# This testcase is part of GDB, the GNU debugger. # Copyright 2004 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # Check that GDB can trigger and backtrace SIGSEGV signal stacks # caused by both accessing (data) and executing (code) at address # zero. # On function descriptor architectures, a zero descriptor, instead of # a NULL pointer, is used. That way the NULL code test always # contains a zero code reference. # For recovery, sigjmp/longjmp are used. # This also tests backtrace/gdb1476. if $tracelevel { strace $tracelevel } set prms_id 0 set bug_id 0 set testfile "signull" set srcfile ${testfile}.c set binfile ${objdir}/${subdir}/${testfile} if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable {debug}] != "" } { gdb_suppress_entire_file "Testcase compile failed, so all tests in this file will automatically fail." } gdb_exit gdb_start gdb_reinitialize_dir $srcdir/$subdir gdb_load ${binfile} # # Run to `main' where we begin our tests. # if ![runto_main] then { gdb_suppress_tests } # If we can examine what's at memory address 0, it is possible that we # could also execute it. This could probably make us run away, # executing random code, which could have all sorts of ill effects, # especially on targets without an MMU. Don't run the tests in that # case. send_gdb "x 0\n" gdb_expect { -re "0x0:.*Cannot access memory at address 0x0.*$gdb_prompt $" { } -re "0x0:.*Error accessing memory address 0x0.*$gdb_prompt $" { } -re ".*$gdb_prompt $" { untested "Memory at address 0 is possibly executable" return } } # If an attempt to call a NULL pointer leaves the inferior in main, # then function pointers are descriptors, probe this and remember the # result. gdb_test "set test = code_entry_point" "" "set for function pointer probe" set test "probe function pointer" set function_pointer code_entry_point gdb_test_multiple "continue" "$test" { -re "Program received signal SIGSEGV.* bowler .$gdb_prompt $" { set function_pointer code_descriptor pass "$test (function descriptor)" } -re "Program received signal SIGSEGV.*0.*$gdb_prompt $" { pass "$test (function entry-point)" } } # Re-start from scratch, breakpoint the bowler so that control is # regained after each test, and run up to that. rerun_to_main gdb_test "break bowler" gdb_test "break keeper" # By default Stop:Yes Print:Yes Pass:Yes gdb_test "handle SIGSEGV" "SIGSEGV.*Yes.*Yes.*Yes.*Segmentation fault" # For the given signal type, check that: the SIGSEGV occures; a # backtrace from the SEGV works; the sigsegv is delivered; a backtrace # through the SEGV works. proc test_segv { name tag bt_from_segv bt_from_keeper } { gdb_test continue "Breakpoint.* bowler.*" "${name} starts with the bowler" gdb_test "set test = $tag" gdb_test continue "Program received signal SIGSEGV.*" "${name} got SEGV" gdb_test backtrace $bt_from_segv "backtrace segv for ${name}" gdb_test continue "Breakpoint.* keeper.*" "${name} through to keeper" gdb_test backtrace $bt_from_keeper "backtrace keeper for ${name}" } test_segv data data_pointer \ {#0 .* bowler .*#1 .* main .*} \ {#0 .* keeper .*#1 .* handler .*#2 .* bowler .*#3 .* main .*} test_segv code $function_pointer \ {#0 .* 0x0+ .*#1 .* bowler .*#2 .* main .*} \ {#0 .* keeper .*#1 .* handler .*#2 .* 0x0+ .*#3 .* bowler .*#4 .* main .*}