// OBSOLETE /* Target machine description for generic Motorola 88000, for GDB. // OBSOLETE // OBSOLETE Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1993, 1994, 1996, // OBSOLETE 1998, 1999, 2000, 2002 Free Software Foundation, Inc. // OBSOLETE // OBSOLETE This file is part of GDB. // OBSOLETE // OBSOLETE This program is free software; you can redistribute it and/or modify // OBSOLETE it under the terms of the GNU General Public License as published by // OBSOLETE the Free Software Foundation; either version 2 of the License, or // OBSOLETE (at your option) any later version. // OBSOLETE // OBSOLETE This program is distributed in the hope that it will be useful, // OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of // OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // OBSOLETE GNU General Public License for more details. // OBSOLETE // OBSOLETE You should have received a copy of the GNU General Public License // OBSOLETE along with this program; if not, write to the Free Software // OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, // OBSOLETE Boston, MA 02111-1307, USA. */ // OBSOLETE // OBSOLETE #include "doublest.h" // OBSOLETE #include "regcache.h" // OBSOLETE // OBSOLETE /* g++ support is not yet included. */ // OBSOLETE // OBSOLETE /* We cache information about saved registers in the frame structure, // OBSOLETE to save us from having to re-scan function prologues every time // OBSOLETE a register in a non-current frame is accessed. */ // OBSOLETE // OBSOLETE #define EXTRA_FRAME_INFO \ // OBSOLETE struct frame_saved_regs *fsr; \ // OBSOLETE CORE_ADDR locals_pointer; \ // OBSOLETE CORE_ADDR args_pointer; // OBSOLETE // OBSOLETE /* Zero the frame_saved_regs pointer when the frame is initialized, // OBSOLETE so that FRAME_FIND_SAVED_REGS () will know to allocate and // OBSOLETE initialize a frame_saved_regs struct the first time it is called. // OBSOLETE Set the arg_pointer to -1, which is not valid; 0 and other values // OBSOLETE indicate real, cached values. */ // OBSOLETE // OBSOLETE #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \ // OBSOLETE init_extra_frame_info (fromleaf, fi) // OBSOLETE extern void init_extra_frame_info (); // OBSOLETE // OBSOLETE /* Offset from address of function to start of its code. // OBSOLETE Zero on most machines. */ // OBSOLETE // OBSOLETE #define FUNCTION_START_OFFSET 0 // OBSOLETE // OBSOLETE /* Advance PC across any function entry prologue instructions // OBSOLETE to reach some "real" code. */ // OBSOLETE // OBSOLETE extern CORE_ADDR m88k_skip_prologue (CORE_ADDR); // OBSOLETE #define SKIP_PROLOGUE(frompc) (m88k_skip_prologue (frompc)) // OBSOLETE // OBSOLETE /* The m88k kernel aligns all instructions on 4-byte boundaries. The // OBSOLETE kernel also uses the least significant two bits for its own hocus // OBSOLETE pocus. When gdb receives an address from the kernel, it needs to // OBSOLETE preserve those right-most two bits, but gdb also needs to be careful // OBSOLETE to realize that those two bits are not really a part of the address // OBSOLETE of an instruction. Shrug. */ // OBSOLETE // OBSOLETE extern CORE_ADDR m88k_addr_bits_remove (CORE_ADDR); // OBSOLETE #define ADDR_BITS_REMOVE(addr) m88k_addr_bits_remove (addr) // OBSOLETE // OBSOLETE /* Immediately after a function call, return the saved pc. // OBSOLETE Can't always go through the frames for this because on some machines // OBSOLETE the new frame is not set up until the new function executes // OBSOLETE some instructions. */ // OBSOLETE // OBSOLETE #define SAVED_PC_AFTER_CALL(frame) \ // OBSOLETE (ADDR_BITS_REMOVE (read_register (SRP_REGNUM))) // OBSOLETE // OBSOLETE /* Stack grows downward. */ // OBSOLETE // OBSOLETE #define INNER_THAN(lhs,rhs) ((lhs) < (rhs)) // OBSOLETE // OBSOLETE /* Sequence of bytes for breakpoint instruction. */ // OBSOLETE // OBSOLETE /* instruction 0xF000D1FF is 'tb0 0,r0,511' // OBSOLETE If Bit bit 0 of r0 is clear (always true), // OBSOLETE initiate exception processing (trap). // OBSOLETE */ // OBSOLETE #define BREAKPOINT {0xF0, 0x00, 0xD1, 0xFF} // OBSOLETE // OBSOLETE /* Amount PC must be decremented by after a breakpoint. // OBSOLETE This is often the number of bytes in BREAKPOINT // OBSOLETE but not always. */ // OBSOLETE // OBSOLETE #define DECR_PC_AFTER_BREAK 0 // OBSOLETE // OBSOLETE /* Say how long (ordinary) registers are. This is a piece of bogosity // OBSOLETE used in push_word and a few other places; REGISTER_RAW_SIZE is the // OBSOLETE real way to know how big a register is. */ // OBSOLETE // OBSOLETE #define REGISTER_SIZE 4 // OBSOLETE // OBSOLETE /* Number of machine registers */ // OBSOLETE // OBSOLETE #define GP_REGS (38) // OBSOLETE #define FP_REGS (32) // OBSOLETE #define NUM_REGS (GP_REGS + FP_REGS) // OBSOLETE // OBSOLETE /* Initializer for an array of names of registers. // OBSOLETE There should be NUM_REGS strings in this initializer. */ // OBSOLETE // OBSOLETE #define REGISTER_NAMES {\ // OBSOLETE "r0",\ // OBSOLETE "r1",\ // OBSOLETE "r2",\ // OBSOLETE "r3",\ // OBSOLETE "r4",\ // OBSOLETE "r5",\ // OBSOLETE "r6",\ // OBSOLETE "r7",\ // OBSOLETE "r8",\ // OBSOLETE "r9",\ // OBSOLETE "r10",\ // OBSOLETE "r11",\ // OBSOLETE "r12",\ // OBSOLETE "r13",\ // OBSOLETE "r14",\ // OBSOLETE "r15",\ // OBSOLETE "r16",\ // OBSOLETE "r17",\ // OBSOLETE "r18",\ // OBSOLETE "r19",\ // OBSOLETE "r20",\ // OBSOLETE "r21",\ // OBSOLETE "r22",\ // OBSOLETE "r23",\ // OBSOLETE "r24",\ // OBSOLETE "r25",\ // OBSOLETE "r26",\ // OBSOLETE "r27",\ // OBSOLETE "r28",\ // OBSOLETE "r29",\ // OBSOLETE "r30",\ // OBSOLETE "r31",\ // OBSOLETE "psr",\ // OBSOLETE "fpsr",\ // OBSOLETE "fpcr",\ // OBSOLETE "sxip",\ // OBSOLETE "snip",\ // OBSOLETE "sfip",\ // OBSOLETE "x0",\ // OBSOLETE "x1",\ // OBSOLETE "x2",\ // OBSOLETE "x3",\ // OBSOLETE "x4",\ // OBSOLETE "x5",\ // OBSOLETE "x6",\ // OBSOLETE "x7",\ // OBSOLETE "x8",\ // OBSOLETE "x9",\ // OBSOLETE "x10",\ // OBSOLETE "x11",\ // OBSOLETE "x12",\ // OBSOLETE "x13",\ // OBSOLETE "x14",\ // OBSOLETE "x15",\ // OBSOLETE "x16",\ // OBSOLETE "x17",\ // OBSOLETE "x18",\ // OBSOLETE "x19",\ // OBSOLETE "x20",\ // OBSOLETE "x21",\ // OBSOLETE "x22",\ // OBSOLETE "x23",\ // OBSOLETE "x24",\ // OBSOLETE "x25",\ // OBSOLETE "x26",\ // OBSOLETE "x27",\ // OBSOLETE "x28",\ // OBSOLETE "x29",\ // OBSOLETE "x30",\ // OBSOLETE "x31",\ // OBSOLETE "vbr",\ // OBSOLETE "dmt0",\ // OBSOLETE "dmd0",\ // OBSOLETE "dma0",\ // OBSOLETE "dmt1",\ // OBSOLETE "dmd1",\ // OBSOLETE "dma1",\ // OBSOLETE "dmt2",\ // OBSOLETE "dmd2",\ // OBSOLETE "dma2",\ // OBSOLETE "sr0",\ // OBSOLETE "sr1",\ // OBSOLETE "sr2",\ // OBSOLETE "sr3",\ // OBSOLETE "fpecr",\ // OBSOLETE "fphs1",\ // OBSOLETE "fpls1",\ // OBSOLETE "fphs2",\ // OBSOLETE "fpls2",\ // OBSOLETE "fppt",\ // OBSOLETE "fprh",\ // OBSOLETE "fprl",\ // OBSOLETE "fpit",\ // OBSOLETE "fpsr",\ // OBSOLETE "fpcr",\ // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Register numbers of various important registers. // OBSOLETE Note that some of these values are "real" register numbers, // OBSOLETE and correspond to the general registers of the machine, // OBSOLETE and some are "phony" register numbers which are too large // OBSOLETE to be actual register numbers as far as the user is concerned // OBSOLETE but do serve to get the desired values when passed to read_register. */ // OBSOLETE // OBSOLETE #define R0_REGNUM 0 /* Contains the constant zero */ // OBSOLETE #define SRP_REGNUM 1 /* Contains subroutine return pointer */ // OBSOLETE #define RV_REGNUM 2 /* Contains simple return values */ // OBSOLETE #define SRA_REGNUM 12 /* Contains address of struct return values */ // OBSOLETE #define SP_REGNUM 31 /* Contains address of top of stack */ // OBSOLETE // OBSOLETE /* Instruction pointer notes... // OBSOLETE // OBSOLETE On the m88100: // OBSOLETE // OBSOLETE * cr04 = sxip. On exception, contains the excepting pc (probably). // OBSOLETE On rte, is ignored. // OBSOLETE // OBSOLETE * cr05 = snip. On exception, contains the NPC (next pc). On rte, // OBSOLETE pc is loaded from here. // OBSOLETE // OBSOLETE * cr06 = sfip. On exception, contains the NNPC (next next pc). On // OBSOLETE rte, the NPC is loaded from here. // OBSOLETE // OBSOLETE * lower two bits of each are flag bits. Bit 1 is V means address // OBSOLETE is valid. If address is not valid, bit 0 is ignored. Otherwise, // OBSOLETE bit 0 is E and asks for an exception to be taken if this // OBSOLETE instruction is executed. // OBSOLETE // OBSOLETE On the m88110: // OBSOLETE // OBSOLETE * cr04 = exip. On exception, contains the address of the excepting // OBSOLETE pc (always). On rte, pc is loaded from here. Bit 0, aka the D // OBSOLETE bit, is a flag saying that the offending instruction was in a // OBSOLETE branch delay slot. If set, then cr05 contains the NPC. // OBSOLETE // OBSOLETE * cr05 = enip. On exception, if the instruction pointed to by cr04 // OBSOLETE was in a delay slot as indicated by the bit 0 of cr04, aka the D // OBSOLETE bit, the cr05 contains the NPC. Otherwise ignored. // OBSOLETE // OBSOLETE * cr06 is invalid */ // OBSOLETE // OBSOLETE /* Note that the Harris Unix kernels emulate the m88100's behavior on // OBSOLETE the m88110. */ // OBSOLETE // OBSOLETE #define SXIP_REGNUM 35 /* On m88100, Contains Shadow Execute // OBSOLETE Instruction Pointer. */ // OBSOLETE #define SNIP_REGNUM 36 /* On m88100, Contains Shadow Next // OBSOLETE Instruction Pointer. */ // OBSOLETE #define SFIP_REGNUM 37 /* On m88100, Contains Shadow Fetched // OBSOLETE Intruction pointer. */ // OBSOLETE // OBSOLETE #define EXIP_REGNUM 35 /* On m88110, Contains Exception // OBSOLETE Executing Instruction Pointer. */ // OBSOLETE #define ENIP_REGNUM 36 /* On m88110, Contains the Exception // OBSOLETE Next Instruction Pointer. */ // OBSOLETE // OBSOLETE #define PC_REGNUM SXIP_REGNUM /* Program Counter */ // OBSOLETE #define NPC_REGNUM SNIP_REGNUM /* Next Program Counter */ // OBSOLETE #define M88K_NNPC_REGNUM SFIP_REGNUM /* Next Next Program Counter */ // OBSOLETE // OBSOLETE // OBSOLETE #define PSR_REGNUM 32 /* Processor Status Register */ // OBSOLETE #define FPSR_REGNUM 33 /* Floating Point Status Register */ // OBSOLETE #define FPCR_REGNUM 34 /* Floating Point Control Register */ // OBSOLETE #define XFP_REGNUM 38 /* First Extended Float Register */ // OBSOLETE #define X0_REGNUM XFP_REGNUM /* Which also contains the constant zero */ // OBSOLETE // OBSOLETE /* This is rather a confusing lie. Our m88k port using a stack pointer value // OBSOLETE for the frame address. Hence, the frame address and the frame pointer are // OBSOLETE only indirectly related. The value of this macro is the register number // OBSOLETE fetched by the machine "independent" portions of gdb when they want to know // OBSOLETE about a frame address. Thus, we lie here and claim that FP_REGNUM is // OBSOLETE SP_REGNUM. */ // OBSOLETE #define FP_REGNUM SP_REGNUM /* Reg fetched to locate frame when pgm stops */ // OBSOLETE #define ACTUAL_FP_REGNUM 30 // OBSOLETE // OBSOLETE /* PSR status bit definitions. */ // OBSOLETE // OBSOLETE #define PSR_MODE 0x80000000 // OBSOLETE #define PSR_BYTE_ORDER 0x40000000 // OBSOLETE #define PSR_SERIAL_MODE 0x20000000 // OBSOLETE #define PSR_CARRY 0x10000000 // OBSOLETE #define PSR_SFU_DISABLE 0x000003f0 // OBSOLETE #define PSR_SFU1_DISABLE 0x00000008 // OBSOLETE #define PSR_MXM 0x00000004 // OBSOLETE #define PSR_IND 0x00000002 // OBSOLETE #define PSR_SFRZ 0x00000001 // OBSOLETE // OBSOLETE // OBSOLETE // OBSOLETE /* The following two comments come from the days prior to the m88110 // OBSOLETE port. The m88110 handles the instruction pointers differently. I // OBSOLETE do not know what any m88110 kernels do as the m88110 port I'm // OBSOLETE working with is for an embedded system. rich@cygnus.com // OBSOLETE 13-sept-93. */ // OBSOLETE // OBSOLETE /* BCS requires that the SXIP_REGNUM (or PC_REGNUM) contain the // OBSOLETE address of the next instr to be executed when a breakpoint occurs. // OBSOLETE Because the kernel gets the next instr (SNIP_REGNUM), the instr in // OBSOLETE SNIP needs to be put back into SFIP, and the instr in SXIP should // OBSOLETE be shifted to SNIP */ // OBSOLETE // OBSOLETE /* Are you sitting down? It turns out that the 88K BCS (binary // OBSOLETE compatibility standard) folks originally felt that the debugger // OBSOLETE should be responsible for backing up the IPs, not the kernel (as is // OBSOLETE usually done). Well, they have reversed their decision, and in // OBSOLETE future releases our kernel will be handling the backing up of the // OBSOLETE IPs. So, eventually, we won't need to do the SHIFT_INST_REGS // OBSOLETE stuff. But, for now, since there are 88K systems out there that do // OBSOLETE need the debugger to do the IP shifting, and since there will be // OBSOLETE systems where the kernel does the shifting, the code is a little // OBSOLETE more complex than perhaps it needs to be (we still go inside // OBSOLETE SHIFT_INST_REGS, and if the shifting hasn't occurred then gdb goes // OBSOLETE ahead and shifts). */ // OBSOLETE // OBSOLETE extern int target_is_m88110; // OBSOLETE #define SHIFT_INST_REGS() \ // OBSOLETE if (!target_is_m88110) \ // OBSOLETE { \ // OBSOLETE CORE_ADDR pc = read_register (PC_REGNUM); \ // OBSOLETE CORE_ADDR npc = read_register (NPC_REGNUM); \ // OBSOLETE if (pc != npc) \ // OBSOLETE { \ // OBSOLETE write_register (M88K_NNPC_REGNUM, npc); \ // OBSOLETE write_register (NPC_REGNUM, pc); \ // OBSOLETE } \ // OBSOLETE } // OBSOLETE // OBSOLETE /* Storing the following registers is a no-op. */ // OBSOLETE #define CANNOT_STORE_REGISTER(regno) (((regno) == R0_REGNUM) \ // OBSOLETE || ((regno) == X0_REGNUM)) // OBSOLETE // OBSOLETE /* Number of bytes of storage in the actual machine representation // OBSOLETE for register N. On the m88k, the general purpose registers are 4 // OBSOLETE bytes and the 88110 extended registers are 10 bytes. */ // OBSOLETE // OBSOLETE #define REGISTER_RAW_SIZE(N) ((N) < XFP_REGNUM ? 4 : 10) // OBSOLETE // OBSOLETE /* Total amount of space needed to store our copies of the machine's // OBSOLETE register state, the array `registers'. */ // OBSOLETE // OBSOLETE #define REGISTER_BYTES ((GP_REGS * REGISTER_RAW_SIZE(0)) \ // OBSOLETE + (FP_REGS * REGISTER_RAW_SIZE(XFP_REGNUM))) // OBSOLETE // OBSOLETE /* Index within `registers' of the first byte of the space for // OBSOLETE register N. */ // OBSOLETE // OBSOLETE #define REGISTER_BYTE(N) (((N) * REGISTER_RAW_SIZE(0)) \ // OBSOLETE + ((N) >= XFP_REGNUM \ // OBSOLETE ? (((N) - XFP_REGNUM) \ // OBSOLETE * REGISTER_RAW_SIZE(XFP_REGNUM)) \ // OBSOLETE : 0)) // OBSOLETE // OBSOLETE /* Number of bytes of storage in the program's representation for // OBSOLETE register N. On the m88k, all registers are 4 bytes excepting the // OBSOLETE m88110 extended registers which are 8 byte doubles. */ // OBSOLETE // OBSOLETE #define REGISTER_VIRTUAL_SIZE(N) ((N) < XFP_REGNUM ? 4 : 8) // OBSOLETE // OBSOLETE /* Largest value REGISTER_RAW_SIZE can have. */ // OBSOLETE // OBSOLETE #define MAX_REGISTER_RAW_SIZE (REGISTER_RAW_SIZE(XFP_REGNUM)) // OBSOLETE // OBSOLETE /* Largest value REGISTER_VIRTUAL_SIZE can have. // OBSOLETE Are FPS1, FPS2, FPR "virtual" regisers? */ // OBSOLETE // OBSOLETE #define MAX_REGISTER_VIRTUAL_SIZE (REGISTER_RAW_SIZE(XFP_REGNUM)) // OBSOLETE // OBSOLETE /* Return the GDB type object for the "standard" data type // OBSOLETE of data in register N. */ // OBSOLETE // OBSOLETE struct type *m88k_register_type (int regnum); // OBSOLETE #define REGISTER_VIRTUAL_TYPE(N) m88k_register_type (N) // OBSOLETE // OBSOLETE /* The 88k call/return conventions call for "small" values to be returned // OBSOLETE into consecutive registers starting from r2. */ // OBSOLETE // OBSOLETE #define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ // OBSOLETE memcpy ((VALBUF), &(((char *)REGBUF)[REGISTER_BYTE(RV_REGNUM)]), TYPE_LENGTH (TYPE)) // OBSOLETE // OBSOLETE #define DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF)) // OBSOLETE // OBSOLETE /* Write into appropriate registers a function return value // OBSOLETE of type TYPE, given in virtual format. */ // OBSOLETE // OBSOLETE #define STORE_RETURN_VALUE(TYPE,VALBUF) \ // OBSOLETE write_register_bytes (2*REGISTER_RAW_SIZE(0), (VALBUF), TYPE_LENGTH (TYPE)) // OBSOLETE // OBSOLETE /* In COFF, if PCC says a parameter is a short or a char, do not // OBSOLETE change it to int (it seems the convention is to change it). */ // OBSOLETE // OBSOLETE #define BELIEVE_PCC_PROMOTION 1 // OBSOLETE // OBSOLETE /* Describe the pointer in each stack frame to the previous stack frame // OBSOLETE (its caller). */ // OBSOLETE // OBSOLETE /* FRAME_CHAIN takes a frame's nominal address // OBSOLETE and produces the frame's chain-pointer. // OBSOLETE // OBSOLETE However, if FRAME_CHAIN_VALID returns zero, // OBSOLETE it means the given frame is the outermost one and has no caller. */ // OBSOLETE // OBSOLETE extern CORE_ADDR frame_chain (); // OBSOLETE extern int frame_chain_valid (); // OBSOLETE extern int frameless_function_invocation (); // OBSOLETE // OBSOLETE #define FRAME_CHAIN(thisframe) \ // OBSOLETE frame_chain (thisframe) // OBSOLETE // OBSOLETE #define FRAMELESS_FUNCTION_INVOCATION(frame) \ // OBSOLETE (frameless_function_invocation (frame)) // OBSOLETE // OBSOLETE /* Define other aspects of the stack frame. */ // OBSOLETE // OBSOLETE #define FRAME_SAVED_PC(FRAME) \ // OBSOLETE frame_saved_pc (FRAME) // OBSOLETE extern CORE_ADDR frame_saved_pc (); // OBSOLETE // OBSOLETE #define FRAME_ARGS_ADDRESS(fi) \ // OBSOLETE frame_args_address (fi) // OBSOLETE extern CORE_ADDR frame_args_address (); // OBSOLETE // OBSOLETE #define FRAME_LOCALS_ADDRESS(fi) \ // OBSOLETE frame_locals_address (fi) // OBSOLETE extern CORE_ADDR frame_locals_address (); // OBSOLETE // OBSOLETE /* Return number of args passed to a frame. // OBSOLETE Can return -1, meaning no way to tell. */ // OBSOLETE // OBSOLETE #define FRAME_NUM_ARGS(fi) (-1) // OBSOLETE // OBSOLETE /* Return number of bytes at start of arglist that are not really args. */ // OBSOLETE // OBSOLETE #define FRAME_ARGS_SKIP 0 // OBSOLETE // OBSOLETE /* Put here the code to store, into a struct frame_saved_regs, // OBSOLETE the addresses of the saved registers of frame described by FRAME_INFO. // OBSOLETE This includes special registers such as pc and fp saved in special // OBSOLETE ways in the stack frame. sp is even more special: // OBSOLETE the address we return for it IS the sp for the next frame. */ // OBSOLETE // OBSOLETE /* On the 88k, parameter registers get stored into the so called "homing" // OBSOLETE area. This *always* happens when you compiled with GCC and use -g. // OBSOLETE Also, (with GCC and -g) the saving of the parameter register values // OBSOLETE always happens right within the function prologue code, so these register // OBSOLETE values can generally be relied upon to be already copied into their // OBSOLETE respective homing slots by the time you will normally try to look at // OBSOLETE them (we hope). // OBSOLETE // OBSOLETE Note that homing area stack slots are always at *positive* offsets from // OBSOLETE the frame pointer. Thus, the homing area stack slots for the parameter // OBSOLETE registers (passed values) for a given function are actually part of the // OBSOLETE frame area of the caller. This is unusual, but it should not present // OBSOLETE any special problems for GDB. // OBSOLETE // OBSOLETE Note also that on the 88k, we are only interested in finding the // OBSOLETE registers that might have been saved in memory. This is a subset of // OBSOLETE the whole set of registers because the standard calling sequence allows // OBSOLETE the called routine to clobber many registers. // OBSOLETE // OBSOLETE We could manage to locate values for all of the so called "preserved" // OBSOLETE registers (some of which may get saved within any particular frame) but // OBSOLETE that would require decoding all of the tdesc information. That would be // OBSOLETE nice information for GDB to have, but it is not strictly manditory if we // OBSOLETE can live without the ability to look at values within (or backup to) // OBSOLETE previous frames. // OBSOLETE */ // OBSOLETE // OBSOLETE struct frame_saved_regs; // OBSOLETE struct frame_info; // OBSOLETE // OBSOLETE void frame_find_saved_regs (struct frame_info *fi, // OBSOLETE struct frame_saved_regs *fsr); // OBSOLETE // OBSOLETE #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ // OBSOLETE frame_find_saved_regs (frame_info, &frame_saved_regs) // OBSOLETE // OBSOLETE // OBSOLETE #define POP_FRAME pop_frame () // OBSOLETE extern void pop_frame (); // OBSOLETE // OBSOLETE /* Call function stuff contributed by Kevin Buettner of Motorola. */ // OBSOLETE // OBSOLETE #define CALL_DUMMY_LOCATION AFTER_TEXT_END // OBSOLETE // OBSOLETE extern void m88k_push_dummy_frame (); // OBSOLETE #define PUSH_DUMMY_FRAME m88k_push_dummy_frame() // OBSOLETE // OBSOLETE #define CALL_DUMMY { \ // OBSOLETE 0x67ff00c0, /* 0: subu #sp,#sp,0xc0 */ \ // OBSOLETE 0x243f0004, /* 4: st #r1,#sp,0x4 */ \ // OBSOLETE 0x245f0008, /* 8: st #r2,#sp,0x8 */ \ // OBSOLETE 0x247f000c, /* c: st #r3,#sp,0xc */ \ // OBSOLETE 0x249f0010, /* 10: st #r4,#sp,0x10 */ \ // OBSOLETE 0x24bf0014, /* 14: st #r5,#sp,0x14 */ \ // OBSOLETE 0x24df0018, /* 18: st #r6,#sp,0x18 */ \ // OBSOLETE 0x24ff001c, /* 1c: st #r7,#sp,0x1c */ \ // OBSOLETE 0x251f0020, /* 20: st #r8,#sp,0x20 */ \ // OBSOLETE 0x253f0024, /* 24: st #r9,#sp,0x24 */ \ // OBSOLETE 0x255f0028, /* 28: st #r10,#sp,0x28 */ \ // OBSOLETE 0x257f002c, /* 2c: st #r11,#sp,0x2c */ \ // OBSOLETE 0x259f0030, /* 30: st #r12,#sp,0x30 */ \ // OBSOLETE 0x25bf0034, /* 34: st #r13,#sp,0x34 */ \ // OBSOLETE 0x25df0038, /* 38: st #r14,#sp,0x38 */ \ // OBSOLETE 0x25ff003c, /* 3c: st #r15,#sp,0x3c */ \ // OBSOLETE 0x261f0040, /* 40: st #r16,#sp,0x40 */ \ // OBSOLETE 0x263f0044, /* 44: st #r17,#sp,0x44 */ \ // OBSOLETE 0x265f0048, /* 48: st #r18,#sp,0x48 */ \ // OBSOLETE 0x267f004c, /* 4c: st #r19,#sp,0x4c */ \ // OBSOLETE 0x269f0050, /* 50: st #r20,#sp,0x50 */ \ // OBSOLETE 0x26bf0054, /* 54: st #r21,#sp,0x54 */ \ // OBSOLETE 0x26df0058, /* 58: st #r22,#sp,0x58 */ \ // OBSOLETE 0x26ff005c, /* 5c: st #r23,#sp,0x5c */ \ // OBSOLETE 0x271f0060, /* 60: st #r24,#sp,0x60 */ \ // OBSOLETE 0x273f0064, /* 64: st #r25,#sp,0x64 */ \ // OBSOLETE 0x275f0068, /* 68: st #r26,#sp,0x68 */ \ // OBSOLETE 0x277f006c, /* 6c: st #r27,#sp,0x6c */ \ // OBSOLETE 0x279f0070, /* 70: st #r28,#sp,0x70 */ \ // OBSOLETE 0x27bf0074, /* 74: st #r29,#sp,0x74 */ \ // OBSOLETE 0x27df0078, /* 78: st #r30,#sp,0x78 */ \ // OBSOLETE 0x63df0000, /* 7c: addu #r30,#sp,0x0 */ \ // OBSOLETE 0x145f0000, /* 80: ld #r2,#sp,0x0 */ \ // OBSOLETE 0x147f0004, /* 84: ld #r3,#sp,0x4 */ \ // OBSOLETE 0x149f0008, /* 88: ld #r4,#sp,0x8 */ \ // OBSOLETE 0x14bf000c, /* 8c: ld #r5,#sp,0xc */ \ // OBSOLETE 0x14df0010, /* 90: ld #r6,#sp,0x10 */ \ // OBSOLETE 0x14ff0014, /* 94: ld #r7,#sp,0x14 */ \ // OBSOLETE 0x151f0018, /* 98: ld #r8,#sp,0x18 */ \ // OBSOLETE 0x153f001c, /* 9c: ld #r9,#sp,0x1c */ \ // OBSOLETE 0x5c200000, /* a0: or.u #r1,#r0,0x0 */ \ // OBSOLETE 0x58210000, /* a4: or #r1,#r1,0x0 */ \ // OBSOLETE 0xf400c801, /* a8: jsr #r1 */ \ // OBSOLETE 0xf000d1ff /* ac: tb0 0x0,#r0,0x1ff */ \ // OBSOLETE } // OBSOLETE // OBSOLETE #define CALL_DUMMY_START_OFFSET 0x80 // OBSOLETE #define CALL_DUMMY_LENGTH 0xb0 // OBSOLETE // OBSOLETE /* FIXME: byteswapping. */ // OBSOLETE #define FIX_CALL_DUMMY(dummy, pc, fun, nargs, args, type, gcc_p) \ // OBSOLETE { \ // OBSOLETE *(unsigned long *)((char *) (dummy) + 0xa0) |= \ // OBSOLETE (((unsigned long) (fun)) >> 16); \ // OBSOLETE *(unsigned long *)((char *) (dummy) + 0xa4) |= \ // OBSOLETE (((unsigned long) (fun)) & 0xffff); \ // OBSOLETE } // OBSOLETE // OBSOLETE /* Stack must be aligned on 64-bit boundaries when synthesizing // OBSOLETE function calls. */ // OBSOLETE // OBSOLETE #define STACK_ALIGN(addr) (((addr) + 7) & -8) // OBSOLETE // OBSOLETE #define STORE_STRUCT_RETURN(addr, sp) \ // OBSOLETE write_register (SRA_REGNUM, (addr)) // OBSOLETE // OBSOLETE #define NEED_TEXT_START_END 1 // OBSOLETE // OBSOLETE /* According to the MC88100 RISC Microprocessor User's Manual, section // OBSOLETE 6.4.3.1.2: // OBSOLETE // OBSOLETE ... can be made to return to a particular instruction by placing a // OBSOLETE valid instruction address in the SNIP and the next sequential // OBSOLETE instruction address in the SFIP (with V bits set and E bits clear). // OBSOLETE The rte resumes execution at the instruction pointed to by the // OBSOLETE SNIP, then the SFIP. // OBSOLETE // OBSOLETE The E bit is the least significant bit (bit 0). The V (valid) bit is // OBSOLETE bit 1. This is why we logical or 2 into the values we are writing // OBSOLETE below. It turns out that SXIP plays no role when returning from an // OBSOLETE exception so nothing special has to be done with it. We could even // OBSOLETE (presumably) give it a totally bogus value. // OBSOLETE // OBSOLETE -- Kevin Buettner // OBSOLETE */ // OBSOLETE // OBSOLETE extern void m88k_target_write_pc (CORE_ADDR pc, ptid_t ptid); // OBSOLETE #define TARGET_WRITE_PC(VAL, PID) m88k_target_write_pc (VAL, PID)