/* Low level interface to SPUs, for the remote server for GDB. Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by Ulrich Weigand . This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #include #include #include #include #include #include #include #include #include /* Some older glibc versions do not define this. */ #ifndef __WNOTHREAD #define __WNOTHREAD 0x20000000 /* Don't wait on children of other threads in this group */ #endif #define PTRACE_TYPE_RET long #define PTRACE_TYPE_ARG3 long /* Number of registers. */ #define SPU_NUM_REGS 130 #define SPU_NUM_CORE_REGS 128 /* Special registers. */ #define SPU_ID_REGNUM 128 #define SPU_PC_REGNUM 129 /* PPU side system calls. */ #define INSTR_SC 0x44000002 #define NR_spu_run 0x0116 /* Get current thread ID (Linux task ID). */ #define current_ptid ((struct inferior_list_entry *)current_inferior)->id /* These are used in remote-utils.c. */ int using_threads = 0; /* Defined in auto-generated file reg-spu.c. */ void init_registers_spu (void); /* Fetch PPU register REGNO. */ static CORE_ADDR fetch_ppc_register (int regno) { PTRACE_TYPE_RET res; int tid = ptid_get_lwp (current_ptid); #ifndef __powerpc64__ /* If running as a 32-bit process on a 64-bit system, we attempt to get the full 64-bit register content of the target process. If the PPC special ptrace call fails, we're on a 32-bit system; just fall through to the regular ptrace call in that case. */ { char buf[8]; errno = 0; ptrace (PPC_PTRACE_PEEKUSR_3264, tid, (PTRACE_TYPE_ARG3) (regno * 8), buf); if (errno == 0) ptrace (PPC_PTRACE_PEEKUSR_3264, tid, (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4); if (errno == 0) return (CORE_ADDR) *(unsigned long long *)buf; } #endif errno = 0; res = ptrace (PT_READ_U, tid, (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0); if (errno != 0) { char mess[128]; sprintf (mess, "reading PPC register #%d", regno); perror_with_name (mess); } return (CORE_ADDR) (unsigned long) res; } /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */ static int fetch_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET *word) { errno = 0; #ifndef __powerpc64__ if (memaddr >> 32) { unsigned long long addr_8 = (unsigned long long) memaddr; ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word); } else #endif *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0); return errno; } /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */ static int store_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET word) { errno = 0; #ifndef __powerpc64__ if (memaddr >> 32) { unsigned long long addr_8 = (unsigned long long) memaddr; ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word); } else #endif ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word); return errno; } /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */ static int fetch_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len) { int i, ret; CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET); int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1) / sizeof (PTRACE_TYPE_RET)); PTRACE_TYPE_RET *buffer; int tid = ptid_get_lwp (current_ptid); buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET)); for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET)) if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[i])) != 0) return ret; memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)), len); return 0; } /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */ static int store_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len) { int i, ret; CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET); int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1) / sizeof (PTRACE_TYPE_RET)); PTRACE_TYPE_RET *buffer; int tid = ptid_get_lwp (current_ptid); buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET)); if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET)) if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[0])) != 0) return ret; if (count > 1) if ((ret = fetch_ppc_memory_1 (tid, addr + (count - 1) * sizeof (PTRACE_TYPE_RET), &buffer[count - 1])) != 0) return ret; memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)), myaddr, len); for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET)) if ((ret = store_ppc_memory_1 (tid, addr, buffer[i])) != 0) return ret; return 0; } /* If the PPU thread is currently stopped on a spu_run system call, return to FD and ADDR the file handle and NPC parameter address used with the system call. Return non-zero if successful. */ static int parse_spufs_run (int *fd, CORE_ADDR *addr) { char buf[4]; CORE_ADDR pc = fetch_ppc_register (32); /* nip */ /* Fetch instruction preceding current NIP. */ if (fetch_ppc_memory (pc-4, buf, 4) != 0) return 0; /* It should be a "sc" instruction. */ if (*(unsigned int *)buf != INSTR_SC) return 0; /* System call number should be NR_spu_run. */ if (fetch_ppc_register (0) != NR_spu_run) return 0; /* Register 3 contains fd, register 4 the NPC param pointer. */ *fd = fetch_ppc_register (34); /* orig_gpr3 */ *addr = fetch_ppc_register (4); return 1; } /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF, using the /proc file system. */ static int spu_proc_xfer_spu (const char *annex, unsigned char *readbuf, const unsigned char *writebuf, CORE_ADDR offset, int len) { char buf[128]; int fd = 0; int ret = -1; if (!annex) return 0; sprintf (buf, "/proc/%ld/fd/%s", ptid_get_lwp (current_ptid), annex); fd = open (buf, writebuf? O_WRONLY : O_RDONLY); if (fd <= 0) return -1; if (offset != 0 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) { close (fd); return 0; } if (writebuf) ret = write (fd, writebuf, (size_t) len); else if (readbuf) ret = read (fd, readbuf, (size_t) len); close (fd); return ret; } /* Start an inferior process and returns its pid. ALLARGS is a vector of program-name and args. */ static int spu_create_inferior (char *program, char **allargs) { int pid; ptid_t ptid; pid = fork (); if (pid < 0) perror_with_name ("fork"); if (pid == 0) { ptrace (PTRACE_TRACEME, 0, 0, 0); setpgid (0, 0); execv (program, allargs); if (errno == ENOENT) execvp (program, allargs); fprintf (stderr, "Cannot exec %s: %s.\n", program, strerror (errno)); fflush (stderr); _exit (0177); } add_process (pid, 0); ptid = ptid_build (pid, pid, 0); add_thread (ptid, NULL); return pid; } /* Attach to an inferior process. */ int spu_attach (unsigned long pid) { ptid_t ptid; if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0) { fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid, strerror (errno), errno); fflush (stderr); _exit (0177); } add_process (pid, 1); ptid = ptid_build (pid, pid, 0); add_thread (ptid, NULL); return 0; } /* Kill the inferior process. */ static int spu_kill (int pid) { struct process_info *process = find_process_pid (pid); if (process == NULL) return -1; ptrace (PTRACE_KILL, pid, 0, 0); remove_process (process); return 0; } /* Detach from inferior process. */ static int spu_detach (int pid) { struct process_info *process = find_process_pid (pid); if (process == NULL) return -1; ptrace (PTRACE_DETACH, pid, 0, 0); remove_process (process); return 0; } static void spu_join (int pid) { int status, ret; struct process_info *process; process = find_process_pid (pid); if (process == NULL) return; do { ret = waitpid (pid, &status, 0); if (WIFEXITED (status) || WIFSIGNALED (status)) break; } while (ret != -1 || errno != ECHILD); } /* Return nonzero if the given thread is still alive. */ static int spu_thread_alive (ptid_t ptid) { return ptid_equal (ptid, current_ptid); } /* Resume process. */ static void spu_resume (struct thread_resume *resume_info, size_t n) { size_t i; for (i = 0; i < n; i++) if (ptid_equal (resume_info[i].thread, minus_one_ptid) || ptid_equal (resume_info[i].thread, current_ptid)) break; if (i == n) return; /* We don't support hardware single-stepping right now, assume GDB knows to use software single-stepping. */ if (resume_info[i].kind == resume_step) fprintf (stderr, "Hardware single-step not supported.\n"); regcache_invalidate (); errno = 0; ptrace (PTRACE_CONT, ptid_get_lwp (current_ptid), 0, resume_info[i].sig); if (errno) perror_with_name ("ptrace"); } /* Wait for process, returns status. */ static ptid_t spu_wait (ptid_t ptid, struct target_waitstatus *ourstatus, int options) { int pid = ptid_get_pid (ptid); int w; int ret; while (1) { ret = waitpid (pid, &w, WNOHANG | __WALL | __WNOTHREAD); if (ret == -1) { if (errno != ECHILD) perror_with_name ("waitpid"); } else if (ret > 0) break; usleep (1000); } /* On the first wait, continue running the inferior until we are blocked inside an spu_run system call. */ if (!server_waiting) { int fd; CORE_ADDR addr; while (!parse_spufs_run (&fd, &addr)) { ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0); waitpid (pid, NULL, __WALL | __WNOTHREAD); } } if (WIFEXITED (w)) { fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w)); ourstatus->kind = TARGET_WAITKIND_EXITED; ourstatus->value.integer = WEXITSTATUS (w); clear_inferiors (); remove_process (find_process_pid (ret)); return pid_to_ptid (ret); } else if (!WIFSTOPPED (w)) { fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w)); ourstatus->kind = TARGET_WAITKIND_SIGNALLED; ourstatus->value.sig = target_signal_from_host (WTERMSIG (w)); clear_inferiors (); remove_process (find_process_pid (ret)); return pid_to_ptid (ret); } /* After attach, we may have received a SIGSTOP. Do not return this as signal to GDB, or else it will try to continue with SIGSTOP ... */ if (!server_waiting) { ourstatus->kind = TARGET_WAITKIND_STOPPED; ourstatus->value.sig = TARGET_SIGNAL_0; return ptid_build (ret, ret, 0); } ourstatus->kind = TARGET_WAITKIND_STOPPED; ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w)); return ptid_build (ret, ret, 0); } /* Fetch inferior registers. */ static void spu_fetch_registers (int regno) { int fd; CORE_ADDR addr; /* ??? Some callers use 0 to mean all registers. */ if (regno == 0) regno = -1; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return; /* The ID register holds the spufs file handle. */ if (regno == -1 || regno == SPU_ID_REGNUM) supply_register (SPU_ID_REGNUM, (char *)&fd); /* The NPC register is found at ADDR. */ if (regno == -1 || regno == SPU_PC_REGNUM) { char buf[4]; if (fetch_ppc_memory (addr, buf, 4) == 0) supply_register (SPU_PC_REGNUM, buf); } /* The GPRs are found in the "regs" spufs file. */ if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS)) { unsigned char buf[16*SPU_NUM_CORE_REGS]; char annex[32]; int i; sprintf (annex, "%d/regs", fd); if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf) for (i = 0; i < SPU_NUM_CORE_REGS; i++) supply_register (i, buf + i*16); } } /* Store inferior registers. */ static void spu_store_registers (int regno) { int fd; CORE_ADDR addr; /* ??? Some callers use 0 to mean all registers. */ if (regno == 0) regno = -1; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return; /* The NPC register is found at ADDR. */ if (regno == -1 || regno == SPU_PC_REGNUM) { char buf[4]; collect_register (SPU_PC_REGNUM, buf); store_ppc_memory (addr, buf, 4); } /* The GPRs are found in the "regs" spufs file. */ if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS)) { unsigned char buf[16*SPU_NUM_CORE_REGS]; char annex[32]; int i; for (i = 0; i < SPU_NUM_CORE_REGS; i++) collect_register (i, buf + i*16); sprintf (annex, "%d/regs", fd); spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf); } } /* Copy LEN bytes from inferior's memory starting at MEMADDR to debugger memory starting at MYADDR. */ static int spu_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len) { int fd, ret; CORE_ADDR addr; char annex[32]; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return 0; /* Use the "mem" spufs file to access SPU local store. */ sprintf (annex, "%d/mem", fd); ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr, len); return ret == len ? 0 : EIO; } /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's memory at MEMADDR. On failure (cannot write the inferior) returns the value of errno. */ static int spu_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len) { int fd, ret; CORE_ADDR addr; char annex[32]; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return 0; /* Use the "mem" spufs file to access SPU local store. */ sprintf (annex, "%d/mem", fd); ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr, len); return ret == len ? 0 : EIO; } /* Look up special symbols -- unneded here. */ static void spu_look_up_symbols (void) { } /* Send signal to inferior. */ static void spu_request_interrupt (void) { syscall (SYS_tkill, ptid_get_lwp (current_ptid), SIGINT); } static struct target_ops spu_target_ops = { spu_create_inferior, spu_attach, spu_kill, spu_detach, spu_join, spu_thread_alive, spu_resume, spu_wait, spu_fetch_registers, spu_store_registers, spu_read_memory, spu_write_memory, spu_look_up_symbols, spu_request_interrupt, NULL, NULL, NULL, NULL, NULL, NULL, NULL, spu_proc_xfer_spu, hostio_last_error_from_errno, }; void initialize_low (void) { static const unsigned char breakpoint[] = { 0x00, 0x00, 0x3f, 0xff }; set_target_ops (&spu_target_ops); set_breakpoint_data (breakpoint, sizeof breakpoint); init_registers_spu (); }