# This shell script emits a C file. -*- C -*- # It does some substitutions. ELFSIZE=32 cat >e${EMULATION_NAME}.c < #include "bfdlink.h" #include "getopt.h" #include "ld.h" #include "ldmain.h" #include "ldemul.h" #include "ldfile.h" #include "ldmisc.h" #include "ldexp.h" #include "ldlang.h" #include "ldgram.h" static boolean gld${EMULATION_NAME}_open_dynamic_archive PARAMS ((const char *, search_dirs_type *, lang_input_statement_type *)); static void gld${EMULATION_NAME}_after_open PARAMS ((void)); static void gld${EMULATION_NAME}_check_needed PARAMS ((lang_input_statement_type *)); static void gld${EMULATION_NAME}_stat_needed PARAMS ((lang_input_statement_type *)); static boolean gld${EMULATION_NAME}_search_needed PARAMS ((const char *, const char *, int)); static boolean gld${EMULATION_NAME}_try_needed PARAMS ((const char *, int)); static void gld${EMULATION_NAME}_vercheck PARAMS ((lang_input_statement_type *)); static void gld${EMULATION_NAME}_find_statement_assignment PARAMS ((lang_statement_union_type *)); static void gld${EMULATION_NAME}_find_exp_assignment PARAMS ((etree_type *)); static boolean gld${EMULATION_NAME}_place_orphan PARAMS ((lang_input_statement_type *, asection *)); static void gld${EMULATION_NAME}_place_section PARAMS ((lang_statement_union_type *)); static void gld${EMULATION_NAME}_before_parse PARAMS ((void)); static void gld${EMULATION_NAME}_before_allocation PARAMS ((void)); static char *gld${EMULATION_NAME}_get_script PARAMS ((int *isfile)); static int gld${EMULATION_NAME}_parse_args PARAMS((int, char **)); static void gld${EMULATION_NAME}_list_options PARAMS ((FILE *)); static void gld${EMULATION_NAME}_finish PARAMS ((void)); static int no_pipeline_knowledge = 0; static char * thumb_entry_symbol = NULL; #define OPTION_THUMB_ENTRY 301 static struct option longopts[] = { { "no-pipeline-knowledge", no_argument, NULL, 'p'}, { "thumb-entry", required_argument, NULL, OPTION_THUMB_ENTRY}, { NULL, no_argument, NULL, 0 } }; static void gld${EMULATION_NAME}_list_options (file) FILE * file; { fprintf (file, _(" -p --no-pipeline-knowledge Stop the linker knowing about the pipeline length\n")); fprintf (file, _(" --thumb-entry= Set the entry point to be Thumb symbol \n")); } static int gld${EMULATION_NAME}_parse_args (argc, argv) int argc; char ** argv; { int longind; int optc; int prevoptind = optind; int prevopterr = opterr; int wanterror; static int lastoptind = -1; if (lastoptind != optind) opterr = 0; wanterror = opterr; lastoptind = optind; optc = getopt_long_only (argc, argv, "-p", longopts, & longind); opterr = prevopterr; switch (optc) { default: if (wanterror) xexit (1); optind = prevoptind; return 0; case 'p': no_pipeline_knowledge = 1; break; case OPTION_THUMB_ENTRY: thumb_entry_symbol = optarg; break; } return 1; } static void gld${EMULATION_NAME}_before_parse () { #ifndef TARGET_ /* I.e., if not generic. */ ldfile_set_output_arch ("`echo ${ARCH}`"); #endif /* not TARGET_ */ config.dynamic_link = ${DYNAMIC_LINK-true}; config.has_shared = `if test -n "$GENERATE_SHLIB_SCRIPT" ; then echo true ; else echo false ; fi`; } /* Try to open a dynamic archive. This is where we know that ELF dynamic libraries have an extension of .so. */ static boolean gld${EMULATION_NAME}_open_dynamic_archive (arch, search, entry) const char *arch; search_dirs_type *search; lang_input_statement_type *entry; { const char *filename; char *string; if (! entry->is_archive) return false; filename = entry->filename; string = (char *) xmalloc (strlen (search->name) + strlen (filename) + strlen (arch) + sizeof "/lib.so"); sprintf (string, "%s/lib%s%s.so", search->name, filename, arch); if (! ldfile_try_open_bfd (string, entry)) { free (string); return false; } entry->filename = string; /* We have found a dynamic object to include in the link. The ELF backend linker will create a DT_NEEDED entry in the .dynamic section naming this file. If this file includes a DT_SONAME entry, it will be used. Otherwise, the ELF linker will just use the name of the file. For an archive found by searching, like this one, the DT_NEEDED entry should consist of just the name of the file, without the path information used to find it. Note that we only need to do this if we have a dynamic object; an archive will never be referenced by a DT_NEEDED entry. FIXME: This approach--using bfd_elf_set_dt_needed_name--is not very pretty. I haven't been able to think of anything that is pretty, though. */ if (bfd_check_format (entry->the_bfd, bfd_object) && (entry->the_bfd->flags & DYNAMIC) != 0) { char *needed_name; ASSERT (entry->is_archive && entry->search_dirs_flag); needed_name = (char *) xmalloc (strlen (filename) + strlen (arch) + sizeof "lib.so"); sprintf (needed_name, "lib%s%s.so", filename, arch); bfd_elf_set_dt_needed_name (entry->the_bfd, needed_name); } return true; } EOF if [ "x${host}" = "x${target}" ] ; then case " ${EMULATION_LIBPATH} " in *" ${EMULATION_NAME} "*) cat >>e${EMULATION_NAME}.c <= alloc) { alloc *= 2; b = (char *) xrealloc (b, alloc); } if (c != ':' && c != ' ' && c != '\t' && c != '\n' && c != ',') { b[len] = c; ++len; } else { if (len > 0 && b[len - 1] != ':') { b[len] = ':'; ++len; } } } if (len > 0 && b[len - 1] == ':') --len; if (len > 0) b[len] = '\0'; else { free (b); b = NULL; } fclose (f); ld_so_conf = b; } initialized = true; } if (ld_so_conf == NULL) return false; return gld${EMULATION_NAME}_search_needed (ld_so_conf, name, force); } EOF ;; esac fi cat >>e${EMULATION_NAME}.c <next) bfd_elf32_arm_get_bfd_for_interworking (is->the_bfd, & link_info); } } /* We only need to worry about this when doing a final link. */ if (link_info.relocateable || link_info.shared) return; /* Get the list of files which appear in DT_NEEDED entries in dynamic objects included in the link (often there will be none). For each such file, we want to track down the corresponding library, and include the symbol table in the link. This is what the runtime dynamic linker will do. Tracking the files down here permits one dynamic object to include another without requiring special action by the person doing the link. Note that the needed list can actually grow while we are stepping through this loop. */ needed = bfd_elf_get_needed_list (output_bfd, &link_info); for (l = needed; l != NULL; l = l->next) { struct bfd_link_needed_list *ll; int force; /* If we've already seen this file, skip it. */ for (ll = needed; ll != l; ll = ll->next) if (strcmp (ll->name, l->name) == 0) break; if (ll != l) continue; /* See if this file was included in the link explicitly. */ global_needed = l; global_found = false; lang_for_each_input_file (gld${EMULATION_NAME}_check_needed); if (global_found) continue; /* We need to find this file and include the symbol table. We want to search for the file in the same way that the dynamic linker will search. That means that we want to use rpath_link, rpath, then the environment variable LD_LIBRARY_PATH (native only), then the linker script LIB_SEARCH_DIRS. We do not search using the -L arguments. We search twice. The first time, we skip objects which may introduce version mismatches. The second time, we force their use. See gld${EMULATION_NAME}_vercheck comment. */ for (force = 0; force < 2; force++) { const char *lib_path; size_t len; search_dirs_type *search; if (gld${EMULATION_NAME}_search_needed (command_line.rpath_link, l->name, force)) break; if (gld${EMULATION_NAME}_search_needed (command_line.rpath, l->name, force)) break; if (command_line.rpath_link == NULL && command_line.rpath == NULL) { lib_path = (const char *) getenv ("LD_RUN_PATH"); if (gld${EMULATION_NAME}_search_needed (lib_path, l->name, force)) break; } EOF if [ "x${host}" = "x${target}" ] ; then case " ${EMULATION_LIBPATH} " in *" ${EMULATION_NAME} "*) cat >>e${EMULATION_NAME}.c <name, force)) break; EOF ;; esac fi cat >>e${EMULATION_NAME}.c <name); for (search = search_head; search != NULL; search = search->next) { char *filename; if (search->cmdline) continue; filename = (char *) xmalloc (strlen (search->name) + len + 2); sprintf (filename, "%s/%s", search->name, l->name); if (gld${EMULATION_NAME}_try_needed (filename, force)) break; free (filename); } if (search != NULL) break; EOF if [ "x${host}" = "x${target}" ] ; then case " ${EMULATION_LIBPATH} " in *" ${EMULATION_NAME} "*) cat >>e${EMULATION_NAME}.c <name, force)) break; EOF ;; esac fi cat >>e${EMULATION_NAME}.c <name, l->by); } } /* Search for a needed file in a path. */ static boolean gld${EMULATION_NAME}_search_needed (path, name, force) const char *path; const char *name; int force; { const char *s; size_t len; if (path == NULL || *path == '\0') return false; len = strlen (name); while (1) { char *filename, *sset; s = strchr (path, ':'); if (s == NULL) s = path + strlen (path); filename = (char *) xmalloc (s - path + len + 2); if (s == path) sset = filename; else { memcpy (filename, path, s - path); filename[s - path] = '/'; sset = filename + (s - path) + 1; } strcpy (sset, name); if (gld${EMULATION_NAME}_try_needed (filename, force)) return true; free (filename); if (*s == '\0') break; path = s + 1; } return false; } /* This function is called for each possible name for a dynamic object named by a DT_NEEDED entry. The FORCE parameter indicates whether to skip the check for a conflicting version. */ static boolean gld${EMULATION_NAME}_try_needed (name, force) const char *name; int force; { bfd *abfd; abfd = bfd_openr (name, bfd_get_target (output_bfd)); if (abfd == NULL) return false; if (! bfd_check_format (abfd, bfd_object)) { (void) bfd_close (abfd); return false; } if ((bfd_get_file_flags (abfd) & DYNAMIC) == 0) { (void) bfd_close (abfd); return false; } /* Check whether this object would include any conflicting library versions. If FORCE is set, then we skip this check; we use this the second time around, if we couldn't find any compatible instance of the shared library. */ if (! force) { struct bfd_link_needed_list *needed; if (! bfd_elf_get_bfd_needed_list (abfd, &needed)) einfo ("%F%P:%B: bfd_elf_get_bfd_needed_list failed: %E\n", abfd); if (needed != NULL) { global_vercheck_needed = needed; global_vercheck_failed = false; lang_for_each_input_file (gld${EMULATION_NAME}_vercheck); if (global_vercheck_failed) { (void) bfd_close (abfd); /* Return false to force the caller to move on to try another file on the search path. */ return false; } /* But wait! It gets much worse. On Linux, if a shared library does not use libc at all, we are supposed to skip it the first time around in case we encounter a shared library later on with the same name which does use the version of libc that we want. This is much too horrible to use on any system other than Linux. */ EOF case ${target} in *-*-linux-gnu*) cat >>e${EMULATION_NAME}.c <next) if (strncmp (l->name, "libc.so", 7) == 0) break; if (l == NULL) { (void) bfd_close (abfd); return false; } } EOF ;; esac cat >>e${EMULATION_NAME}.c <filename != NULL && strcmp (s->filename, global_needed->name) == 0) { global_found = true; return; } if (s->the_bfd != NULL) { const char *soname; soname = bfd_elf_get_dt_soname (s->the_bfd); if (soname != NULL && strcmp (soname, global_needed->name) == 0) { global_found = true; return; } } if (s->search_dirs_flag && s->filename != NULL && strchr (global_needed->name, '/') == NULL) { const char *f; f = strrchr (s->filename, '/'); if (f != NULL && strcmp (f + 1, global_needed->name) == 0) { global_found = true; return; } } } /* See if an input file matches a DT_NEEDED entry by running stat on the file. */ static void gld${EMULATION_NAME}_stat_needed (s) lang_input_statement_type *s; { struct stat st; const char *suffix; const char *soname; const char *f; if (global_found) return; if (s->the_bfd == NULL) return; if (bfd_stat (s->the_bfd, &st) != 0) { einfo ("%P:%B: bfd_stat failed: %E\n", s->the_bfd); return; } if (st.st_dev == global_stat.st_dev && st.st_ino == global_stat.st_ino) { global_found = true; return; } /* We issue a warning if it looks like we are including two different versions of the same shared library. For example, there may be a problem if -lc picks up libc.so.6 but some other shared library has a DT_NEEDED entry of libc.so.5. This is a hueristic test, and it will only work if the name looks like NAME.so.VERSION. FIXME: Depending on file names is error-prone. If we really want to issue warnings about mixing version numbers of shared libraries, we need to find a better way. */ if (strchr (global_needed->name, '/') != NULL) return; suffix = strstr (global_needed->name, ".so."); if (suffix == NULL) return; suffix += sizeof ".so." - 1; soname = bfd_elf_get_dt_soname (s->the_bfd); if (soname == NULL) soname = s->filename; f = strrchr (soname, '/'); if (f != NULL) ++f; else f = soname; if (strncmp (f, global_needed->name, suffix - global_needed->name) == 0) einfo ("%P: warning: %s, needed by %B, may conflict with %s\n", global_needed->name, global_needed->by, f); } /* On Linux, it's possible to have different versions of the same shared library linked against different versions of libc. The dynamic linker somehow tags which libc version to use in /etc/ld.so.cache, and, based on the libc that it sees in the executable, chooses which version of the shared library to use. We try to do a similar check here by checking whether this shared library needs any other shared libraries which may conflict with libraries we have already included in the link. If it does, we skip it, and try to find another shared library farther on down the link path. This is called via lang_for_each_input_file. GLOBAL_VERCHECK_NEEDED is the list of objects needed by the object which we ar checking. This sets GLOBAL_VERCHECK_FAILED if we find a conflicting version. */ static void gld${EMULATION_NAME}_vercheck (s) lang_input_statement_type *s; { const char *soname, *f; struct bfd_link_needed_list *l; if (global_vercheck_failed) return; if (s->the_bfd == NULL || (bfd_get_file_flags (s->the_bfd) & DYNAMIC) == 0) return; soname = bfd_elf_get_dt_soname (s->the_bfd); if (soname == NULL) soname = bfd_get_filename (s->the_bfd); f = strrchr (soname, '/'); if (f != NULL) ++f; else f = soname; for (l = global_vercheck_needed; l != NULL; l = l->next) { const char *suffix; if (strcmp (f, l->name) == 0) { /* Probably can't happen, but it's an easy check. */ continue; } if (strchr (l->name, '/') != NULL) continue; suffix = strstr (l->name, ".so."); if (suffix == NULL) continue; suffix += sizeof ".so." - 1; if (strncmp (f, l->name, suffix - l->name) == 0) { /* Here we know that S is a dynamic object FOO.SO.VER1, and the object we are considering needs a dynamic object FOO.SO.VER2, and VER1 and VER2 are different. This appears to be a version mismatch, so we tell the caller to try a different version of this library. */ global_vercheck_failed = true; return; } } } /* Place an orphan section. We use this to put random SHF_ALLOC sections in the right segment. */ static asection *hold_section; static lang_output_section_statement_type *hold_use; struct orphan_save { lang_output_section_statement_type *os; asection **section; lang_statement_union_type **stmt; }; static struct orphan_save hold_text; static struct orphan_save hold_rodata; static struct orphan_save hold_data; static struct orphan_save hold_bss; static struct orphan_save hold_rel; static struct orphan_save hold_interp; /*ARGSUSED*/ static boolean gld${EMULATION_NAME}_place_orphan (file, s) lang_input_statement_type *file; asection *s; { struct orphan_save *place; lang_statement_list_type *old; lang_statement_list_type add; etree_type *address; const char *secname, *ps; const char *outsecname; lang_output_section_statement_type *os; /* Look through the script to see where to place this section. */ hold_section = s; hold_use = NULL; lang_for_each_statement (gld${EMULATION_NAME}_place_section); if (hold_use != NULL) { /* We have already placed a section with this name. */ wild_doit (&hold_use->children, s, hold_use, file); return true; } secname = bfd_get_section_name (s->owner, s); /* If this is a final link, then always put .gnu.warning.SYMBOL sections into the .text section to get them out of the way. */ if (! link_info.shared && ! link_info.relocateable && strncmp (secname, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0 && hold_text.os != NULL) { wild_doit (&hold_text.os->children, s, hold_text.os, file); return true; } /* Decide which segment the section should go in based on the section name and section flags. We put loadable .note sections right after the .interp section, so that the PT_NOTE segment is stored right after the program headers where the OS can read it in the first page. */ if (s->flags & SEC_EXCLUDE) return false; else if ((s->flags & SEC_ALLOC) == 0) place = NULL; else if ((s->flags & SEC_LOAD) != 0 && strncmp (secname, ".note", 4) == 0 && hold_interp.os != NULL) place = &hold_interp; else if ((s->flags & SEC_HAS_CONTENTS) == 0 && hold_bss.os != NULL) place = &hold_bss; else if ((s->flags & SEC_READONLY) == 0 && hold_data.os != NULL) place = &hold_data; else if (strncmp (secname, ".rel", 4) == 0 && hold_rel.os != NULL) place = &hold_rel; else if ((s->flags & SEC_CODE) == 0 && (s->flags & SEC_READONLY) != 0 && hold_rodata.os != NULL) place = &hold_rodata; else if ((s->flags & SEC_READONLY) != 0 && hold_text.os != NULL) place = &hold_text; else place = NULL; /* Choose a unique name for the section. This will be needed if the same section name appears in the input file with different loadable or allocateable characteristics. */ outsecname = secname; if (bfd_get_section_by_name (output_bfd, outsecname) != NULL) { unsigned int len; char *newname; unsigned int i; len = strlen (outsecname); newname = xmalloc (len + 5); strcpy (newname, outsecname); i = 0; do { sprintf (newname + len, "%d", i); ++i; } while (bfd_get_section_by_name (output_bfd, newname) != NULL); outsecname = newname; } if (place != NULL) { /* Start building a list of statements for this section. */ old = stat_ptr; stat_ptr = &add; lang_list_init (stat_ptr); /* If the name of the section is representable in C, then create symbols to mark the start and the end of the section. */ for (ps = outsecname; *ps != '\0'; ps++) if (! isalnum ((unsigned char) *ps) && *ps != '_') break; if (*ps == '\0' && config.build_constructors) { char *symname; etree_type *e_align; symname = (char *) xmalloc (ps - outsecname + sizeof "__start_"); sprintf (symname, "__start_%s", outsecname); e_align = exp_unop (ALIGN_K, exp_intop ((bfd_vma) 1 << s->alignment_power)); lang_add_assignment (exp_assop ('=', symname, e_align)); } } if (link_info.relocateable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0) address = exp_intop ((bfd_vma) 0); else address = NULL; lang_enter_output_section_statement (outsecname, address, 0, (bfd_vma) 0, (etree_type *) NULL, (etree_type *) NULL, (etree_type *) NULL); os = lang_output_section_statement_lookup (outsecname); wild_doit (&os->children, s, os, file); if (place != NULL) { asection *snew, **pps; lang_leave_output_section_statement ((bfd_vma) 0, "*default*", (struct lang_output_section_phdr_list *) NULL, "*default*"); stat_ptr = &add; if (*ps == '\0' && config.build_constructors) { char *symname; symname = (char *) xmalloc (ps - outsecname + sizeof "__stop_"); sprintf (symname, "__stop_%s", outsecname); lang_add_assignment (exp_assop ('=', symname, exp_nameop (NAME, "."))); } stat_ptr = old; snew = os->bfd_section; if (place->os->bfd_section != NULL || place->section != NULL) { /* Shuffle the section to make the output file look neater. */ if (place->section == NULL) { #if 0 /* Finding the end of the list is a little tricky. We make a wild stab at it by comparing section flags. */ flagword first_flags = place->os->bfd_section->flags; for (pps = &place->os->bfd_section->next; *pps != NULL && (*pps)->flags == first_flags; pps = &(*pps)->next) ; place->section = pps; #else /* Put orphans after the first section on the list. */ place->section = &place->os->bfd_section->next; #endif } /* Unlink the section. */ for (pps = &output_bfd->sections; *pps != snew; pps = &(*pps)->next) ; *pps = snew->next; /* Now tack it on to the "place->os" section list. */ snew->next = *place->section; *place->section = snew; } place->section = &snew->next; /* Save the end of this list. */ if (place->stmt == NULL) { /* Put the new statement list right at the head. */ *add.tail = place->os->header.next; place->os->header.next = add.head; } else { /* Put it after the last orphan statement we added. */ *add.tail = *place->stmt; *place->stmt = add.head; } place->stmt = add.tail; /* Save the end of this list. */ } return true; } static void gld${EMULATION_NAME}_place_section (s) lang_statement_union_type *s; { lang_output_section_statement_type *os; if (s->header.type != lang_output_section_statement_enum) return; os = &s->output_section_statement; if (strcmp (os->name, hold_section->name) == 0 && os->bfd_section != NULL && ((hold_section->flags & (SEC_LOAD | SEC_ALLOC)) == (os->bfd_section->flags & (SEC_LOAD | SEC_ALLOC)))) hold_use = os; if (strcmp (os->name, ".text") == 0) hold_text.os = os; else if (strcmp (os->name, ".rodata") == 0) hold_rodata.os = os; else if (strcmp (os->name, ".data") == 0) hold_data.os = os; else if (strcmp (os->name, ".bss") == 0) hold_bss.os = os; else if (hold_rel.os == NULL && os->bfd_section != NULL && (os->bfd_section->flags & SEC_ALLOC) != 0 && strncmp (os->name, ".rel", 4) == 0) hold_rel.os = os; else if (strcmp (os->name, ".interp") == 0) hold_interp.os = os; } /* Look through an expression for an assignment statement. */ static void gld${EMULATION_NAME}_find_exp_assignment (exp) etree_type *exp; { struct bfd_link_hash_entry *h; switch (exp->type.node_class) { case etree_provide: h = bfd_link_hash_lookup (link_info.hash, exp->assign.dst, false, false, false); if (h == NULL) break; /* We call record_link_assignment even if the symbol is defined. This is because if it is defined by a dynamic object, we actually want to use the value defined by the linker script, not the value from the dynamic object (because we are setting symbols like etext). If the symbol is defined by a regular object, then, as it happens, calling record_link_assignment will do no harm. */ /* Fall through. */ case etree_assign: if (strcmp (exp->assign.dst, ".") != 0) { if (! (bfd_elf${ELFSIZE}_record_link_assignment (output_bfd, &link_info, exp->assign.dst, exp->type.node_class == etree_provide ? true : false))) einfo ("%P%F: failed to record assignment to %s: %E\n", exp->assign.dst); } gld${EMULATION_NAME}_find_exp_assignment (exp->assign.src); break; case etree_binary: gld${EMULATION_NAME}_find_exp_assignment (exp->binary.lhs); gld${EMULATION_NAME}_find_exp_assignment (exp->binary.rhs); break; case etree_trinary: gld${EMULATION_NAME}_find_exp_assignment (exp->trinary.cond); gld${EMULATION_NAME}_find_exp_assignment (exp->trinary.lhs); gld${EMULATION_NAME}_find_exp_assignment (exp->trinary.rhs); break; case etree_unary: gld${EMULATION_NAME}_find_exp_assignment (exp->unary.child); break; default: break; } } /* This is called by the before_allocation routine via lang_for_each_statement. It locates any assignment statements, and tells the ELF backend about them, in case they are assignments to symbols which are referred to by dynamic objects. */ static void gld${EMULATION_NAME}_find_statement_assignment (s) lang_statement_union_type *s; { if (s->header.type == lang_assignment_statement_enum) gld${EMULATION_NAME}_find_exp_assignment (s->assignment_statement.exp); } /* This is called after the sections have been attached to output sections, but before any sizes or addresses have been set. */ static void gld${EMULATION_NAME}_before_allocation () { const char *rpath; asection *sinterp; /* If we are going to make any variable assignments, we need to let the ELF backend know about them in case the variables are referred to by dynamic objects. */ lang_for_each_statement (gld${EMULATION_NAME}_find_statement_assignment); /* Let the ELF backend work out the sizes of any sections required by dynamic linking. */ rpath = command_line.rpath; if (rpath == NULL) rpath = (const char *) getenv ("LD_RUN_PATH"); if (! (bfd_elf${ELFSIZE}_size_dynamic_sections (output_bfd, command_line.soname, rpath, command_line.export_dynamic, command_line.filter_shlib, (const char * const *) command_line.auxiliary_filters, &link_info, &sinterp, lang_elf_version_info))) einfo ("%P%F: failed to set dynamic section sizes: %E\n"); /* Let the user override the dynamic linker we are using. */ if (command_line.interpreter != NULL && sinterp != NULL) { sinterp->contents = (bfd_byte *) command_line.interpreter; sinterp->_raw_size = strlen (command_line.interpreter) + 1; } /* Look for any sections named .gnu.warning. As a GNU extensions, we treat such sections as containing warning messages. We print out the warning message, and then zero out the section size so that it does not get copied into the output file. */ { LANG_FOR_EACH_INPUT_STATEMENT (is) { asection *s; bfd_size_type sz; char *msg; boolean ret; if (is->just_syms_flag) continue; s = bfd_get_section_by_name (is->the_bfd, ".gnu.warning"); if (s == NULL) continue; sz = bfd_section_size (is->the_bfd, s); msg = xmalloc ((size_t) sz + 1); if (! bfd_get_section_contents (is->the_bfd, s, msg, (file_ptr) 0, sz)) einfo ("%F%B: Can't read contents of section .gnu.warning: %E\n", is->the_bfd); msg[sz] = '\0'; ret = link_info.callbacks->warning (&link_info, msg, (const char *) NULL, is->the_bfd, (asection *) NULL, (bfd_vma) 0); ASSERT (ret); free (msg); /* Clobber the section size, so that we don't waste copying the warning into the output file. */ s->_raw_size = 0; } } /* we should be able to set the size of the interworking stub section */ /* Here we rummage through the found bfds to collect glue information */ /* FIXME: should this be based on a command line option? krk@cygnus.com */ { LANG_FOR_EACH_INPUT_STATEMENT (is) { if (!bfd_elf32_arm_process_before_allocation (is->the_bfd, & link_info, no_pipeline_knowledge)) { /* xgettext:c-format */ einfo (_("Errors encountered processing file %s"), is->filename); } } } /* We have seen it all. Allocate it, and carry on */ bfd_elf32_arm_allocate_interworking_sections (& link_info); } static void gld${EMULATION_NAME}_finish PARAMS((void)) { struct bfd_link_hash_entry * h; if (thumb_entry_symbol == NULL) return; h = bfd_link_hash_lookup (link_info.hash, thumb_entry_symbol, false, false, true); if (h != (struct bfd_link_hash_entry *) NULL && (h->type == bfd_link_hash_defined || h->type == bfd_link_hash_defweak) && h->u.def.section->output_section != NULL) { static char buffer[32]; bfd_vma val; /* Special procesing is required for a Thumb entry symbol. The bottom bit of its address must be set. */ val = (h->u.def.value + bfd_get_section_vma (output_bfd, h->u.def.section->output_section) + h->u.def.section->output_offset); val |= 1; /* Now convert this value into a string and store it in entry_symbol where the lang_finish() function will pick it up. */ buffer[0] = '0'; buffer[1] = 'x'; sprintf_vma (buffer + 2, val); if (entry_symbol != NULL && entry_from_cmdline) einfo (_("%P: warning: '--thumb-entry %s' is overriding '-e %s'\n"), thumb_entry_symbol, entry_symbol); entry_symbol = buffer; } else einfo (_("%P: warning: connot find thumb start symbol %s\n"), thumb_entry_symbol); } static char * gld${EMULATION_NAME}_get_script (isfile) int *isfile; EOF if test -n "$COMPILE_IN" then # Scripts compiled in. # sed commands to quote an ld script as a C string. sc="-f stringify.sed" cat >>e${EMULATION_NAME}.c <> e${EMULATION_NAME}.c echo ' ; else if (link_info.relocateable == true) return' >> e${EMULATION_NAME}.c sed $sc ldscripts/${EMULATION_NAME}.xr >> e${EMULATION_NAME}.c echo ' ; else if (!config.text_read_only) return' >> e${EMULATION_NAME}.c sed $sc ldscripts/${EMULATION_NAME}.xbn >> e${EMULATION_NAME}.c echo ' ; else if (!config.magic_demand_paged) return' >> e${EMULATION_NAME}.c sed $sc ldscripts/${EMULATION_NAME}.xn >> e${EMULATION_NAME}.c if test -n "$GENERATE_SHLIB_SCRIPT" ; then echo ' ; else if (link_info.shared) return' >> e${EMULATION_NAME}.c sed $sc ldscripts/${EMULATION_NAME}.xs >> e${EMULATION_NAME}.c fi echo ' ; else return' >> e${EMULATION_NAME}.c sed $sc ldscripts/${EMULATION_NAME}.x >> e${EMULATION_NAME}.c echo '; }' >> e${EMULATION_NAME}.c else # Scripts read from the filesystem. cat >>e${EMULATION_NAME}.c <>e${EMULATION_NAME}.c <