/* MIPS Simulator definition. Copyright (C) 1997, 1998 Free Software Foundation, Inc. Contributed by Cygnus Support. This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef SIM_MAIN_H #define SIM_MAIN_H /* This simulator doesn't cache the Current Instruction Address */ /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */ /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */ #define SIM_HAVE_BIENDIAN /* hobble some common features for moment */ #define WITH_WATCHPOINTS 1 #define WITH_MODULO_MEMORY 1 #include "sim-basics.h" typedef address_word sim_cia; #if (WITH_IGEN) /* Get the number of instructions. FIXME: must be a more elegant way of doing this. */ #include "itable.h" #define MAX_INSNS (nr_itable_entries) #define INSN_NAME(cpu,i) itable[(i)].name #endif #include "sim-base.h" /* Depreciated macros and types for manipulating 64bit values. Use ../common/sim-bits.h and ../common/sim-endian.h macros instead. */ typedef signed64 word64; typedef unsigned64 uword64; #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF) #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32) #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF) #define SET64HI(t) (((uword64)(t))<<32) #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l)))) #define UWORD64(h,l) (SET64HI(h)|SET64LO(l)) /* Sign-extend the given value (e) as a value (b) bits long. We cannot assume the HI32bits of the operand are zero, so we must perform a mask to ensure we can use the simple subtraction to sign-extend. */ #define SIGNEXTEND(e,b) \ ((unsigned_word) \ (((e) & ((uword64) 1 << ((b) - 1))) \ ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \ : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1)))) /* Check if a value will fit within a halfword: */ #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1)) /* Floating-point operations: */ #include "sim-fpu.h" /* FPU registers must be one of the following types. All other values are reserved (and undefined). */ typedef enum { fmt_single = 0, fmt_double = 1, fmt_word = 4, fmt_long = 5, /* The following are well outside the normal acceptable format range, and are used in the register status vector. */ fmt_unknown = 0x10000000, fmt_uninterpreted = 0x20000000, fmt_uninterpreted_32 = 0x40000000, fmt_uninterpreted_64 = 0x80000000, } FP_formats; unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats)); #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT)) void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value)); #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE)) int NaN PARAMS ((unsigned64 op, FP_formats fmt)); int Infinity PARAMS ((unsigned64 op, FP_formats fmt)); int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt)); unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt)); unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt)); unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt)); unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to)); #define Convert(rm,op,from,to) \ convert (SD, CPU, cia, rm, op, from, to) /* Macro to update FPSR condition-code field. This is complicated by the fact that there is a hole in the index range of the bits within the FCSR register. Also, the number of bits visible depends on the MIPS ISA version being supported. */ #define SETFCC(cc,v) {\ int bit = ((cc == 0) ? 23 : (24 + (cc)));\ FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\ } #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0) /* This should be the COC1 value at the start of the preceding instruction: */ #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0) #if 1 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE) #else /* They depend on the CPU being simulated */ #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32) #endif /* Standard FCRS bits: */ #define IR (0) /* Inexact Result */ #define UF (1) /* UnderFlow */ #define OF (2) /* OverFlow */ #define DZ (3) /* Division by Zero */ #define IO (4) /* Invalid Operation */ #define UO (5) /* Unimplemented Operation */ /* Get masks for individual flags: */ #if 1 /* SAFE version */ #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0) #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0) #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0) #else #define FP_FLAGS(b) (1 << ((b) + 2)) #define FP_ENABLE(b) (1 << ((b) + 7)) #define FP_CAUSE(b) (1 << ((b) + 12)) #endif #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */ #define FP_MASK_RM (0x3) #define FP_SH_RM (0) #define FP_RM_NEAREST (0) /* Round to nearest (Round) */ #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */ #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */ #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */ #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM) /* start-sanitize-sky */ #ifdef TARGET_SKY #ifdef SKY_FUNIT #include #include "wf.h" #endif #endif /* end-sanitize-sky */ /* HI/LO register accesses */ /* For some MIPS targets, the HI/LO registers have certain timing restrictions in that, for instance, a read of a HI register must be separated by at least three instructions from a preceeding read. The struct below is used to record the last access by each of A MT, MF or other OP instruction to a HI/LO register. See mips.igen for more details. */ typedef struct _hilo_access { signed64 timestamp; address_word cia; } hilo_access; typedef struct _hilo_history { hilo_access mt; hilo_access mf; hilo_access op; } hilo_history; /* Integer ALU operations: */ #include "sim-alu.h" #define ALU32_END(ANS) \ if (ALU32_HAD_OVERFLOW) \ SignalExceptionIntegerOverflow (); \ (ANS) = (signed32) ALU32_OVERFLOW_RESULT #define ALU64_END(ANS) \ if (ALU64_HAD_OVERFLOW) \ SignalExceptionIntegerOverflow (); \ (ANS) = ALU64_OVERFLOW_RESULT; /* start-sanitize-r5900 */ /* Figure 10-5 FPU Control/Status Register. Note: some of these bits are different to what is found in a standard MIPS manual. */ enum { R5900_FCSR_C = BIT (23), /* OK */ R5900_FCSR_I = BIT (17), R5900_FCSR_D = BIT (16), R5900_FCSR_O = BIT (15), R5900_FCSR_U = BIT (14), R5900_FCSR_CAUSE = MASK (16,14), R5900_FCSR_SI = BIT (6), R5900_FCSR_SD = BIT (5), R5900_FCSR_SO = BIT (4), R5900_FCSR_SU = BIT (3), }; /* Table 10-1 FP format values. Note: some of these bits are different to what is found in a standard MIPS manual. */ enum { R5900_EXPMAX = 128, R5900_EXPMIN = -127, R5900_EXPBIAS = 127, }; /* MAX and MIN FP values */ enum { R5900_FPMAX = LSMASK32 (30, 0), R5900_FPMIN = LSMASK32 (31, 0), }; typedef struct _sim_r5900_cpu { /* The R5900 has 32 x 128bit general purpose registers. Fortunatly, the high 64 bits are only touched by multimedia (MMI) instructions. The normal mips instructions just use the lower 64 bits. To avoid changing the older parts of the simulator to handle this weirdness, the high 64 bits of each register are kept in a separate array (registers1). The high 64 bits of any register are by convention refered by adding a '1' to the end of the normal register's name. So LO still refers to the low 64 bits of the LO register, LO1 refers to the high 64 bits of that same register. */ signed_word gpr1[32]; #define GPR1 ((CPU)->r5900.gpr1) signed_word lo1; signed_word hi1; #define LO1 ((CPU)->r5900.lo1) #define HI1 ((CPU)->r5900.hi1) /* The R5900 defines a shift amount register, that controls the amount of certain shift instructions */ unsigned_word sa; /* the shift amount register */ #define REGISTER_SA (124) /* GET RID IF THIS! */ #define SA ((CPU)->r5900.sa) /* The R5900, in addition to the (almost) standard floating point registers, defines a 32 bit accumulator. This is used in multiply/accumulate style instructions */ fp_word acc; /* floating-point accumulator */ #define ACC ((CPU)->r5900.acc) /* See comments below about needing to count cycles between updating and setting HI/LO registers */ hilo_history hi1_history; #define HI1HISTORY (&(CPU)->r5900.hi1_history) hilo_history lo1_history; #define LO1HISTORY (&(CPU)->r5900.lo1_history) } sim_r5900_cpu; #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word)) #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2) #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4) #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8) #define BYTES_IN_MIPS_REGS (sizeof(signed_word)) #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2) #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4) #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8) /* SUB_REG_FETCH - return as lvalue some sub-part of a "register" T - type of the sub part TC - # of T's in the mips part of the "register" I - index (from 0) of desired sub part A - low part of "register" A1 - high part of register */ #define SUB_REG_FETCH(T,TC,A,A1,I) \ (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \ + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \ ? ((TC) - 1 - (I) % (TC)) \ : ((I) % (TC)) \ ) \ ) \ ) /* GPR_(R,I) - return, as lvalue, the I'th of general register R where has two letters: 1 is S=signed or U=unsigned 2 is B=byte H=halfword W=word D=doubleword */ #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I) #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I) #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I) #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I) #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I) #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I) #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I) #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I) #define GPR_SB(R,I) SUB_REG_SB(&GPR[R], &GPR1[R], I) #define GPR_SH(R,I) SUB_REG_SH(&GPR[R], &GPR1[R], I) #define GPR_SW(R,I) SUB_REG_SW(&GPR[R], &GPR1[R], I) #define GPR_SD(R,I) SUB_REG_SD(&GPR[R], &GPR1[R], I) #define GPR_UB(R,I) SUB_REG_UB(&GPR[R], &GPR1[R], I) #define GPR_UH(R,I) SUB_REG_UH(&GPR[R], &GPR1[R], I) #define GPR_UW(R,I) SUB_REG_UW(&GPR[R], &GPR1[R], I) #define GPR_UD(R,I) SUB_REG_UD(&GPR[R], &GPR1[R], I) #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I) #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I) #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I) #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I) #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I) #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I) #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I) #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I) #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I) #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I) #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I) #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I) #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I) #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I) #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I) #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I) #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I) #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I) #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I) #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I) #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I) #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I) #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I) #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I) #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I) #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I) #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I) #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I) #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I) #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I) #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I) #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I) /* end-sanitize-r5900 */ /* The following is probably not used for MIPS IV onwards: */ /* Slots for delayed register updates. For the moment we just have a fixed number of slots (rather than a more generic, dynamic system). This keeps the simulator fast. However, we only allow for the register update to be delayed for a single instruction cycle. */ #define PSLOTS (8) /* Maximum number of instruction cycles */ typedef struct _pending_write_queue { int in; int out; int total; int slot_delay[PSLOTS]; int slot_size[PSLOTS]; int slot_bit[PSLOTS]; void *slot_dest[PSLOTS]; unsigned64 slot_value[PSLOTS]; } pending_write_queue; #ifndef PENDING_TRACE #define PENDING_TRACE 0 #endif #define PENDING_IN ((CPU)->pending.in) #define PENDING_OUT ((CPU)->pending.out) #define PENDING_TOTAL ((CPU)->pending.total) #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size) #define PENDING_SLOT_BIT ((CPU)->pending.slot_size) #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay) #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest) #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value) /* Invalidate the pending write queue, all pending writes are discarded. */ #define PENDING_INVALIDATE() \ memset (&(CPU)->pending, 0, sizeof ((CPU)->pending)) /* Schedule a write to DEST for N cycles time. For 64 bit destinations, schedule two writes. For floating point registers, the caller should schedule a write to both the dest register and the FPR_STATE register. When BIT is non-negative, only BIT of DEST is updated. */ #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \ do { \ if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \ sim_engine_abort (SD, CPU, cia, \ "PENDING_SCHED - buffer overflow\n"); \ if (PENDING_TRACE) \ sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \ PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \ PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \ PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \ PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \ PENDING_SLOT_BIT[PENDING_IN] = (BIT); \ } while (0) #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1) #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT) #define PENDING_TICK() pending_tick (SD, CPU, cia) #define PENDING_FLUSH() abort () /* think about this one */ #define PENDING_FP() abort () /* think about this one */ /* For backward compatibility */ #define PENDING_FILL(R,VAL) \ { \ if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \ PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \ else \ PENDING_SCHED(GPR[(R)], VAL, 2, -1); \ } struct _sim_cpu { /* The following are internal simulator state variables: */ #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0) #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA)) address_word dspc; /* delay-slot PC */ #define DSPC ((CPU)->dspc) #if !WITH_IGEN /* Issue a delay slot instruction immediatly by re-calling idecode_issue */ #define DELAY_SLOT(TARGET) \ do { \ address_word target = (TARGET); \ instruction_word delay_insn; \ sim_events_slip (SD, 1); \ CIA = CIA + 4; /* NOTE not mips16 */ \ STATE |= simDELAYSLOT; \ delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ \ idecode_issue (CPU_, delay_insn, (CIA)); \ STATE &= ~simDELAYSLOT; \ NIA = target; \ } while (0) #define NULLIFY_NEXT_INSTRUCTION() \ do { \ sim_events_slip (SD, 1); \ dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \ NIA = CIA + 8; \ } while (0) #else #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET)) #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_) #endif /* State of the simulator */ unsigned int state; unsigned int dsstate; #define STATE ((CPU)->state) #define DSSTATE ((CPU)->dsstate) /* Flags in the "state" variable: */ #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */ #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */ #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */ #define simPCOC0 (1 << 17) /* COC[1] from current */ #define simPCOC1 (1 << 18) /* COC[1] from previous */ #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */ #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */ #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */ #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */ #define ENGINE_ISSUE_PREFIX_HOOK() \ { \ /* Perform any pending writes */ \ PENDING_TICK(); \ /* Set previous flag, depending on current: */ \ if (STATE & simPCOC0) \ STATE |= simPCOC1; \ else \ STATE &= ~simPCOC1; \ /* and update the current value: */ \ if (GETFCC(0)) \ STATE |= simPCOC0; \ else \ STATE &= ~simPCOC0; \ } /* This is nasty, since we have to rely on matching the register numbers used by GDB. Unfortunately, depending on the MIPS target GDB uses different register numbers. We cannot just include the relevant "gdb/tm.h" link, since GDB may not be configured before the sim world, and also the GDB header file requires too much other state. */ #ifndef TM_MIPS_H #define LAST_EMBED_REGNUM (89) #define NUM_REGS (LAST_EMBED_REGNUM + 1) /* start-sanitize-r5900 */ #undef NUM_REGS #define NUM_REGS (128) /* end-sanitize-r5900 */ #endif /* start-sanitize-sky */ #ifdef TARGET_SKY #ifndef TM_TXVU_H /* Number of machine registers */ #define NUM_VU_REGS 153 #define NUM_VU_INTEGER_REGS 16 #define NUM_VIF_REGS 25 #define FIRST_VEC_REG 25 #define NUM_R5900_REGS 128 #undef NUM_REGS #define NUM_REGS (NUM_R5900_REGS + 2*(NUM_VU_REGS) + 2*(NUM_VIF_REGS)) #endif /* no tm-txvu.h */ #endif /* TARGET_SKY */ /* end-sanitize-sky */ enum float_operation /* start-sanitize-sky */ /* NOTE: THE VALUES of THESE CONSTANTS MUST BE IN SYNC WITH THOSE IN WF.H */ /* end-sanitize-sky */ { FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD, FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS, FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23 }; /* To keep this default simulator simple, and fast, we use a direct vector of registers. The internal simulator engine then uses manifests to access the correct slot. */ unsigned_word registers[LAST_EMBED_REGNUM + 1]; int register_widths[NUM_REGS]; #define REGISTERS ((CPU)->registers) #define GPR (®ISTERS[0]) #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL)) /* While space is allocated for the floating point registers in the main registers array, they are stored separatly. This is because their size may not necessarily match the size of either the general-purpose or system specific registers */ #define NR_FGR (32) #define FGRIDX (38) fp_word fgr[NR_FGR]; #define FGR ((CPU)->fgr) #define LO (REGISTERS[33]) #define HI (REGISTERS[34]) #define PCIDX 37 #define PC (REGISTERS[PCIDX]) #define CAUSE (REGISTERS[36]) #define SRIDX (32) #define SR (REGISTERS[SRIDX]) /* CPU status register */ #define FCR0IDX (71) #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */ #define FCR31IDX (70) #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */ #define FCSR (FCR31) #define Debug (REGISTERS[86]) #define DEPC (REGISTERS[87]) #define EPC (REGISTERS[88]) #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */ unsigned_word c0_config_reg; #define C0_CONFIG ((CPU)->c0_config_reg) /* The following are pseudonyms for standard registers */ #define ZERO (REGISTERS[0]) #define V0 (REGISTERS[2]) #define A0 (REGISTERS[4]) #define A1 (REGISTERS[5]) #define A2 (REGISTERS[6]) #define A3 (REGISTERS[7]) #define T8IDX 24 #define T8 (REGISTERS[T8IDX]) #define SPIDX 29 #define SP (REGISTERS[SPIDX]) #define RAIDX 31 #define RA (REGISTERS[RAIDX]) /* Keep the current format state for each register: */ FP_formats fpr_state[32]; #define FPR_STATE ((CPU)->fpr_state) pending_write_queue pending; /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic read-write instructions. It is set when a linked load occurs. It is tested and cleared by the conditional store. It is cleared (during other CPU operations) when a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions. */ int llbit; #define LLBIT ((CPU)->llbit) /* The HIHISTORY and LOHISTORY timestamps are used to ensure that corruptions caused by using the HI or LO register too close to a following operation is spotted. See mips.igen for more details. */ hilo_history hi_history; #define HIHISTORY (&(CPU)->hi_history) hilo_history lo_history; #define LOHISTORY (&(CPU)->lo_history) /* start-sanitize-r5900 */ sim_r5900_cpu r5900; /* end-sanitize-r5900 */ /* start-sanitize-vr5400 */ /* The MDMX ISA has a very very large accumulator */ unsigned8 acc[3 * 8]; /* end-sanitize-vr5400 */ /* start-sanitize-sky */ #ifdef TARGET_SKY /* Device on which instruction issue last occured. */ char cur_device; #endif /* end-sanitize-sky */ sim_cpu_base base; }; /* MIPS specific simulator watch config */ void watch_options_install PARAMS ((SIM_DESC sd)); struct swatch { sim_event *pc; sim_event *clock; sim_event *cycles; }; /* FIXME: At present much of the simulator is still static */ struct sim_state { struct swatch watch; sim_cpu cpu[MAX_NR_PROCESSORS]; #if (WITH_SMP) #define STATE_CPU(sd,n) (&(sd)->cpu[n]) #else #define STATE_CPU(sd,n) (&(sd)->cpu[0]) #endif /* start-sanitize-sky */ #ifdef TARGET_SKY #ifdef SKY_FUNIT /* Record of option for floating point implementation type. */ int fp_type_opt; #define STATE_FP_TYPE_OPT(sd) ((sd)->fp_type_opt) #define STATE_FP_TYPE_OPT_ACCURATE 0x80000000 #endif #endif /* end-sanitize-sky */ sim_state_base base; }; /* Status information: */ /* TODO : these should be the bitmasks for these bits within the status register. At the moment the following are VR4300 bit-positions: */ #define status_KSU_mask (0x3) /* mask for KSU bits */ #define status_KSU_shift (3) /* shift for field */ #define ksu_kernel (0x0) #define ksu_supervisor (0x1) #define ksu_user (0x2) #define ksu_unknown (0x3) #define status_IE (1 << 0) /* Interrupt enable */ #define status_EXL (1 << 1) /* Exception level */ #define status_RE (1 << 25) /* Reverse Endian in user mode */ #define status_FR (1 << 26) /* enables MIPS III additional FP registers */ #define status_SR (1 << 20) /* soft reset or NMI */ #define status_BEV (1 << 22) /* Location of general exception vectors */ #define status_TS (1 << 21) /* TLB shutdown has occurred */ #define status_ERL (1 << 2) /* Error level */ #define status_RP (1 << 27) /* Reduced Power mode */ /* start-sanitize-r5900 */ #define status_CU0 (1 << 28) /* COP0 usable */ #define status_CU1 (1 << 29) /* COP1 usable */ #define status_CU2 (1 << 30) /* COP2 usable */ /* end-sanitize-r5900 */ /* Specializations for TX39 family */ #define status_IEc (1 << 0) /* Interrupt enable (current) */ #define status_KUc (1 << 1) /* Kernel/User mode */ #define status_IEp (1 << 2) /* Interrupt enable (previous) */ #define status_KUp (1 << 3) /* Kernel/User mode */ #define status_IEo (1 << 4) /* Interrupt enable (old) */ #define status_KUo (1 << 5) /* Kernel/User mode */ #define status_IM_mask (0xff) /* Interrupt mask */ #define status_IM_shift (8) #define status_NMI (1 << 20) /* NMI */ #define status_NMI (1 << 20) /* NMI */ #define cause_EXC_mask (0x1f) /* Exception code */ #define cause_EXC_shift (2) #define cause_SW0 (1 << 8) /* Software interrupt 0 */ #define cause_SW1 (1 << 9) /* Software interrupt 1 */ #define cause_IP_mask (0x3f) /* Interrupt pending field */ #define cause_IP_shift (10) #define cause_CE_mask (0x3) /* Coprocessor error */ #define cause_CE_shift (28) #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */ /* NOTE: We keep the following status flags as bit values (1 for true, 0 for false). This allows them to be used in binary boolean operations without worrying about what exactly the non-zero true value is. */ /* UserMode */ #ifdef SUBTARGET_R3900 #define UserMode ((SR & status_KUc) ? 1 : 0) #else #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0) #endif /* SUBTARGET_R3900 */ /* BigEndianMem */ /* Hardware configuration. Affects endianness of LoadMemory and StoreMemory and the endianness of Kernel and Supervisor mode execution. The value is 0 for little-endian; 1 for big-endian. */ #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) /*(state & simBE) ? 1 : 0)*/ /* ReverseEndian */ /* This mode is selected if in User mode with the RE bit being set in SR (Status Register). It reverses the endianness of load and store instructions. */ #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0) /* BigEndianCPU */ /* The endianness for load and store instructions (0=little;1=big). In User mode this endianness may be switched by setting the state_RE bit in the SR register. Thus, BigEndianCPU may be computed as (BigEndianMem EOR ReverseEndian). */ #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */ /* Exceptions: */ /* NOTE: These numbers depend on the processor architecture being simulated: */ #define Interrupt (0) #define TLBModification (1) #define TLBLoad (2) #define TLBStore (3) #define AddressLoad (4) #define AddressStore (5) #define InstructionFetch (6) #define DataReference (7) #define SystemCall (8) #define BreakPoint (9) #define ReservedInstruction (10) #define CoProcessorUnusable (11) #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */ #define Trap (13) #define FPE (15) #define DebugBreakPoint (16) #define Watch (23) #define NMIReset (31) /* The following exception code is actually private to the simulator world. It is *NOT* a processor feature, and is used to signal run-time errors in the simulator. */ #define SimulatorFault (0xFFFFFFFF) /* The following break instructions are reserved for use by the simulator. The first is used to halt the simulation. The second is used by gdb for break-points. NOTE: Care must be taken, since this value may be used in later revisions of the MIPS ISA. */ #define HALT_INSTRUCTION_MASK (0x03FFFFC0) #define HALT_INSTRUCTION (0x03ff000d) #define HALT_INSTRUCTION2 (0x0000ffcd) /* start-sanitize-sky */ #define HALT_INSTRUCTION_PASS (0x03fffc0d) #define HALT_INSTRUCTION_FAIL (0x03ffffcd) /* end-sanitize-sky */ #define BREAKPOINT_INSTRUCTION (0x0005000d) #define BREAKPOINT_INSTRUCTION2 (0x0000014d) void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...); #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction)) #define SignalExceptionInterrupt() signal_exception (SD, CPU, cia, Interrupt) #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch) #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore) #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad) #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf) #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE) #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow) #define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable) #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset) /* Co-processor accesses */ void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword)); void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword)); unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg)); uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg)); #define COP_LW(coproc_num,coproc_reg,memword) \ cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword) #define COP_LD(coproc_num,coproc_reg,memword) \ cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword) #define COP_SW(coproc_num,coproc_reg) \ cop_sw (SD, CPU, cia, coproc_num, coproc_reg) #define COP_SD(coproc_num,coproc_reg) \ cop_sd (SD, CPU, cia, coproc_num, coproc_reg) /* start-sanitize-sky */ #ifdef TARGET_SKY void cop_lq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned128 memword)); unsigned128 cop_sq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg)); #define COP_LQ(coproc_num,coproc_reg,memword) \ cop_lq (SD, CPU, cia, coproc_num, coproc_reg, memword) #define COP_SQ(coproc_num,coproc_reg) \ cop_sq (SD, CPU, cia, coproc_num, coproc_reg) #endif /* TARGET_SKY */ /* end-sanitize-sky */ void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction)); #define DecodeCoproc(instruction) \ decode_coproc (SD, CPU, cia, (instruction)) /* Memory accesses */ /* The following are generic to all versions of the MIPS architecture to date: */ /* Memory Access Types (for CCA): */ #define Uncached (0) #define CachedNoncoherent (1) #define CachedCoherent (2) #define Cached (3) #define isINSTRUCTION (1 == 0) /* FALSE */ #define isDATA (1 == 1) /* TRUE */ #define isLOAD (1 == 0) /* FALSE */ #define isSTORE (1 == 1) /* TRUE */ #define isREAL (1 == 0) /* FALSE */ #define isRAW (1 == 1) /* TRUE */ /* The parameter HOST (isTARGET / isHOST) is ignored */ #define isTARGET (1 == 0) /* FALSE */ /* #define isHOST (1 == 1) TRUE */ /* The "AccessLength" specifications for Loads and Stores. NOTE: This is the number of bytes minus 1. */ #define AccessLength_BYTE (0) #define AccessLength_HALFWORD (1) #define AccessLength_TRIPLEBYTE (2) #define AccessLength_WORD (3) #define AccessLength_QUINTIBYTE (4) #define AccessLength_SEXTIBYTE (5) #define AccessLength_SEPTIBYTE (6) #define AccessLength_DOUBLEWORD (7) #define AccessLength_QUADWORD (15) #if (WITH_IGEN) #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \ ? AccessLength_DOUBLEWORD /*7*/ \ : AccessLength_WORD /*3*/) #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE) #endif INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw)); #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \ address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw) INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD)); #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \ load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD) INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr)); #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \ store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr) INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction)); #define CacheOp(op,pAddr,vAddr,instruction) \ cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction) INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype)); #define SyncOperation(stype) \ sync_operation (SD, CPU, cia, (stype)) INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint)); #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \ prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint) INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr)); #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA)) INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr)); #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1)) #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR)) void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...)); FILE *tracefh; INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia)); char* pr_addr PARAMS ((SIM_ADDR addr)); char* pr_uword64 PARAMS ((uword64 addr)); /* start-sanitize-sky */ #ifdef TARGET_SKY #ifdef SIM_ENGINE_HALT_HOOK #undef SIM_ENGINE_HALT_HOOK #endif void sky_sim_engine_halt PARAMS ((SIM_DESC sd, sim_cpu *last, sim_cia cia)); #define SIM_ENGINE_HALT_HOOK(sd, last, cia) sky_sim_engine_halt(sd, last, cia); #ifndef TM_TXVU_H /* In case GDB hasn't been configured yet */ enum txvu_cpu_context { TXVU_CPU_AUTO = -1, /* context-sensitive context */ TXVU_CPU_MASTER = 0, /* R5900 core */ TXVU_CPU_VU0 = 1, /* Vector units */ TXVU_CPU_VU1 = 2, TXVU_CPU_VIF0 = 3, /* FIFO's */ TXVU_CPU_VIF1 = 4, TXVU_CPU_LAST /* Count of context types */ }; /* memory segment for communication with GDB */ #define GDB_COMM_AREA 0x21010000 #define GDB_COMM_SIZE 0x4000 /* Memory address containing last device to execute */ #define LAST_DEVICE GDB_COMM_AREA #define BREAK_MASK 0x02 /* Breakpoint bit is #57 */ #endif /* !TM_TXVU_H */ #endif /* TARGET_SKY */ /* end-sanitize-sky */ #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE) #include "sim-main.c" #endif #endif