.*or n.*$" { warning "Unexpected prompt for breakpoints deletion" send_gdb "y\n" exp_continue } timeout { perror "-break-list (timeout)" ; return } } } proc mi_gdb_reinitialize_dir { subdir } { global mi_gdb_prompt global MIFLAGS global suppress_flag if { $suppress_flag } { return } if [is_remote host] { return "" } if { $MIFLAGS == "-i=mi1" } { send_gdb "104-environment-directory\n" gdb_expect 60 { -re ".*Reinitialize source path to empty.*y or n. " { warning "Got confirmation prompt for dir reinitialization." send_gdb "y\n" gdb_expect 60 { -re "$mi_gdb_prompt$" {} timeout {error "Dir reinitialization failed (timeout)"} } } -re "$mi_gdb_prompt$" {} timeout {error "Dir reinitialization failed (timeout)"} } } else { send_gdb "104-environment-directory -r\n" gdb_expect 60 { -re "104\\\^done,source-path=.*\r\n$mi_gdb_prompt$" {} -re "$mi_gdb_prompt$" {} timeout {error "Dir reinitialization failed (timeout)"} } } send_gdb "105-environment-directory $subdir\n" gdb_expect 60 { -re "Source directories searched.*$mi_gdb_prompt$" { verbose "Dir set to $subdir" } -re "105\\\^done.*\r\n$mi_gdb_prompt$" { # FIXME: We return just the prompt for now. verbose "Dir set to $subdir" # perror "Dir \"$subdir\" failed." } } } # Send GDB the "target" command. # FIXME: Some of these patterns are not appropriate for MI. Based on # config/monitor.exp:gdb_target_command. proc mi_gdb_target_cmd { targetname serialport } { global mi_gdb_prompt set serialport_re [string_to_regexp $serialport] for {set i 1} {$i <= 3} {incr i} { send_gdb "47-target-select $targetname $serialport\n" gdb_expect 60 { -re "47\\^connected.*$mi_gdb_prompt" { verbose "Set target to $targetname" return 0 } -re "unknown host.*$mi_gdb_prompt" { verbose "Couldn't look up $serialport" } -re "Couldn't establish connection to remote.*$mi_gdb_prompt$" { verbose "Connection failed" } -re "Remote MIPS debugging.*$mi_gdb_prompt$" { verbose "Set target to $targetname" return 0 } -re "Remote debugging using .*$serialport_re.*$mi_gdb_prompt$" { verbose "Set target to $targetname" return 0 } -re "Remote target $targetname connected to.*$mi_gdb_prompt$" { verbose "Set target to $targetname" return 0 } -re "Connected to.*$mi_gdb_prompt$" { verbose "Set target to $targetname" return 0 } -re "Ending remote.*$mi_gdb_prompt$" { } -re "Connection refused.*$mi_gdb_prompt$" { verbose "Connection refused by remote target. Pausing, and trying again." sleep 5 continue } -re "Non-stop mode requested, but remote does not support non-stop.*$mi_gdb_prompt" { unsupported "Non-stop mode not supported" return 1 } -re "Timeout reading from remote system.*$mi_gdb_prompt$" { verbose "Got timeout error from gdb." } timeout { send_gdb "" break } } } return 1 } # # load a file into the debugger (file command only). # return a -1 if anything goes wrong. # proc mi_gdb_file_cmd { arg } { global verbose global loadpath global loadfile global GDB global mi_gdb_prompt global last_loaded_file upvar timeout timeout set last_loaded_file $arg if [is_remote host] { set arg [remote_download host $arg] if { $arg == "" } { error "download failed" return -1 } } # FIXME: Several of these patterns are only acceptable for console # output. Queries are an error for mi. send_gdb "105-file-exec-and-symbols $arg\n" gdb_expect 120 { -re "Reading symbols from.*done.*$mi_gdb_prompt$" { verbose "\t\tLoaded $arg into the $GDB" return 0 } -re "has no symbol-table.*$mi_gdb_prompt$" { perror "$arg wasn't compiled with \"-g\"" return -1 } -re "Load new symbol table from \".*\".*y or n. $" { send_gdb "y\n" gdb_expect 120 { -re "Reading symbols from.*done.*$mi_gdb_prompt$" { verbose "\t\tLoaded $arg with new symbol table into $GDB" # All OK } timeout { perror "(timeout) Couldn't load $arg, other program already loaded." return -1 } } } -re "No such file or directory.*$mi_gdb_prompt$" { perror "($arg) No such file or directory\n" return -1 } -re "105-file-exec-and-symbols .*\r\n105\\\^done\r\n$mi_gdb_prompt$" { # We (MI) are just giving the prompt back for now, instead of giving # some acknowledgement. return 0 } timeout { perror "couldn't load $arg into $GDB (timed out)." return -1 } eof { # This is an attempt to detect a core dump, but seems not to # work. Perhaps we need to match .* followed by eof, in which # gdb_expect does not seem to have a way to do that. perror "couldn't load $arg into $GDB (end of file)." return -1 } } } # # connect to the target and download a file, if necessary. # return a -1 if anything goes wrong. # proc mi_gdb_target_load { } { global verbose global loadpath global loadfile global GDB global mi_gdb_prompt if [target_info exists gdb_load_timeout] { set loadtimeout [target_info gdb_load_timeout] } else { set loadtimeout 1600 } if { [info procs gdbserver_gdb_load] != "" } { mi_gdb_test "kill" ".*" "" set res [gdbserver_gdb_load] set protocol [lindex $res 0] set gdbport [lindex $res 1] if { [mi_gdb_target_cmd $protocol $gdbport] != 0 } { return -1 } } elseif { [info procs send_target_sid] != "" } { # For SID, things get complex send_gdb "kill\n" gdb_expect 10 { -re ".*$mi_gdb_prompt$" } send_target_sid gdb_expect $loadtimeout { -re "\\^done.*$mi_gdb_prompt$" { } timeout { perror "Unable to connect to SID target (timeout)" return -1 } } send_gdb "48-target-download\n" gdb_expect $loadtimeout { -re "48\\^done.*$mi_gdb_prompt$" { } timeout { perror "Unable to download to SID target (timeout)" return -1 } } } elseif { [target_info protocol] == "sim" } { # For the simulator, just connect to it directly. send_gdb "47-target-select sim\n" gdb_expect $loadtimeout { -re "47\\^connected.*$mi_gdb_prompt$" { } timeout { perror "Unable to select sim target (timeout)" return -1 } } send_gdb "48-target-download\n" gdb_expect $loadtimeout { -re "48\\^done.*$mi_gdb_prompt$" { } timeout { perror "Unable to download to sim target (timeout)" return -1 } } } elseif { [target_info gdb_protocol] == "remote" } { # remote targets if { [mi_gdb_target_cmd "remote" [target_info netport]] != 0 } { perror "Unable to connect to remote target" return -1 } send_gdb "48-target-download\n" gdb_expect $loadtimeout { -re "48\\^done.*$mi_gdb_prompt$" { } timeout { perror "Unable to download to remote target (timeout)" return -1 } } } return 0 } # # load a file into the debugger. # return a -1 if anything goes wrong. # proc mi_gdb_load { arg } { if { $arg != "" } { return [mi_gdb_file_cmd $arg] } return 0 } # mi_gdb_test COMMAND PATTERN MESSAGE [IPATTERN] -- send a command to gdb; # test the result. # # COMMAND is the command to execute, send to GDB with send_gdb. If # this is the null string no command is sent. # PATTERN is the pattern to match for a PASS, and must NOT include # the \r\n sequence immediately before the gdb prompt. # MESSAGE is the message to be printed. (If this is the empty string, # then sometimes we don't call pass or fail at all; I don't # understand this at all.) # IPATTERN is the pattern to match for the inferior's output. This parameter # is optional. If present, it will produce a PASS if the match is # successful, and a FAIL if unsuccessful. # # Returns: # 1 if the test failed, # 0 if the test passes, # -1 if there was an internal error. # proc mi_gdb_test { args } { global verbose global mi_gdb_prompt global GDB expect_out global inferior_exited_re async upvar timeout timeout set command [lindex $args 0] set pattern [lindex $args 1] set message [lindex $args 2] if [llength $args]==4 { set ipattern [lindex $args 3] } if [llength $args]==5 { set question_string [lindex $args 3] set response_string [lindex $args 4] } else { set question_string "^FOOBAR$" } if $verbose>2 then { send_user "Sending \"$command\" to gdb\n" send_user "Looking to match \"$pattern\"\n" send_user "Message is \"$message\"\n" } set result -1 set string "${command}\n" set string_regex [string_to_regexp $command] if { $command != "" } { while { "$string" != "" } { set foo [string first "\n" "$string"] set len [string length "$string"] if { $foo < [expr $len - 1] } { set str [string range "$string" 0 $foo] if { [send_gdb "$str"] != "" } { global suppress_flag if { ! $suppress_flag } { perror "Couldn't send $command to GDB." } fail "$message" return $result } gdb_expect 2 { -re "\[\r\n\]" { } timeout { } } set string [string range "$string" [expr $foo + 1] end] } else { break } } if { "$string" != "" } { if { [send_gdb "$string"] != "" } { global suppress_flag if { ! $suppress_flag } { perror "Couldn't send $command to GDB." } fail "$message" return $result } } } if [info exists timeout] { set tmt $timeout } else { global timeout if [info exists timeout] { set tmt $timeout } else { set tmt 60 } } if {$async} { # With $prompt_re "" there may come arbitrary asynchronous response # from the previous command, before or after $string_regex. set string_regex ".*" } verbose -log "Expecting: ^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" gdb_expect $tmt { -re "\\*\\*\\* DOSEXIT code.*" { if { $message != "" } { fail "$message" } gdb_suppress_entire_file "GDB died" return -1 } -re "Ending remote debugging.*$mi_gdb_prompt\[ \]*$" { if ![isnative] then { warning "Can`t communicate to remote target." } gdb_exit gdb_start set result -1 } -re "^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" { # At this point, $expect_out(1,string) is the MI input command. # and $expect_out(2,string) is the MI output command. # If $expect_out(1,string) is "", then there was no MI input command here. # NOTE, there is no trailing anchor because with GDB/MI, # asynchronous responses can happen at any point, causing more # data to be available. Normally an anchor is used to make # sure the end of the output is matched, however, $mi_gdb_prompt # is just as good of an anchor since mi_gdb_test is meant to # match a single mi output command. If a second GDB/MI output # response is sent, it will be in the buffer for the next # time mi_gdb_test is called. if ![string match "" $message] then { pass "$message" } set result 0 } -re "(${question_string})$" { send_gdb "$response_string\n" exp_continue } -re "Undefined.* command:.*$mi_gdb_prompt\[ \]*$" { perror "Undefined command \"$command\"." fail "$message" set result 1 } -re "Ambiguous command.*$mi_gdb_prompt\[ \]*$" { perror "\"$command\" is not a unique command name." fail "$message" set result 1 } -re "$inferior_exited_re with code \[0-9\]+.*$mi_gdb_prompt\[ \]*$" { if ![string match "" $message] then { set errmsg "$message (the program exited)" } else { set errmsg "$command (the program exited)" } fail "$errmsg" return -1 } -re "The program is not being run.*$mi_gdb_prompt\[ \]*$" { if ![string match "" $message] then { set errmsg "$message (the program is no longer running)" } else { set errmsg "$command (the program is no longer running)" } fail "$errmsg" return -1 } -re ".*$mi_gdb_prompt\[ \]*$" { if ![string match "" $message] then { fail "$message" } set result 1 } "" { send_gdb "\n" perror "Window too small." fail "$message" } -re "\\(y or n\\) " { send_gdb "n\n" perror "Got interactive prompt." fail "$message" } eof { perror "Process no longer exists" if { $message != "" } { fail "$message" } return -1 } full_buffer { perror "internal buffer is full." fail "$message" } timeout { if ![string match "" $message] then { fail "$message (timeout)" } set result 1 } } # If the GDB output matched, compare the inferior output. if { $result == 0 } { if [ info exists ipattern ] { if { ![target_info exists gdb,noinferiorio] } { if { [target_info gdb_protocol] == "remote" || [target_info gdb_protocol] == "extended-remote" || [target_info protocol] == "sim"} { gdb_expect { -re "$ipattern" { pass "$message inferior output" } timeout { fail "$message inferior output (timeout)" set result 1 } } } else { global mi_inferior_spawn_id expect { -i $mi_inferior_spawn_id -re "$ipattern" { pass "$message inferior output" } timeout { fail "$message inferior output (timeout)" set result 1 } } } } else { unsupported "$message inferior output" } } } return $result } # Collect output sent to the console output stream until UNTIL is # seen. UNTIL is a regular expression. MESSAGE is the message to be # printed in case of timeout. proc mi_gdb_expect_cli_output {until message} { set output "" gdb_expect { -re "~\"(\[^\r\n\]+)\"\r\n" { append output $expect_out(1,string) exp_continue } -notransfer -re "$until" { # Done } timeout { fail "$message (timeout)" return "" } } return $output } # # MI run command. (A modified version of gdb_run_cmd) # # In patterns, the newline sequence ``\r\n'' is matched explicitly as # ``.*$'' could swallow up output that we attempt to match elsewhere. # Send the command to run the test program. # # If USE_MI_COMMAND is true, the "-exec-run" command is used. # Otherwise, the "run" (CLI) command is used. If the global USE_GDB_STUB is # true, -exec-continue and continue are used instead of their run counterparts. # # ARGS is passed as argument to the command used to run the test program. # Beware that arguments to "-exec-run" do not have the same semantics as # arguments to the "run" command, so USE_MI_COMMAND influences the meaning # of ARGS. If USE_MI_COMMAND is true, they are arguments to -exec-run. # If USE_MI_COMMAND is false, they are effectively arguments passed # to the test program. If the global USE_GDB_STUB is true, ARGS is not used. proc mi_run_cmd_full {use_mi_command args} { global suppress_flag if { $suppress_flag } { return -1 } global mi_gdb_prompt use_gdb_stub global thread_selected_re global library_loaded_re if {$use_mi_command} { set run_prefix "220-exec-" set run_match "220" } else { set run_prefix "" set run_match "" } foreach command [gdb_init_commands] { send_gdb "$command\n" gdb_expect 30 { -re "$mi_gdb_prompt$" { } default { perror "gdb_init_command for target failed" return -1 } } } if { [mi_gdb_target_load] < 0 } { return -1 } if $use_gdb_stub { if [target_info exists gdb,do_reload_on_run] { send_gdb "${run_prefix}continue\n" gdb_expect 60 { -re "${run_match}\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\r\n$mi_gdb_prompt" {} -re "${run_match}\\^error.*$mi_gdb_prompt" {return -1} default {} } return 0 } if [target_info exists gdb,start_symbol] { set start [target_info gdb,start_symbol] } else { set start "start" } # HACK: Should either use 000-jump or fix the target code # to better handle RUN. send_gdb "jump *$start\n" warning "Using CLI jump command, expect run-to-main FAIL" return 0 } send_gdb "${run_prefix}run $args\n" gdb_expect { -re "${run_match}\\^running\r\n(\\*running,thread-id=\"\[^\"\]+\"\r\n|=thread-created,id=\"1\",group-id=\"\[0-9\]+\"\r\n)*(${library_loaded_re})*(${thread_selected_re})?${mi_gdb_prompt}" { } -re "\\^error,msg=\"The target does not support running in non-stop mode.\"" { unsupported "Non-stop mode not supported" return -1 } timeout { perror "Unable to start target" return -1 } } # NOTE: Shortly after this there will be a ``000*stopped,...(gdb)'' return 0 } # A wrapper for mi_run_cmd_full which uses -exec-run and # -exec-continue, as appropriate. ARGS are passed verbatim to # mi_run_cmd_full. proc mi_run_cmd {args} { return [eval mi_run_cmd_full 1 $args] } # A wrapper for mi_run_cmd_full which uses the CLI commands 'run' and # 'continue', as appropriate. ARGS are passed verbatim to # mi_run_cmd_full. proc mi_run_with_cli {args} { return [eval mi_run_cmd_full 0 $args] } # # Just like run-to-main but works with the MI interface # proc mi_run_to_main { } { global suppress_flag if { $suppress_flag } { return -1 } global srcdir global subdir global binfile global srcfile mi_delete_breakpoints mi_gdb_reinitialize_dir $srcdir/$subdir mi_gdb_load ${binfile} mi_runto main } # Just like gdb's "runto" proc, it will run the target to a given # function. The big difference here between mi_runto and mi_execute_to # is that mi_execute_to must have the inferior running already. This # proc will (like gdb's runto) (re)start the inferior, too. # # FUNC is the linespec of the place to stop (it inserts a breakpoint here). # It returns: # -1 if test suppressed, failed, timedout # 0 if test passed proc mi_runto_helper {func run_or_continue} { global suppress_flag if { $suppress_flag } { return -1 } global mi_gdb_prompt expect_out global hex decimal fullname_syntax set test "mi runto $func" set bp [mi_make_breakpoint -type breakpoint -disp del \ -func $func\(\\\(.*\\\)\)?] mi_gdb_test "200-break-insert -t $func" "200\\^done,$bp" \ "breakpoint at $func" if {$run_or_continue == "run"} { if { [mi_run_cmd] < 0 } { return -1 } } else { mi_send_resuming_command "exec-continue" "$test" } mi_expect_stop "breakpoint-hit" $func ".*" ".*" "\[0-9\]+" { "" "disp=\"del\"" } $test } proc mi_runto {func} { return [mi_runto_helper $func "run"] } # Next to the next statement # For return values, see mi_execute_to_helper proc mi_next { test } { return [mi_next_to {.*} {.*} {.*} {.*} $test] } # Step to the next statement # For return values, see mi_execute_to_helper proc mi_step { test } { return [mi_step_to {.*} {.*} {.*} {.*} $test] } set async "unknown" proc mi_detect_async {} { global async global mi_gdb_prompt send_gdb "show mi-async\n" gdb_expect { -re "asynchronous mode is on...*$mi_gdb_prompt$" { set async 1 } -re ".*$mi_gdb_prompt$" { set async 0 } timeout { set async 0 } } return $async } # Wait for MI *stopped notification to appear. # The REASON, FUNC, ARGS, FILE and LINE are regular expressions # to match against whatever is output in *stopped. FILE may also match # filename of a file without debug info. ARGS should not include [] the # list of argument is enclosed in, and other regular expressions should # not include quotes. # If EXTRA is a list of one element, it's the regular expression # for output expected right after *stopped, and before GDB prompt. # If EXTRA is a list of two elements, the first element is for # output right after *stopped, and the second element is output # right after reason field. The regex after reason should not include # the comma separating it from the following fields. # # When we fail to match output at all, -1 is returned. If FILE does # match and the target system has no debug info for FILE return 0. # Otherwise, the line at which we stop is returned. This is useful when # exact line is not possible to specify for some reason -- one can pass # the .* or "\[0-9\]*" regexps for line, and then check the line # programmatically. # # Do not pass .* for any argument if you are expecting more than one stop. proc mi_expect_stop { reason func args file line extra test } { global mi_gdb_prompt global hex global decimal global fullname_syntax global async global thread_selected_re global breakpoint_re set any "\[^\n\]*" set after_stopped "" set after_reason "" if { [llength $extra] == 2 } { set after_stopped [lindex $extra 0] set after_reason [lindex $extra 1] set after_reason "${after_reason}," } elseif { [llength $extra] == 1 } { set after_stopped [lindex $extra 0] } if {$async} { set prompt_re "" } else { set prompt_re "$mi_gdb_prompt$" } if { $reason == "really-no-reason" } { gdb_expect { -re "\\*stopped\r\n$prompt_re" { pass "$test" } timeout { fail "$test (timeout)" } } return } if { $reason == "exited-normally" } { gdb_expect { -re "\\*stopped,reason=\"exited-normally\"\r\n$prompt_re" { pass "$test" } -re ".*$mi_gdb_prompt$" {fail "continue to end (2)"} timeout { fail "$test (timeout)" } } return } if { $reason == "exited" } { gdb_expect { -re "\\*stopped,reason=\"exited\",exit-code=\"\[0-7\]+\"\r\n$prompt_re" { pass "$test" } -re ".*$mi_gdb_prompt$" { fail "$test (inferior not stopped)" } timeout { fail "$test (timeout)" } } return } if { $reason == "solib-event" } { set pattern "\\*stopped,reason=\"solib-event\",thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" verbose -log "mi_expect_stop: expecting: $pattern" gdb_expect { -re "$pattern" { pass "$test" } timeout { fail "$test (timeout)" } } return } set args "\\\[$args\\\]" set bn "" if { $reason == "breakpoint-hit" } { set bn {bkptno="[0-9]+",} } elseif { $reason == "solib-event" } { set bn ".*" } set r "" if { $reason != "" } { set r "reason=\"$reason\"," } set a $after_reason verbose -log "mi_expect_stop: expecting: \\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"$line\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" gdb_expect { -re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"($line)\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" { pass "$test" if {[array names expect_out "2,string"] != ""} { return $expect_out(2,string) } # No debug info available but $file does match. return 0 } -re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$any\",args=\[\\\[\{\]$any\[\\\]\}\],file=\"$any\",fullname=\"${fullname_syntax}$any\",line=\"\[0-9\]*\"\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" { verbose -log "got $expect_out(buffer)" fail "$test (stopped at wrong place)" return -1 } -re ".*\r\n$mi_gdb_prompt$" { verbose -log "got $expect_out(buffer)" fail "$test (unknown output after running)" return -1 } timeout { fail "$test (timeout)" return -1 } } } # Wait for MI *stopped notification related to an interrupt request to # appear. proc mi_expect_interrupt { test } { global mi_gdb_prompt global decimal global async if {$async} { set prompt_re "" } else { set prompt_re "$mi_gdb_prompt$" } set r "reason=\"signal-received\",signal-name=\"0\",signal-meaning=\"Signal 0\"" set any "\[^\n\]*" # A signal can land anywhere, just ignore the location verbose -log "mi_expect_interrupt: expecting: \\*stopped,${r}$any\r\n$prompt_re" gdb_expect { -re "\\*stopped,${r}$any\r\n$prompt_re" { pass "$test" return 0 } -re ".*\r\n$mi_gdb_prompt$" { verbose -log "got $expect_out(buffer)" fail "$test (unknown output after running)" return -1 } timeout { fail "$test (timeout)" return -1 } } } # cmd should not include the number or newline (i.e. "exec-step 3", not # "220-exec-step 3\n" # Can not match -re ".*\r\n${mi_gdb_prompt}", because of false positives # after the first prompt is printed. proc mi_execute_to { cmd reason func args file line extra test } { global suppress_flag if { $suppress_flag } { return -1 } mi_send_resuming_command "$cmd" "$test" set r [mi_expect_stop $reason $func $args $file $line $extra $test] return $r } proc mi_next_to { func args file line test } { mi_execute_to "exec-next" "end-stepping-range" "$func" "$args" \ "$file" "$line" "" "$test" } proc mi_step_to { func args file line test } { mi_execute_to "exec-step" "end-stepping-range" "$func" "$args" \ "$file" "$line" "" "$test" } proc mi_finish_to { func args file line result ret test } { mi_execute_to "exec-finish" "function-finished" "$func" "$args" \ "$file" "$line" \ ",gdb-result-var=\"$result\",return-value=\"$ret\"" \ "$test" } proc mi_continue_to {func} { mi_runto_helper $func "continue" } proc mi0_execute_to { cmd reason func args file line extra test } { mi_execute_to_helper "$cmd" "$reason" "$func" "\{$args\}" \ "$file" "$line" "$extra" "$test" } proc mi0_next_to { func args file line test } { mi0_execute_to "exec-next" "end-stepping-range" "$func" "$args" \ "$file" "$line" "" "$test" } proc mi0_step_to { func args file line test } { mi0_execute_to "exec-step" "end-stepping-range" "$func" "$args" \ "$file" "$line" "" "$test" } proc mi0_finish_to { func args file line result ret test } { mi0_execute_to "exec-finish" "function-finished" "$func" "$args" \ "$file" "$line" \ ",gdb-result-var=\"$result\",return-value=\"$ret\"" \ "$test" } proc mi0_continue_to { bkptno func args file line test } { mi0_execute_to "exec-continue" "breakpoint-hit\",bkptno=\"$bkptno" \ "$func" "$args" "$file" "$line" "" "$test" } # Creates a breakpoint and checks the reported fields are as expected. # This procedure takes the same options as mi_make_breakpoint and # returns the breakpoint regexp from that procedure. proc mi_create_breakpoint {location test args} { set bp [eval mi_make_breakpoint $args] mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test return $bp } # Creates varobj named NAME for EXPRESSION. # Name cannot be "-". proc mi_create_varobj { name expression testname } { mi_gdb_test "-var-create $name * $expression" \ "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=.*,has_more=\"0\"" \ $testname } proc mi_create_floating_varobj { name expression testname } { mi_gdb_test "-var-create $name @ $expression" \ "\\^done,name=\"$name\",numchild=\"\(-1\|\[0-9\]+\)\",value=\".*\",type=.*" \ $testname } # Same as mi_create_varobj, but also checks the reported type # of the varobj. proc mi_create_varobj_checked { name expression type testname } { mi_gdb_test "-var-create $name * $expression" \ "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=\"$type\".*" \ $testname } # Same as mi_create_floating_varobj, but assumes the test is creating # a dynamic varobj that has children, so the value must be "{...}". # The "has_more" attribute is checked. proc mi_create_dynamic_varobj {name expression has_more testname} { mi_gdb_test "-var-create $name @ $expression" \ "\\^done,name=\"$name\",numchild=\"0\",value=\"{\\.\\.\\.}\",type=.*,has_more=\"${has_more}\"" \ $testname } # Deletes the specified NAME. proc mi_delete_varobj { name testname } { mi_gdb_test "-var-delete $name" \ "\\^done,ndeleted=.*" \ $testname } # Updates varobj named NAME and checks that all varobjs in EXPECTED # are reported as updated, and no other varobj is updated. # Assumes that no varobj is out of scope and that no varobj changes # types. proc mi_varobj_update { name expected testname } { set er "\\^done,changelist=\\\[" set first 1 foreach item $expected { set v "{name=\"$item\",in_scope=\"true\",type_changed=\"false\",has_more=\".\"}" if {$first == 1} { set er "$er$v" set first 0 } else { set er "$er,$v" } } set er "$er\\\]" verbose -log "Expecting: $er" 2 mi_gdb_test "-var-update $name" $er $testname } proc mi_varobj_update_with_child_type_change { name child_name new_type new_children testname } { set v "{name=\"$child_name\",in_scope=\"true\",type_changed=\"true\",new_type=\"$new_type\",new_num_children=\"$new_children\",has_more=\".\"}" set er "\\^done,changelist=\\\[$v\\\]" verbose -log "Expecting: $er" mi_gdb_test "-var-update $name" $er $testname } proc mi_varobj_update_with_type_change { name new_type new_children testname } { mi_varobj_update_with_child_type_change $name $name $new_type $new_children $testname } # A helper that turns a key/value list into a regular expression # matching some MI output. proc mi_varobj_update_kv_helper {list} { set first 1 set rx "" foreach {key value} $list { if {!$first} { append rx , } set first 0 if {$key == "new_children"} { append rx "$key=\\\[$value\\\]" } else { append rx "$key=\"$value\"" } } return $rx } # A helper for mi_varobj_update_dynamic that computes a match # expression given a child list. proc mi_varobj_update_dynamic_helper {children} { set crx "" set first 1 foreach child $children { if {!$first} { append crx , } set first 0 append crx "{" append crx [mi_varobj_update_kv_helper $child] append crx "}" } return $crx } # Update a dynamic varobj named NAME. CHILDREN is a list of children # that have been updated; NEW_CHILDREN is a list of children that were # added to the primary varobj. Each child is a list of key/value # pairs that are expected. SELF is a key/value list holding # information about the varobj itself. TESTNAME is the name of the # test. proc mi_varobj_update_dynamic {name testname self children new_children} { if {[llength $new_children]} { set newrx [mi_varobj_update_dynamic_helper $new_children] lappend self new_children $newrx } set selfrx [mi_varobj_update_kv_helper $self] set crx [mi_varobj_update_dynamic_helper $children] set er "\\^done,changelist=\\\[\{name=\"$name\",in_scope=\"true\"" append er ",$selfrx\}" if {"$crx" != ""} { append er ",$crx" } append er "\\\]" verbose -log "Expecting: $er" mi_gdb_test "-var-update $name" $er $testname } proc mi_check_varobj_value { name value testname } { mi_gdb_test "-var-evaluate-expression $name" \ "\\^done,value=\"$value\"" \ $testname } # Helper proc which constructs a child regexp for # mi_list_varobj_children and mi_varobj_update_dynamic. proc mi_child_regexp {children add_child} { set children_exp {} if {$add_child} { set pre "child=" } else { set pre "" } foreach item $children { set name [lindex $item 0] set exp [lindex $item 1] set numchild [lindex $item 2] if {[llength $item] == 5} { set type [lindex $item 3] set value [lindex $item 4] lappend children_exp\ "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",value=\"$value\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}" } elseif {[llength $item] == 4} { set type [lindex $item 3] lappend children_exp\ "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}" } else { lappend children_exp\ "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\"(,thread-id=\"\[0-9\]+\")?}" } } return [join $children_exp ","] } # Check the results of the: # # -var-list-children VARNAME # # command. The CHILDREN parement should be a list of lists. # Each inner list can have either 3 or 4 elements, describing # fields that gdb is expected to report for child variable object, # in the following order # # - Name # - Expression # - Number of children # - Type # # If inner list has 3 elements, the gdb is expected to output no # type for a child and no value. # # If the inner list has 4 elements, gdb output is expected to # have no value. # proc mi_list_varobj_children { varname children testname } { mi_list_varobj_children_range $varname "" "" [llength $children] $children \ $testname } # Like mi_list_varobj_children, but sets a subrange. NUMCHILDREN is # the total number of children. proc mi_list_varobj_children_range {varname from to numchildren children testname} { set options "" if {[llength $varname] == 2} { set options [lindex $varname 1] set varname [lindex $varname 0] } set children_exp_j [mi_child_regexp $children 1] if {$numchildren} { set expected "\\^done,numchild=\".*\",children=\\\[$children_exp_j.*\\\]" } { set expected "\\^done,numchild=\"0\"" } if {"$to" == ""} { append expected ",has_more=\"0\"" } elseif {$to >= 0 && $numchildren > $to} { append expected ",has_more=\"1\"" } else { append expected ",has_more=\"0\"" } verbose -log "Expecting: $expected" mi_gdb_test "-var-list-children $options $varname $from $to" \ $expected $testname } # Verifies that variable object VARNAME has NUMBER children, # where each one is named $VARNAME. and has type TYPE. proc mi_list_array_varobj_children { varname number type testname } { mi_list_array_varobj_children_with_index $varname $number 0 $type $testname } # Same as mi_list_array_varobj_children, but allowing to pass a start index # for an array. proc mi_list_array_varobj_children_with_index { varname number start_index \ type testname } { set t {} set index $start_index for {set i 0} {$i < $number} {incr i} { lappend t [list $varname.$index $index 0 $type] incr index } mi_list_varobj_children $varname $t $testname } # A list of two-element lists. First element of each list is # a Tcl statement, and the second element is the line # number of source C file where the statement originates. set mi_autotest_data "" # The name of the source file for autotesting. set mi_autotest_source "" proc count_newlines { string } { return [regexp -all "\n" $string] } # Prepares for running inline tests in FILENAME. # See comments for mi_run_inline_test for detailed # explanation of the idea and syntax. proc mi_prepare_inline_tests { filename } { global srcdir global subdir global mi_autotest_source global mi_autotest_data set mi_autotest_data {} set mi_autotest_source $filename if { ! [regexp "^/" "$filename"] } then { set filename "$srcdir/$subdir/$filename" } set chan [open $filename] set content [read $chan] set line_number 1 while {1} { set start [string first "/*:" $content] if {$start != -1} { set end [string first ":*/" $content] if {$end == -1} { error "Unterminated special comment in $filename" } set prefix [string range $content 0 $start] set prefix_newlines [count_newlines $prefix] set line_number [expr $line_number+$prefix_newlines] set comment_line $line_number set comment [string range $content [expr $start+3] [expr $end-1]] set comment_newlines [count_newlines $comment] set line_number [expr $line_number+$comment_newlines] set comment [string trim $comment] set content [string range $content [expr $end+3] \ [string length $content]] lappend mi_autotest_data [list $comment $comment_line] } else { break } } close $chan } # Helper to mi_run_inline_test below. # Return the list of all (statement,line_number) lists # that comprise TESTCASE. The begin and end markers # are not included. proc mi_get_inline_test {testcase} { global mi_gdb_prompt global mi_autotest_data global mi_autotest_source set result {} set seen_begin 0 set seen_end 0 foreach l $mi_autotest_data { set comment [lindex $l 0] if {$comment == "BEGIN: $testcase"} { set seen_begin 1 } elseif {$comment == "END: $testcase"} { set seen_end 1 break } elseif {$seen_begin==1} { lappend result $l } } if {$seen_begin == 0} { error "Autotest $testcase not found" } if {$seen_begin == 1 && $seen_end == 0} { error "Missing end marker for test $testcase" } return $result } # Sets temporary breakpoint at LOCATION. proc mi_tbreak {location} { global mi_gdb_prompt mi_gdb_test "-break-insert -t $location" \ {\^done,bkpt=.*} \ "run to $location (set breakpoint)" } # Send COMMAND that must be a command that resumes # the inferior (run/continue/next/etc) and consumes # the "^running" output from it. proc mi_send_resuming_command_raw {command test} { global mi_gdb_prompt global thread_selected_re global library_loaded_re send_gdb "$command\n" gdb_expect { -re "\\^running\r\n\\*running,thread-id=\"\[^\"\]+\"\r\n($library_loaded_re)*($thread_selected_re)?${mi_gdb_prompt}" { # Note that lack of 'pass' call here -- this works around limitation # in DejaGNU xfail mechanism. mi-until.exp has this: # # setup_kfail gdb/2104 "*-*-*" # mi_execute_to ... # # and mi_execute_to uses mi_send_resuming_command. If we use 'pass' here, # it will reset kfail, so when the actual test fails, it will be flagged # as real failure. return 0 } -re "\\^error,msg=\"Displaced stepping is only supported in ARM mode\".*" { unsupported "$test (Thumb mode)" return -1 } -re "\\^error,msg=.*" { fail "$test (MI error)" return -1 } -re ".*${mi_gdb_prompt}" { fail "$test (failed to resume)" return -1 } timeout { fail "$test" return -1 } } } proc mi_send_resuming_command {command test} { mi_send_resuming_command_raw -$command $test } # Helper to mi_run_inline_test below. # Sets a temporary breakpoint at LOCATION and runs # the program using COMMAND. When the program is stopped # returns the line at which it. Returns -1 if line cannot # be determined. # Does not check that the line is the same as requested. # The caller can check itself if required. proc mi_continue_to_line {location test} { mi_tbreak $location mi_send_resuming_command "exec-continue" "run to $location (exec-continue)" return [mi_get_stop_line $test] } # Wait until gdb prints the current line. proc mi_get_stop_line {test} { global mi_gdb_prompt global async if {$async} { set prompt_re "" } else { set prompt_re "$mi_gdb_prompt$" } gdb_expect { -re ".*line=\"(\[0-9\]*)\".*\r\n$prompt_re" { return $expect_out(1,string) } -re ".*$mi_gdb_prompt" { fail "wait for stop ($test)" } timeout { fail "wait for stop ($test)" } } } # Run a MI test embedded in comments in a C file. # The C file should contain special comments in the following # three forms: # # /*: BEGIN: testname :*/ # /*: :*/ # /*: END: testname :*/ # # This procedure find the begin and end marker for the requested # test. Then, a temporary breakpoint is set at the begin # marker and the program is run (from start). # # After that, for each special comment between the begin and end # marker, the Tcl statements are executed. It is assumed that # for each comment, the immediately preceding line is executable # C statement. Then, gdb will be single-stepped until that # preceding C statement is executed, and after that the # Tcl statements in the comment will be executed. # # For example: # # /*: BEGIN: assignment-test :*/ # v = 10; # /*: 0} { fail "MI and console have same threads ($name)" # Send a list of failures to the log send_log "Console has thread ids: $console_thread_list\n" send_log "MI has thread ids: $mi_thread_list\n" } else { pass "MI and console have same threads ($name)" } } } } } # Download shared libraries to the target. proc mi_load_shlibs { args } { if {![is_remote target]} { return } foreach file $args { gdb_download [shlib_target_file $file] } # Even if the target supplies full paths for shared libraries, # they may not be paths for this system. mi_gdb_test "set solib-search-path [file dirname [lindex $args 0]]" "\^done" "" } proc mi_reverse_list { list } { if { [llength $list] <= 1 } { return $list } set tail [lrange $list 1 [llength $list]] set rtail [mi_reverse_list $tail] lappend rtail [lindex $list 0] return $rtail } proc mi_check_thread_states { xstates test } { global expect_out set states [mi_reverse_list $xstates] set pattern ".*\\^done,threads=\\\[" foreach s $states { set pattern "${pattern}(.*)state=\"$s\"" } set pattern "${pattern}(,core=\"\[0-9\]*\")?\\\}\\\].*" verbose -log "expecting: $pattern" mi_gdb_test "-thread-info" $pattern $test } # Return a list of MI features supported by this gdb. proc mi_get_features {} { global expect_out mi_gdb_prompt send_gdb "-list-features\n" gdb_expect { -re "\\^done,features=\\\[(.*)\\\]\r\n$mi_gdb_prompt$" { regsub -all -- \" $expect_out(1,string) "" features return [split $features ,] } -re ".*\r\n$mi_gdb_prompt$" { verbose -log "got $expect_out(buffer)" return "" } timeout { verbose -log "timeout in mi_gdb_prompt" return "" } } } # Variable Object Trees # # Yet another way to check varobjs. Pass mi_walk_varobj_tree a "list" of # variables (not unlike the actual source code definition), and it will # automagically test the children for you (by default). # # Example: # # source code: # struct bar { # union { # int integer; # void *ptr; # }; # const int *iPtr; # }; # # class foo { # public: # int a; # struct { # int b; # struct bar *c; # }; # }; # # foo *f = new foo (); <-- break here # # We want to check all the children of "f". # # Translate the above structures into the following tree: # # set tree { # foo f { # {} public { # int a {} # anonymous struct { # {} public { # int b {} # {bar *} c { # {} public { # anonymous union { # {} public { # int integer {} # {void *} ptr {} # } # } # {const int *} iPtr { # {const int} {*iPtr} {} # } # } # } # } # } # } # } # } # # mi_walk_varobj_tree c++ $tree # # If you'd prefer to walk the tree using your own callback, # simply pass the name of the callback to mi_walk_varobj_tree. # # This callback should take one argument, the name of the variable # to process. This name is the name of a global array holding the # variable's properties (object name, type, etc). # # An example callback: # # proc my_callback {var} { # upvar #0 $var varobj # # puts "my_callback: called on varobj $varobj(obj_name)" # } # # The arrays created for each variable object contain the following # members: # # obj_name - the object name for accessing this variable via MI # display_name - the display name for this variable (exp="display_name" in # the output of -var-list-children) # type - the type of this variable (type="type" in the output # of -var-list-children, or the special tag "anonymous" # path_expr - the "-var-info-path-expression" for this variable # NOTE: This member cannot be used reliably with typedefs. # Use with caution! # See notes inside get_path_expr for more. # parent - the variable name of the parent varobj # children - a list of children variable names (which are the # names Tcl arrays, not object names) # # For each variable object, an array containing the above fields will # be created under the root node (conveniently called, "root"). For example, # a variable object with handle "OBJ.public.0_anonymous.a" will have # a corresponding global Tcl variable named "root.OBJ.public.0_anonymous.a". # # Note that right now, this mechanism cannot be used for recursive data # structures like linked lists. namespace eval ::varobj_tree { # An index which is appended to root varobjs to ensure uniqueness. variable _root_idx 0 # A procedure to help with debuggging varobj trees. # VARIABLE_NAME is the name of the variable to dump. # CMD, if present, is the name of the callback to output the contstructed # strings. By default, it uses expect's "send_log" command. # TERM, if present, is a terminating character. By default it is the newline. # # To output to the terminal (not the expect log), use # mi_varobj_tree_dump_variable my_variable puts "" proc mi_varobj_tree_dump_variable {variable_name {cmd send_log} {term "\n"}} { upvar #0 $variable_name varobj eval "$cmd \"VAR = $variable_name$term\"" # Explicitly encode the array indices, since outputting them # in some logical order is better than what "array names" might # return. foreach idx {obj_name parent display_name type path_expr} { eval "$cmd \"\t$idx = $varobj($idx)$term\"" } # Output children set num [llength $varobj(children)] eval "$cmd \"\tnum_children = $num$term\"" if {$num > 0} { eval "$cmd \"\tchildren = $varobj(children)$term\"" } } # The default callback used by mi_walk_varobj_tree. This callback # simply checks all of VAR's children. It specifically does not test # path expressions, since that is very problematic. # # This procedure may be used in custom callbacks. proc test_children_callback {variable_name} { upvar #0 $variable_name varobj if {[llength $varobj(children)] > 0} { # Construct the list of children the way mi_list_varobj_children # expects to get it: # { {obj_name display_name num_children type} ... } set children_list {} foreach child $varobj(children) { upvar #0 $child c set clist [list [string_to_regexp $c(obj_name)] \ [string_to_regexp $c(display_name)] \ [llength $c(children)]] if {[string length $c(type)] > 0} { lappend clist [string_to_regexp $c(type)] } lappend children_list $clist } mi_list_varobj_children $varobj(obj_name) $children_list \ "VT: list children of $varobj(obj_name)" } } # Set the properties of the varobj represented by # PARENT_VARIABLE - the name of the parent's variable # OBJNAME - the MI object name of this variable # DISP_NAME - the display name of this variable # TYPE - the type of this variable # PATH - the path expression for this variable # CHILDREN - a list of the variable's children proc create_varobj {parent_variable objname disp_name \ type path children} { upvar #0 $parent_variable parent set var_name "root.$objname" global $var_name array set $var_name [list obj_name $objname] array set $var_name [list display_name $disp_name] array set $var_name [list type $type] array set $var_name [list path_expr $path] array set $var_name [list parent "$parent_variable"] array set $var_name [list children \ [get_tree_children $var_name $children]] return $var_name } # Should VARIABLE be used in path expressions? The CPLUS_FAKE_CHILD # varobjs and anonymous structs/unions are not used for path expressions. proc is_path_expr_parent {variable} { upvar #0 $variable varobj # If the varobj's type is "", it is a CPLUS_FAKE_CHILD. # If the tail of the varobj's object name is "%d_anonymous", # then it represents an anonymous struct or union. if {[string length $varobj(type)] == 0 \ || [regexp {[0-9]+_anonymous$} $varobj(obj_name)]} { return false } return true } # Return the path expression for the variable named NAME in # parent varobj whose variable name is given by PARENT_VARIABLE. proc get_path_expr {parent_variable name type} { upvar #0 $parent_variable parent upvar #0 $parent_variable path_parent # If TYPE is "", this is one of the CPLUS_FAKE_CHILD varobjs, # which has no path expression. Likewsise for anonymous structs # and unions. if {[string length $type] == 0 \ || [string compare $type "anonymous"] == 0} { return "" } # Find the path parent variable. while {![is_path_expr_parent $parent_variable]} { set parent_variable $path_parent(parent) upvar #0 $parent_variable path_parent } # This is where things get difficult. We do not actually know # the real type for variables defined via typedefs, so we don't actually # know whether the parent is a structure/union or not. # # So we assume everything that isn't a simple type is a compound type. set stars "" regexp {\*+} $parent(type) stars set is_compound 1 if {[string index $name 0] == "*"} { set is_compound 0 } if {[string index $parent(type) end] == "\]"} { # Parent is an array. return "($path_parent(path_expr))\[$name\]" } elseif {$is_compound} { # Parent is a structure or union or a pointer to one. if {[string length $stars]} { set join "->" } else { set join "." } global root # To make matters even more hideous, varobj.c has slightly different # path expressions for C and C++. set path_expr "($path_parent(path_expr))$join$name" if {[string compare -nocase $root(language) "c"] == 0} { return $path_expr } else { return "($path_expr)" } } else { # Parent is a pointer. return "*($path_parent(path_expr))" } } # Process the CHILDREN (a list of varobj_tree elements) of the variable # given by PARENT_VARIABLE. Returns a list of children variables. proc get_tree_children {parent_variable children} { upvar #0 $parent_variable parent set field_idx 0 set children_list {} foreach {type name children} $children { if {[string compare $parent_variable "root"] == 0} { # Root variable variable _root_idx incr _root_idx set objname "$name$_root_idx" set disp_name "$name" set path_expr "$name" } elseif {[string compare $type "anonymous"] == 0} { # Special case: anonymous types. In this case, NAME will either be # "struct" or "union". set objname "$parent(obj_name).${field_idx}_anonymous" set disp_name "" set path_expr "" set type "$name {...}" } else { set objname "$parent(obj_name).$name" set disp_name $name set path_expr [get_path_expr $parent_variable $name $type] } lappend children_list [create_varobj $parent_variable $objname \ $disp_name $type $path_expr $children] incr field_idx } return $children_list } # The main procedure to call the given CALLBACK on the elements of the # given varobj TREE. See detailed explanation above. proc walk_tree {language tree callback} { global root variable _root_idx if {[llength $tree] < 3} { error "tree does not contain enough elements" } set _root_idx 0 # Create root node and process the tree. array set root [list language $language] array set root [list obj_name "root"] array set root [list display_name "root"] array set root [list type "root"] array set root [list path_expr "root"] array set root [list parent "root"] array set root [list children [get_tree_children root $tree]] # Walk the tree set all_nodes $root(children); # a stack of nodes while {[llength $all_nodes] > 0} { # "Pop" the name of the global variable containing this varobj's # information from the stack of nodes. set var_name [lindex $all_nodes 0] set all_nodes [lreplace $all_nodes 0 0] # Bring the global named in VAR_NAME into scope as the local variable # VAROBJ. upvar #0 $var_name varobj # Append any children of VAROBJ to the list of nodes to walk. if {[llength $varobj(children)] > 0} { set all_nodes [concat $all_nodes $varobj(children)] } # If this is a root variable, create the variable object for it. if {[string compare $varobj(parent) "root"] == 0} { mi_create_varobj $varobj(obj_name) $varobj(display_name) \ "VT: create root varobj for $varobj(display_name)" } # Now call the callback for VAROBJ. uplevel #0 $callback $var_name } } } # The default varobj tree callback, which simply tests -var-list-children. proc mi_varobj_tree_test_children_callback {variable} { ::varobj_tree::test_children_callback $variable } # Walk the variable object tree given by TREE, calling the specified # CALLBACK. By default this uses mi_varobj_tree_test_children_callback. proc mi_walk_varobj_tree {language tree \ {callback \ mi_varobj_tree_test_children_callback}} { ::varobj_tree::walk_tree $language $tree $callback } # Build a list of key-value pairs given by the list ATTR_LIST. Flatten # this list using the optional JOINER, a comma by default. # # The list must contain an even number of elements, which are the key-value # pairs. Each value will be surrounded by quotes, according to the grammar, # except if the value starts with \[ or \{, when the quotes will be omitted. # # Example: mi_build_kv_pairs {a b c d e f g \[.*\]} # returns a=\"b\",c=\"d\",e=\"f\",g=\[.*\] proc mi_build_kv_pairs {attr_list {joiner ,}} { set l {} foreach {var value} $attr_list { if {[string range $value 0 1] == "\\\[" || [string range $value 0 1] == "\\\{"} { lappend l "$var=$value" } else { lappend l "$var=\"$value\"" } } return "[join $l $joiner]" } # Construct a breakpoint regexp. This may be used to test the output of # -break-insert, -dprintf-insert, or -break-info. # # All arguments for the breakpoint may be specified using the options # number, type, disp, enabled, addr, func, file, fullanme, line, # thread-groups, times, ignore, script, and original-location. # # Only if -script and -ignore are given will they appear in the output. # Otherwise, this procedure will skip them using ".*". # # Example: mi_make_breakpoint -number 2 -file ".*/myfile.c" -line 3 # will return the breakpoint: # bkpt={number="2",type=".*",disp=".*",enabled=".*",addr=".*",func=".*", # file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\], # times="0".*original-location=".*"} proc mi_make_breakpoint {args} { parse_args {{number .*} {type .*} {disp .*} {enabled .*} {addr .*} {func .*} {file .*} {fullname .*} {line .*} {thread-groups \\\[.*\\\]} {times .*} {ignore 0} {script ""} {original-location .*}} set attr_list {} foreach attr [list number type disp enabled addr func file \ fullname line thread-groups times] { lappend attr_list $attr [set $attr] } set result "bkpt={[mi_build_kv_pairs $attr_list]" # There are always exceptions. # If SCRIPT and IGNORE are not present, do not output them. if {$ignore != 0} { append result "," append result [mi_build_kv_pairs [list "ignore" $ignore]] append result "," } if {[string length $script] > 0} { append result "," append result [mi_build_kv_pairs [list "script" $script]] append result "," } else { # Allow anything up until the next "official"/required attribute. # This pattern skips over script/ignore if matches on those # were not specifically required by the caller. append result ".*" } append result [mi_build_kv_pairs \ [list "original-location" ${original-location}]] append result "}" return $result } # Build a breakpoint table regexp given the list of breakpoints in `bp_list', # constructed by mi_make_breakpoint. # # Example: Construct a breakpoint table where the only attributes we # test for are the existence of three breakpoints numbered 1, 2, and 3. # # set bps {} # lappend bps [mi_make_breakpoint -number 1] # lappend bps [mi_make_breakpoint -number 2] # lappned bps [mi_make_breakpoint -number 3] # mi_make_breakpoint_table $bps # will return (abbreviated for clarity): # BreakpointTable={nr_rows="3",nr_cols="6",hdr=[{width=".*",...} ...], # body=[bkpt={number="1",...},bkpt={number="2",...},bkpt={number="3",...}]} proc mi_make_breakpoint_table {bp_list} { # Build header -- assume a standard header for all breakpoint tables. set hl {} foreach {nm hdr} [list number Num type Type disp Disp enabled Enb \ addr Address what What] { # The elements here are the MI table headers, which have the # format: # {width="7",alignment="-1",col_name="number",colhdr="Num"} lappend hl "{[mi_build_kv_pairs [list width .* alignment .* \ col_name $nm colhdr $hdr]]}" } set header "hdr=\\\[[join $hl ,]\\\]" # The caller has implicitly supplied the number of columns and rows. set nc [llength $hl] set nr [llength $bp_list] # Build body -- mi_make_breakpoint has done most of the work. set body "body=\\\[[join $bp_list ,]\\\]" # Assemble the final regexp. return "BreakpointTable={nr_rows=\"$nr\",nr_cols=\"$nc\",$header,$body}" }