/* 32-bit ELF support for Nios II. Copyright (C) 2012, 2013 Free Software Foundation, Inc. Contributed by Nigel Gray (ngray@altera.com). Contributed by Mentor Graphics, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* This file handles Altera Nios II ELF targets. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "bfdlink.h" #include "genlink.h" #include "elf-bfd.h" #include "elf/nios2.h" #include "opcode/nios2.h" /* Use RELA relocations. */ #ifndef USE_RELA #define USE_RELA #endif #ifdef USE_REL #undef USE_REL #endif /* Forward declarations. */ static bfd_reloc_status_type nios2_elf32_ignore_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_hi16_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_lo16_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_hiadj16_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_pcrel_lo16_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_pcrel_hiadj16_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_pcrel16_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_call26_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_gprel_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_ujmp_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_cjmp_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); static bfd_reloc_status_type nios2_elf32_callr_relocate (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); /* Target vector. */ extern const bfd_target bfd_elf32_littlenios2_vec; extern const bfd_target bfd_elf32_bignios2_vec; /* Offset of tp and dtp pointers from start of TLS block. */ #define TP_OFFSET 0x7000 #define DTP_OFFSET 0x8000 /* The relocation table used for SHT_REL sections. */ static reloc_howto_type elf_nios2_howto_table_rel[] = { /* No relocation. */ HOWTO (R_NIOS2_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_NIOS2_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* 16-bit signed immediate relocation. */ HOWTO (R_NIOS2_S16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 6, /* bitpos */ complain_overflow_signed, /* complain on overflow */ bfd_elf_generic_reloc, /* special function */ "R_NIOS2_S16", /* name */ FALSE, /* partial_inplace */ 0x003fffc0, /* src_mask */ 0x003fffc0, /* dest_mask */ FALSE), /* pcrel_offset */ /* 16-bit unsigned immediate relocation. */ HOWTO (R_NIOS2_U16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 6, /* bitpos */ complain_overflow_unsigned, /* complain on overflow */ bfd_elf_generic_reloc, /* special function */ "R_NIOS2_U16", /* name */ FALSE, /* partial_inplace */ 0x003fffc0, /* src_mask */ 0x003fffc0, /* dest_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NIOS2_PCREL16, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 6, /* bitpos */ complain_overflow_signed, /* complain on overflow */ nios2_elf32_pcrel16_relocate, /* special function */ "R_NIOS2_PCREL16", /* name */ FALSE, /* partial_inplace */ 0x003fffc0, /* src_mask */ 0x003fffc0, /* dest_mask */ TRUE), /* pcrel_offset */ HOWTO (R_NIOS2_CALL26, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 26, /* bitsize */ FALSE, /* pc_relative */ 6, /* bitpos */ complain_overflow_dont, /* complain on overflow */ nios2_elf32_call26_relocate, /* special function */ "R_NIOS2_CALL26", /* name */ FALSE, /* partial_inplace */ 0xffffffc0, /* src_mask */ 0xffffffc0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_NIOS2_IMM5, 0, 2, 5, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_IMM5", FALSE, 0x000007c0, 0x000007c0, FALSE), HOWTO (R_NIOS2_CACHE_OPX, 0, 2, 5, FALSE, 22, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_CACHE_OPX", FALSE, 0x07c00000, 0x07c00000, FALSE), HOWTO (R_NIOS2_IMM6, 0, 2, 6, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_IMM6", FALSE, 0x00000fc0, 0x00000fc0, FALSE), HOWTO (R_NIOS2_IMM8, 0, 2, 8, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_IMM8", FALSE, 0x00003fc0, 0x00003fc0, FALSE), HOWTO (R_NIOS2_HI16, 0, 2, 32, FALSE, 6, complain_overflow_dont, nios2_elf32_hi16_relocate, "R_NIOS2_HI16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_LO16, 0, 2, 32, FALSE, 6, complain_overflow_dont, nios2_elf32_lo16_relocate, "R_NIOS2_LO16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_HIADJ16, 0, 2, 32, FALSE, 6, complain_overflow_dont, nios2_elf32_hiadj16_relocate, "R_NIOS2_HIADJ16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_BFD_RELOC_32, 0, 2, /* long */ 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_BFD_RELOC32", FALSE, 0xffffffff, 0xffffffff, FALSE), HOWTO (R_NIOS2_BFD_RELOC_16, 0, 1, /* short */ 16, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_BFD_RELOC16", FALSE, 0x0000ffff, 0x0000ffff, FALSE), HOWTO (R_NIOS2_BFD_RELOC_8, 0, 0, /* byte */ 8, FALSE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_BFD_RELOC8", FALSE, 0x000000ff, 0x000000ff, FALSE), HOWTO (R_NIOS2_GPREL, 0, 2, 32, FALSE, 6, complain_overflow_dont, nios2_elf32_gprel_relocate, "R_NIOS2_GPREL", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_GNU_VTINHERIT, 0, 2, /* short */ 0, FALSE, 0, complain_overflow_dont, NULL, "R_NIOS2_GNU_VTINHERIT", FALSE, 0, 0, FALSE), HOWTO (R_NIOS2_GNU_VTENTRY, 0, 2, /* byte */ 0, FALSE, 0, complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn, "R_NIOS2_GNU_VTENTRY", FALSE, 0, 0, FALSE), HOWTO (R_NIOS2_UJMP, 0, 2, 32, FALSE, 6, complain_overflow_dont, nios2_elf32_ujmp_relocate, "R_NIOS2_UJMP", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_CJMP, 0, 2, 32, FALSE, 6, complain_overflow_dont, nios2_elf32_cjmp_relocate, "R_NIOS2_CJMP", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_CALLR, 0, 2, 32, FALSE, 6, complain_overflow_dont, nios2_elf32_callr_relocate, "R_NIOS2_CALLR", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_ALIGN, 0, 2, 0, FALSE, 0, complain_overflow_dont, nios2_elf32_ignore_reloc, "R_NIOS2_ALIGN", FALSE, 0, 0, TRUE), HOWTO (R_NIOS2_GOT16, 0, 2, 16, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_GOT16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_CALL16, 0, 2, 16, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_CALL16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_GOTOFF_LO, 0, 2, 16, FALSE, 6, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_GOTOFF_LO", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_GOTOFF_HA, 0, 2, 16, FALSE, 6, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_GOTOFF_HA", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_PCREL_LO, 0, 2, 16, TRUE, 6, complain_overflow_dont, nios2_elf32_pcrel_lo16_relocate, "R_NIOS2_PCREL_LO", FALSE, 0x003fffc0, 0x003fffc0, TRUE), HOWTO (R_NIOS2_PCREL_HA, 0, 2, 16, FALSE, /* This is a PC-relative relocation, but we need to subtract PC ourselves before the HIADJ. */ 6, complain_overflow_dont, nios2_elf32_pcrel_hiadj16_relocate, "R_NIOS2_PCREL_HA", FALSE, 0x003fffc0, 0x003fffc0, TRUE), HOWTO (R_NIOS2_TLS_GD16, 0, 2, 16, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_TLS_GD16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_TLS_LDM16, 0, 2, 16, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_TLS_LDM16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_TLS_LDO16, 0, 2, 16, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_TLS_LDO16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_TLS_IE16, 0, 2, 16, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_TLS_IE16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_TLS_LE16, 0, 2, 16, FALSE, 6, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_NIOS2_TLS_LE16", FALSE, 0x003fffc0, 0x003fffc0, FALSE), HOWTO (R_NIOS2_TLS_DTPMOD, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_TLS_DTPMOD", FALSE, 0xffffffff, 0xffffffff, FALSE), HOWTO (R_NIOS2_TLS_DTPREL, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_TLS_DTPREL", FALSE, 0xffffffff, 0xffffffff, FALSE), HOWTO (R_NIOS2_TLS_TPREL, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_TLS_TPREL", FALSE, 0xffffffff, 0xffffffff, FALSE), HOWTO (R_NIOS2_COPY, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_COPY", FALSE, 0, 0, FALSE), HOWTO (R_NIOS2_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_GLOB_DAT", FALSE, 0xffffffff, 0xffffffff, FALSE), HOWTO (R_NIOS2_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_JUMP_SLOT", FALSE, 0xffffffff, 0xffffffff, FALSE), HOWTO (R_NIOS2_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_RELATIVE", FALSE, 0xffffffff, 0xffffffff, FALSE), HOWTO (R_NIOS2_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_NIOS2_GOTOFF", FALSE, 0xffffffff, 0xffffffff, FALSE), /* Add other relocations here. */ }; static unsigned char elf_code_to_howto_index[R_NIOS2_ILLEGAL + 1]; /* Return the howto for relocation RTYPE. */ static reloc_howto_type * lookup_howto (unsigned int rtype) { static int initialized = 0; int i; int howto_tbl_size = (int) (sizeof (elf_nios2_howto_table_rel) / sizeof (elf_nios2_howto_table_rel[0])); if (!initialized) { initialized = 1; memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index)); for (i = 0; i < howto_tbl_size; i++) elf_code_to_howto_index[elf_nios2_howto_table_rel[i].type] = i; } BFD_ASSERT (rtype <= R_NIOS2_ILLEGAL); i = elf_code_to_howto_index[rtype]; if (i >= howto_tbl_size) return 0; return elf_nios2_howto_table_rel + i; } /* Map for converting BFD reloc types to Nios II reloc types. */ struct elf_reloc_map { bfd_reloc_code_real_type bfd_val; enum elf_nios2_reloc_type elf_val; }; static const struct elf_reloc_map nios2_reloc_map[] = { {BFD_RELOC_NIOS2_S16, R_NIOS2_S16}, {BFD_RELOC_NIOS2_U16, R_NIOS2_U16}, {BFD_RELOC_16_PCREL, R_NIOS2_PCREL16}, {BFD_RELOC_NIOS2_CALL26, R_NIOS2_CALL26}, {BFD_RELOC_NIOS2_IMM5, R_NIOS2_IMM5}, {BFD_RELOC_NIOS2_CACHE_OPX, R_NIOS2_CACHE_OPX}, {BFD_RELOC_NIOS2_IMM6, R_NIOS2_IMM6}, {BFD_RELOC_NIOS2_IMM8, R_NIOS2_IMM8}, {BFD_RELOC_NIOS2_HI16, R_NIOS2_HI16}, {BFD_RELOC_NIOS2_LO16, R_NIOS2_LO16}, {BFD_RELOC_NIOS2_HIADJ16, R_NIOS2_HIADJ16}, {BFD_RELOC_32, R_NIOS2_BFD_RELOC_32}, {BFD_RELOC_16, R_NIOS2_BFD_RELOC_16}, {BFD_RELOC_8, R_NIOS2_BFD_RELOC_8}, {BFD_RELOC_NIOS2_GPREL, R_NIOS2_GPREL}, {BFD_RELOC_VTABLE_INHERIT, R_NIOS2_GNU_VTINHERIT}, {BFD_RELOC_VTABLE_ENTRY, R_NIOS2_GNU_VTENTRY}, {BFD_RELOC_NIOS2_UJMP, R_NIOS2_UJMP}, {BFD_RELOC_NIOS2_CJMP, R_NIOS2_CJMP}, {BFD_RELOC_NIOS2_CALLR, R_NIOS2_CALLR}, {BFD_RELOC_NIOS2_ALIGN, R_NIOS2_ALIGN}, {BFD_RELOC_NIOS2_GOT16, R_NIOS2_GOT16}, {BFD_RELOC_NIOS2_CALL16, R_NIOS2_CALL16}, {BFD_RELOC_NIOS2_GOTOFF_LO, R_NIOS2_GOTOFF_LO}, {BFD_RELOC_NIOS2_GOTOFF_HA, R_NIOS2_GOTOFF_HA}, {BFD_RELOC_NIOS2_PCREL_LO, R_NIOS2_PCREL_LO}, {BFD_RELOC_NIOS2_PCREL_HA, R_NIOS2_PCREL_HA}, {BFD_RELOC_NIOS2_TLS_GD16, R_NIOS2_TLS_GD16}, {BFD_RELOC_NIOS2_TLS_LDM16, R_NIOS2_TLS_LDM16}, {BFD_RELOC_NIOS2_TLS_LDO16, R_NIOS2_TLS_LDO16}, {BFD_RELOC_NIOS2_TLS_IE16, R_NIOS2_TLS_IE16}, {BFD_RELOC_NIOS2_TLS_LE16, R_NIOS2_TLS_LE16}, {BFD_RELOC_NIOS2_TLS_DTPMOD, R_NIOS2_TLS_DTPMOD}, {BFD_RELOC_NIOS2_TLS_DTPREL, R_NIOS2_TLS_DTPREL}, {BFD_RELOC_NIOS2_TLS_TPREL, R_NIOS2_TLS_TPREL}, {BFD_RELOC_NIOS2_COPY, R_NIOS2_COPY}, {BFD_RELOC_NIOS2_GLOB_DAT, R_NIOS2_GLOB_DAT}, {BFD_RELOC_NIOS2_JUMP_SLOT, R_NIOS2_JUMP_SLOT}, {BFD_RELOC_NIOS2_RELATIVE, R_NIOS2_RELATIVE}, {BFD_RELOC_NIOS2_GOTOFF, R_NIOS2_GOTOFF} }; /* The Nios II linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct elf32_nios2_dyn_relocs { struct elf32_nios2_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; /* Nios II ELF linker hash entry. */ struct elf32_nios2_link_hash_entry { struct elf_link_hash_entry root; /* Track dynamic relocs copied for this symbol. */ struct elf32_nios2_dyn_relocs *dyn_relocs; #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_GD 2 #define GOT_TLS_IE 4 unsigned char tls_type; /* We need to detect and take special action for symbols which are only referenced with %call() and not with %got(). Such symbols do not need a dynamic GOT reloc in shared objects, only a dynamic PLT reloc. Lazy linking will not work if the dynamic GOT reloc exists. To check for this condition efficiently, we compare got_types_used against CALL16_USED, meaning (got_types_used & (GOT16_USED | CALL16_USED)) == CALL16_USED. */ #define GOT16_USED 1 #define CALL16_USED 2 unsigned char got_types_used; }; #define elf32_nios2_hash_entry(ent) \ ((struct elf32_nios2_link_hash_entry *) (ent)) /* Get the Nios II elf linker hash table from a link_info structure. */ #define elf32_nios2_hash_table(info) \ ((struct elf32_nios2_link_hash_table *) ((info)->hash)) /* Nios II ELF linker hash table. */ struct elf32_nios2_link_hash_table { /* The main hash table. */ struct elf_link_hash_table root; /* Short-cuts to get to dynamic linker sections. */ asection *sdynbss; asection *srelbss; asection *sbss; union { bfd_signed_vma refcount; bfd_vma offset; } tls_ldm_got; /* Small local sym cache. */ struct sym_cache sym_cache; bfd_vma res_n_size; }; struct nios2_elf32_obj_tdata { struct elf_obj_tdata root; /* tls_type for each local got entry. */ char *local_got_tls_type; /* TRUE if TLS GD relocs have been seen for this object. */ bfd_boolean has_tlsgd; }; #define elf32_nios2_tdata(abfd) \ ((struct nios2_elf32_obj_tdata *) (abfd)->tdata.any) #define elf32_nios2_local_got_tls_type(abfd) \ (elf32_nios2_tdata (abfd)->local_got_tls_type) /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" /* PLT implementation for position-dependent code. */ static const bfd_vma nios2_plt_entry[] = { /* .PLTn: */ 0x03c00034, /* movhi r15, %hiadj(plt_got_slot_address) */ 0x7bc00017, /* ldw r15, %lo(plt_got_slot_address)(r15) */ 0x7800683a /* jmp r15 */ }; static const bfd_vma nios2_plt0_entry[] = { /* .PLTresolve */ 0x03800034, /* movhi r14, %hiadj(res_0) */ 0x73800004, /* addi r14, r14, %lo(res_0) */ 0x7b9fc83a, /* sub r15, r15, r14 */ 0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */ 0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */ 0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */ 0x6800683a /* jmp r13 */ }; /* PLT implementation for position-independent code. */ static const bfd_vma nios2_so_plt_entry[] = { /* .PLTn */ 0x03c00034, /* movhi r15, %hiadj(index * 4) */ 0x7bc00004, /* addi r15, r15, %lo(index * 4) */ 0x00000006 /* br .PLTresolve */ }; static const bfd_vma nios2_so_plt0_entry[] = { /* .PLTresolve */ 0x001ce03a, /* nextpc r14 */ 0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */ 0x6b9b883a, /* add r13, r13, r14 */ 0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */ 0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */ 0x6800683a /* jmp r13 */ }; /* Implement elf_backend_grok_prstatus: Support for core dump NOTE sections. */ static bfd_boolean nios2_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { default: return FALSE; case 212: /* Linux/Nios II */ /* pr_cursig */ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 136; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } /* Implement elf_backend_grok_psinfo. */ static bfd_boolean nios2_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return FALSE; case 124: /* Linux/Nios II elf_prpsinfo */ elf_tdata (abfd)->core->program = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); elf_tdata (abfd)->core->command = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core->command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } /* Create an entry in a Nios II ELF linker hash table. */ static struct bfd_hash_entry * link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf32_nios2_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry) { struct elf32_nios2_link_hash_entry *eh; eh = (struct elf32_nios2_link_hash_entry *) entry; eh->dyn_relocs = NULL; eh->tls_type = GOT_UNKNOWN; eh->got_types_used = 0; } return entry; } /* Implement bfd_elf32_bfd_reloc_type_lookup: Given a BFD reloc type, return a howto structure. */ static reloc_howto_type * nios2_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { int i; for (i = 0; i < (int) (sizeof (nios2_reloc_map) / sizeof (struct elf_reloc_map)); ++i) if (nios2_reloc_map[i].bfd_val == code) return &elf_nios2_howto_table_rel[(int) nios2_reloc_map[i].elf_val]; return NULL; } /* Implement bfd_elf32_bfd_reloc_name_lookup: Given a reloc name, return a howto structure. */ static reloc_howto_type * nios2_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < (sizeof (elf_nios2_howto_table_rel) / sizeof (elf_nios2_howto_table_rel[0])); i++) if (elf_nios2_howto_table_rel[i].name && strcasecmp (elf_nios2_howto_table_rel[i].name, r_name) == 0) return &elf_nios2_howto_table_rel[i]; return NULL; } /* Implement elf_info_to_howto: Given a ELF32 relocation, fill in a arelent structure. */ static void nios2_elf32_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); BFD_ASSERT (r_type < R_NIOS2_ILLEGAL); cache_ptr->howto = &elf_nios2_howto_table_rel[r_type]; } /* Return the base VMA address which should be subtracted from real addresses when resolving @dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } /* Return the relocation value for @tpoff relocation if STT_TLS virtual address is ADDRESS. */ static bfd_vma tpoff (struct bfd_link_info *info, bfd_vma address) { struct elf_link_hash_table *htab = elf_hash_table (info); /* If tls_sec is NULL, we should have signalled an error already. */ if (htab->tls_sec == NULL) return 0; return address - htab->tls_sec->vma; } /* Set the GP value for OUTPUT_BFD. Returns FALSE if this is a dangerous relocation. */ static bfd_boolean nios2_elf_assign_gp (bfd *output_bfd, bfd_vma *pgp, struct bfd_link_info *info) { bfd_boolean gp_found; struct bfd_hash_entry *h; struct bfd_link_hash_entry *lh; /* If we've already figured out what GP will be, just return it. */ *pgp = _bfd_get_gp_value (output_bfd); if (*pgp) return TRUE; h = bfd_hash_lookup (&info->hash->table, "_gp", FALSE, FALSE); lh = (struct bfd_link_hash_entry *) h; lookup: if (lh) { switch (lh->type) { case bfd_link_hash_undefined: case bfd_link_hash_undefweak: case bfd_link_hash_common: gp_found = FALSE; break; case bfd_link_hash_defined: case bfd_link_hash_defweak: gp_found = TRUE; *pgp = lh->u.def.value; break; case bfd_link_hash_indirect: case bfd_link_hash_warning: lh = lh->u.i.link; /* @@FIXME ignoring warning for now */ goto lookup; case bfd_link_hash_new: default: abort (); } } else gp_found = FALSE; if (!gp_found) { /* Only get the error once. */ *pgp = 4; _bfd_set_gp_value (output_bfd, *pgp); return FALSE; } _bfd_set_gp_value (output_bfd, *pgp); return TRUE; } /* Retrieve the previously cached _gp pointer, returning bfd_reloc_dangerous if it's not available as we don't have a link_info pointer available here to look it up in the output symbol table. We don't need to adjust the symbol value for an external symbol if we are producing relocatable output. */ static bfd_reloc_status_type nios2_elf_final_gp (bfd *output_bfd, asymbol *symbol, bfd_boolean relocatable, char **error_message, bfd_vma *pgp) { if (bfd_is_und_section (symbol->section) && !relocatable) { *pgp = 0; return bfd_reloc_undefined; } *pgp = _bfd_get_gp_value (output_bfd); if (*pgp == 0 && (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)) { if (relocatable) { /* Make up a value. */ *pgp = symbol->section->output_section->vma + 0x4000; _bfd_set_gp_value (output_bfd, *pgp); } else { *error_message = (char *) _("global pointer relative relocation when _gp not defined"); return bfd_reloc_dangerous; } } return bfd_reloc_ok; } /* The usual way of loading a 32-bit constant into a Nios II register is to load the high 16 bits in one instruction and then add the low 16 bits with a signed add. This means that the high halfword needs to be adjusted to compensate for the sign bit of the low halfword. This function returns the adjusted high halfword for a given 32-bit constant. */ static bfd_vma hiadj (bfd_vma symbol_value) { return ((symbol_value + 0x8000) >> 16) & 0xffff; } /* Do the relocations that require special handling. */ static bfd_reloc_status_type nios2_elf32_do_hi16_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { symbol_value = symbol_value + addend; addend = 0; symbol_value = (symbol_value >> 16) & 0xffff; return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_lo16_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { symbol_value = symbol_value + addend; addend = 0; symbol_value = symbol_value & 0xffff; return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { symbol_value = symbol_value + addend; addend = 0; symbol_value = hiadj(symbol_value); return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_pcrel_lo16_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { symbol_value = symbol_value + addend; addend = 0; symbol_value = symbol_value & 0xffff; return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_pcrel_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { symbol_value = symbol_value + addend; symbol_value -= (input_section->output_section->vma + input_section->output_offset); symbol_value -= offset; addend = 0; symbol_value = hiadj(symbol_value); return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_pcrel16_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { /* NIOS2 pc relative relocations are relative to the next 32-bit instruction so we need to subtract 4 before doing a final_link_relocate. */ symbol_value = symbol_value + addend - 4; addend = 0; return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_call26_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { /* Check that the relocation is in the same page as the current address. */ if (((symbol_value + addend) & 0xf0000000) != ((input_section->output_section->vma + offset) & 0xf0000000)) return bfd_reloc_overflow; return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_gprel_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { /* Because we need the output_bfd, the special handling is done in nios2_elf32_relocate_section or in nios2_elf32_gprel_relocate. */ return _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_value, addend); } static bfd_reloc_status_type nios2_elf32_do_ujmp_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { bfd_vma symbol_lo16, symbol_hi16; bfd_reloc_status_type r; symbol_value = symbol_value + addend; addend = 0; symbol_hi16 = (symbol_value >> 16) & 0xffff; symbol_lo16 = symbol_value & 0xffff; r = _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_hi16, addend); if (r == bfd_reloc_ok) return _bfd_final_link_relocate (howto, abfd, input_section, data, offset + 4, symbol_lo16, addend); return r; } static bfd_reloc_status_type nios2_elf32_do_cjmp_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { bfd_vma symbol_lo16, symbol_hi16; bfd_reloc_status_type r; symbol_value = symbol_value + addend; addend = 0; symbol_hi16 = (symbol_value >> 16) & 0xffff; symbol_lo16 = symbol_value & 0xffff; r = _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_hi16, addend); if (r == bfd_reloc_ok) return _bfd_final_link_relocate (howto, abfd, input_section, data, offset + 4, symbol_lo16, addend); return r; } static bfd_reloc_status_type nios2_elf32_do_callr_relocate (bfd *abfd, reloc_howto_type *howto, asection *input_section ATTRIBUTE_UNUSED, bfd_byte *data, bfd_vma offset, bfd_vma symbol_value, bfd_vma addend) { bfd_vma symbol_lo16, symbol_hi16; bfd_reloc_status_type r; symbol_value = symbol_value + addend; addend = 0; symbol_hi16 = (symbol_value >> 16) & 0xffff; symbol_lo16 = symbol_value & 0xffff; r = _bfd_final_link_relocate (howto, abfd, input_section, data, offset, symbol_hi16, addend); if (r == bfd_reloc_ok) return _bfd_final_link_relocate (howto, abfd, input_section, data, offset + 4, symbol_lo16, addend); return r; } /* HOWTO handlers for relocations that require special handling. */ /* This is for relocations used only when relaxing to ensure changes in size of section don't screw up .align. */ static bfd_reloc_status_type nios2_elf32_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { if (output_bfd != NULL) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } static bfd_reloc_status_type nios2_elf32_hi16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_hi16_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_lo16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_lo16_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_hiadj16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_hiadj16_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_pcrel_lo16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_pcrel_lo16_relocate ( abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_pcrel_hiadj16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_pcrel_hiadj16_relocate ( abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_pcrel16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_pcrel16_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_call26_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_call26_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_gprel_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **msg) { bfd_vma relocation; bfd_vma gp; bfd_reloc_status_type r; /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; relocation = (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset); /* This assumes we've already cached the _gp symbol. */ r = nios2_elf_final_gp (abfd, symbol, FALSE, msg, &gp); if (r == bfd_reloc_ok) { relocation = relocation + reloc_entry->addend - gp; reloc_entry->addend = 0; if ((signed) relocation < -32768 || (signed) relocation > 32767) { *msg = _("global pointer relative address out of range"); r = bfd_reloc_outofrange; } else r = nios2_elf32_do_gprel_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, relocation, reloc_entry->addend); } return r; } static bfd_reloc_status_type nios2_elf32_ujmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_ujmp_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_cjmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_cjmp_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } static bfd_reloc_status_type nios2_elf32_callr_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **msg ATTRIBUTE_UNUSED) { /* This part is from bfd_elf_generic_reloc. */ if (output_bfd != NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (output_bfd != NULL) /* FIXME: See bfd_perform_relocation. Is this right? */ return bfd_reloc_continue; return nios2_elf32_do_callr_relocate (abfd, reloc_entry->howto, input_section, data, reloc_entry->address, (symbol->value + symbol->section->output_section->vma + symbol->section->output_offset), reloc_entry->addend); } /* Implement elf_backend_relocate_section. */ static bfd_boolean nios2_elf32_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; struct elf32_nios2_link_hash_table *htab; asection *sgot; asection *splt; asection *sreloc = NULL; bfd_vma *local_got_offsets; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); relend = relocs + input_section->reloc_count; htab = elf32_nios2_hash_table (info); sgot = htab->root.sgot; splt = htab->root.splt; local_got_offsets = elf_local_got_offsets (input_bfd); for (rel = relocs; rel < relend; rel++) { reloc_howto_type *howto; unsigned long r_symndx; Elf_Internal_Sym *sym; asection *sec; struct elf_link_hash_entry *h; struct elf32_nios2_link_hash_entry *eh; bfd_vma relocation; bfd_vma gp; bfd_vma reloc_address; bfd_reloc_status_type r = bfd_reloc_ok; const char *name = NULL; int r_type; const char *format; char msgbuf[256]; const char* msg = (const char*) NULL; bfd_boolean unresolved_reloc; bfd_vma off; int use_plt; r_type = ELF32_R_TYPE (rel->r_info); r_symndx = ELF32_R_SYM (rel->r_info); howto = lookup_howto ((unsigned) ELF32_R_TYPE (rel->r_info)); h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean warned; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned); } if (sec && discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, 1, relend, howto, 0, contents); /* Nothing more to do unless this is a final link. */ if (info->relocatable) continue; if (sec && sec->output_section) reloc_address = (sec->output_section->vma + sec->output_offset + rel->r_offset); else reloc_address = 0; if (howto) { switch (howto->type) { case R_NIOS2_HI16: r = nios2_elf32_do_hi16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_LO16: r = nios2_elf32_do_lo16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_PCREL_LO: r = nios2_elf32_do_pcrel_lo16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_HIADJ16: r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_PCREL_HA: r = nios2_elf32_do_pcrel_hiadj16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_PCREL16: r = nios2_elf32_do_pcrel16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_GPREL: /* Turns an absolute address into a gp-relative address. */ if (!nios2_elf_assign_gp (output_bfd, &gp, info)) { format = _("global pointer relative relocation at address " "0x%08x when _gp not defined\n"); sprintf (msgbuf, format, reloc_address); msg = msgbuf; r = bfd_reloc_dangerous; } else { bfd_vma symbol_address = rel->r_addend + relocation; relocation = relocation + rel->r_addend - gp; rel->r_addend = 0; if (((signed) relocation < -32768 || (signed) relocation > 32767) && (!h || h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)) { format = _("Unable to reach %s (at 0x%08x) from the " "global pointer (at 0x%08x) because the " "offset (%d) is out of the allowed range, " "-32678 to 32767.\n" ); sprintf (msgbuf, format, name, symbol_address, gp, (signed)relocation); msg = msgbuf; r = bfd_reloc_outofrange; } else r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); } break; case R_NIOS2_UJMP: r = nios2_elf32_do_ujmp_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_CJMP: r = nios2_elf32_do_cjmp_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_CALLR: r = nios2_elf32_do_callr_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_CALL26: /* If we have a call to an undefined weak symbol, we just want to stuff a zero in the bits of the call instruction and bypass the normal call26 relocation handling, because it'll diagnose an overflow error if address 0 isn't in the same 256MB segment as the call site. Presumably the call should be guarded by a null check anyway. */ if (h != NULL && h->root.type == bfd_link_hash_undefweak) { BFD_ASSERT (relocation == 0 && rel->r_addend == 0); r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; } /* Handle relocations which should use the PLT entry. NIOS2_BFD_RELOC_32 relocations will use the symbol's value, which may point to a PLT entry, but we don't need to handle that here. If we created a PLT entry, all branches in this object should go to it. */ if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1) { /* If we've created a .plt section, and assigned a PLT entry to this function, it should not be known to bind locally. If it were, we would have cleared the PLT entry. */ BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h)); relocation = (splt->output_section->vma + splt->output_offset + h->plt.offset); unresolved_reloc = FALSE; } r = nios2_elf32_do_call26_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_ALIGN: r = bfd_reloc_ok; /* For symmetry this would be r = nios2_elf32_do_ignore_reloc (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); but do_ignore_reloc would do no more than return bfd_reloc_ok. */ break; case R_NIOS2_GOT16: case R_NIOS2_CALL16: /* Relocation is to the entry for this symbol in the global offset table. */ if (sgot == NULL) { r = bfd_reloc_notsupported; break; } use_plt = 0; if (h != NULL) { bfd_boolean dyn; eh = (struct elf32_nios2_link_hash_entry *)h; use_plt = (eh->got_types_used == CALL16_USED && h->plt.offset != (bfd_vma) -1); off = h->got.offset; BFD_ASSERT (off != (bfd_vma) -1); dyn = elf_hash_table (info)->dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) || (ELF_ST_VISIBILITY (h->other) && h->root.type == bfd_link_hash_undefweak)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); h->got.offset |= 1; } } else unresolved_reloc = FALSE; } else { BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, sgot->contents + off); if (info->shared) { asection *srelgot; Elf_Internal_Rela outrel; bfd_byte *loc; srelgot = htab->root.srelgot; BFD_ASSERT (srelgot != NULL); outrel.r_addend = relocation; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE); loc = srelgot->contents; loc += (srelgot->reloc_count++ * sizeof (Elf32_External_Rela)); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } local_got_offsets[r_symndx] |= 1; } } if (use_plt && info->shared) { off = ((h->plt.offset - 24) / 12 + 3) * 4; relocation = htab->root.sgotplt->output_offset + off; } else relocation = sgot->output_offset + off; /* This relocation does not use the addend. */ rel->r_addend = 0; r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_GOTOFF_LO: case R_NIOS2_GOTOFF_HA: case R_NIOS2_GOTOFF: /* Relocation is relative to the start of the global offset table. */ BFD_ASSERT (sgot != NULL); if (sgot == NULL) { r = bfd_reloc_notsupported; break; } /* Note that sgot->output_offset is not involved in this calculation. We always want the start of .got. If we define _GLOBAL_OFFSET_TABLE in a different way, as is permitted by the ABI, we might have to change this calculation. */ relocation -= sgot->output_section->vma; switch (howto->type) { case R_NIOS2_GOTOFF_LO: r = nios2_elf32_do_lo16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_GOTOFF_HA: r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; default: r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; } break; case R_NIOS2_TLS_LDO16: relocation -= dtpoff_base (info) + DTP_OFFSET; r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_TLS_LDM16: if (htab->root.sgot == NULL) abort (); off = htab->tls_ldm_got.offset; if ((off & 1) != 0) off &= ~1; else { /* If we don't know the module number, create a relocation for it. */ if (info->shared) { Elf_Internal_Rela outrel; bfd_byte *loc; if (htab->root.srelgot == NULL) abort (); outrel.r_addend = 0; outrel.r_offset = (htab->root.sgot->output_section->vma + htab->root.sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_NIOS2_TLS_DTPMOD); loc = htab->root.srelgot->contents; loc += (htab->root.srelgot->reloc_count++ * sizeof (Elf32_External_Rela)); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); } else bfd_put_32 (output_bfd, 1, htab->root.sgot->contents + off); htab->tls_ldm_got.offset |= 1; } relocation = (htab->root.sgot->output_offset + off); r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_TLS_GD16: case R_NIOS2_TLS_IE16: { int indx; char tls_type; if (htab->root.sgot == NULL) abort (); indx = 0; if (h != NULL) { bfd_boolean dyn; dyn = htab->root.dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) { unresolved_reloc = FALSE; indx = h->dynindx; } off = h->got.offset; tls_type = (((struct elf32_nios2_link_hash_entry *) h) ->tls_type); } else { if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; tls_type = (elf32_nios2_local_got_tls_type (input_bfd) [r_symndx]); } if (tls_type == GOT_UNKNOWN) abort (); if ((off & 1) != 0) off &= ~1; else { bfd_boolean need_relocs = FALSE; Elf_Internal_Rela outrel; bfd_byte *loc = NULL; int cur_off = off; /* The GOT entries have not been initialized yet. Do it now, and emit any relocations. If both an IE GOT and a GD GOT are necessary, we emit the GD first. */ if ((info->shared || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { need_relocs = TRUE; if (htab->root.srelgot == NULL) abort (); loc = htab->root.srelgot->contents; loc += (htab->root.srelgot->reloc_count * sizeof (Elf32_External_Rela)); } if (tls_type & GOT_TLS_GD) { if (need_relocs) { outrel.r_addend = 0; outrel.r_offset = (htab->root.sgot->output_section->vma + htab->root.sgot->output_offset + cur_off); outrel.r_info = ELF32_R_INFO (indx, R_NIOS2_TLS_DTPMOD); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); htab->root.srelgot->reloc_count++; loc += sizeof (Elf32_External_Rela); if (indx == 0) bfd_put_32 (output_bfd, (relocation - dtpoff_base (info) - DTP_OFFSET), htab->root.sgot->contents + cur_off + 4); else { outrel.r_addend = 0; outrel.r_info = ELF32_R_INFO (indx, R_NIOS2_TLS_DTPREL); outrel.r_offset += 4; bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); htab->root.srelgot->reloc_count++; loc += sizeof (Elf32_External_Rela); } } else { /* If we are not emitting relocations for a general dynamic reference, then we must be in a static link or an executable link with the symbol binding locally. Mark it as belonging to module 1, the executable. */ bfd_put_32 (output_bfd, 1, htab->root.sgot->contents + cur_off); bfd_put_32 (output_bfd, (relocation - dtpoff_base (info) - DTP_OFFSET), htab->root.sgot->contents + cur_off + 4); } cur_off += 8; } if (tls_type & GOT_TLS_IE) { if (need_relocs) { if (indx == 0) outrel.r_addend = (relocation - dtpoff_base (info)); else outrel.r_addend = 0; outrel.r_offset = (htab->root.sgot->output_section->vma + htab->root.sgot->output_offset + cur_off); outrel.r_info = ELF32_R_INFO (indx, R_NIOS2_TLS_TPREL); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); htab->root.srelgot->reloc_count++; loc += sizeof (Elf32_External_Rela); } else bfd_put_32 (output_bfd, (tpoff (info, relocation) - TP_OFFSET), htab->root.sgot->contents + cur_off); cur_off += 4; } if (h != NULL) h->got.offset |= 1; else local_got_offsets[r_symndx] |= 1; } if ((tls_type & GOT_TLS_GD) && r_type != R_NIOS2_TLS_GD16) off += 8; relocation = (htab->root.sgot->output_offset + off); r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); } break; case R_NIOS2_TLS_LE16: if (info->shared && !info->pie) { (*_bfd_error_handler) (_("%B(%A+0x%lx): R_NIOS2_TLS_LE16 relocation not " "permitted in shared object"), input_bfd, input_section, (long) rel->r_offset, howto->name); return FALSE; } else relocation = tpoff (info, relocation) - TP_OFFSET; r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_BFD_RELOC_32: if (info->shared && (input_section->flags & SEC_ALLOC) != 0 && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { Elf_Internal_Rela outrel; bfd_byte *loc; bfd_boolean skip, relocate; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ skip = FALSE; relocate = FALSE; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (h != NULL && h->dynindx != -1 && (!info->shared || !info->symbolic || !h->def_regular)) { outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { /* This symbol is local, or marked to become local. */ outrel.r_addend = relocation + rel->r_addend; relocate = TRUE; outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE); } sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = sreloc->contents; loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); /* This reloc will be computed at runtime, so there's no need to do anything now, except for R_NIOS2_BFD_RELOC_32 relocations that have been turned into R_NIOS2_RELATIVE. */ if (!relocate) break; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; case R_NIOS2_TLS_DTPREL: relocation -= dtpoff_base (info); /* Fall through. */ default: r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, rel->r_addend); break; } } else r = bfd_reloc_notsupported; if (r != bfd_reloc_ok) { if (h != NULL) name = h->root.root.string; else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL || *name == '\0') name = bfd_section_name (input_bfd, sec); } switch (r) { case bfd_reloc_overflow: r = info->callbacks->reloc_overflow (info, NULL, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset); break; case bfd_reloc_undefined: r = info->callbacks->undefined_symbol (info, name, input_bfd, input_section, rel->r_offset, TRUE); break; case bfd_reloc_outofrange: if (msg == NULL) msg = _("relocation out of range"); break; case bfd_reloc_notsupported: if (msg == NULL) msg = _("unsupported relocation"); break; case bfd_reloc_dangerous: if (msg == NULL) msg = _("dangerous relocation"); break; default: if (msg == NULL) msg = _("unknown error"); break; } if (msg) { r = info->callbacks->warning (info, msg, name, input_bfd, input_section, rel->r_offset); return FALSE; } } } return TRUE; } /* Implement elf-backend_section_flags: Convert NIOS2 specific section flags to bfd internal section flags. */ static bfd_boolean nios2_elf32_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr) { if (hdr->sh_flags & SHF_NIOS2_GPREL) *flags |= SEC_SMALL_DATA; return TRUE; } /* Implement elf_backend_fake_sections: Set the correct type for an NIOS2 ELF section. We do this by the section name, which is a hack, but ought to work. */ static bfd_boolean nios2_elf32_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, Elf_Internal_Shdr *hdr, asection *sec) { register const char *name = bfd_get_section_name (abfd, sec); if ((sec->flags & SEC_SMALL_DATA) || strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0 || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0) hdr->sh_flags |= SHF_NIOS2_GPREL; return TRUE; } /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean create_got_section (bfd *dynobj, struct bfd_link_info *info) { struct elf32_nios2_link_hash_table *htab; htab = elf32_nios2_hash_table (info); if (! _bfd_elf_create_got_section (dynobj, info)) return FALSE; /* In order for the two loads in .PLTresolve to share the same %hiadj, _GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary. */ if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt, 4)) return FALSE; return TRUE; } /* Implement elf_backend_create_dynamic_sections: Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean nios2_elf32_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) { struct elf32_nios2_link_hash_table *htab; htab = elf32_nios2_hash_table (info); if (!htab->root.sgot && !create_got_section (dynobj, info)) return FALSE; _bfd_elf_create_dynamic_sections (dynobj, info); /* In order for the two loads in a shared object .PLTresolve to share the same %hiadj, the start of the PLT (as well as the GOT) must be aligned to a 16-byte boundary. This is because the addresses for these loads include the -(.plt+4) PIC correction. */ if (!bfd_set_section_alignment (dynobj, htab->root.splt, 4)) return FALSE; htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); if (!htab->sdynbss) return FALSE; if (!info->shared) { htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss"); if (!htab->srelbss) return FALSE; } return TRUE; } /* Implement elf_backend_copy_indirect_symbol: Copy the extra info we tack onto an elf_link_hash_entry. */ static void nios2_elf32_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf32_nios2_link_hash_entry *edir, *eind; edir = (struct elf32_nios2_link_hash_entry *) dir; eind = (struct elf32_nios2_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf32_nios2_dyn_relocs **pp; struct elf32_nios2_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct elf32_nios2_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } if (ind->root.type == bfd_link_hash_indirect && dir->got.refcount <= 0) { edir->tls_type = eind->tls_type; eind->tls_type = GOT_UNKNOWN; } edir->got_types_used |= eind->got_types_used; _bfd_elf_link_hash_copy_indirect (info, dir, ind); } /* Implement elf_backend_check_relocs: Look through the relocs for a section during the first phase. */ static bfd_boolean nios2_elf32_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; struct elf32_nios2_link_hash_table *htab; asection *sgot; asection *srelgot; asection *sreloc = NULL; bfd_signed_vma *local_got_refcounts; if (info->relocatable) return TRUE; dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); sym_hashes_end = (sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym)); if (!elf_bad_symtab (abfd)) sym_hashes_end -= symtab_hdr->sh_info; local_got_refcounts = elf_local_got_refcounts (abfd); htab = elf32_nios2_hash_table (info); sgot = htab->root.sgot; srelgot = htab->root.srelgot; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned int r_type; struct elf_link_hash_entry *h; unsigned long r_symndx; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } r_type = ELF32_R_TYPE (rel->r_info); switch (r_type) { case R_NIOS2_GOT16: case R_NIOS2_CALL16: case R_NIOS2_TLS_GD16: case R_NIOS2_TLS_IE16: /* This symbol requires a global offset table entry. */ { int tls_type, old_tls_type; switch (r_type) { default: case R_NIOS2_GOT16: case R_NIOS2_CALL16: tls_type = GOT_NORMAL; break; case R_NIOS2_TLS_GD16: tls_type = GOT_TLS_GD; break; case R_NIOS2_TLS_IE16: tls_type = GOT_TLS_IE; break; } if (dynobj == NULL) { /* Create the .got section. */ elf_hash_table (info)->dynobj = dynobj = abfd; nios2_elf32_create_dynamic_sections (dynobj, info); } if (sgot == NULL) { sgot = htab->root.sgot; BFD_ASSERT (sgot != NULL); } if (srelgot == NULL && (h != NULL || info->shared)) { srelgot = htab->root.srelgot; BFD_ASSERT (srelgot != NULL); } if (h != NULL) { struct elf32_nios2_link_hash_entry *eh = (struct elf32_nios2_link_hash_entry *)h; h->got.refcount++; old_tls_type = elf32_nios2_hash_entry(h)->tls_type; if (r_type == R_NIOS2_CALL16) { /* Make sure a plt entry is created for this symbol if it turns out to be a function defined by a dynamic object. */ h->plt.refcount++; h->needs_plt = 1; h->type = STT_FUNC; eh->got_types_used |= CALL16_USED; } else eh->got_types_used |= GOT16_USED; } else { /* This is a global offset table entry for a local symbol. */ if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= (sizeof (bfd_signed_vma) + sizeof (char)); local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; elf32_nios2_local_got_tls_type (abfd) = (char *) (local_got_refcounts + symtab_hdr->sh_info); } local_got_refcounts[r_symndx]++; old_tls_type = elf32_nios2_local_got_tls_type (abfd) [r_symndx]; } /* We will already have issued an error message if there is a TLS / non-TLS mismatch, based on the symbol type. We don't support any linker relaxations. So just combine any TLS types needed. */ if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL && tls_type != GOT_NORMAL) tls_type |= old_tls_type; if (old_tls_type != tls_type) { if (h != NULL) elf32_nios2_hash_entry (h)->tls_type = tls_type; else elf32_nios2_local_got_tls_type (abfd) [r_symndx] = tls_type; } } /* Fall through */ case R_NIOS2_TLS_LDM16: if (r_type == R_NIOS2_TLS_LDM16) htab->tls_ldm_got.refcount++; if (htab->root.sgot == NULL) { if (htab->root.dynobj == NULL) htab->root.dynobj = abfd; if (!create_got_section (htab->root.dynobj, info)) return FALSE; } break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_NIOS2_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_NIOS2_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return FALSE; break; case R_NIOS2_BFD_RELOC_32: case R_NIOS2_CALL26: case R_NIOS2_HIADJ16: case R_NIOS2_LO16: if (h != NULL) { /* If this reloc is in a read-only section, we might need a copy reloc. We can't check reliably at this stage whether the section is read-only, as input sections have not yet been mapped to output sections. Tentatively set the flag for now, and correct in adjust_dynamic_symbol. */ if (!info->shared) h->non_got_ref = 1; /* Make sure a plt entry is created for this symbol if it turns out to be a function defined by a dynamic object. */ h->plt.refcount++; if (r_type == R_NIOS2_CALL26) h->needs_plt = 1; } /* If we are creating a shared library, we need to copy the reloc into the shared library. */ if (info->shared && (sec->flags & SEC_ALLOC) != 0 && (r_type == R_NIOS2_BFD_RELOC_32 || (h != NULL && ! h->needs_plt && (! info->symbolic || ! h->def_regular)))) { struct elf32_nios2_dyn_relocs *p; struct elf32_nios2_dyn_relocs **head; /* When creating a shared object, we must copy these reloc types into the output file. We create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { sreloc = _bfd_elf_make_dynamic_reloc_section (sec, dynobj, 2, abfd, TRUE); if (sreloc == NULL) return FALSE; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) head = &((struct elf32_nios2_link_hash_entry *) h)->dyn_relocs; else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void *vpp; Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) s = sec; vpp = &elf_section_data (s)->local_dynrel; head = (struct elf32_nios2_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof *p; p = ((struct elf32_nios2_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt)); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; } break; } } return TRUE; } /* Implement elf_backend_gc_mark_hook: Return the section that should be marked against GC for a given relocation. */ static asection * nios2_elf32_gc_mark_hook (asection *sec, struct bfd_link_info *info ATTRIBUTE_UNUSED, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_NIOS2_GNU_VTINHERIT: case R_NIOS2_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Implement elf_backend_gc_sweep_hook: Update the got entry reference counts for the section being removed. */ static bfd_boolean nios2_elf32_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; bfd *dynobj; if (info->relocatable) return TRUE; elf_section_data (sec)->local_dynrel = NULL; dynobj = elf_hash_table (info)->dynobj; if (dynobj == NULL) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; int r_type; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } r_type = ELF32_R_TYPE (rel->r_info); switch (r_type) { case R_NIOS2_GOT16: case R_NIOS2_CALL16: if (h != NULL) { if (h->got.refcount > 0) --h->got.refcount; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) --local_got_refcounts[r_symndx]; } break; case R_NIOS2_PCREL_LO: case R_NIOS2_PCREL_HA: case R_NIOS2_BFD_RELOC_32: case R_NIOS2_CALL26: if (h != NULL) { struct elf32_nios2_link_hash_entry *eh; struct elf32_nios2_dyn_relocs **pp; struct elf32_nios2_dyn_relocs *p; eh = (struct elf32_nios2_link_hash_entry *) h; if (h->plt.refcount > 0) --h->plt.refcount; if (r_type == R_NIOS2_PCREL_LO || r_type == R_NIOS2_PCREL_HA || r_type == R_NIOS2_BFD_RELOC_32) { for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { p->count -= 1; if (p->count == 0) *pp = p->next; break; } } } break; default: break; } } return TRUE; } /* Install 16-bit immediate value VALUE at offset OFFSET into section SEC. */ static void nios2_elf32_install_imm16 (asection *sec, bfd_vma offset, bfd_vma value) { bfd_vma word = bfd_get_32 (sec->owner, sec->contents + offset); BFD_ASSERT(value <= 0xffff); bfd_put_32 (sec->owner, word | ((value & 0xffff) << 6), sec->contents + offset); } /* Install COUNT 32-bit values DATA starting at offset OFFSET into section SEC. */ static void nios2_elf32_install_data (asection *sec, const bfd_vma *data, bfd_vma offset, int count) { while (count--) { bfd_put_32 (sec->owner, *data, sec->contents + offset); offset += 4; ++data; } } /* Implement elf_backend_finish_dynamic_symbols: Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean nios2_elf32_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct elf32_nios2_link_hash_table *htab; struct elf32_nios2_link_hash_entry *eh = (struct elf32_nios2_link_hash_entry *)h; int use_plt; htab = elf32_nios2_hash_table (info); if (h->plt.offset != (bfd_vma) -1) { asection *splt; asection *sgotplt; asection *srela; bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rela rela; bfd_byte *loc; bfd_vma got_address; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = htab->root.splt; sgotplt = htab->root.sgotplt; srela = htab->root.srelplt; BFD_ASSERT (splt != NULL && sgotplt != NULL && srela != NULL); /* Emit the PLT entry. */ if (info->shared) { nios2_elf32_install_data (splt, nios2_so_plt_entry, h->plt.offset, 3); plt_index = (h->plt.offset - 24) / 12; got_offset = (plt_index + 3) * 4; nios2_elf32_install_imm16 (splt, h->plt.offset, hiadj(plt_index * 4)); nios2_elf32_install_imm16 (splt, h->plt.offset + 4, (plt_index * 4) & 0xffff); nios2_elf32_install_imm16 (splt, h->plt.offset + 8, 0xfff4 - h->plt.offset); got_address = (sgotplt->output_section->vma + sgotplt->output_offset + got_offset); /* Fill in the entry in the global offset table. There are no res_n slots for a shared object PLT, instead the .got.plt entries point to the PLT entries. */ bfd_put_32 (output_bfd, splt->output_section->vma + splt->output_offset + h->plt.offset, sgotplt->contents + got_offset); } else { plt_index = (h->plt.offset - 28 - htab->res_n_size) / 12; got_offset = (plt_index + 3) * 4; nios2_elf32_install_data (splt, nios2_plt_entry, h->plt.offset, 3); got_address = (sgotplt->output_section->vma + sgotplt->output_offset + got_offset); nios2_elf32_install_imm16 (splt, h->plt.offset, hiadj(got_address)); nios2_elf32_install_imm16 (splt, h->plt.offset + 4, got_address & 0xffff); /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, splt->output_section->vma + splt->output_offset + plt_index * 4, sgotplt->contents + got_offset); } /* Fill in the entry in the .rela.plt section. */ rela.r_offset = got_address; rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_JUMP_SLOT); rela.r_addend = 0; loc = srela->contents + plt_index * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; /* If the symbol is weak, we do need to clear the value. Otherwise, the PLT entry would provide a definition for the symbol even if the symbol wasn't defined anywhere, and so the symbol would never be NULL. */ if (!h->ref_regular_nonweak) sym->st_value = 0; } } use_plt = (eh->got_types_used == CALL16_USED && h->plt.offset != (bfd_vma) -1); if (!use_plt && h->got.offset != (bfd_vma) -1 && (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_GD) == 0 && (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_IE) == 0) { asection *sgot; asection *srela; Elf_Internal_Rela rela; bfd_byte *loc; bfd_vma offset; /* This symbol has an entry in the global offset table. Set it up. */ sgot = htab->root.sgot; srela = htab->root.srelgot; BFD_ASSERT (sgot != NULL && srela != NULL); offset = (h->got.offset & ~(bfd_vma) 1); rela.r_offset = (sgot->output_section->vma + sgot->output_offset + offset); /* If this is a -Bsymbolic link, and the symbol is defined locally, we just want to emit a RELATIVE reloc. Likewise if the symbol was forced to be local because of a version file. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) { rela.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE); rela.r_addend = bfd_get_signed_32 (output_bfd, (sgot->contents + offset)); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset); } else { bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_GLOB_DAT); rela.r_addend = 0; } loc = srela->contents; loc += srela->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } if (use_plt && h->got.offset != (bfd_vma) -1) { bfd_vma offset = (h->got.offset & ~(bfd_vma) 1); asection *sgot = htab->root.sgot; asection *splt = htab->root.splt; bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset + h->plt.offset), sgot->contents + offset); } if (h->needs_copy) { asection *s; Elf_Internal_Rela rela; bfd_byte *loc; /* This symbol needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = htab->srelbss; BFD_ASSERT (s != NULL); rela.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_COPY); rela.r_addend = 0; loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || h == elf_hash_table (info)->hgot) sym->st_shndx = SHN_ABS; return TRUE; } /* Implement elf_backend_finish_dynamic_sections. */ static bfd_boolean nios2_elf32_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *sgotplt; asection *sdyn; struct elf32_nios2_link_hash_table *htab; htab = elf32_nios2_hash_table (info); dynobj = elf_hash_table (info)->dynobj; sgotplt = htab->root.sgotplt; BFD_ASSERT (sgotplt != NULL); sdyn = bfd_get_linker_section (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; splt = htab->root.splt; BFD_ASSERT (splt != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_PLTGOT: s = htab->root.sgot; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->output_section->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_JMPREL: s = htab->root.srelplt; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->output_section->vma; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = htab->root.srelplt; BFD_ASSERT (s != NULL); dyn.d_un.d_val = s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELASZ: /* The procedure linkage table relocs (DT_JMPREL) should not be included in the overall relocs (DT_RELA). Therefore, we override the DT_RELASZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rela.plt to follow all other relocation sections, we don't have to worry about changing the DT_RELA entry. */ s = htab->root.srelplt; if (s != NULL) dyn.d_un.d_val -= s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_NIOS2_GP: s = htab->root.sgot; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->output_section->vma + 0x7ff0; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } /* Fill in the first entry in the procedure linkage table. */ if (splt->size > 0) { bfd_vma got_address = (sgotplt->output_section->vma + sgotplt->output_offset); if (info->shared) { bfd_vma corrected = got_address - (splt->output_section->vma + splt->output_offset + 4); nios2_elf32_install_data (splt, nios2_so_plt0_entry, 0, 6); nios2_elf32_install_imm16 (splt, 4, hiadj (corrected)); nios2_elf32_install_imm16 (splt, 12, (corrected & 0xffff) + 4); nios2_elf32_install_imm16 (splt, 16, (corrected & 0xffff) + 8); elf_section_data (splt->output_section)->this_hdr.sh_entsize = 24; } else { /* Divide by 4 here, not 3 because we already corrected for the res_N branches. */ bfd_vma res_size = (splt->size - 28) / 4; bfd_vma res_start = (splt->output_section->vma + splt->output_offset); bfd_vma res_offset; for (res_offset = 0; res_offset < res_size; res_offset += 4) bfd_put_32 (output_bfd, 6 | ((res_size - (res_offset + 4)) << 6), splt->contents + res_offset); nios2_elf32_install_data (splt, nios2_plt0_entry, res_size, 7); nios2_elf32_install_imm16 (splt, res_size, hiadj (res_start)); nios2_elf32_install_imm16 (splt, res_size + 4, res_start & 0xffff); nios2_elf32_install_imm16 (splt, res_size + 12, hiadj (got_address)); nios2_elf32_install_imm16 (splt, res_size + 16, (got_address & 0xffff) + 4); nios2_elf32_install_imm16 (splt, res_size + 20, (got_address & 0xffff) + 8); elf_section_data (splt->output_section)->this_hdr.sh_entsize = 28 + res_size; } } } /* Fill in the first three entries in the global offset table. */ if (sgotplt->size > 0) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgotplt->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 8); } elf_section_data (sgotplt->output_section)->this_hdr.sh_entsize = 4; return TRUE; } /* Implement elf_backend_adjust_dynamic_symbol: Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean nios2_elf32_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct elf32_nios2_link_hash_table *htab; bfd *dynobj; asection *s; unsigned align2; htab = elf32_nios2_hash_table (info); dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->needs_plt) { if (h->plt.refcount <= 0 || SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) { /* This case can occur if we saw a PLT reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PCREL reloc instead. */ h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } return TRUE; } /* Reinitialize the plt offset now that it is not used as a reference count any more. */ h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* If there are no non-GOT references, we do not need a copy relocation. */ if (!h->non_got_ref) return TRUE; /* This is a reference to a symbol defined by a dynamic object which is not a function. If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return TRUE; if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = htab->sdynbss; BFD_ASSERT (s != NULL); /* We must generate a R_NIOS2_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; srel = htab->srelbss; BFD_ASSERT (srel != NULL); srel->size += sizeof (Elf32_External_Rela); h->needs_copy = 1; } align2 = bfd_log2 (h->size); if (align2 > h->root.u.def.section->alignment_power) align2 = h->root.u.def.section->alignment_power; /* Align dynbss. */ s->size = BFD_ALIGN (s->size, (bfd_size_type)1 << align2); if (align2 > bfd_get_section_alignment (dynobj, s) && !bfd_set_section_alignment (dynobj, s, align2)) return FALSE; /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->size; /* Increment the section size to make room for the symbol. */ s->size += h->size; return TRUE; } /* Worker function for nios2_elf32_size_dynamic_sections. */ static bfd_boolean adjust_dynrelocs (struct elf_link_hash_entry *h, PTR inf) { struct bfd_link_info *info; struct elf32_nios2_link_hash_table *htab; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = elf32_nios2_hash_table (info); if (h->plt.offset != (bfd_vma)-1) h->plt.offset += htab->res_n_size; if (htab->root.splt == h->root.u.def.section) h->root.u.def.value += htab->res_n_size; return TRUE; } /* Another worker function for nios2_elf32_size_dynamic_sections. Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, PTR inf) { struct bfd_link_info *info; struct elf32_nios2_link_hash_table *htab; struct elf32_nios2_link_hash_entry *eh; struct elf32_nios2_dyn_relocs *p; int use_plt; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = elf32_nios2_hash_table (info); if (htab->root.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h)) { asection *s = htab->root.splt; /* Allocate room for the header. */ if (s->size == 0) { if (info->shared) s->size = 24; else s->size = 28; } h->plt.offset = s->size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. */ s->size += 12; /* We also need to make an entry in the .rela.plt section. */ htab->root.srelplt->size += sizeof (Elf32_External_Rela); /* And the .got.plt section. */ htab->root.sgotplt->size += 4; } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } eh = (struct elf32_nios2_link_hash_entry *) h; use_plt = (eh->got_types_used == CALL16_USED && h->plt.offset != (bfd_vma) -1); if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; int tls_type = eh->tls_type; int indx; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; s = htab->root.sgot; h->got.offset = s->size; if (tls_type == GOT_UNKNOWN) abort (); if (tls_type == GOT_NORMAL) /* Non-TLS symbols need one GOT slot. */ s->size += 4; else { if (tls_type & GOT_TLS_GD) /* R_NIOS2_TLS_GD16 needs 2 consecutive GOT slots. */ s->size += 8; if (tls_type & GOT_TLS_IE) /* R_NIOS2_TLS_IE16 needs one GOT slot. */ s->size += 4; } dyn = htab->root.dynamic_sections_created; indx = 0; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) indx = h->dynindx; if (tls_type != GOT_NORMAL && (info->shared || indx != 0) && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { if (tls_type & GOT_TLS_IE) htab->root.srelgot->size += sizeof (Elf32_External_Rela); if (tls_type & GOT_TLS_GD) htab->root.srelgot->size += sizeof (Elf32_External_Rela); if ((tls_type & GOT_TLS_GD) && indx != 0) htab->root.srelgot->size += sizeof (Elf32_External_Rela); } else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && !use_plt && (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) htab->root.srelgot->size += sizeof (Elf32_External_Rela); } else h->got.offset = (bfd_vma) -1; if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared) { if (h->def_regular && (h->forced_local || info->symbolic)) { struct elf32_nios2_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->root.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * sizeof (Elf32_External_Rela); } return TRUE; } /* Implement elf_backend_size_dynamic_sections: Set the sizes of the dynamic sections. */ static bfd_boolean nios2_elf32_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { bfd *dynobj; asection *s; bfd_boolean plt; bfd_boolean got; bfd_boolean relocs; bfd *ibfd; struct elf32_nios2_link_hash_table *htab; htab = elf32_nios2_hash_table (info); dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); htab->res_n_size = 0; if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_linker_section (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } else { /* We may have created entries in the .rela.got section. However, if we are not creating the dynamic sections, we will not actually use these entries. Reset the size of .rela.got, which will cause it to get stripped from the output file below. */ s = htab->root.srelgot; if (s != NULL) s->size = 0; } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; char *local_tls_type; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf32_nios2_dyn_relocs *p; for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; srel->size += p->count * sizeof (Elf32_External_Rela); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_tls_type = elf32_nios2_local_got_tls_type (ibfd); s = htab->root.sgot; srel = htab->root.srelgot; for (; local_got < end_local_got; ++local_got, ++local_tls_type) { if (*local_got > 0) { *local_got = s->size; if (*local_tls_type & GOT_TLS_GD) /* TLS_GD relocs need an 8-byte structure in the GOT. */ s->size += 8; if (*local_tls_type & GOT_TLS_IE) s->size += 4; if (*local_tls_type == GOT_NORMAL) s->size += 4; if (info->shared || *local_tls_type == GOT_TLS_GD) srel->size += sizeof (Elf32_External_Rela); } else *local_got = (bfd_vma) -1; } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate two GOT entries and one dynamic relocation (if necessary) for R_NIOS2_TLS_LDM16 relocations. */ htab->tls_ldm_got.offset = htab->root.sgot->size; htab->root.sgot->size += 8; if (info->shared) htab->root.srelgot->size += sizeof (Elf32_External_Rela); } else htab->tls_ldm_got.offset = -1; /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info); /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ plt = FALSE; got = FALSE; relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; if ((s->flags & SEC_LINKER_CREATED) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if (strcmp (name, ".plt") == 0) { /* Remember whether there is a PLT. */ plt = s->size != 0; /* Correct for the number of res_N branches. */ if (plt && !info->shared) { htab->res_n_size = (s->size-28) / 3; s->size += htab->res_n_size; } } else if (CONST_STRNEQ (name, ".rela")) { if (s->size != 0) { relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (CONST_STRNEQ (name, ".got")) got = s->size != 0; else if (strcmp (name, ".dynbss") != 0) /* It's not one of our sections, so don't allocate space. */ continue; if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. */ /* FIXME: This should be a call to bfd_alloc not bfd_zalloc. Unused entries should be reclaimed before the section's contents are written out, but at the moment this does not happen. Thus in order to prevent writing out garbage, we initialize the section's contents to zero. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } /* Adjust dynamic symbols that point to the plt to account for the now-known number of resN slots. */ if (htab->res_n_size) elf_link_hash_traverse (& htab->root, adjust_dynrelocs, info); if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_nios2_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (!info->shared && !add_dynamic_entry (DT_DEBUG, 0)) return FALSE; if (got && !add_dynamic_entry (DT_PLTGOT, 0)) return FALSE; if (plt && (!add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0))) return FALSE; if (relocs && (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))) return FALSE; if (!info->shared && !add_dynamic_entry (DT_NIOS2_GP, 0)) return FALSE; if ((info->flags & DF_TEXTREL) != 0 && !add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } #undef add_dynamic_entry return TRUE; } /* Implement bfd_elf32_bfd_link_hash_table_create. */ static struct bfd_link_hash_table * nios2_elf32_link_hash_table_create (bfd *abfd) { struct elf32_nios2_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf32_nios2_link_hash_table); ret = bfd_zmalloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, link_hash_newfunc, sizeof (struct elf32_nios2_link_hash_entry), NIOS2_ELF_DATA)) { free (ret); return NULL; } return &ret->root.root; } /* Implement elf_backend_reloc_type_class. */ static enum elf_reloc_type_class nios2_elf32_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, const asection *rel_sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *rela) { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_NIOS2_RELATIVE: return reloc_class_relative; case R_NIOS2_JUMP_SLOT: return reloc_class_plt; case R_NIOS2_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Return 1 if target is one of ours. */ static bfd_boolean is_nios2_elf_target (const struct bfd_target *targ) { return (targ == &bfd_elf32_littlenios2_vec || targ == &bfd_elf32_bignios2_vec); } /* Implement elf_backend_add_symbol_hook. This hook is called by the linker when adding symbols from an object file. We use it to put .comm items in .sbss, and not .bss. */ static bfd_boolean nios2_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep ATTRIBUTE_UNUSED, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { bfd *dynobj; if (sym->st_shndx == SHN_COMMON && !info->relocatable && sym->st_size <= elf_gp_size (abfd) && is_nios2_elf_target (info->output_bfd->xvec)) { /* Common symbols less than or equal to -G nn bytes are automatically put into .sbss. */ struct elf32_nios2_link_hash_table *htab; htab = elf32_nios2_hash_table (info); if (htab->sbss == NULL) { flagword flags = SEC_IS_COMMON | SEC_LINKER_CREATED; dynobj = elf_hash_table (info)->dynobj; if (!dynobj) dynobj = abfd; htab->sbss = bfd_make_section_anyway_with_flags (dynobj, ".sbss", flags); if (htab->sbss == NULL) return FALSE; } *secp = htab->sbss; *valp = sym->st_size; } return TRUE; } /* Implement elf_backend_can_make_relative_eh_frame: Decide whether to attempt to turn absptr or lsda encodings in shared libraries into pcrel within the given input section. */ static bfd_boolean nios2_elf32_can_make_relative_eh_frame (bfd *input_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info ATTRIBUTE_UNUSED, asection *eh_frame_section ATTRIBUTE_UNUSED) { /* We can't use PC-relative encodings in the .eh_frame section. */ return FALSE; } /* Implement elf_backend_special_sections. */ const struct bfd_elf_special_section elf32_nios2_special_sections[] = { { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL }, { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL }, { NULL, 0, 0, 0, 0 } }; #define ELF_ARCH bfd_arch_nios2 #define ELF_TARGET_ID NIOS2_ELF_DATA #define ELF_MACHINE_CODE EM_ALTERA_NIOS2 /* The Nios II MMU uses a 4K page size. */ #define ELF_MAXPAGESIZE 0x1000 #define bfd_elf32_bfd_link_hash_table_create \ nios2_elf32_link_hash_table_create /* Relocation table lookup macros. */ #define bfd_elf32_bfd_reloc_type_lookup nios2_elf32_bfd_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup nios2_elf32_bfd_reloc_name_lookup /* JUMP_TABLE_LINK macros. */ /* elf_info_to_howto (using RELA relocations). */ #define elf_info_to_howto nios2_elf32_info_to_howto /* elf backend functions. */ #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_got_plt 1 #define elf_backend_rela_normal 1 #define elf_backend_relocate_section nios2_elf32_relocate_section #define elf_backend_section_flags nios2_elf32_section_flags #define elf_backend_fake_sections nios2_elf32_fake_sections #define elf_backend_check_relocs nios2_elf32_check_relocs #define elf_backend_gc_mark_hook nios2_elf32_gc_mark_hook #define elf_backend_gc_sweep_hook nios2_elf32_gc_sweep_hook #define elf_backend_create_dynamic_sections \ nios2_elf32_create_dynamic_sections #define elf_backend_finish_dynamic_symbol nios2_elf32_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ nios2_elf32_finish_dynamic_sections #define elf_backend_adjust_dynamic_symbol nios2_elf32_adjust_dynamic_symbol #define elf_backend_reloc_type_class nios2_elf32_reloc_type_class #define elf_backend_size_dynamic_sections nios2_elf32_size_dynamic_sections #define elf_backend_add_symbol_hook nios2_elf_add_symbol_hook #define elf_backend_copy_indirect_symbol nios2_elf32_copy_indirect_symbol #define elf_backend_grok_prstatus nios2_grok_prstatus #define elf_backend_grok_psinfo nios2_grok_psinfo #undef elf_backend_can_make_relative_eh_frame #define elf_backend_can_make_relative_eh_frame \ nios2_elf32_can_make_relative_eh_frame #define elf_backend_special_sections elf32_nios2_special_sections #define TARGET_LITTLE_SYM bfd_elf32_littlenios2_vec #define TARGET_LITTLE_NAME "elf32-littlenios2" #define TARGET_BIG_SYM bfd_elf32_bignios2_vec #define TARGET_BIG_NAME "elf32-bignios2" #define elf_backend_got_header_size 12 #include "elf32-target.h"