# Copyright (C) 2009, 2010 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This file is part of the GDB testsuite. It tests the mechanism # exposing inferiors to Python. if $tracelevel then { strace $tracelevel } load_lib gdb-python.exp set testfile "py-inferior" set srcfile ${testfile}.c if { [prepare_for_testing ${testfile}.exp ${testfile} ${srcfile}] } { return -1 } # Start with a fresh gdb. clean_restart ${testfile} # Skip all tests if Python scripting is not enabled. if { [skip_python_tests] } { continue } gdb_test_multiple "show endian" "getting target endian" { -re ".*little endian.*$gdb_prompt $" { set python_pack_char "<" # pass silently } -re ".*big endian.*$gdb_prompt $" { set python_pack_char ">" # pass silently } } # The following tests require execution. if ![runto_main] then { fail "Can't run to main" return 0 } runto [gdb_get_line_number "Break here."] # Test basic gdb.Inferior attributes and methods. gdb_py_test_silent_cmd "python inferiors = gdb.inferiors ()" "get inferiors list" 1 gdb_test "python print inferiors" "\\(,\\)" "verify inferiors list" gdb_py_test_silent_cmd "python i0 = inferiors\[0\]" "get first inferior" 0 gdb_test "python print 'result =', i0 == inferiors\[0\]" " = True" "test equality comparison (true)" gdb_test "python print 'result =', i0.num" " = \[0-9\]+" "test Inferior.num" gdb_test "python print 'result =', i0.pid" " = \[0-9\]+" "test Inferior.pid" gdb_test "python print 'result =', i0.was_attached" " = False" "test Inferior.was_attached" gdb_test "python print i0.threads ()" "\\(,\\)" "test Inferior.threads" # Test memory read and write operations. gdb_py_test_silent_cmd "python addr = gdb.selected_frame ().read_var ('str')" \ "read str address" 0 gdb_py_test_silent_cmd "python str = gdb.inferiors()\[0\].read_memory (addr, 5)" \ "read str contents" 1 gdb_py_test_silent_cmd "python str\[1\] = 'a'" "change str" 0 gdb_py_test_silent_cmd "python gdb.inferiors()\[0\].write_memory (addr, str)" \ "write str" 1 gdb_test "print str" " = 0x\[\[:xdigit:\]\]+ \"hallo, testsuite\"" \ "ensure str was changed in the inferior" # Test memory search. set hex_number {0x[0-9a-fA-F][0-9a-fA-F]*} set dec_number {[0-9]+} set history_prefix {[$][0-9]* = } set newline {[\r\n]+} set pattern_not_found "${newline}.None" set one_pattern_found "${newline}.${dec_number}" # Test string pattern. gdb_test "set *(int32_t*) &int8_search_buf\[10\] = 0x61616161" "" "" gdb_test "py search_buf = gdb.selected_frame ().read_var ('int8_search_buf')" "" "" gdb_test "py start_addr = search_buf.address" "" "" gdb_test "py length = search_buf.type.sizeof" "" "" gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, length, 'aaa')" \ "${one_pattern_found}" "find string pattern" # Test not finding pattern because search range too small, with # potential find at the edge of the range. gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, 10+3, 'aaaa')" \ "${pattern_not_found}" "pattern not found at end of range" # Increase the search range by 1 and we should find the pattern. gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, 10+3+1, 'aaa')" \ "${one_pattern_found}" "pattern found at end of range" # Import struct to pack the following patterns. gdb_test "py from struct import *" "" "" # Test 16-bit pattern. gdb_test "set int16_search_buf\[10\] = 0x1234" "" "" gdb_test "py search_buf = gdb.selected_frame ().read_var ('int16_search_buf')" "" "" gdb_test "py start_addr = search_buf.address" "" "" gdb_test "py length = search_buf.type.sizeof" "" "" gdb_test "py pattern = pack('${python_pack_char}H',0x1234)" "" \ gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, length, pattern)" \ "${one_pattern_found}" "find 16-bit pattern, with value pattern" # Test 32-bit pattern. gdb_test "set int32_search_buf\[10\] = 0x12345678" "" "" gdb_test "py search_buf = gdb.selected_frame ().read_var ('int32_search_buf')" "" "" gdb_test "py start_addr = search_buf.address" "" "" gdb_test "py length = search_buf.type.sizeof" "" "" gdb_test "py pattern = pack('${python_pack_char}I',0x12345678)" "" \ gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, length, pattern)" \ "${one_pattern_found}" "find 32-bit pattern, with python pattern" # Test 64-bit pattern. gdb_test "set int64_search_buf\[10\] = 0xfedcba9876543210LL" "" "" gdb_test "py search_buf = gdb.selected_frame ().read_var ('int64_search_buf')" "" "" gdb_test "py start_addr = search_buf.address" "" "" gdb_test "py length = search_buf.type.sizeof" "" "" gdb_test "py pattern = pack('${python_pack_char}Q', 0xfedcba9876543210)" "" "" gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, length, pattern)" \ "${one_pattern_found}" "find 64-bit pattern, with value pattern" # Test mixed-sized patterns. gdb_test "set *(int8_t*) &search_buf\[10\] = 0x62" "" "" gdb_test "set *(int16_t*) &search_buf\[11\] = 0x6363" "" "" gdb_test "set *(int32_t*) &search_buf\[13\] = 0x64646464" "" "" gdb_test "py search_buf = gdb.selected_frame ().read_var ('search_buf')" "" "" gdb_test "py start_addr = search_buf\[0\].address" "" "" gdb_test "py pattern1 = pack('B', 0x62)" "" "" gdb_test "py pattern2 = pack('${python_pack_char}H', 0x6363)" "" "" gdb_test "py pattern3 = pack('${python_pack_char}I', 0x64646464)" "" "" gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, 100, pattern1)" \ "${one_pattern_found}" "find mixed-sized pattern" gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, 100, pattern2)" \ "${one_pattern_found}" "find mixed-sized pattern" gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, 100, pattern3)" \ "${one_pattern_found}" "find mixed-sized pattern" # Test search spanning a large range, in the particular case of native # targets, test the search spanning multiple chunks. # Remote targets may implement the search differently. set CHUNK_SIZE 16000 ; gdb_test "set *(int32_t*) &search_buf\[0*${CHUNK_SIZE}+100\] = 0x12345678" "" "" gdb_test "set *(int32_t*) &search_buf\[1*${CHUNK_SIZE}+100\] = 0x12345678" "" "" gdb_test "py start_addr = gdb.selected_frame ().read_var ('search_buf')" "" "" gdb_test "py length = gdb.selected_frame ().read_var ('search_buf_size')" "" "" gdb_test "py pattern = pack('${python_pack_char}I', 0x12345678)" "" "" gdb_test "py first = gdb.inferiors()\[0\].search_memory (start_addr,length, pattern)" "" "" gdb_test "py print first" "${one_pattern_found}" "search spanning large range 1st result" gdb_test "py start_addr = first + 1" gdb_test "py second = gdb.inferiors()\[0\].search_memory (start_addr, length, pattern)" "" "" gdb_test "py print second" "${one_pattern_found}" "search spanning large range 2nd result" gdb_test "py start_addr = second + 1" gdb_test "py third = gdb.inferiors()\[0\].search_memory (start_addr, length, pattern)" "" "" gdb_test "py print third" "${pattern_not_found}" "search spanning large range 3rd result" # For native targets, test a pattern straddling a chunk boundary. if [isnative] { gdb_test "set *(int32_t*) &search_buf\[${CHUNK_SIZE}-1\] = 0xfdb97531" "" "" gdb_test "py pattern = pack('${python_pack_char}I', 0xfdb97531)" "" "" gdb_test "py start_addr = gdb.selected_frame ().read_var ('search_buf')" "" "" gdb_test "py print gdb.inferiors()\[0\].search_memory (start_addr, length, pattern)" \ "${one_pattern_found}" "find pattern straddling chunk boundary" }